WorldWideScience

Sample records for adaptive mesh refinement

  1. Parallel Adaptive Mesh Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L; Hornung, R; Plassmann, P; WIssink, A

    2005-03-04

    As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the

  2. Adaptive Mesh Refinement in CTH

    International Nuclear Information System (INIS)

    This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems

  3. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  4. Adaptive Mesh Refinement for Storm Surge

    CERN Document Server

    Mandli, Kyle T

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the \\geoclaw framework and compared to \\adcirc for Hurricane Ike along with observed tide gauge data and the computational cost of each model run.

  5. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  6. Relativistic MHD with Adaptive Mesh Refinement

    CERN Document Server

    Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David

    2006-01-01

    We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.

  7. Parallel object-oriented adaptive mesh refinement

    Energy Technology Data Exchange (ETDEWEB)

    Balsara, D.; Quinlan, D.J.

    1997-04-01

    In this paper we study adaptive mesh refinement (AMR) for elliptic and hyperbolic systems. We use the Asynchronous Fast Adaptive Composite Grid Method (AFACX), a parallel algorithm based upon the of Fast Adaptive Composite Grid Method (FAC) as a test case of an adaptive elliptic solver. For our hyperbolic system example we use TVD and ENO schemes for solving the Euler and MHD equations. We use the structured grid load balancer MLB as a tool for obtaining a load balanced distribution in a parallel environment. Parallel adaptive mesh refinement poses difficulties in expressing both the basic single grid solver, whether elliptic or hyperbolic, in a fashion that parallelizes seamlessly. It also requires that these basic solvers work together within the adaptive mesh refinement algorithm which uses the single grid solvers as one part of its adaptive solution process. We show that use of AMR++, an object-oriented library within the OVERTURE Framework, simplifies the development of AMR applications. Parallel support is provided and abstracted through the use of the P++ parallel array class.

  8. GRChombo: Numerical relativity with adaptive mesh refinement

    Science.gov (United States)

    Clough, Katy; Figueras, Pau; Finkel, Hal; Kunesch, Markus; Lim, Eugene A.; Tunyasuvunakool, Saran

    2015-12-01

    In this work, we introduce {\\mathtt{GRChombo}}: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. {\\mathtt{GRChombo}} evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that {\\mathtt{GRChombo}} can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.

  9. Fully implicit adaptive mesh refinement MHD algorithm

    Science.gov (United States)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  10. Relativistic MHD with adaptive mesh refinement

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Liebling, Steven L [Department of Physics, Long Island University-C W Post Campus, Brookville, NY 11548 (United States); Neilsen, David [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2006-11-22

    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference convex ENO method (CENO) in 3 + 1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the {nabla} . B = 0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.

  11. Adaptive Mesh Refinement for Characteristic Grids

    CERN Document Server

    Thornburg, Jonathan

    2009-01-01

    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in 2-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null \\emph{slices}. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored stored in contiguous arrays in memory. The algorithm is very efficient in both space and ti...

  12. GRChombo : Numerical Relativity with Adaptive Mesh Refinement

    CERN Document Server

    Clough, Katy; Finkel, Hal; Kunesch, Markus; Lim, Eugene A; Tunyasuvunakool, Saran

    2015-01-01

    Numerical relativity has undergone a revolution in the past decade. With a well-understood mathematical formalism, and full control over the gauge modes, it is now entering an era in which the science can be properly explored. In this work, we introduce GRChombo, a new numerical relativity code written to take full advantage of modern parallel computing techniques. GRChombo's features include full adaptive mesh refinement with block structured Berger-Rigoutsos grid generation which supports non-trivial "many-boxes-in-many-boxes" meshing hierarchies, and massive parallelism through the Message Passing Interface (MPI). GRChombo evolves the Einstein equation with the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. We show that GRChombo passes all the standard "Apples-to-Apples" code comparison tests. We also show that it can stably and accurately evolve vacuum black hole spacetimes such as binary black hole mergers, and non-vacuum spacetimes such as scalar collapses into b...

  13. Elliptic Solvers for Adaptive Mesh Refinement Grids

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.

    1999-06-03

    We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.

  14. Parallel adaptive mesh refinement for electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  15. Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Phillip, B.

    2000-07-24

    Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.

  16. AMR++: Object-Oriented Parallel Adaptive Mesh Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, D.; Philip, B.

    2000-02-02

    Adaptive mesh refinement (AMR) computations are complicated by their dynamic nature. The development of solvers for realistic applications is complicated by both the complexity of the AMR and the geometry of realistic problem domains. The additional complexity of distributed memory parallelism within such AMR applications most commonly exceeds the level of complexity that can be reasonable maintained with traditional approaches toward software development. This paper will present the details of our object-oriented work on the simplification of the use of adaptive mesh refinement on applications with complex geometries for both serial and distributed memory parallel computation. We will present an independent set of object-oriented abstractions (C++ libraries) well suited to the development of such seemingly intractable scientific computations. As an example of the use of this object-oriented approach we will present recent results of an application modeling fluid flow in the eye. Within this example, the geometry is too complicated for a single curvilinear coordinate grid and so a set of overlapping curvilinear coordinate grids' are used. Adaptive mesh refinement and the required grid generation work to support the refinement process is coupled together in the solution of essentially elliptic equations within this domain. This paper will focus on the management of complexity within development of the AMR++ library which forms a part of the Overture object-oriented framework for the solution of partial differential equations within scientific computing.

  17. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Beckingsale, D. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Gaudin, W. P. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herdman, J. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Jarvis, S. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom)

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  18. The Nonlinear Sigma Model With Distributed Adaptive Mesh Refinement

    OpenAIRE

    Liebling, Steven L.

    2004-01-01

    An adaptive mesh refinement (AMR) scheme is implemented in a distributed environment using Message Passing Interface (MPI) to find solutions to the nonlinear sigma model. Previous work studied behavior similar to black hole critical phenomena at the threshold for singularity formation in this flat space model. This work is a follow-up describing extensions to distribute the grid hierarchy and presenting tests showing the correctness of the model.

  19. Block-structured adaptive mesh refinement - theory, implementation and application

    Energy Technology Data Exchange (ETDEWEB)

    Deiterding, Ralf [ORNL

    2011-01-01

    Structured adaptive mesh refinement (SAMR) techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  20. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  1. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    Science.gov (United States)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  2. Block-Structured Adaptive Mesh Refinement Algorithms for Vlasov Simulation

    CERN Document Server

    Hittinger, J A F

    2012-01-01

    Direct discretization of continuum kinetic equations, like the Vlasov equation, are under-utilized because the distribution function generally exists in a high-dimensional (>3D) space and computational cost increases geometrically with dimension. We propose to use high-order finite-volume techniques with block-structured adaptive mesh refinement (AMR) to reduce the computational cost. The primary complication comes from a solution state comprised of variables of different dimensions. We develop the algorithms required to extend standard single-dimension block structured AMR to the multi-dimension case. Specifically, algorithms for reduction and injection operations that transfer data between mesh hierarchies of different dimensions are explained in detail. In addition, modifications to the basic AMR algorithm that enable the use of high-order spatial and temporal discretizations are discussed. Preliminary results for a standard 1D+1V Vlasov-Poisson test problem are presented. Results indicate that there is po...

  3. Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application

    Directory of Open Access Journals (Sweden)

    Deiterding Ralf

    2011-12-01

    Full Text Available Structured adaptive mesh refinement (SAMR techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  4. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    Science.gov (United States)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  5. ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Greg L.; Turk, Matthew J. [Columbia University, Department of Astronomy, New York, NY 10025 (United States); Norman, Michael L.; Bordner, James; Xu, Hao; Kritsuk, Alexei G. [CASS, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0424 (United States); O' Shea, Brian W.; Smith, Britton [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Abel, Tom; Wang, Peng; Skillman, Samuel W. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States); Wise, John H. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA (United States); Reynolds, Daniel R. [Department of Mathematics, Southern Methodist University, Box 750156, Dallas, TX 75205-0156 (United States); Collins, David C. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Harkness, Robert P. [NICS, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Kim, Ji-hoon [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Kuhlen, Michael [Theoretical Astrophysics Center, University of California Berkeley, Hearst Field Annex, Berkeley, CA 94720 (United States); Goldbaum, Nathan [Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ (United Kingdom); Hummels, Cameron [Department of Astronomy/Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Tasker, Elizabeth [Physics Department, Faculty of Science, Hokkaido University, Kita-10 Nishi 8, Kita-ku, Sapporo 060-0810 (Japan); Collaboration: Enzo Collaboration; and others

    2014-04-01

    This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in one, two, and three dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the code's parallel performance, and discuss the Enzo collaboration's code development methodology.

  6. Production-quality Tools for Adaptive Mesh RefinementVisualization

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gunther H.; Childs, Hank; Bonnell, Kathleen; Meredith,Jeremy; Miller, Mark; Whitlock, Brad; Bethel, E. Wes

    2007-10-25

    Adaptive Mesh Refinement (AMR) is a highly effectivesimulation method for spanning a large range of spatiotemporal scales,such as astrophysical simulations that must accommodate ranges frominterstellar to sub-planetary. Most mainstream visualization tools stilllack support for AMR as a first class data type and AMR code teams usecustom built applications for AMR visualization. The Department ofEnergy's (DOE's) Science Discovery through Advanced Computing (SciDAC)Visualization and Analytics Center for Enabling Technologies (VACET) isextending and deploying VisIt, an open source visualization tool thataccommodates AMR as a first-class data type, for use asproduction-quality, parallel-capable AMR visual data analysisinfrastructure. This effort will help science teams that use AMR-basedsimulations and who develop their own AMR visual data analysis softwareto realize cost and labor savings.

  7. Enzo: An Adaptive Mesh Refinement Code for Astrophysics

    CERN Document Server

    Bryan, Greg L; O'Shea, Brian W; Abel, Tom; Wise, John H; Turk, Matthew J; Reynolds, Daniel R; Collins, David C; Wang, Peng; Skillman, Samuel W; Smith, Britton; Harkness, Robert P; Bordner, James; Kim, Ji-hoon; Kuhlen, Michael; Xu, Hao; Goldbaum, Nathan; Hummels, Cameron; Kritsuk, Alexei G; Tasker, Elizabeth; Skory, Stephen; Simpson, Christine M; Hahn, Oliver; Oishi, Jeffrey S; So, Geoffrey C; Zhao, Fen; Cen, Renyue; Li, Yuan

    2013-01-01

    This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically-thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the code's parallel performance, and discuss the Enzo collaboration's code development methodology.

  8. Hydrodynamical Adaptive Mesh Refinement Simulations of Disk Galaxies

    CERN Document Server

    Gibson, Brad K; Sanchez-Blazquez, Patricia; Teyssier, Romain; House, Elisa L; Brook, Chris B; Kawata, Daisuke

    2008-01-01

    To date, fully cosmological hydrodynamic disk simulations to redshift zero have only been undertaken with particle-based codes, such as GADGET, Gasoline, or GCD+. In light of the (supposed) limitations of traditional implementations of smoothed particle hydrodynamics (SPH), or at the very least, their respective idiosyncrasies, it is important to explore complementary approaches to the SPH paradigm to galaxy formation. We present the first high-resolution cosmological disk simulations to redshift zero using an adaptive mesh refinement (AMR)-based hydrodynamical code, in this case, RAMSES. We analyse the temporal and spatial evolution of the simulated stellar disks' vertical heating, velocity ellipsoids, stellar populations, vertical and radial abundance gradients (gas and stars), assembly/infall histories, warps/lopsideness, disk edges/truncations (gas and stars), ISM physics implementations, and compare and contrast these properties with our sample of cosmological SPH disks, generated with GCD+. These prelim...

  9. A Spectral Adaptive Mesh Refinement Method for the Burgers equation

    Science.gov (United States)

    Nasr Azadani, Leila; Staples, Anne

    2013-03-01

    Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.

  10. 3D Compressible Melt Transport with Adaptive Mesh Refinement

    Science.gov (United States)

    Dannberg, Juliane; Heister, Timo

    2015-04-01

    Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and

  11. Direct numerical simulation of bubbles with parallelized adaptive mesh refinement

    International Nuclear Information System (INIS)

    The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)

  12. Adaptive mesh refinement and adjoint methods in geophysics simulations

    Science.gov (United States)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  13. Adaptive Mesh Refinement in Reactive Transport Modeling of Subsurface Environments

    Science.gov (United States)

    Molins, S.; Day, M.; Trebotich, D.; Graves, D. T.

    2015-12-01

    Adaptive mesh refinement (AMR) is a numerical technique for locally adjusting the resolution of computational grids. AMR makes it possible to superimpose levels of finer grids on the global computational grid in an adaptive manner allowing for more accurate calculations locally. AMR codes rely on the fundamental concept that the solution can be computed in different regions of the domain with different spatial resolutions. AMR codes have been applied to a wide range of problem including (but not limited to): fully compressible hydrodynamics, astrophysical flows, cosmological applications, combustion, blood flow, heat transfer in nuclear reactors, and land ice and atmospheric models for climate. In subsurface applications, in particular, reactive transport modeling, AMR may be particularly useful in accurately capturing concentration gradients (hence, reaction rates) that develop in localized areas of the simulation domain. Accurate evaluation of reaction rates is critical in many subsurface applications. In this contribution, we will discuss recent applications that bring to bear AMR capabilities on reactive transport problems from the pore scale to the flood plain scale.

  14. A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection

    Institute of Scientific and Technical Information of China (English)

    LinBo Zhang

    2009-01-01

    Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods. This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement of tetrahedral meshes using bisection. This algorithm is used in PHG, Parallel Hierarchical Grid (http: //lsec. cc. ac. cn/phg/J, a toolbox under active development for parallel adaptive finite element solutions of partial differential equations. The algorithm proposed is characterized by allowing simultaneous refinement of submeshes to arbitrary levels before synchronization between submeshes and without the need of a central coordinator process for managing new vertices. Using the concept of canonical refinement, a simple proof of the independence of the resulting mesh on the mesh partitioning is given, which is useful in better understanding the behaviour of the bisectioning refinement procedure.AMS subject classifications: 65Y05, 65N50

  15. GAMER: a GPU-Accelerated Adaptive Mesh Refinement Code for Astrophysics

    OpenAIRE

    Schive, Hsi-Yu; Tsai, Yu-Chih; Chiueh, Tzihong

    2009-01-01

    We present the newly developed code, GAMER (GPU-accelerated Adaptive MEsh Refinement code), which has adopted a novel approach to improve the performance of adaptive mesh refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing TVD scheme for the hydrodynamic solver, and a multi-level relaxation scheme for ...

  16. Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays

    OpenAIRE

    Skillman, Samuel W.; O'Shea, Brian W.; Hallman, Eric J.; Burns, Jack O.; Michael L. Norman

    2008-01-01

    We present new results characterizing cosmological shocks within adaptive mesh refinement N-Body/hydrodynamic simulations that are used to predict non-thermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of low Mach number shocks by a factor of ~3. We then apply our new technique to a large, (512 Mpc/h)^3, ...

  17. Enzo+Moray: Radiation Hydrodynamics Adaptive Mesh Refinement Simulations with Adaptive Ray Tracing

    CERN Document Server

    Wise, John H

    2010-01-01

    We describe a photon-conserving radiative transfer algorithm, using a spatially-adaptive ray tracing scheme, and its parallel implementation into the adaptive mesh refinement (AMR) cosmological hydrodynamics code, Enzo. By coupling the solver with the energy equation and non-equilibrium chemistry network, our radiation hydrodynamics framework can be utilised to study a broad range of astrophysical problems, such as stellar and black hole (BH) feedback. Inaccuracies can arise from large timesteps and poor sampling, therefore we devised an adaptive time-stepping scheme and a fast approximation of the optically-thin radiation field with multiple sources. We test the method with several radiative transfer and radiation hydrodynamics tests that are given in Iliev et al. (2006, 2009). We further test our method with more dynamical situations, for example, the propagation of an ionisation front through a Rayleigh-Taylor instability, time-varying luminosities, and collimated radiation. The test suite also includes an...

  18. Adaptive mesh refinement and multilevel iteration for multiphase, multicomponent flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R.D. [Duke Univ., Durham, NC (United States)

    1996-12-31

    An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.

  19. Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement

    CERN Document Server

    Wettervik, Benjamin Svedung; Siminos, Evangelos; Fülöp, Tünde

    2016-01-01

    The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equations. An Eulerian approach is needed to accurately describe processes that are governed by high energy tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here, we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of five, because of the use of an adaptive mesh, in a typical scenario involving laser-plasma interaction in the self-induced transparency regime.

  20. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  1. ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing

    Science.gov (United States)

    Wise, John H.; Abel, Tom

    2011-07-01

    We describe a photon-conserving radiative transfer algorithm, using a spatially-adaptive ray-tracing scheme, and its parallel implementation into the adaptive mesh refinement cosmological hydrodynamics code ENZO. By coupling the solver with the energy equation and non-equilibrium chemistry network, our radiation hydrodynamics framework can be utilized to study a broad range of astrophysical problems, such as stellar and black hole feedback. Inaccuracies can arise from large time-steps and poor sampling; therefore, we devised an adaptive time-stepping scheme and a fast approximation of the optically-thin radiation field with multiple sources. We test the method with several radiative transfer and radiation hydrodynamics tests that are given in Iliev et al. We further test our method with more dynamical situations, for example, the propagation of an ionization front through a Rayleigh-Taylor instability, time-varying luminosities and collimated radiation. The test suite also includes an expanding H II region in a magnetized medium, utilizing the newly implemented magnetohydrodynamics module in ENZO. This method linearly scales with the number of point sources and number of grid cells. Our implementation is scalable to 512 processors on distributed memory machines and can include the radiation pressure and secondary ionizations from X-ray radiation. It is included in the newest public release of ENZO.

  2. A Patch-based Partitioner for Structured Adaptive Mesh Refinement : Implementation and Evaluation

    OpenAIRE

    Vakili, Abbas

    2008-01-01

    To increase the speed of computer simulations we solve partial differential equations (PDEs) using structured adaptive mesh refinement (SAMR). During the execution of an SAMR-application, finer grids are superimposed dynamically on coarser grids where a more accurate solution is needed in the computation area. To further decrease the computation time, we use parallel computers and divide the computational work between the processors. This gives rise to challenging load balancing problem. The ...

  3. A High Order Godunov Scheme with Constrained Transport and Adaptive Mesh Refinement for Astrophysical MHD

    OpenAIRE

    Fromang, S.; Hennebelle, P.; Teyssier, R.

    2006-01-01

    In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. The algorithm is based on a previous work in which the MUSCL--Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties. Through a series of test problems, we illustrate the performances of this new code using two diffe...

  4. Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation

    Directory of Open Access Journals (Sweden)

    Greg L. Bryan

    2002-01-01

    Full Text Available As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR code Enzo designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 1012 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.

  5. A fast, robust, and simple implicit method for adaptive time-stepping on adaptive mesh-refinement grids

    CERN Document Server

    Benoit, Commercon; Romain, Teyssier

    2014-01-01

    Implicit solvers present strong limitations when used on supercomputing facilities and in particular for adaptive mesh-refinement codes. We present a new method for implicit adaptive time-stepping on adaptive mesh refinement-grids and implementing it in the radiation hydrodynamics solver we designed for the RAMSES code for astrophysical purposes and, more particularly, for protostellar collapse. We briefly recall the radiation hydrodynamics equations and the adaptive time-stepping methodology used for hydrodynamical solvers. We then introduce the different types of boundary conditions (Dirichlet, Neumann, and Robin) that are used at the interface between levels and present our implementation of the new method in the RAMSES code. The method is tested against classical diffusion and radiation hydrodynamics tests, after which we present an application for protostellar collapse. We show that using Dirichlet boundary conditions at level interfaces is a good compromise between robustness and accuracy and that it ca...

  6. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  7. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Herrnstein, A

    2005-09-08

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO{sub 2} concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  8. Single-Pass GPU-Raycasting for Structured Adaptive Mesh Refinement Data

    CERN Document Server

    Kaehler, Ralf

    2012-01-01

    Structured Adaptive Mesh Refinement (SAMR) is a popular numerical technique to study processes with high spatial and temporal dynamic range. It reduces computational requirements by adapting the lattice on which the underlying differential equations are solved to most efficiently represent the solution. Particularly in astrophysics and cosmology such simulations now can capture spatial scales ten orders of magnitude apart and more. The irregular locations and extensions of the refined regions in the SAMR scheme and the fact that different resolution levels partially overlap, poses a challenge for GPU-based direct volume rendering methods. kD-trees have proven to be advantageous to subdivide the data domain into non-overlapping blocks of equally sized cells, optimal for the texture units of current graphics hardware, but previous GPU-supported raycasting approaches for SAMR data using this data structure required a separate rendering pass for each node, preventing the application of many advanced lighting sche...

  9. Adaptive Mesh Refinement with the PLUTO Code for Astrophysical Fluid Dynamics

    CERN Document Server

    Mignone, A; Tzeferacos, P; van Straalen, B; Colella, P; Bodo, G

    2011-01-01

    We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell-center in a dimensionally unsplit fashion using the Corner Transport Upwind (CTU) method. Time stepping relies on a characteristic tracing step where piecewise parabolic method (PPM), weighted essentially non-oscillatory (WENO) or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange mu...

  10. A high order special relativistic hydrodynamic code with space-time adaptive mesh refinement

    CERN Document Server

    Zanotti, Olindo

    2013-01-01

    We present a high order one-step ADER-WENO finite volume scheme with space-time adaptive mesh refinement (AMR) for the solution of the special relativistic hydrodynamics equations. By adopting a local discontinuous Galerkin predictor method, a high order one-step time discretization is obtained, with no need for Runge-Kutta sub-steps. This turns out to be particularly advantageous in combination with space-time adaptive mesh refinement, which has been implemented following a "cell-by-cell" approach. As in existing second order AMR methods, also the present higher order AMR algorithm features time-accurate local time stepping (LTS), where grids on different spatial refinement levels are allowed to use different time steps. We also compare two different Riemann solvers for the computation of the numerical fluxes at the cell interfaces. The new scheme has been validated over a sample of numerical test problems in one, two and three spatial dimensions, exploring its ability in resolving the propagation of relativ...

  11. Development of three-dimensional hydrodynamical and MHD codes using Adaptive Mesh Refinement scheme with TVD

    Science.gov (United States)

    den, M.; Yamashita, K.; Ogawa, T.

    A three-dimensional (3D) hydrodynamical (HD) and magneto-hydrodynamical (MHD) simulation codes using an adaptive mesh refinement (AMR) scheme are developed. This method places fine grids over areas of interest such as shock waves in order to obtain high resolution and places uniform grids with lower resolution in other area. Thus AMR scheme can provide a combination of high solution accuracy and computational robustness. We demonstrate numerical results for a simplified model of a shock propagation, which strongly indicate that the AMR techniques have the ability to resolve disturbances in an interplanetary space. We also present simulation results for MHD code.

  12. Development of a Godunov method for Maxwell's equations with Adaptive Mesh Refinement

    Science.gov (United States)

    Barbas, Alfonso; Velarde, Pedro

    2015-11-01

    In this paper we present a second order 3D method for Maxwell's equations based on a Godunov scheme with Adaptive Mesh Refinement (AMR). In order to achieve it, we apply a limiter which better preserves extrema and boundary conditions based on a characteristic fields decomposition. Despite being more complex, simplifications in the boundary conditions make the resulting method competitive in computer time consumption and accuracy compared to FDTD. AMR allows us to simulate systems with a sharp step in material properties with negligible rebounds and also large domains with accuracy in small wavelengths.

  13. voFoam - A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM

    OpenAIRE

    Maric, Tomislav; Marschall, Holger; Bothe, Dieter

    2013-01-01

    A new parallelized unsplit geometrical Volume of Fluid (VoF) algorithm with support for arbitrary unstructured meshes and dynamic local Adaptive Mesh Refinement (AMR), as well as for two and three dimensional computation is developed. The geometrical VoF algorithm supports arbitrary unstructured meshes in order to enable computations involving flow domains of arbitrary geometrical complexity. The implementation of the method is done within the framework of the OpenFOAM library for Computation...

  14. Constrained-Transport Magnetohydrodynamics with Adaptive-Mesh-Refinement in CHARM

    CERN Document Server

    Miniati, Francesco

    2011-01-01

    We present the implementation of a three-dimensional, second order accurate Godunov-type algorithm for magneto-hydrodynamic (MHD), in the adaptive-mesh-refinement (AMR) cosmological code {\\tt CHARM}. The algorithm is based on the full 12-solve spatially unsplit Corner-Transport-Upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the Piecewise-Parabolic-Method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a Constrained-Transport (CT) method. The multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a {\\it reflux-curl} operation, which maintains a ...

  15. A new adaptive mesh refinement data structure with an application to detonation

    Science.gov (United States)

    Ji, Hua; Lien, Fue-Sang; Yee, Eugene

    2010-11-01

    A new Cell-based Structured Adaptive Mesh Refinement (CSAMR) data structure is developed. In our CSAMR data structure, Cartesian-like indices are used to identify each cell. With these stored indices, the information on the parent, children and neighbors of a given cell can be accessed simply and efficiently. Owing to the usage of these indices, the computer memory required for storage of the proposed AMR data structure is only {5}/{8} word per cell, in contrast to the conventional oct-tree [P. MacNeice, K.M. Olson, C. Mobary, R. deFainchtein, C. Packer, PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun. 330 (2000) 126] and the fully threaded tree (FTT) [A.M. Khokhlov, Fully threaded tree algorithms for adaptive mesh fluid dynamics simulations, J. Comput. Phys. 143 (1998) 519] data structures which require, respectively, 19 and 2{3}/{8} words per cell for storage of the connectivity information. Because the connectivity information (e.g., parent, children and neighbors) of a cell in our proposed AMR data structure can be accessed using only the cell indices, a tree structure which was required in previous approaches for the organization of the AMR data is no longer needed for this new data structure. Instead, a much simpler hash table structure is used to maintain the AMR data, with the entry keys in the hash table obtained directly from the explicitly stored cell indices. The proposed AMR data structure simplifies the implementation and parallelization of an AMR code. Two three-dimensional test cases are used to illustrate and evaluate the computational performance of the new CSAMR data structure.

  16. A High Order Godunov Scheme with Constrained Transport and Adaptive Mesh Refinement for Astrophysical MHD

    CERN Document Server

    Fromang, S; Teyssier, R

    2006-01-01

    In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. The algorithm is based on a previous work in which the MUSCL--Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties. Through a series of test problems, we illustrate the performances of this new code using two different MHD Riemann solvers (Lax-Friedrich and Roe) and the need of the Adaptive Mesh Refinement capabilities in some cases. Finally, we show its versatility by applying it to two completely different astrophysical situations well studied in the past years: the growth of the magnetorotational instability in the shearing box and the collapse of magnetized cloud cores. We have implemented this new Godunov scheme to solve the ideal MHD equations in the AMR code RAMSES. It results in a powerful tool that can be applied to a grea...

  17. A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics

    Science.gov (United States)

    Fromang, S.; Hennebelle, P.; Teyssier, R.

    2006-10-01

    Aims. In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. Methods: . The algorithm is based on a previous work in which the MUSCL-Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties. Results: . Through a series of test problems, we illustrate the performances of this new code using two different MHD Riemann solvers (Lax-Friedrich and Roe) and the need of the Adaptive Mesh Refinement capabilities in some cases. Finally, we show its versatility by applying it to two completely different astrophysical situations well studied in the past years: the growth of the magnetorotational instability in the shearing box and the collapse of magnetized cloud cores. Conclusions: . We have implemented a new Godunov scheme to solve the ideal MHD equations in the AMR code RAMSES. We have shown that it results in a powerful tool that can be applied to a great variety of astrophysical problems, ranging from galaxies formation in the early universe to high resolution studies of molecular cloud collapse in our galaxy.

  18. GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS

    International Nuclear Information System (INIS)

    We present the newly developed code, GPU-accelerated Adaptive-MEsh-Refinement code (GAMER), which adopts a novel approach in improving the performance of adaptive-mesh-refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing total variation diminishing scheme for the hydrodynamic solver and a multi-level relaxation scheme for the Poisson solver. Both solvers have been implemented in GPU, by which hundreds of patches can be advanced in parallel. The computational overhead associated with the data transfer between the CPU and GPU is carefully reduced by utilizing the capability of asynchronous memory copies in GPU, and the computing time of the ghost-zone values for each patch is diminished by overlapping it with the GPU computations. We demonstrate the accuracy of the code by performing several standard test problems in astrophysics. GAMER is a parallel code that can be run in a multi-GPU cluster system. We measure the performance of the code by performing purely baryonic cosmological simulations in different hardware implementations, in which detailed timing analyses provide comparison between the computations with and without GPU(s) acceleration. Maximum speed-up factors of 12.19 and 10.47 are demonstrated using one GPU with 40963 effective resolution and 16 GPUs with 81923 effective resolution, respectively.

  19. GAMER: a GPU-Accelerated Adaptive Mesh Refinement Code for Astrophysics

    CERN Document Server

    Schive, Hsi-Yu; Chiueh, Tzihong

    2009-01-01

    We present the newly developed code, GAMER (GPU-accelerated Adaptive MEsh Refinement code), which has adopted a novel approach to improve the performance of adaptive mesh refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing TVD scheme for the hydrodynamic solver, and a multi-level relaxation scheme for the Poisson solver. Both solvers have been implemented in GPU, by which hundreds of patches can be advanced in parallel. The computational overhead associated with the data transfer between CPU and GPU is carefully reduced by utilizing the capability of asynchronous memory copies in GPU, and the computing time of the ghost-zone values for each patch is made to diminish by overlapping it with the GPU computations. We demonstrate the accuracy of the code by performing several standard test problems in astrophysics. GAMER is...

  20. Cell-based Adaptive Mesh Refinement on the GPU with Applications to Exascale Supercomputing

    Science.gov (United States)

    Trujillo, Dennis; Robey, Robert; Davis, Neal; Nicholaeff, David

    2011-10-01

    We present an OpenCL implementation of a cell-based adaptive mesh refinement (AMR) scheme for the shallow water equations. The challenges associated with ensuring the locality of algorithm architecture to fully exploit the massive number of parallel threads on the GPU is discussed. This includes a proof of concept that a cell-based AMR code can be effectively implemented, even on a small scale, in the memory and threading model provided by OpenCL. Additionally, the program requires dynamic memory in order to properly implement the mesh; as this is not supported in the OpenCL 1.1 standard, a combination of CPU memory management and GPU computation effectively implements a dynamic memory allocation scheme. Load balancing is achieved through a new stencil-based implementation of a space-filling curve, eliminating the need for a complete recalculation of the indexing on the mesh. A cartesian grid hash table scheme to allow fast parallel neighbor accesses is also discussed. Finally, the relative speedup of the GPU-enabled AMR code is compared to the original serial version. We conclude that parallelization using the GPU provides significant speedup for typical numerical applications and is feasible for scientific applications in the next generation of supercomputing.

  1. A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model

    Energy Technology Data Exchange (ETDEWEB)

    Koniges, A E; Masters, N D; Fisher, A C; Anderson, R W; Eder, D C; Benson, D; Kaiser, T B; Gunney, B T; Wang, P; Maddox, B R; Hansen, J F; Kalantar, D H; Dixit, P; Jarmakani, H; Meyers, M A

    2009-03-03

    Fragmentation is a fundamental material process that naturally spans spatial scales from microscopic to macroscopic. We developed a mathematical framework using an innovative combination of hierarchical material modeling (HMM) and adaptive mesh refinement (AMR) to connect the continuum to microstructural regimes. This framework has been implemented in a new multi-physics, multi-scale, 3D simulation code, NIF ALE-AMR. New multi-material volume fraction and interface reconstruction algorithms were developed for this new code, which is leading the world effort in hydrodynamic simulations that combine AMR with ALE (Arbitrary Lagrangian-Eulerian) techniques. The interface reconstruction algorithm is also used to produce fragments following material failure. In general, the material strength and failure models have history vector components that must be advected along with other properties of the mesh during remap stage of the ALE hydrodynamics. The fragmentation models are validated against an electromagnetically driven expanding ring experiment and dedicated laser-based fragmentation experiments conducted at the Jupiter Laser Facility. As part of the exit plan, the NIF ALE-AMR code was applied to a number of fragmentation problems of interest to the National Ignition Facility (NIF). One example shows the added benefit of multi-material ALE-AMR that relaxes the requirement that material boundaries must be along mesh boundaries.

  2. Single-pass GPU-raycasting for structured adaptive mesh refinement data

    Science.gov (United States)

    Kaehler, Ralf; Abel, Tom

    2013-01-01

    Structured Adaptive Mesh Refinement (SAMR) is a popular numerical technique to study processes with high spatial and temporal dynamic range. It reduces computational requirements by adapting the lattice on which the underlying differential equations are solved to most efficiently represent the solution. Particularly in astrophysics and cosmology such simulations now can capture spatial scales ten orders of magnitude apart and more. The irregular locations and extensions of the refined regions in the SAMR scheme and the fact that different resolution levels partially overlap, poses a challenge for GPU-based direct volume rendering methods. kD-trees have proven to be advantageous to subdivide the data domain into non-overlapping blocks of equally sized cells, optimal for the texture units of current graphics hardware, but previous GPU-supported raycasting approaches for SAMR data using this data structure required a separate rendering pass for each node, preventing the application of many advanced lighting schemes that require simultaneous access to more than one block of cells. In this paper we present the first single-pass GPU-raycasting algorithm for SAMR data that is based on a kD-tree. The tree is efficiently encoded by a set of 3D-textures, which allows to adaptively sample complete rays entirely on the GPU without any CPU interaction. We discuss two different data storage strategies to access the grid data on the GPU and apply them to several datasets to prove the benefits of the proposed method.

  3. ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    CERN Document Server

    Dumbser, Michael; Hidalgo, Arturo; Balsara, Dinshaw S

    2012-01-01

    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergenc...

  4. A Survey of High Level Frameworks in Block-Structured Adaptive Mesh Refinement Packages

    CERN Document Server

    Dubey, Anshu; Bell, John; Berzins, Martin; Brandt, Steve; Bryan, Greg; Colella, Phillip; Graves, Daniel; Lijewski, Michael; Löffler, Frank; O'Shea, Brian; Schnetter, Erik; Van Straalen, Brian; Weide, Klaus

    2016-01-01

    Over the last decade block-structured adaptive mesh refinement (SAMR) has found increasing use in large, publicly available codes and frameworks. SAMR frameworks have evolved along different paths. Some have stayed focused on specific domain areas, others have pursued a more general functionality, providing the building blocks for a larger variety of applications. In this survey paper we examine a representative set of SAMR packages and SAMR-based codes that have been in existence for half a decade or more, have a reasonably sized and active user base outside of their home institutions, and are publicly available. The set consists of a mix of SAMR packages and application codes that cover a broad range of scientific domains. We look at their high-level frameworks, and their approach to dealing with the advent of radical changes in hardware architecture. The codes included in this survey are BoxLib, Cactus, Chombo, Enzo, FLASH, and Uintah.

  5. The Singularity Threshold of the Nonlinear Sigma Model Using 3D Adaptive Mesh Refinement

    CERN Document Server

    Liebling, S L

    2002-01-01

    Numerical solutions to the nonlinear sigma model (NLSM), a wave map from 3+1 Minkowski space to S^3, are computed in three spatial dimensions (3D) using adaptive mesh refinement (AMR). For initial data with compact support the model is known to have two regimes, one in which regular initial data forms a singularity and another in which the energy is dispersed to infinity. The transition between these regimes has been shown in spherical symmetry to demonstrate threshold behavior similar to that between black hole formation and dispersal in gravitating theories. Here, I generalize the result by removing the assumption of spherical symmetry. The evolutions suggest that the spherically symmetric critical solution remains an intermediate attractor separating the two end states.

  6. Numerical Relativistic Magnetohydrodynamics with ADER Discontinuous Galerkin methods on adaptively refined meshes.

    Science.gov (United States)

    Zanotti, O.; Dumbser, M.; Fambri, F.

    2016-05-01

    We describe a new method for the solution of the ideal MHD equations in special relativity which adopts the following strategy: (i) the main scheme is based on Discontinuous Galerkin (DG) methods, allowing for an arbitrary accuracy of order N+1, where N is the degree of the basis polynomials; (ii) in order to cope with oscillations at discontinuities, an ”a-posteriori” sub-cell limiter is activated, which scatters the DG polynomials of the previous time-step onto a set of 2N+1 sub-cells, over which the solution is recomputed by means of a robust finite volume scheme; (iii) a local spacetime Discontinuous-Galerkin predictor is applied both on the main grid of the DG scheme and on the sub-grid of the finite volume scheme; (iv) adaptive mesh refinement (AMR) with local time-stepping is used. We validate the new scheme and comment on its potential applications in high energy astrophysics.

  7. Relativistic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics

    CERN Document Server

    Wang, Peng; Zhang, Weiqun

    2007-01-01

    Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code {\\sl enzo}, which uses the Berger-Colella AMR algorithm and is parall...

  8. Modeling gravitational instabilities in self-gravitating protoplanetary disks with adaptive mesh refinement techniques

    CERN Document Server

    Lichtenberg, Tim

    2015-01-01

    The astonishing diversity in the observed planetary population requires theoretical efforts and advances in planet formation theories. Numerical approaches provide a method to tackle the weaknesses of current planet formation models and are an important tool to close gaps in poorly constrained areas. We present a global disk setup to model the first stages of giant planet formation via gravitational instabilities (GI) in 3D with the block-structured adaptive mesh refinement (AMR) hydrodynamics code ENZO. With this setup, we explore the impact of AMR techniques on the fragmentation and clumping due to large-scale instabilities using different AMR configurations. Additionally, we seek to derive general resolution criteria for global simulations of self-gravitating disks of variable extent. We run a grid of simulations with varying AMR settings, including runs with a static grid for comparison, and study the effects of varying the disk radius. Adopting a marginally stable disk profile (Q_init=1), we validate the...

  9. Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics

    CERN Document Server

    Rijkhorst, E J; Dubey, A; Mellema, G R; Rijkhorst, Erik-Jan; Plewa, Tomasz; Dubey, Anshu; Mellema, Garrelt

    2005-01-01

    We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid characteristics method are radiation hydrodynamics problems that take into account the effects of photoionization and heating due to point sources of radiation. The method is implemented in the hydrodynamics package FLASH. The ionization, heating, and cooling processes are modelled using the DORIC ionization package. Upon comparison with the long characteristics method, we find that our method calculates the column density with a similarly high accuracy and produces sharp and well defined shadows. We show the quality of the new algorithm ...

  10. Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement

    CERN Document Server

    Schaal, Kevin; Chandrashekar, Praveen; Pakmor, Rüdiger; Klingenberg, Christian; Springel, Volker

    2015-01-01

    Solving the Euler equations of ideal hydrodynamics as accurately and efficiently as possible is a key requirement in many astrophysical simulations. It is therefore important to continuously advance the numerical methods implemented in current astrophysical codes, especially also in light of evolving computer technology, which favours certain computational approaches over others. Here we introduce the new adaptive mesh refinement (AMR) code TENET, which employs a high-order Discontinuous Galerkin (DG) scheme for hydrodynamics. The Euler equations in this method are solved in a weak formulation with a polynomial basis by means of explicit Runge-Kutta time integration and Gauss-Legendre quadrature. This approach offers significant advantages over commonly employed finite volume (FV) solvers. In particular, the higher order capability renders it computationally more efficient, in the sense that the same precision can be obtained at significantly less computational cost. Also, the DG scheme inherently conserves a...

  11. The Numerical Simulation of Ship Waves Using Cartesian Grid Methods with Adaptive Mesh Refinement

    CERN Document Server

    Dommermuth, Douglas G; Beck, Robert F; O'Shea, Thomas T; Wyatt, Donald C; Olson, Kevin; MacNeice, Peter

    2014-01-01

    Cartesian-grid methods with Adaptive Mesh Refinement (AMR) are ideally suited for simulating the breaking of waves, the formation of spray, and the entrainment of air around ships. As a result of the cartesian-grid formulation, minimal input is required to describe the ships geometry. A surface panelization of the ship hull is used as input to automatically generate a three-dimensional model. No three-dimensional gridding is required. The AMR portion of the numerical algorithm automatically clusters grid points near the ship in regions where wave breaking, spray formation, and air entrainment occur. Away from the ship, where the flow is less turbulent, the mesh is coarser. The numerical computations are implemented using parallel algorithms. Together, the ease of input and usage, the ability to resolve complex free-surface phenomena, and the speed of the numerical algorithms provide a robust capability for simulating the free-surface disturbances near a ship. Here, numerical predictions, with and without AMR,...

  12. Parallel Computation of Three-Dimensional Flows using Overlapping Grids with Adaptive Mesh Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, W; Schwendeman, D

    2007-11-15

    This paper describes an approach for the numerical solution of time-dependent partial differential equations in complex three-dimensional domains. The domains are represented by overlapping structured grids, and block-structured adaptive mesh refinement (AMR) is employed to locally increase the grid resolution. In addition, the numerical method is implemented on parallel distributed-memory computers using a domain-decomposition approach. The implementation is flexible so that each base grid within the overlapping grid structure and its associated refinement grids can be independently partitioned over a chosen set of processors. A modified bin-packing algorithm is used to specify the partition for each grid so that the computational work is evenly distributed amongst the processors. All components of the AMR algorithm such as error estimation, regridding, and interpolation are performed in parallel. The parallel time-stepping algorithm is illustrated for initial-boundary-value problems involving a linear advection-diffusion equation and the (nonlinear) reactive Euler equations. Numerical results are presented for both equations to demonstrate the accuracy and correctness of the parallel approach. Exact solutions of the advection-diffusion equation are constructed, and these are used to check the corresponding numerical solutions for a variety of tests involving different overlapping grids, different numbers of refinement levels and refinement ratios, and different numbers of processors. The problem of planar shock diffraction by a sphere is considered as an illustration of the numerical approach for the Euler equations, and a problem involving the initiation of a detonation from a hot spot in a T-shaped pipe is considered to demonstrate the numerical approach for the reactive case. For both problems, the solutions are shown to be well resolved on the finest grid. The parallel performance of the approach is examined in detail for the shock diffraction problem.

  13. Development of a scalable gas-dynamics solver with adaptive mesh refinement

    Science.gov (United States)

    Korkut, Burak

    There are various computational physics areas in which Direct Simulation Monte Carlo (DSMC) and Particle in Cell (PIC) methods are being employed. The accuracy of results from such simulations depend on the fidelity of the physical models being used. The computationally demanding nature of these problems make them ideal candidates to make use of modern supercomputers. The software developed to run such simulations also needs special attention so that the maintainability and extendability is considered with the recent numerical methods and programming paradigms. Suited for gas-dynamics problems, a software called SUGAR (Scalable Unstructured Gas dynamics with Adaptive mesh Refinement) has recently been developed and written in C++ and MPI. Physical and numerical models were added to this framework to simulate ion thruster plumes. SUGAR is used to model the charge-exchange (CEX) reactions occurring between the neutral and ion species as well as the induced electric field effect due to ions. Multiple adaptive mesh refinement (AMR) meshes were used in order to capture different physical length scales present in the flow. A multiple-thruster configuration was run to extend the studies to cases for which there is no axial or radial symmetry present that could only be modeled with a three-dimensional simulation capability. The combined plume structure showed interactions between individual thrusters where AMR capability captured this in an automated way. The back flow for ions was found to occur when CEX and momentum-exchange (MEX) collisions are present and strongly enhanced when the induced electric field is considered. The ion energy distributions in the back flow region were obtained and it was found that the inclusion of the electric field modeling is the most important factor in determining its shape. The plume back flow structure was also examined for a triple-thruster, 3-D geometry case and it was found that the ion velocity in the back flow region appears to be

  14. EMMA: an adaptive mesh refinement cosmological simulation code with radiative transfer

    Science.gov (United States)

    Aubert, Dominique; Deparis, Nicolas; Ocvirk, Pierre

    2015-11-01

    EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive three-dimensional mesh and the spatial resolution can be dynamically modified based on physically motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation: the light is transported at the resolution of the non-refined grid and only once the dynamics has been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics processing units (GPUs) to accelerate hydrodynamics and radiative transfer calculations. Depending on the optimizations and the compilers used to generate the CPU reference, global GPU acceleration factors between ×3.9 and ×16.9 can be obtained. Vectorization and transfer operations currently prevent better GPU performance and we expect that future optimizations and hardware evolution will lead to greater accelerations.

  15. Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement

    Science.gov (United States)

    Hatori, Tomoharu; Ito, Atsushi M.; Nunami, Masanori; Usui, Hideyuki; Miura, Hideaki

    2016-08-01

    We propose a numerical method to determine the artificial viscosity in magnetohydrodynamics (MHD) simulations with adaptive mesh refinement (AMR) method, where the artificial viscosity is adaptively changed due to the resolution level of the AMR hierarchy. Although the suitable value of the artificial viscosity depends on the governing equations and the model of target problem, it can be determined by von Neumann stability analysis. By means of the new method, "level-by-level artificial viscosity method," MHD simulations of Rayleigh-Taylor instability (RTI) are carried out with the AMR method. The validity of the level-by-level artificial viscosity method is confirmed by the comparison of the linear growth rates of RTI between the AMR simulations and the simple simulations with uniform grid and uniform artificial viscosity whose resolution is the same as that in the highest level of the AMR simulation. Moreover, in the nonlinear phase of RTI, the secondary instability is clearly observed where the hierarchical data structure of AMR calculation is visualized as high resolution region floats up like terraced fields. In the applications of the method to general fluid simulations, the growth of small structures can be sufficiently reproduced, while the divergence of numerical solutions can be suppressed.

  16. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    CERN Document Server

    De Colle, Fabio; Lopez-Camara, Diego; Ramirez-Ruiz, Enrico

    2011-01-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in Gamma-Ray Burst sources. The SRHD equations are solved using finite volume conservative solvers. The correct implementation of the algorithms is verified by one-dimensional (1D) shock tube and multidimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with $\\rho \\propto r^{-k}$, bridging between the relativistic and Newtonian phases, as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to non-relativistic speeds in one-dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, toge...

  17. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    Science.gov (United States)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  18. Kinematic dynamos using constrained transport with high order Godunov schemes and adaptive mesh refinement

    Science.gov (United States)

    Teyssier, Romain; Fromang, Sébastien; Dormy, Emmanuel

    2006-10-01

    We propose to extend the well-known MUSCL-Hancock scheme for Euler equations to the induction equation modeling the magnetic field evolution in kinematic dynamo problems. The scheme is based on an integral form of the underlying conservation law which, in our formulation, results in a “finite-surface” scheme for the induction equation. This naturally leads to the well-known “constrained transport” method, with additional continuity requirement on the magnetic field representation. The second ingredient in the MUSCL scheme is the predictor step that ensures second order accuracy both in space and time. We explore specific constraints that the mathematical properties of the induction equations place on this predictor step, showing that three possible variants can be considered. We show that the most aggressive formulations (referred to as C-MUSCL and U-MUSCL) reach the same level of accuracy as the other one (referred to as Runge Kutta), at a lower computational cost. More interestingly, these two schemes are compatible with the adaptive mesh refinement (AMR) framework. It has been implemented in the AMR code RAMSES. It offers a novel and efficient implementation of a second order scheme for the induction equation. We have tested it by solving two kinematic dynamo problems in the low diffusion limit. The construction of this scheme for the induction equation constitutes a step towards solving the full MHD set of equations using an extension of our current methodology.

  19. Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement

    CERN Document Server

    González, Matthias; Commerçon, Benoît; Masson, Jacques

    2015-01-01

    Radiative transfer plays a key role in the star formation process. Due to a high computational cost, radiation-hydrodynamics simulations performed up to now have mainly been carried out in the grey approximation. In recent years, multi-frequency radiation-hydrodynamics models have started to emerge, in an attempt to better account for the large variations of opacities as a function of frequency. We wish to develop an efficient multigroup algorithm for the adaptive mesh refinement code RAMSES which is suited to heavy proto-stellar collapse calculations. Due to prohibitive timestep constraints of an explicit radiative transfer method, we constructed a time-implicit solver based on a stabilised bi-conjugate gradient algorithm, and implemented it in RAMSES under the flux-limited diffusion approximation. We present a series of tests which demonstrate the high performance of our scheme in dealing with frequency-dependent radiation-hydrodynamic flows. We also present a preliminary simulation of a three-dimensional p...

  20. Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations

    International Nuclear Information System (INIS)

    In finite element simulations dedicated to the modelling of microstructure evolution, the mesh has to be fine enough to: (i) accurately describe the geometry of the constituents; (ii) capture local strain gradients stemming from the heterogeneity in material properties. In this paper, 3D polycrystalline aggregates are discretized into unstructured meshes and a level set framework is used to represent the grain boundaries. The crystal plasticity finite element method is used to simulate the plastic deformation of these aggregates. A mesh sensitivity analysis based on the deformation energy distribution shows that the predictions are, on average, more sensitive near grain boundaries. An anisotropic mesh refinement strategy based on the level set description is introduced and it is shown that it offers a good compromise between accuracy requirements on the one hand and computation time on the other hand. As the aggregates deform, mesh distortion inevitably occurs and ultimately causes the breakdown of the simulations. An automatic remeshing tool is used to periodically reconstruct the mesh and appropriate transfer of state variables is performed. It is shown that the diffusion related to data transfer is not significant. Finally, remeshing is performed repeatedly in a highly resolved 500 grains polycrystal subjected to about 90% thickness reduction in rolling. The predicted texture is compared with the experimental data and with the predictions of a standard Taylor model

  1. voFoam - A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM

    CERN Document Server

    Maric, Tomislav; Bothe, Dieter

    2013-01-01

    A new parallelized unsplit geometrical Volume of Fluid (VoF) algorithm with support for arbitrary unstructured meshes and dynamic local Adaptive Mesh Refinement (AMR), as well as for two and three dimensional computation is developed. The geometrical VoF algorithm supports arbitrary unstructured meshes in order to enable computations involving flow domains of arbitrary geometrical complexity. The implementation of the method is done within the framework of the OpenFOAM library for Computational Continuum Mechanics (CCM) using the C++ programming language with modern policy based design for high program code modularity. The development of the geometrical VoF algorithm significantly extends the method base of the OpenFOAM library by geometrical volumetric flux computation for two-phase flow simulations. For the volume fraction advection, a novel unsplit geometrical algorithm is developed, which inherently sustains volume conservation utilizing unique Lagrangian discrete trajectories located in the mesh points. ...

  2. Radiation diffusion for multi-fluid Eulerian hydrodynamics with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Block-structured meshes provide the ability to concentrate grid points and computational effort in interesting regions of a flow field, without sacrificing the efficiency and low memory requirements of a regular grid. We describe an algorithm for simulating radiation diffusion on such a mesh, coupled to multi-fluid gasdynamics. Conservation laws are enforced by using locally conservative difference schemes along with explicit synchronization operations between different levels of refinement. In unsteady calculations each refinement level is advanced at its own optimal timestep. Particular attention is given to the appropriate coupling between the fluid energy and the radiation field, the behavior of the discretization at sharp interfaces, and the form of synchronization between levels required for energy conservation in the diffusion process. Two- and three-dimensional examples are presented, including parallel calculations performed on an IBM SP-2

  3. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    Science.gov (United States)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  4. Investigation of instabilities affecting detonations: Improving the resolution using block-structured adaptive mesh refinement

    Science.gov (United States)

    Ravindran, Prashaanth

    The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity

  5. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  6. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: fabio@ucolick.org [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  7. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    Science.gov (United States)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  8. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System

    Directory of Open Access Journals (Sweden)

    Wenjun Ying

    2015-01-01

    Full Text Available A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.

  9. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors

    Science.gov (United States)

    Calder, A. C.; Curtis, B. C.; Dursi, L. J.; Fryxell, B.; Henry, G.; MacNeice, P.; Olson, K.; Ricker, P.; Rosner, R.; Timmes, F. X.; Tufo, H. M.; Truran, J. W.; Zingale, M.

    We present simulations and performance results of nuclear burning fronts in supernovae on the largest domain and at the finest spatial resolution studied to date. These simulations were performed on the Intel ASCI-Red machine at Sandia National Laboratories using FLASH, a code developed at the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. FLASH is a modular, adaptive mesh, parallel simulation code capable of handling compressible, reactive fluid flows in astrophysical environments. FLASH is written primarily in Fortran 90, uses the Message-Passing Interface library for inter-processor communication and portability, and employs the PARAMESH package to manage a block-structured adaptive mesh that places blocks only where the resolution is required and tracks rapidly changing flow features, such as detonation fronts, with ease. We describe the key algorithms and their implementation as well as the optimizations required to achieve sustained performance of 238 GLOPS on 6420 processors of ASCI-Red in 64-bit arithmetic.

  10. Adaptive Mesh Refinement Cosmological Simulations of Cosmic Rays in Galaxy Clusters

    Science.gov (United States)

    Skillman, Samuel William

    2013-12-01

    Galaxy clusters are unique astrophysical laboratories that contain many thermal and non-thermal phenomena. In particular, they are hosts to cosmic shocks, which propagate through the intracluster medium as a by-product of structure formation. It is believed that at these shock fronts, magnetic field inhomogeneities in a compressing flow may lead to the acceleration of cosmic ray electrons and ions. These relativistic particles decay and radiate through a variety of mechanisms, and have observational signatures in radio, hard X-ray, and Gamma-ray wavelengths. We begin this dissertation by developing a method to find shocks in cosmological adaptive mesh refinement simulations of structure formation. After describing the evolution of shock properties through cosmic time, we make estimates for the amount of kinetic energy processed and the total number of cosmic ray protons that could be accelerated at these shocks. We then use this method of shock finding and a model for the acceleration of and radio synchrotron emission from cosmic ray electrons to estimate the radio emission properties in large scale structures. By examining the time-evolution of the radio emission with respect to the X-ray emission during a galaxy cluster merger, we find that the relative timing of the enhancements in each are important consequences of the shock dynamics. By calculating the radio emission expected from a given mass galaxy cluster, we make estimates for future large-area radio surveys. Next, we use a state-of-the-art magnetohydrodynamic simulation to follow the electron acceleration in a massive merging galaxy cluster. We use the magnetic field information to calculate not only the total radio emission, but also create radio polarization maps that are compared to recent observations. We find that we can naturally reproduce Mpc-scale radio emission that resemble many of the known double radio relic systems. Finally, motivated by our previous studies, we develop and introduce a

  11. Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays

    Directory of Open Access Journals (Sweden)

    Essadki Mohamed

    2016-09-01

    Full Text Available Predictive simulation of liquid fuel injection in automotive engines has become a major challenge for science and applications. The key issue in order to properly predict various combustion regimes and pollutant formation is to accurately describe the interaction between the carrier gaseous phase and the polydisperse evaporating spray produced through atomization. For this purpose, we rely on the EMSM (Eulerian Multi-Size Moment Eulerian polydisperse model. It is based on a high order moment method in size, with a maximization of entropy technique in order to provide a smooth reconstruction of the distribution, derived from a Williams-Boltzmann mesoscopic model under the monokinetic assumption [O. Emre (2014 PhD Thesis, École Centrale Paris; O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014 Flow, Turbulence and Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe, S. de Chaisemartin, F. Laurent, M. Massot (2015 Atomization Sprays 25, 189-254; D. Kah, F. Laurent, M. Massot, S. Jay (2012 J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran, S. de Chaisemartin, S. Jay, F. Laurent, M. Massot (2015 Int. J. Multiphase Flows 71, 38-65; A. Vié, F. Laurent, M. Massot (2013 J. Comp. Phys. 237, 277-310]. The present contribution relies on a major extension of this model [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot (2016 Submitted to SIAM J. Appl. Math.], with the aim of building a unified approach and coupling with a separated phases model describing the dynamics and atomization of the interface near the injector. The novelty is to be found in terms of modeling, numerical schemes and implementation. A new high order moment approach is introduced using fractional moments in surface, which can be related to geometrical quantities of the gas-liquid interface. We also provide a novel algorithm for an accurate resolution of the evaporation. Adaptive mesh refinement properly scaling on massively

  12. Patched based methods for adaptive mesh refinement solutions of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Saltzman, J.

    1997-09-02

    This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.

  13. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation

    Science.gov (United States)

    Wang, Cheng; Dong, XinZhuang; Shu, Chi-Wang

    2015-10-01

    For numerical simulation of detonation, computational cost using uniform meshes is large due to the vast separation in both time and space scales. Adaptive mesh refinement (AMR) is advantageous for problems with vastly different scales. This paper aims to propose an AMR method with high order accuracy for numerical investigation of multi-dimensional detonation. A well-designed AMR method based on finite difference weighted essentially non-oscillatory (WENO) scheme, named as AMR&WENO is proposed. A new cell-based data structure is used to organize the adaptive meshes. The new data structure makes it possible for cells to communicate with each other quickly and easily. In order to develop an AMR method with high order accuracy, high order prolongations in both space and time are utilized in the data prolongation procedure. Based on the message passing interface (MPI) platform, we have developed a workload balancing parallel AMR&WENO code using the Hilbert space-filling curve algorithm. Our numerical experiments with detonation simulations indicate that the AMR&WENO is accurate and has a high resolution. Moreover, we evaluate and compare the performance of the uniform mesh WENO scheme and the parallel AMR&WENO method. The comparison results provide us further insight into the high performance of the parallel AMR&WENO method.

  14. A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows

    Science.gov (United States)

    Pantano, C.; Deiterding, R.; Hill, D. J.; Pullin, D. I.

    2007-01-01

    We present a methodology for the large-eddy simulation of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). A description of a conservative, flux-based hybrid numerical method that uses both centered finite-difference and a weighted essentially non-oscillatory (WENO) scheme is given, encompassing the cases of scheme alternation and internal mesh interfaces resulting from SAMR. In this method, the centered scheme is used in turbulent flow regions while WENO is employed to capture shocks. One-, two- and three-dimensional numerical experiments and example simulations are presented including homogeneous shock-free turbulence, a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability.

  15. The interaction of supernova blast waves with interstellar clouds using high-order adaptive mesh refinement methods

    International Nuclear Information System (INIS)

    The interaction of a supernova shock with an interstellar cloud can be idealized to the problem of the interaction of a strong planar shock with a dense spherical inhomogeneity surrounded by a less dense fluid: the intercloud medium (ICM). This deceptively simple problem actually represents an extremely complex set of nonlinear hydrodynamic flows encompassing a rich set of shock/shock interaction phenomena. The authors have, for the first time, implemented local adaptive mesh refinement (AMR) techniques with second-order Godunov methods as developed recently by Berger and Colella to astrophysical gas dynamic scenarios to address this complex nonlinear problem. With AMR with a Godunov second-order method, they are able to evolve the hydrodynamics highly complex, multiply shock-distorted structures to a high degree of accuracy with a total of not more than 80,000 grid cells. A comparable calculation with a fixed grid would need >1,500,000 grid cells to achieve a similar accuracy. Clearly, adaptive mesh refinement techniques hold a major advantage in calculating complex compressible gas dynamic flows one to two orders of magnitude more rapidly than standard techniques

  16. Lyapunov exponents and adaptive mesh refinement for high-speed flows using a discontinuous Galerkin scheme

    Science.gov (United States)

    Moura, R. C.; Silva, A. F. C.; Bigarella, E. D. V.; Fazenda, A. L.; Ortega, M. A.

    2016-08-01

    This paper proposes two important improvements to shock-capturing strategies using a discontinuous Galerkin scheme, namely, accurate shock identification via finite-time Lyapunov exponent (FTLE) operators and efficient shock treatment through a point-implicit discretization of a PDE-based artificial viscosity technique. The advocated approach is based on the FTLE operator, originally developed in the context of dynamical systems theory to identify certain types of coherent structures in a flow. We propose the application of FTLEs in the detection of shock waves and demonstrate the operator's ability to identify strong and weak shocks equally well. The detection algorithm is coupled with a mesh refinement procedure and applied to transonic and supersonic flows. While the proposed strategy can be used potentially with any numerical method, a high-order discontinuous Galerkin solver is used in this study. In this context, two artificial viscosity approaches are employed to regularize the solution near shocks: an element-wise constant viscosity technique and a PDE-based smooth viscosity model. As the latter approach is more sophisticated and preferable for complex problems, a point-implicit discretization in time is proposed to reduce the extra stiffness introduced by the PDE-based technique, making it more competitive in terms of computational cost.

  17. Generic Mesh Refinement On GPU

    OpenAIRE

    Boubekeur, Tamy; Schlick, Christophe

    2005-01-01

    International audience Many recent publications have shown that a large variety of computation involved in computer graphics can be moved from the CPU to the GPU, by a clever use of vertex or fragment shaders. Nonetheless there is still one kind of algorithms that is hard to translate from CPU to GPU: mesh refinement techniques. The main reason for this, is that vertex shaders available on current graphics hardware do not allow the generation of additional vertices on a mesh stored in grap...

  18. Simulating Magnetohydrodynamical Flow with Constrained Transport and Adaptive Mesh Refinement; Algorithms & Tests of the AstroBEAR Code

    CERN Document Server

    Cunningham, Andrew J; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W

    2007-01-01

    A description is given of the algorithms implemented in the AstroBEAR adaptive mesh refinement code for ideal magnetohydrodynamics. The code provides several high resolution, shock capturing schemes which are constructed to maintain conserved quantities of the flow in a finite volume sense. Divergence free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of such topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across co-located grids of different resolution. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.

  19. THREE-DIMENSIONAL ADAPTIVE MESH REFINEMENT SIMULATIONS OF LONG-DURATION GAMMA-RAY BURST JETS INSIDE MASSIVE PROGENITOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Camara, D.; Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706-1582 (United States); Begelman, Mitchell C., E-mail: dlopezc@ncsu.edu [JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440 (United States)

    2013-04-10

    We present the results of special relativistic, adaptive mesh refinement, 3D simulations of gamma-ray burst jets expanding inside a realistic stellar progenitor. Our simulations confirm that relativistic jets can propagate and break out of the progenitor star while remaining relativistic. This result is independent of the resolution, even though the amount of turbulence and variability observed in the simulations is greater at higher resolutions. We find that the propagation of the jet head inside the progenitor star is slightly faster in 3D simulations compared to 2D ones at the same resolution. This behavior seems to be due to the fact that the jet head in 3D simulations can wobble around the jet axis, finding the spot of least resistance to proceed. Most of the average jet properties, such as density, pressure, and Lorentz factor, are only marginally affected by the dimensionality of the simulations and therefore results from 2D simulations can be considered reliable.

  20. Lyα RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT

    International Nuclear Information System (INIS)

    A numerical code for solving various Lyα radiative transfer (RT) problems is presented. The code is suitable for an arbitrary, three-dimensional distribution of Lyα emissivity, gas temperature, density, and velocity field. Capable of handling Lyα RT in an adaptively refined grid-based structure, it enables detailed investigation of the effects of clumpiness of the interstellar (or intergalactic) medium. The code is tested against various geometrically and physically idealized configurations for which analytical solutions exist, and subsequently applied to three different simulated high-resolution 'Lyman-break galaxies', extracted from high-resolution cosmological simulations at redshift z = 3.6. Proper treatment of the Lyα scattering reveals a diversity of surface brightness (SB) and line profiles. Specifically, for a given galaxy the maximum observed SB can vary by an order of magnitude, and the total flux by a factor of 3-6, depending on the viewing angle. This may provide an explanation for differences in observed properties of high-redshift galaxies, and in particular a possible physical link between Lyman-break galaxies and regular Lyα emitters.

  1. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  2. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change

    Science.gov (United States)

    Huang, Rongzong; Wu, Huiying

    2016-06-01

    A total enthalpy-based lattice Boltzmann (LB) method with adaptive mesh refinement (AMR) is developed in this paper to efficiently simulate solid-liquid phase change problem where variables vary significantly near the phase interface and thus finer grid is required. For the total enthalpy-based LB method, the velocity field is solved by an incompressible LB model with multiple-relaxation-time (MRT) collision scheme, and the temperature field is solved by a total enthalpy-based MRT LB model with the phase interface effects considered and the deviation term eliminated. With a kinetic assumption that the density distribution function for solid phase is at equilibrium state, a volumetric LB scheme is proposed to accurately realize the nonslip velocity condition on the diffusive phase interface and in the solid phase. As compared with the previous schemes, this scheme can avoid nonphysical flow in the solid phase. As for the AMR approach, it is developed based on multiblock grids. An indicator function is introduced to control the adaptive generation of multiblock grids, which can guarantee the existence of overlap area between adjacent blocks for information exchange. Since MRT collision schemes are used, the information exchange is directly carried out in the moment space. Numerical tests are firstly performed to validate the strict satisfaction of the nonslip velocity condition, and then melting problems in a square cavity with different Prandtl numbers and Rayleigh numbers are simulated, which demonstrate that the present method can handle solid-liquid phase change problem with high efficiency and accuracy.

  3. Constrained-Transport Magnetohydrodynamics with Adaptive-Mesh-Refinement in CHARM

    Energy Technology Data Exchange (ETDEWEB)

    Miniatii, Francesco; Martin, Daniel

    2011-05-24

    We present the implementation of a three-dimensional, second order accurate Godunov-type algorithm for magneto-hydrodynamic (MHD), in the adaptivemesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit Corner-Transport-Upwind (CTU) scheme. Thefluid quantities are cell-centered and are updated using the Piecewise-Parabolic- Method (PPM), while the magnetic field variables are face-centered and areevolved through application of the Stokes theorem on cell edges via a Constrained- Transport (CT) method. The so-called ?multidimensional MHD source terms?required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracyor robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These includeface-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. Thecode is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests,a three-dimensional shock-cloud interaction problem and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence isshown to remain negligible throughout. Subject headings: cosmology: theory - methods: numerical

  4. Mesh Adaptation and Shape Optimization on Unstructured Meshes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

  5. Parallelization of GeoClaw code for modeling geophysical flows with adaptive mesh refinement on many-core systems

    Science.gov (United States)

    Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.

    2011-01-01

    We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.

  6. Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement

    CERN Document Server

    Zanotti, Olindo; Dumbser, Michael

    2015-01-01

    We present a new numerical tool for solving the special relativistic ideal MHD equations that is based on the combination of the following three key features: (i) a one-step ADER discontinuous Galerkin (DG) scheme that allows for an arbitrary order of accuracy in both space and time, (ii) an a posteriori subcell finite volume limiter that is activated to avoid spurious oscillations at discontinuities without destroying the natural subcell resolution capabilities of the DG finite element framework and finally (iii) a space-time adaptive mesh refinement (AMR) framework with time-accurate local time-stepping. The divergence-free character of the magnetic field is instead taken into account through the so-called 'divergence-cleaning' approach. The convergence of the new scheme is verified up to 5th order in space and time and the results for a sample of significant numerical tests including shock tube problems, the RMHD rotor problem and the Orszag-Tang vortex system are shown. We also consider a simple case of t...

  7. woptic: optical conductivity with Wannier functions and adaptive k-mesh refinement

    CERN Document Server

    Assmann, E; Kuneš, J; Toschi, A; Blaha, P; Held, K

    2015-01-01

    We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied into the wien2wannier framework and allows including a many-body self energy, e.g. from dynamical mean-field theory (DMFT). Wannier functions and dipole matrix elements are computed with the DFT package Wien2k and Wannier90. For illustration, we show DFT results for fcc-Al and DMFT results for the correlated metal SrVO$_3$.

  8. Autotuning of Adaptive Mesh Refinement PDE Solvers on Shared Memory Architectures

    KAUST Repository

    Nogina, Svetlana

    2012-01-01

    Many multithreaded, grid-based, dynamically adaptive solvers for partial differential equations permanently have to traverse subgrids (patches) of different and changing sizes. The parallel efficiency of this traversal depends on the interplay of the patch size, the architecture used, the operations triggered throughout the traversal, and the grain size, i.e. the size of the subtasks the patch is broken into. We propose an oracle mechanism delivering grain sizes on-the-fly. It takes historical runtime measurements for different patch and grain sizes as well as the traverse\\'s operations into account, and it yields reasonable speedups. Neither magic configuration settings nor an expensive pre-tuning phase are necessary. It is an autotuning approach. © 2012 Springer-Verlag.

  9. A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

    Science.gov (United States)

    Pantano, C.; Deiterding, R.; Hill, D. J.; Pullin, D. I.

    2006-09-01

    This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented.

  10. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, Anthony J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented by a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally

  11. A Freestream-Preserving High-Order Finite-Volume Method for Mapped Grids with Adaptive-Mesh Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, S; McCorquodale, P; Colella, P

    2011-12-16

    A fourth-order accurate finite-volume method is presented for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Novel considerations for formulating the semi-discrete system of equations in computational space combined with detailed mechanisms for accommodating the adapting grids ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). Advancement in time is achieved with a fourth-order Runge-Kutta method.

  12. Adaptive triangular mesh coarsening with centroidal Voronoi tessellations

    Institute of Scientific and Technical Information of China (English)

    Zhen-yu SHU; Guo-zhao WANG; Chen-shi DONG

    2009-01-01

    We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a so-called red-green split.Second, the refined mesh is simplified by a clustering algorithm based on centroidal Voronoi tessellations (CVTs). The accuracy and good quality of the output triangular mesh are achieved by combining adaptive subdivision and the CVTs technique. Test results showed the mesh coarsening scheme to be robust and effective. Examples are shown that validate the method.

  13. Hybrid Surface Mesh Adaptation for Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, lesspopular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro-duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is de-signed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  14. 3D adaptive mesh refinement simulations of the gas cloud G2 born within the disks of young stars in the Galactic Center

    CERN Document Server

    Schartmann, M; Burkert, A; Gillessen, S; Genzel, R; Pfuhl, O; Eisenhauer, F; Plewa, P M; Ott, T; George, E M; Habibi, M

    2015-01-01

    The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtained results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-$\\gamma$ data, (3) a detailed comparison to the observed high-quality position-velocity diagrams and the evolution of the total Brackett-$\\gamma$ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scen...

  15. Adaptive sampling for mesh spectrum editing

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-jun; ZHANG Hong-xin; BAO Hu-jun

    2006-01-01

    A mesh editing framework is presented in this paper, which integrates Free-Form Deformation (FFD) and geometry signal processing. By using simplified model from original mesh, the editing task can be accomplished with a few operations. We take the deformation of the proxy and the position coordinates of the mesh models as geometry signal. Wavelet analysis is employed to separate local detail information gracefully. The crucial innovation of this paper is a new adaptive regular sampling approach for our signal analysis based editing framework. In our approach, an original mesh is resampled and then refined iteratively which reflects optimization of our proposed spectrum preserving energy. As an extension of our spectrum editing scheme,the editing principle is applied to geometry details transferring, which brings satisfying results.

  16. Electrostatic PIC with adaptive Cartesian mesh

    CERN Document Server

    Kolobov, Vladimir I

    2016-01-01

    We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.

  17. Electrostatic PIC with adaptive Cartesian mesh

    Science.gov (United States)

    Kolobov, Vladimir; Arslanbekov, Robert

    2016-05-01

    We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.

  18. Adaptive and Unstructured Mesh Cleaving

    Science.gov (United States)

    Bronson, Jonathan R.; Sastry, Shankar P.; Levine, Joshua A.; Whitaker, Ross T.

    2015-01-01

    We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoids this conflict by extracting the boundary conforming constraint into a secondary step. We first build a background mesh having a desired set of tetrahedral properties, and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing this new framework, we make several technical contributions including a new method for building graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. PMID:26137171

  19. A fast tree-based method for estimating column densities in adaptive mesh refinement codes. Influence of UV radiation field on the structure of molecular clouds

    Science.gov (United States)

    Valdivia, Valeska; Hennebelle, Patrick

    2014-11-01

    Context. Ultraviolet radiation plays a crucial role in molecular clouds. Radiation and matter are tightly coupled and their interplay influences the physical and chemical properties of gas. In particular, modeling the radiation propagation requires calculating column densities, which can be numerically expensive in high-resolution multidimensional simulations. Aims: Developing fast methods for estimating column densities is mandatory if we are interested in the dynamical influence of the radiative transfer. In particular, we focus on the effect of the UV screening on the dynamics and on the statistical properties of molecular clouds. Methods: We have developed a tree-based method for a fast estimate of column densities, implemented in the adaptive mesh refinement code RAMSES. We performed numerical simulations using this method in order to analyze the influence of the screening on the clump formation. Results: We find that the accuracy for the extinction of the tree-based method is better than 10%, while the relative error for the column density can be much more. We describe the implementation of a method based on precalculating the geometrical terms that noticeably reduces the calculation time. To study the influence of the screening on the statistical properties of molecular clouds we present the probability distribution function of gas and the associated temperature per density bin and the mass spectra for different density thresholds. Conclusions: The tree-based method is fast and accurate enough to be used during numerical simulations since no communication is needed between CPUs when using a fully threaded tree. It is then suitable to parallel computing. We show that the screening for far UV radiation mainly affects the dense gas, thereby favoring low temperatures and affecting the fragmentation. We show that when we include the screening, more structures are formed with higher densities in comparison to the case that does not include this effect. We

  20. Serial and parallel dynamic adaptation of general hybrid meshes

    Science.gov (United States)

    Kavouklis, Christos

    The Navier-Stokes equations are a standard mathematical representation of viscous fluid flow. Their numerical solution in three dimensions remains a computationally intensive and challenging task, despite recent advances in computer speed and memory. A strategy to increase accuracy of Navier-Stokes simulations, while maintaining computing resources to a minimum, is local refinement of the associated computational mesh in regions of large solution gradients and coarsening in regions where the solution does not vary appreciably. In this work we consider adaptation of general hybrid meshes for Computational Fluid Dynamics (CFD) applications. Hybrid meshes are composed of four types of elements; hexahedra, prisms, pyramids and tetrahedra, and have been proven a promising technology in accurately resolving fluid flow for complex geometries. The first part of this dissertation is concerned with the design and implementation of a serial scheme for the adaptation of general three dimensional hybrid meshes. We have defined 29 refinement types, for all four kinds of elements. The core of the present adaptation scheme is an iterative algorithm that flags mesh edges for refinement, so that the adapted mesh is conformal. Of primary importance is considered the design of a suitable dynamic data structure that facilitates refinement and coarsening operations and furthermore minimizes memory requirements. A special dynamic list is defined for mesh elements, in contrast with the usual tree structures. It contains only elements of the current adaptation step and minimal information that is utilized to reconstruct parent elements when the mesh is coarsened. In the second part of this work, a new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid meshes is presented. Partitioning of a hybrid mesh reduces to partitioning of the corresponding dual graph. Communication among processors is based on the faces of the interpartition boundary. The distributed

  1. Numerical Simulation of Fluid Interfaces with the Adaptive Mesh Refinement Method, the Ghost Fluid Method and the Level Set Method%界面捕捉Level Set方法的(AMR)数值模拟

    Institute of Scientific and Technical Information of China (English)

    宫翔飞; 张树道; 江松

    2006-01-01

    在流体力学方程的计算中采用高精度WENO格式,用AMR(adaptive mesh refinement)方法提高流场局部分辨率,在采用Level Set函数标定物质界面的计算中用GFM(ghostfluid method)方法进行界面处理,尝试将AMR技术与界面追踪技术相互融合并应用于数值模拟,对不同的模拟结果进行了比较.

  2. Adaptive multilevel mesh refinement method for the solution of low Mach number reactive flows; Methode adaptative de raffinement local multi-niveaux pour le calcul d'ecoulements reactifs a faible nombre de Mach

    Energy Technology Data Exchange (ETDEWEB)

    Core, X.

    2002-02-01

    The isobar approximation for the system of the balance equations of mass, momentum, energy and chemical species is a suitable approximation to represent low Mach number reactive flows. In this approximation, which neglects acoustics phenomena, the mixture is hydrodynamically incompressible and the thermodynamic effects lead to an uniform compression of the system. We present a novel numerical scheme for this approximation. An incremental projection method, which uses the original form of mass balance equation, discretizes in time the Navier-Stokes equations. Spatial discretization is achieved through a finite volume approach on MAC-type staggered mesh. A higher order de-centered scheme is used to compute the convective fluxes. We associate to this discretization a local mesh refinement method, based on Flux Interface Correction technique. A first application concerns a forced flow with variable density which mimics a combustion problem. The second application is natural convection with first small temperature variations and then beyond the limit of validity of the Boussinesq approximation. Finally, we treat a third application which is a laminar diffusion flame. For each of these test problems, we demonstrate the robustness of the proposed numerical scheme, notably for the density spatial variations. We analyze the gain in accuracy obtained with the local mesh refinement method. (author)

  3. Parallel adaptation of general three-dimensional hybrid meshes

    Science.gov (United States)

    Kavouklis, Christos; Kallinderis, Yannis

    2010-05-01

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  4. Parallel adaptation of general three-dimensional hybrid meshes

    International Nuclear Information System (INIS)

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  5. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  6. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  7. Finite-volume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates

    Science.gov (United States)

    Todarello, Giovanni; Vonck, Floris; Bourasseau, Sébastien; Peter, Jacques; Désidéri, Jean-Antoine

    2016-05-01

    A new goal-oriented mesh adaptation method for finite volume/finite difference schemes is extended from the structured mesh framework to a more suitable setting for adaptation of unstructured meshes. The method is based on the total derivative of the goal with respect to volume mesh nodes that is computable after the solution of the goal discrete adjoint equation. The asymptotic behaviour of this derivative is assessed on regularly refined unstructured meshes. A local refinement criterion is derived from the requirement of limiting the first order change in the goal that an admissible node displacement may cause. Mesh adaptations are then carried out for classical test cases of 2D Euler flows. Efficiency and local density of the adapted meshes are presented. They are compared with those obtained with a more classical mesh adaptation method in the framework of finite volume/finite difference schemes [46]. Results are very close although the present method only makes usage of the current grid.

  8. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Stephen M. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering; Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alder, Berni J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-10

    A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examples highlighting the mesh adaptivity of this method are also provided.

  9. A Discontinuous Galerkin Time-Domain Method with Dynamically Adaptive Cartesian Meshes for Computational Electromagnetics

    CERN Document Server

    Yan, Su; Arslanbekov, Robert R; Kolobov, Vladimir I; Jin, Jian-Ming

    2016-01-01

    A discontinuous Galerkin time-domain (DGTD) method based on dynamically adaptive Cartesian meshes (ACM) is developed for a full-wave analysis of electromagnetic fields in dispersive media. Hierarchical Cartesian grids offer simplicity close to that of structured grids and the flexibility of unstructured grids while being highly suited for adaptive mesh refinement (AMR). The developed DGTD-ACM achieves a desired accuracy by refining non-conformal meshes near material interfaces to reduce stair-casing errors without sacrificing the high efficiency afforded with uniform Cartesian meshes. Moreover, DGTD-ACM can dynamically refine the mesh to resolve the local variation of the fields during propagation of electromagnetic pulses. A local time-stepping scheme is adopted to alleviate the constraint on the time-step size due to the stability condition of the explicit time integration. Simulations of electromagnetic wave diffraction over conducting and dielectric cylinders and spheres demonstrate that the proposed meth...

  10. An Adaptive Mesh Algorithm: Mapping the Mesh Variables

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, Anthony J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Both thermodynamic and kinematic variables must be mapped. The kinematic variables are defined on a separate kinematic mesh; it is the duel mesh to the thermodynamic mesh. The map of the kinematic variables is done by calculating the contributions of kinematic variables on the old thermodynamic mesh, mapping the kinematic variable contributions onto the new thermodynamic mesh and then synthesizing the mapped kinematic variables on the new kinematic mesh. In this document the map of the thermodynamic variables will be described.

  11. Multigrid solution strategies for adaptive meshing problems

    Science.gov (United States)

    Mavriplis, Dimitri J.

    1995-01-01

    This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.

  12. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  13. New high quality adaptive mesh generator utilized in modelling plasma streamer propagation at atmospheric pressures

    Science.gov (United States)

    Papadakis, A. P.; Georghiou, G. E.; Metaxas, A. C.

    2008-12-01

    A new adaptive mesh generator has been developed and used in the analysis of high-pressure gas discharges, such as avalanches and streamers, reducing computational times and computer memory needs significantly. The new adaptive mesh generator developed, uses normalized error indicators, varying from 0 to 1, to guarantee optimal mesh resolution for all carriers involved in the analysis. Furthermore, it uses h- and r-refinement techniques such as mesh jiggling, edge swapping and node addition/removal to develop an element quality improvement algorithm that improves the mesh quality significantly and a fast and accurate algorithm for interpolation between meshes. Finally, the mesh generator is applied in the characterization of the transition from a single electron to the avalanche and streamer discharges in high-voltage, high-pressure gas discharges for dc 1 mm gaps, RF 1 cm point-plane gaps and parallel-plate 40 MHz configurations, in ambient atmospheric air.

  14. New high quality adaptive mesh generator utilized in modelling plasma streamer propagation at atmospheric pressures

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, A P [Department of Electrical Engineering, Frederick University Cyprus, 7 Y Frederickou Street, Palouriotissa, Nicosia 1036 (Cyprus); Georghiou, G E [Department of Electrical and Computer Engineering, University of Cyprus, 75 Kallipoleos, PO Box 20577, 1678, Nicosia (Cyprus); Metaxas, A C [St John' s College, University of Cambridge, Cambridge, CB2 1TP (United Kingdom)], E-mail: eng.ap@frederick.ac.cy, E-mail: geg@ucy.ac.cy, E-mail: acm33@cam.ac.uk

    2008-12-07

    A new adaptive mesh generator has been developed and used in the analysis of high-pressure gas discharges, such as avalanches and streamers, reducing computational times and computer memory needs significantly. The new adaptive mesh generator developed, uses normalized error indicators, varying from 0 to 1, to guarantee optimal mesh resolution for all carriers involved in the analysis. Furthermore, it uses h- and r-refinement techniques such as mesh jiggling, edge swapping and node addition/removal to develop an element quality improvement algorithm that improves the mesh quality significantly and a fast and accurate algorithm for interpolation between meshes. Finally, the mesh generator is applied in the characterization of the transition from a single electron to the avalanche and streamer discharges in high-voltage, high-pressure gas discharges for dc 1 mm gaps, RF 1 cm point-plane gaps and parallel-plate 40 MHz configurations, in ambient atmospheric air.

  15. Stochastic domain decomposition for time dependent adaptive mesh generation

    CERN Document Server

    Bihlo, Alexander; Walsh, Emily J

    2015-01-01

    The efficient generation of meshes is an important component in the numerical solution of problems in physics and engineering. Of interest are situations where global mesh quality and a tight coupling to the solution of the physical partial differential equation (PDE) is important. We consider parabolic PDE mesh generation and present a method for the construction of adaptive meshes in two spatial dimensions using stochastic domain decomposition that is suitable for an implementation in a multi- or many-core environment. Methods for mesh generation on periodic domains are also provided. The mesh generator is coupled to a time dependent physical PDE and the system is evolved using an alternating solution procedure. The method uses the stochastic representation of the exact solution of a parabolic linear mesh generator to find the location of an adaptive mesh along the (artificial) subdomain interfaces. The deterministic evaluation of the mesh over each subdomain can then be obtained completely independently us...

  16. Applications of automatic mesh generation and adaptive methods in computational medicine

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.A.; Macleod, R.S. [Univ. of Utah, Salt Lake City, UT (United States); Johnson, C.R.; Eason, J.C. [Duke Univ., Durham, NC (United States)

    1995-12-31

    Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

  17. An adaptive mesh finite volume method for the Euler equations of gas dynamics

    Science.gov (United States)

    Mungkasi, Sudi

    2016-06-01

    The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.

  18. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  19. Adaptive Mesh Redistibution Method Based on Godunov's Scheme

    OpenAIRE

    Azarenok, Boris N.; Ivanenko, Sergey A.; Tang, Tao

    2003-01-01

    In this work, a detailed description for an efficent adaptive mesh redistribution algorithm based on the Godunov's scheme is presented. After each mesh iteration a second-order finite-volume flow solver is used to update the flow parameters at the new time level directly without using interpolation. Numerical experiments are perfomed to demonstrate the efficency and robustness of the proposed adaptive mesh algorithm in one and two dimensions.

  20. 3D Compressible Melt Transport with Mesh Adaptivity

    Science.gov (United States)

    Dannberg, J.; Heister, T.

    2015-12-01

    Melt generation and migration have been the subject of numerous investigations. However, their typical time and length scales are vastly different from mantle convection, and the material properties are highly spatially variable and make the problem strongly non-linear. These challenges make it difficult to study these processes in a unified framework and in three dimensions. We present our extension of the mantle convection code ASPECT that allows for solving additional equations describing the behavior of melt percolating through and interacting with a viscously deforming host rock. One particular advantage is ASPECT's adaptive mesh refinement, as the resolution can be increased in areas where melt is present and viscosity gradients are steep, whereas a lower resolution is sufficient in regions without melt. Our approach includes both melt migration and melt generation, allowing for different melting parametrizations. In contrast to previous formulations, we consider the individual compressibilities of the solid and fluid phases in addition to compaction flow. This ensures self-consistency when linking melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We evaluate the functionality and potential of this method using a series of benchmarks and applications, including solitary waves, magmatic shear bands and melt generation and transport in a rising mantle plume. We compare results of the compressible and incompressible formulation and find melt volume differences of up to 15%. Moreover, we demonstrate that adaptive mesh refinement has the potential to reduce the runtime of a computation by more than one order of magnitude. Our model of magma dynamics provides a framework for investigating links between the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modeling the generation of komatiites or other melts originating in greater depths.

  1. A unified framework for mesh refinement in random and physical space

    Science.gov (United States)

    Li, Jing; Stinis, Panos

    2016-10-01

    In recent work we have shown how an accurate reduced model can be utilized to perform mesh refinement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for refinement in both random and physical space. In this manuscript we focus on the application to random space mesh refinement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the efficiency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.

  2. Kinetic Solvers with Adaptive Mesh in Phase Space

    OpenAIRE

    Arslanbekov, Robert R; Kolobov, Vladimir I; Frolova, Anna A.

    2013-01-01

    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-s...

  3. Structures in Detonation Waves in Low-Pressure H2–O2–Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    Directory of Open Access Journals (Sweden)

    Ralf Deiterding

    2011-01-01

    Full Text Available Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniques in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.

  4. Numerical modeling of seismic waves using frequency-adaptive meshes

    Science.gov (United States)

    Hu, Jinyin; Jia, Xiaofeng

    2016-08-01

    An improved modeling algorithm using frequency-adaptive meshes is applied to meet the computational requirements of all seismic frequency components. It automatically adopts coarse meshes for low-frequency computations and fine meshes for high-frequency computations. The grid intervals are adaptively calculated based on a smooth inversely proportional function of grid size with respect to the frequency. In regular grid-based methods, the uniform mesh or non-uniform mesh is used for frequency-domain wave propagators and it is fixed for all frequencies. A too coarse mesh results in inaccurate high-frequency wavefields and unacceptable numerical dispersion; on the other hand, an overly fine mesh may cause storage and computational overburdens as well as invalid propagation angles of low-frequency wavefields. Experiments on the Padé generalized screen propagator indicate that the Adaptive mesh effectively solves these drawbacks of regular fixed-mesh methods, thus accurately computing the wavefield and its propagation angle in a wide frequency band. Several synthetic examples also demonstrate its feasibility for seismic modeling and migration.

  5. Adaptive-mesh algorithms for computational fluid dynamics

    Science.gov (United States)

    Powell, Kenneth G.; Roe, Philip L.; Quirk, James

    1993-01-01

    The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.

  6. Adaptively-refined overlapping grids for the numerical solution of systems of hyperbolic conservation laws

    Science.gov (United States)

    Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.

    1995-01-01

    Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.

  7. Dynamic mesh refinement for discrete models of jet electro-hydrodynamics

    CERN Document Server

    Lauricella, Marco; Pisignano, Dario; Succi, Sauro

    2015-01-01

    Nowadays, several models of unidimensional fluid jets exploit discrete element methods. In some cases, as for models aiming at describing the electrospinning nanofabrication process of polymer fibers, discrete element methods suffer a non constant resolution of the jet representation. We develop a dynamic mesh-refinement method for the numerical study of the electro-hydrodynamic behavior of charged jets using discrete element methods. To this purpose, we import ideas and techniques from the string method originally developed in the framework of free-energy landscape simulations. The mesh-refined discrete element method is demonstrated for the case of electrospinning applications.

  8. Some observations on mesh refinement schemes applied to shock wave phenomena

    Science.gov (United States)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  9. Phase-field simulation of dendritic solidification using a full threaded tree with adaptive meshing

    Institute of Scientific and Technical Information of China (English)

    Yin Yajun; Zhou Jianxin; Liao Dunming; Pang Shengyong; Shen Xu

    2014-01-01

    Simulation of the microstructure evolution during solidification is greatly beneficial to the control of solidification microstructures. A phase-field method based on the ful threaded tree (FTT) for the simulation of casting solidification microstructure was proposed in this paper, and the structure of the ful threaded tree and the mesh refinement method was discussed. During dendritic growth in solidification, the mesh for simulation is adaptively refined at the liquid-solid interface, and coarsened in other areas. The numerical results of a three-dimension dendrite growth indicate that the phase-field method based on FTT is suitable for microstructure simulation. Most importantly, the FTT method can increase the spatial and temporal resolutions beyond the limits imposed by the available hardware compared with the conventional uniform mesh. At the simulation time of 0.03 s in this study, the computer memory used for computation is no more than 10 MB with the FTT method, while it is about 50 MB with the uniform mesh method. In addition, the proposed FTT method is more efficient in computation time when compared with the uniform mesh method. It would take about 20 h for the uniform mesh method, while only 2 h for the FTT method for computation when the solidification time is 0.17 s in this study.

  10. Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method for Triangular Meshes

    Directory of Open Access Journals (Sweden)

    Noor A. Husain

    2011-01-01

    Full Text Available Problem statement: Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will lead to a heavy computational load especially at a higher level of subdivision. Adaptive subdivision is a method that subdivides only at certain areas of the meshes. Although subdivision occurs at the selected areas, quality of produced surfaces can be preserved similar to a regular subdivision surfaces. Nevertheless, adaptive subdivision process suffers because of two reasons; calculations need to be done to define areas that required to be subdivided and to remove cracks created from the subdivision depth difference between selected and unselected areas. Cracks must be removed because it creates artifacts in editing, rendering and processing of the mesh. Approach: This research brings to iterative adaptive subdivision to improve simple adaptive subdivision surfaces method for triangular meshes. Results: The result of this iterative process presented to produce fewer polygons while it preserve smoother. Conclusion: The proposed method created surfaces of better quality, computationally more efficient and occupied less memory as compared to original method.

  11. Adaptive upscaling with the dual mesh method

    Energy Technology Data Exchange (ETDEWEB)

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  12. Dimensional reduction as a tool for mesh refinement and trackingsingularities of PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panagiotis

    2007-06-10

    We present a collection of algorithms which utilizedimensional reduction to perform mesh refinement and study possiblysingular solutions of time-dependent partial differential equations. Thealgorithms are inspired by constructions used in statistical mechanics toevaluate the properties of a system near a critical point. The firstalgorithm allows the accurate determination of the time of occurrence ofa possible singularity. The second algorithm is an adaptive meshrefinement scheme which can be used to approach efficiently the possiblesingularity. Finally, the third algorithm uses the second algorithm untilthe available resolution is exhausted (as we approach the possiblesingularity) and then switches to a dimensionally reduced model which,when accurate, can follow faithfully the solution beyond the time ofoccurrence of the purported singularity. An accurate dimensionallyreduced model should dissipate energy at the right rate. We construct twovariants of each algorithm. The first variant assumes that we have actualknowledge of the reduced model. The second variant assumes that we knowthe form of the reduced model, i.e., the terms appearing in the reducedmodel, but not necessarily their coefficients. In this case, we alsoprovide a way of determining the coefficients. We present numericalresults for the Burgers equation with zero and nonzero viscosity toillustrate the use of the algorithms.

  13. An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains

    OpenAIRE

    Mosler, J.; Ortiz, M.

    2009-01-01

    A variational h-adaptive finite element formulation is proposed. The distinguishing feature of this method is that mesh refinement and coarsening are governed by the same minimization principle characterizing the underlying physical problem. Hence, no error estimates are invoked at any stage of the adaption procedure. As a consequence, linearity of the problem and a corresponding Hilbert-space functional framework are not required and the proposed formulation can be applied to hig...

  14. GENERATION AND APPLICATION OF UNSTRUCTURED ADAPTIVE MESHES WITH MOVING BOUNDARIES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method to generate unstructured adaptive meshes with moving boundaries and its application to CFD. Delaunay triangulation criterion in conjunction with the automatic point creation is used to generate 2-D and 3-D unstructured grids. A local grid regeneration method is proposed to cope with moving boundaries. Numerical examples include the interactions of shock waves with movable bodies and the movement of a projectile within a ram accelerator, illustrating an efficient and robust mesh generation method developed.``

  15. Tsunami modelling with adaptively refined finite volume methods

    Science.gov (United States)

    LeVeque, R.J.; George, D.L.; Berger, M.J.

    2011-01-01

    Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.

  16. Implementations of mesh refinement schemes for particle-in-cell plasma simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B.

    2003-10-20

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.

  17. Dynamic mesh refinement for discrete models of jet electro-hydrodynamics

    OpenAIRE

    Lauricella, Marco; Pontrelli, Giuseppe; Pisignano, Dario; Succi, Sauro

    2015-01-01

    Nowadays, several models of unidimensional fluid jets exploit discrete element methods. In some cases, as for models aiming at describing the electrospinning nanofabrication process of polymer fibers, discrete element methods suffer a non constant resolution of the jet representation. We develop a dynamic mesh-refinement method for the numerical study of the electro-hydrodynamic behavior of charged jets using discrete element methods. To this purpose, we import ideas and techniques from the s...

  18. Kinetic solvers with adaptive mesh in phase space.

    Science.gov (United States)

    Arslanbekov, Robert R; Kolobov, Vladimir I; Frolova, Anna A

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a "tree of trees" (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems. PMID:24483578

  19. MECHANICAL DYNAMICS ANALYSIS OF PM GENERATOR USING H-ADAPTIVE REFINEMENT

    OpenAIRE

    AJAY KUMAR; SANJAY MARWAHA; ANUPAMA MARWAHA

    2010-01-01

    This paper describes the dynamic analysis of permanent magnet (PM) rotor generator using COMSOL Multiphysics, a Finite Element Analysis (FEA) based package and Simulink, a system simulation program. Model of PM rotor generator is developed for its mechanical dynamics and computational of torque resulting from magnetic force. For the model the mesh is constructed using first order Lagrange quadratic elements and h-adaptive refinement technique based upon bank bisection is used for improving ac...

  20. Anisotropic norm-oriented mesh adaptation for a Poisson problem

    Science.gov (United States)

    Brèthes, Gautier; Dervieux, Alain

    2016-10-01

    We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.

  1. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  2. White Dwarf Mergers on Adaptive Meshes I. Methodology and Code Verification

    CERN Document Server

    Katz, Max P; Calder, Alan C; Swesty, F Douglas; Almgren, Ann S; Zhang, Weiqun

    2015-01-01

    The Type Ia supernova progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf merger scenario, which has the potential to naturally explain many of the observed characteristics of Type Ia supernovae. To date there have been relatively few self-consistent simulations of merging white dwarf systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hy...

  3. ADAPTIVE MODEL REFINEMENT FOR THE IONOSPHERE AND THERMOSPHERE

    Data.gov (United States)

    National Aeronautics and Space Administration — ADAPTIVE MODEL REFINEMENT FOR THE IONOSPHERE AND THERMOSPHERE ANTHONY M. D’AMATO∗, AARON J. RIDLEY∗∗, AND DENNIS S. BERNSTEIN∗∗∗ Abstract. Mathematical models of...

  4. Adaptive mesh generation for image registration and segmentation

    DEFF Research Database (Denmark)

    Fogtmann, Mads; Larsen, Rasmus

    2013-01-01

    This paper deals with the problem of generating quality tetrahedral meshes for image registration. From an initial coarse mesh the approach matches the mesh to the image volume by combining red-green subdivision and mesh evolution through mesh-to-image matching regularized with a mesh quality...

  5. Comprehensive adaptive mesh refinement in wrinkling prediction analysis

    OpenAIRE

    Selman, A.; Meinders, T.; Huetink, J.; Boogaard, van den, F.E.

    2002-01-01

    Discretisation errors indicator, contact free wrinkling and wrinkling with contact indicators are, in a challenging task, brought together and used in a comprehensive approach to wrinkling prediction analysis in thin sheet metal forming processes.

  6. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    Science.gov (United States)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  7. Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement

    Science.gov (United States)

    Manguoglu, Murat; Takizawa, Kenji; Sameh, Ahmed H.; Tezduyar, Tayfun E.

    2009-10-01

    Computation of incompressible flows in arterial fluid mechanics, especially because it involves fluid-structure interaction, poses significant numerical challenges. Iterative solution of the fluid mechanics part of the equation systems involved is one of those challenges, and we address that in this paper, with the added complication of having boundary layer mesh refinement with thin layers of elements near the arterial wall. As test case, we use matrix data from stabilized finite element computation of a bifurcating middle cerebral artery segment with aneurysm. It is well known that solving linear systems that arise in incompressible flow computations consume most of the time required by such simulations. For solving these large sparse nonsymmetric systems, we present effective preconditioning techniques appropriate for different stages of the computation over a cardiac cycle.

  8. An Application of the Mesh Generation and Refinement Tool to Mobile Bay, Alabama, USA

    Science.gov (United States)

    Aziz, Wali; Alarcon, Vladimir J.; McAnally, William; Martin, James; Cartwright, John

    2009-08-01

    A grid generation tool, called the Mesh Generation and Refinement Tool (MGRT), has been developed using Qt4. Qt4 is a comprehensive C++ application framework which includes GUI and container class-libraries and tools for cross-platform development. MGRT is capable of using several types of algorithms for grid generation. This paper presents an application of the MGRT grid generation tool for creating an unstructured grid of Mobile Bay (Alabama, USA) that will be used for hydrodynamics modeling. The algorithm used in this particular application is the Advancing-Front/Local-Reconnection (AFLR) [1] [2]. This research shows results of grids created with MGRT and compares them to grids (for the same geographical container) created using other grid generation tools. The superior quality of the grids generated by MGRT is shown.

  9. THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS

    International Nuclear Information System (INIS)

    We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.

  10. LOAD AWARE ADAPTIVE BACKBONE SYNTHESIS IN WIRELESS MESH NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zheng Baoyu

    2009-01-01

    Wireless Mesh Networks (WMNs) are envisioned to support the wired backbone with a wireless Backbone Networks (BNet) for providing internet connectivity to large-scale areas.With a wide range of internet-oriented applications with different Quality of Service (QoS) requirement,the large-scale WMNs should have good scalability and large bandwidth.In this paper,a Load Aware Adaptive Backbone Synthesis (LAABS) algorithm is proposed to automatically balance the traffic flow in the WMNs.The BNet will dynamically split into smaller size or merge into bigger one according to statistic load information of Backbone Nodes (BNs).Simulation results show LAABS generates moderate BNet size and converges quickly,thus providing scalable and stable BNet to facilitate traffic flow.

  11. Problem-adapted mesh generation with FEM-features

    OpenAIRE

    Werner, Horst; Weber, Christian; Schilke, Martin

    2000-01-01

    Today automatic meshing of CAD geometry is the most common method of FEM mesh generation. However, to get results of acceptable accuracy with universal meshing algorithms it is necessary to use rather small-sized elements which leads to high memory and CPU time consumption. Furthermore, the irregularity of automatically generatated meshes makes it difficult to create well-defined local areas with different material properties. A solution for this problem is the application of predefined build...

  12. Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement

    CERN Document Server

    Dietrich, Tim; Ujevic, Maximiliano; Bruegmann, Bernd

    2015-01-01

    We study equal and unequal-mass neutron star mergers by means of new numerical relativity simulations in which the general relativistic hydrodynamics solver employs an algorithm that guarantees mass conservation across the refinement levels of the computational mesh. We consider eight binary configurations with total mass $M=2.7\\,M_\\odot$, mass-ratios $q=1$ and $q=1.16$, and four different equation of states (EOSs), and one configuration with a stiff EOS, $M=2.5M_\\odot$ and $q=1.5$. We focus on the post-merger dynamics and study the merger remnant, dynamical ejecta and the postmerger gravitational wave spectrum. Although most of the merger remnants form a hypermassive neutron star collapsing to a black hole+disk system on dynamical timescales, stiff EOSs can eventually produce a stable massive neutron star. Ejecta are mostly emitted around the orbital plane; favored by large mass ratios and softer EOS. The postmerger wave spectrum is mainly characterized by non-axisymmetric oscillations of the remnant. The st...

  13. Three-dimensional modeling and highly refined mesh generation of the aorta artery and its tunics

    Science.gov (United States)

    Cazotto, J. A.; Neves, L. A.; Machado, J. M.; Momente, J. C.; Shiyou, Y.; Godoy, M. F.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.

    2013-02-01

    This paper describes strategies and techniques to perform modeling and automatic mesh generation of the aorta artery and its tunics (adventitia, media and intima walls), using open source codes. The models were constructed in the Blender package and Python scripts were used to export the data necessary for the mesh generation in TetGen. The strategies proposed are able to provide meshes of complicated and irregular volumes, with a large number of mesh elements involved (12,000,000 tetrahedrons approximately). These meshes can be used to perform computational simulations by Finite Element Method (FEM).

  14. Goal based mesh adaptivity for fixed source radiation transport calculations

    International Nuclear Information System (INIS)

    Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed

  15. Algebraic turbulence modeling for unstructured and adaptive meshes

    Science.gov (United States)

    Mavriplis, Dimitri J.

    1990-01-01

    An algebraic turbulence model based on the Baldwin-Lomax model, has been implemented for use on unstructured grids. The implementation is based on the use of local background structured turbulence meshes. At each time-step, flow variables are interpolated from the unstructured mesh onto the background structured meshes, the turbulence model is executed on these meshes, and the resulting eddy viscosity values are interpolated back to the unstructured mesh. Modifications to the algebraic model were required to enable the treatment of more complicated flows, such as confluent boundary layers and wakes. The model is used in conjuction with an efficient unstructured multigrid finite-element Navier-Stokes solver in order to compute compressible turbulent flows on fully unstructured meshes. Solutions about single and multiple element airfoils are obtained and compared with experimental data.

  16. An automated approach for solution based mesh adaptation to enhance numerical accuracy for a given number of grid cells

    NARCIS (Netherlands)

    Lucas, P.; Van Zuijlen, A.H.; Bijl, H.

    2009-01-01

    Mesh adaptation is a fairly established tool to obtain numerically accurate solutions for flow problems. Computational efficiency is, however, not always guaranteed for the adaptation strategies found in literature. Typically excessive mesh growth diminishes the potential efficiency gain. This paper

  17. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  18. Comparison of Mesh Adaptivity Schemes in Finite ElementSimulation of Tube Extrusion Process

    Directory of Open Access Journals (Sweden)

    K. K. Pathak

    2008-05-01

    Full Text Available In this study, finite element simulation of tube extrusion process has been carried outconsidering different mesh adaptivity schemes. A comparison of these schemes has been madebased on stress, strain distribution, and load-stroke curves. Based on the finite element results,it is observed that the success of the computer simulation is dependent on the mesh refinementcriteria.

  19. MECHANICAL DYNAMICS ANALYSIS OF PM GENERATOR USING H-ADAPTIVE REFINEMENT

    Directory of Open Access Journals (Sweden)

    AJAY KUMAR

    2010-03-01

    Full Text Available This paper describes the dynamic analysis of permanent magnet (PM rotor generator using COMSOL Multiphysics, a Finite Element Analysis (FEA based package and Simulink, a system simulation program. Model of PM rotor generator is developed for its mechanical dynamics and computational of torque resulting from magnetic force. For the model the mesh is constructed using first order Lagrange quadratic elements and h-adaptive refinement technique based upon bank bisection is used for improving accuracy of the model. Effect of rotor moment of inertia (MI on the winding resistance and winding inductance has been studied by using Simulink. It is shown that the system MI has a significant effect on optimal winding resistance and inductance to achieve steady state operation in shortest period of time.

  20. The GeoClaw software for depth-averaged flows with adaptive refinement

    Science.gov (United States)

    Berger, M.J.; George, D.L.; LeVeque, R.J.; Mandli, K.T.

    2011-01-01

    Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw. ?? 2011.

  1. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  2. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  3. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  4. Spectral assessment of mesh adaptations for the analysis of the dynamical longitudinal behavior of railway bridges

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J. [Inst. for Transportation Technologies, FAMU-FSU College of Engineering, Tallahassee, FL (United States); Ruge, P. [Inst. of Dynamics of Structures, Dresden Univ. of Technology (Germany)

    2001-07-01

    Extensive studies, concerning the longitudinal behavior of long railway bridges due to braking forces have been done by measurements in situ, and by statical, as well as dynamical simulations. Thereby, the only consistent numerical realization with respect to the measured data was the dynamical one. However, the consecutive discretizations in space and time with time-dependent system matrices are extremely time consuming due to the moving loads and varying stiffness of the ballast under, and in front of, the moving train. Therefore, every effort should be made to optimize the discretization in the space domain. This paper presents a strategy for assessing the quality of finite elements in space and for applying an adaptive mesh-refinement for this special engineering problem. The method is characterized by a spectral assessment, comparing a certain set of eigenvalues of the actual discretization with those of a very fine and rather exact numerical model. The error estimator introduced in this paper controls a whole set of global eigenvalues with corresponding natural vibration modes in order to assess certain types of shape functions. Thus, the procedure estimates local modifications on the one hand and p-properties on the other by means of global indication. (orig.)

  5. Geostrophic balance preserving interpolation in mesh adaptive shallow-water ocean modelling

    CERN Document Server

    Maddison, James R; Farrell, Patrick E

    2010-01-01

    The accurate representation of geostrophic balance is an essential requirement for numerical modelling of geophysical flows. Significant effort is often put into the selection of accurate or optimal balance representation by the discretisation of the fundamental equations. The issue of accurate balance representation is particularly challenging when applying dynamic mesh adaptivity, where there is potential for additional imbalance injection when interpolating to new, optimised meshes. In the context of shallow-water modelling, we present a new method for preservation of geostrophic balance when applying dynamic mesh adaptivity. This approach is based upon interpolation of the Helmholtz decomposition of the Coriolis acceleration. We apply this in combination with a discretisation for which states in geostrophic balance are exactly steady solutions of the linearised equations on an f-plane; this method guarantees that a balanced and steady flow on a donor mesh remains balanced and steady after interpolation on...

  6. Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption.

    Science.gov (United States)

    Dresel, T; Beyerlein, M; Schwider, J

    1996-12-10

    Computer-generated phase-only holograms can be used for laser beam shaping, i.e., for focusing a given aperture with intensity and phase distributions into a pregiven intensity pattern in their focal planes. A numerical approach based on iterative finite-element mesh adaption permits the design of appropriate phase functions for the task of focusing into two-dimensional reconstruction patterns. Both the hologram aperture and the reconstruction pattern are covered by mesh mappings. An iterative procedure delivers meshes with intensities equally distributed over the constituting elements. This design algorithm adds new elementary focuser functions to what we call object-oriented hologram design. Some design examples are discussed.

  7. METHOD FOR ADAPTIVE MESH GENERATION BASED ON GEOMETRICAL FEATURES OF 3D SOLID

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaodong; DU Qungui; YE Bangyan

    2006-01-01

    In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refmed mesh. With the guidance of the defined criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed coveting the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delaunay triangulation is then developed for generating 3D adaptive fmite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.

  8. Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process

    Science.gov (United States)

    Ledalla, Siva Rama Krishna; Tirupathi, Balaji; Sriram, Venkatesh

    2016-06-01

    Layered manufacturing machines use the stereolithography (STL) file to build parts. When a curved surface is converted from a computer aided design (CAD) file to STL, it results in a geometrical distortion and chordal error. Parts manufactured with this file, might not satisfy geometric dimensioning and tolerance requirements due to approximated geometry. Current algorithms built in CAD packages have export options to globally reduce this distortion, which leads to an increase in the file size and pre-processing time. In this work, different mesh subdivision algorithms are applied on STL file of a complex geometric features using MeshLab software. The mesh subdivision algorithms considered in this work are modified butterfly subdivision technique, loops sub division technique and general triangular midpoint sub division technique. A comparative study is made with respect to volume and the build time using the above techniques. It is found that triangular midpoint sub division algorithm is more suitable for the geometry under consideration. Only the wheel cap part is then manufactured on Stratasys MOJO FDM machine. The surface roughness of the part is measured on Talysurf surface roughness tester.

  9. Adaptive scheduling in cellular access, wireless mesh and IP networks

    OpenAIRE

    Nieminen, Johanna

    2011-01-01

    Networking scenarios in the future will be complex and will include fixed networks and hybrid Fourth Generation (4G) networks, consisting of both infrastructure-based and infrastructureless, wireless parts. In such scenarios, adaptive provisioning and management of network resources becomes of critical importance. Adaptive mechanisms are desirable since they enable a self-configurable network that is able to adjust itself to varying traffic and channel conditions. The operation of adaptive me...

  10. Adaptive local refinement and multi-level methods for simulating multiphasic flows

    International Nuclear Information System (INIS)

    This thesis describes some numerical and mathematical aspects of incompressible multiphase flows simulations with a diffuse interface Cahn-Hilliard / Navier-Stokes model (interfaces have a small but a positive thickness). The space discretization is performed thanks to a Galerkin formulation and the finite elements method. The presence of different scales in the system (interfaces have a very small thickness compared to the characteristic lengths of the domain) suggests the use of a local adaptive refinement method. The algorithm that is introduced allows to implicitly handle the non-conformities of the generated meshes to produce conformal finite elements approximation spaces. It consists in refining basis functions instead of cells. The refinement of a basis function is made possible by the conceptual existence of a nested sequence of uniformly refined grids from which 'parent-child' relationships are deduced, linking the basis functions of two consecutive refinement levels. Moreover, it is shown how this method can be exploited to build multigrid pre-conditioners. From a composite finite elements approximation space, it is indeed possible to rebuild, by 'coarsening', a sequence of auxiliary nested spaces which allows to enter in the abstract multigrid framework. Concerning the time discretization, it begins with the study of the Cahn-Hilliard system. A semi-implicit scheme is proposed to remedy to convergence failures of the Newton method used to solve this (non linear) system. It guarantees the decrease of the discrete free energy ensuring the stability of the scheme. The existence and convergence of discrete solutions towards the weak solution of the system are shown. The study continues with providing an unconditionally stable time discretization of the complete Cahn-Hilliard / Navier-Stokes model. An important point is that this discretization does not strongly couple the Cahn-Hilliard and Navier-Stokes systems allowing to independently solve the two systems

  11. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

    KAUST Repository

    Neumann, Philipp

    2012-04-27

    In this contribution, we present our new adaptive Lattice Boltzmann implementation within the Peano framework, with special focus on nanoscale particle transport problems. With the continuum hypothesis not holding anymore on these small scales, new physical effects - such as Brownian fluctuations - need to be incorporated. We explain the overall layout of the application, including memory layout and access, and shortly review the adaptive algorithm. The scheme is validated by different benchmark computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic adaptivity and adaptive fluctuating hydrodynamics are validated separately in simulations of particle transport problems. The application of this scheme to an oscillating particle in a nanopore illustrates the importance of Brownian fluctuations in such setups. © 2012 Springer-Verlag.

  12. Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An adaptive mesh finite element model has been developed to predict the crack propagation direction as well as to calculate the stress intensity factors (SIFs), under linear-elastic assumption for mixed mode loading application. The finite element mesh is generated using the advancing front method. In order to suit the requirements of the fracture analysis, the generation of the background mesh and the construction of singular elements have been added to the developed program. The adaptive remeshing process is carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. Previous works of the authors have proposed techniques for adaptive mesh generation of 2D cracked models. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the SIF. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The SIFs values for two different case studies were estimated and validated by direct comparisons with other researchers work.

  13. 3D Simulation of Flow with Free Surface Based on Adaptive Octree Mesh System

    Institute of Scientific and Technical Information of China (English)

    Li Shaowu; Zhuang Qian; Huang Xiaoyun; Wang Dong

    2015-01-01

    The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive octree mesh system and multiple parti-cle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of sec-ond-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison’s wave force formula with the coefficient values of the stable drag component and the inertial force component being set as 2.54.

  14. Towards a large-scale scalable adaptive heart model using shallow tree meshes

    Science.gov (United States)

    Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf

    2015-10-01

    Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.

  15. STABILIZED FEM FOR CONVECTION-DIFFUSION PROBLEMS ON LAYER-ADAPTED MESHES

    Institute of Scientific and Technical Information of China (English)

    Hans-G(o)rg Roos

    2009-01-01

    The application of a standard Galerkin finite element method for convection-diflusion problems leads to oscillations in the discrete solution,therefore stabilization seems to be necessary.We discuss several recent stabilization methods,especially its combination with a Galerkin method on layer-adapted meshes.Supercloseness results obtained allow an improvement of the discrete solution using recovery techniques.

  16. Essentials of finite element modeling and adaptive refinement

    CERN Document Server

    Dow, John O

    2012-01-01

    Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t

  17. Multi-scale mesh saliency with local adaptive patches for viewpoint selection

    OpenAIRE

    Nouri, Anass; Charrier, Christophe; Lézoray, Olivier

    2015-01-01

    International audience Our visual attention is attracted by specific areas into 3D objects (represented by meshes). This visual attention depends on the degree of saliency exposed by these areas. In this paper, we propose a novel multi-scale approach for detecting salient regions. To do so, we define a local surface descriptor based on patches of adaptive size and filled in with a local height field. The single-scale saliency of a vertex is defined as its degree measure in the mesh with ed...

  18. 2-Dimensional FEM modeling of macrosegregation in the directional solidification with mesh adaptation

    Institute of Scientific and Technical Information of China (English)

    Weitao LIU; Changchuan XIE; Michel Bellet; Hervé Combeau

    2009-01-01

    In order to improve the prediction accuracy of macrosegregation channel, an algorithm for dynamic remeshing is proposed. The basic idea is to generate fine elements near the liquidus isotherm. The norm of the gradient of solid fraction is used for piloting the remeshing in the mushy zone; whereas, the objective mesh size in the liquid is considered as a function of the distance to the liquidus isotherm. The efficiency of mesh adaptation is demonstrated by prediction of macrosegregation channel in a case of unidirectional solidification.

  19. Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics

    Science.gov (United States)

    Burago, N. G.; Nikitin, I. S.; Yakushev, V. L.

    2016-06-01

    Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit-implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov-Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.

  20. View planning and mesh refinement effects on a semi-automatic three-dimensional photorealistic texture mapping procedure

    Science.gov (United States)

    Shih, Chihhsiong; Yang, Yuanfan

    2012-02-01

    A novel three-dimensional (3-D) photorealistic texturing process is presented that applies a view-planning and view-sequencing algorithm to the 3-D coarse model to determine a set of best viewing angles for capturing the individual real-world objects/building's images. The best sequence of views will generate sets of visible edges in each view to serve as a guide for camera field shots by either manual adjustment or equipment alignment. The best view tries to cover as many objects/building surfaces as possible in one shot. This will lead to a smaller total number of shots taken for a complete model reconstruction requiring texturing with photo-realistic effects. The direct linear transformation method (DLT) is used for reprojection of 3-D model vertices onto a two-dimensional (2-D) images plane for actual texture mapping. Given this method, the actual camera orientations do not have to be unique and can be set arbitrarily without heavy and expensive positioning equipment. We also present results of a study on the texture-mapping precision as a function of the level of visible mesh subdivision. In addition, the control points selection for the DLT method used for reprojection of 3-D model vertices onto 2-D textured images is also investigated for its effects on mapping precision. By using DLT and perspective projection theories on a coarse model feature points, this technique will allow accurate 3-D texture mapping of refined model meshes of real-world buildings. The novel integration flow of this research not only greatly reduces the human labor and intensive equipment requirements of traditional methods, but also generates a more appealing photo-realistic appearance of reconstructed models, which is useful in many multimedia applications. The roles of view planning (VP) are multifold. VP can (1) reduce the repetitive texture-mapping computation load, (2) can present a set of visible model wireframe edges that can serve as a guide for images with sharp edges and

  1. A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency

    CERN Document Server

    Bajc, Iztok; Žumer, Slobodan

    2015-01-01

    This paper presents a 3D mesh adaptivity strategy on unstructured tetrahedral meshes by a posteriori error estimates based on metrics, studied on the case of a nonlinear finite element minimization scheme for the Landau-de Gennes free energy functional of nematic liquid crystals. Newton's iteration for tensor fields is employed with steepest descent method possibly stepping in. Aspects relating the driving of mesh adaptivity within the nonlinear scheme are considered. The algorithmic performance is found to depend on at least two factors: when to trigger each single mesh adaptation, and the precision of the correlated remeshing. Each factor is represented by a parameter, with its values possibly varying for every new mesh adaptation. We empirically show that the time of the overall algorithm convergence can vary considerably when different sequences of parameters are used, thus posing a question about optimality. The extensive testings and debugging done within this work on the simulation of systems of nemati...

  2. A Simple Fault-Tolerant Adaptive and Minimal Routing Approach in 3-D Meshes

    Institute of Scientific and Technical Information of China (English)

    WU Jie(吴杰)

    2003-01-01

    In this paper we propose a sufficient condition for minimal routing in 3-dimensional (3-D) meshes with faulty nodes. It is based on an early work of the author on minimal routing in 2-dimensional (2-D) meshes. Unlike many traditional models that assume all the nodes know global fault distribution or just adjacent fault information, our approach is based on the concept of limited global fault information. First, we propose a fault model called faulty cube in which all faulty nodes in the system are contained in a set of faulty cubes. Fault information is then distributed to limited number of nodes while it is still sufficient to support minimal routing. The limited fault information collected at each node is represented by a vector called extended safety level. The extended safety level associated with a node can be used to determine the existence of a minimal path from this node to a given destination. Specifically, we study the existence of minimal paths at a given source node, limited distribution of fault information, minimal routing, and deadlock-free and livelock-free routing. Our results show that any minimal routing that is partially adaptive can be applied in our model as long as the destination node meets a certain condition. We also propose a dynamic planar-adaptive routing scheme that offers better fault tolerance and adaptivity than the planar-adaptive routing scheme in 3-D meshes. Our approach is the first attempt to address adaptive and minimal routing in 3-D meshes with faulty nodes using limited fault information.

  3. DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH

    Institute of Scientific and Technical Information of China (English)

    DONG Genjin; LU Xiyun; ZHUANG Lixian

    2004-01-01

    A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number.In particular, a new testing variable, i.e., the disturbed kinetic energy E, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.

  4. Application and Refinement of a Method to Achieve Uniform Convective Response on Variable-Resolution Meshes

    Science.gov (United States)

    Walko, R. L.; Medvigy, D.; Avissar, R.

    2013-12-01

    regular model grid or (2) estimate the essential elements of the convective response from lookup table entries that were previously generated for similar environments using method (1). Obviously, method (2) is extremely efficient while method (1) is computationally intensive, so the key is to construct clever algorithms that enable method (2) to be used as often as possible. The method is self-learning in that as a model simulation progresses, the lookup table can grow and the search algorithm for selecting the best table entries can adapt to the growing table. We demonstrate applications of this method on the variable-resolution hexagonal grid of the Ocean-Land-Atmosphere Model (OLAM) for both idealized and realistic environments.

  5. Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading

    OpenAIRE

    Muñoz Romero, José; Bonet Carbonell, Javier; Huerta, Antonio; Peraire Guitart, Jaume

    2008-01-01

    This is the pre-peer reviewed version of the following article: Muñoz, José J. [et al.]. Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading. "International journal for numerical methods in engineering", Agost 2008, vol. 77, núm. 4, p. 471-501., which has been published in final form at http://www3.interscience.wiley.com/journal/121370765/abstract Peer Reviewed

  6. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, D.D.; Lottati, I.; Mikic, Z. [Science Applications International Corp., San Diego, CA (United States)] [and others

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  7. Impact of space-time mesh adaptation on solute transport modeling in porous media

    Science.gov (United States)

    Esfandiar, Bahman; Porta, Giovanni; Perotto, Simona; Guadagnini, Alberto

    2015-02-01

    We implement a space-time grid adaptation procedure to efficiently improve the accuracy of numerical simulations of solute transport in porous media in the context of model parameter estimation. We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experiments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape, and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE model is assessed on the basis of experimental solute breakthrough data measured following tracer injection in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) framework upon relying on the representation of the ADE solution through a generalized Polynomial Chaos Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML parameter estimates and to model results of markedly improved quality when compared to classical inversion approaches based on a uniform space-time discretization.

  8. Moving mesh generation with a sequential approach for solving PDEs

    DEFF Research Database (Denmark)

    physical and mesh equations suffers typically from long computation time due to highly nonlinear coupling between the two equations. Moreover, the extended system (physical and mesh equations) may be sensitive to the tuning parameters such as a temporal relaxation factor. It is therefore useful to design a......In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure of...... adaptive grid method (local refinement by adding/deleting the meshes at a discrete time level) as well as of efficiency for the dynamic adaptive grid method (or moving mesh method) where the number of meshes is not changed. For illustration, a phase change problem is solved with the decomposition algorithm....

  9. A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency

    Science.gov (United States)

    Bajc, Iztok; Hecht, Frédéric; Žumer, Slobodan

    2016-09-01

    This paper presents a 3D mesh adaptivity strategy on unstructured tetrahedral meshes by a posteriori error estimates based on metrics derived from the Hessian of a solution. The study is made on the case of a nonlinear finite element minimization scheme for the Landau-de Gennes free energy functional of nematic liquid crystals. Newton's iteration for tensor fields is employed with steepest descent method possibly stepping in. Aspects relating the driving of mesh adaptivity within the nonlinear scheme are considered. The algorithmic performance is found to depend on at least two factors: when to trigger each single mesh adaptation, and the precision of the correlated remeshing. Each factor is represented by a parameter, with its values possibly varying for every new mesh adaptation. We empirically show that the time of the overall algorithm convergence can vary considerably when different sequences of parameters are used, thus posing a question about optimality. The extensive testings and debugging done within this work on the simulation of systems of nematic colloids substantially contributed to the upgrade of an open source finite element-oriented programming language to its 3D meshing possibilities, as also to an outer 3D remeshing module.

  10. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    Science.gov (United States)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  11. Development of Efficient Finite Element Software of Crack Propagation Simulation using Adaptive Mesh Strategy

    Directory of Open Access Journals (Sweden)

    Abdulnaser M. Alshoaibi

    2009-01-01

    Full Text Available The purpose of this study is on the determination of 2D crack paths and surfaces as well as on the evaluation of the stress intensity factors as a part of the damage tolerant assessment. Problem statement: The evaluation of SIFs and crack tip singular stresses for arbitrary fracture structure are a challenging problem, involving the calculation of the crack path and the crack propagation rates at each step especially under mixed mode loading. Approach: This study was provided a finite element code which produces results comparable to the current available commercial software. Throughout the simulation of crack propagation an automatic adaptive mesh was carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The finite element mesh was generated using the advancing front method. The adaptive remising process carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. The onset criterion of crack propagation was based on the stress intensity factors which provide as the most important parameter that must be accurately estimated. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the stress intensity factor. Crack direction is predicted using the maximum circumferential stress theory. The fracture was modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The propagation process is driven by Linear Elastic Fracture Mechanics (LEFM approach with minimum user interaction. Results: In evaluating the accuracy of the estimated stress intensity factors and the crack path predictions, the results were compared with sets of experimental data, benchmark analytical solutions as well as numerical results of other researchers. Conclusion/Recommendations: The assessment indicated that the program was highly reliable to evaluate the stress intensity

  12. Solution adaptive triangular meshes with application to the simulation of plasma equilibrium

    International Nuclear Information System (INIS)

    A new discrete Laplace operator is constructed on a local mesh molecule, second order accurate on symmetric cell regions, based on local Taylor series expansions. This discrete Laplacian is then compared to the one commonly used in the literature. A truncation error analysis of gradient and Laplace operators calculated at triangle centroids reveals that the maximum bounds of their truncation errors are minimized on equilateral triangles, for a fixed triangle perimeter. A new adaptive strategy on arbitrary triangular grids is developed in which a uniform grid is defined with respect to the solution surface, as opposed to the x,y plane. Departures from mesh uniformity arises from a spacially dependent mean-curvature of the solution surface. The power of this new adaptive technique is applied to the problem of finding free-boundary plasma equilibria within the context of MHD. The geometry is toroidal, and axisymmetry in the toroidal direction is assumed. We are led to conclude that the grid should move, not towards regions of high curvature of magnetic flux, but rather towards regions of greater toroidal current density. This has a direct bearing on the accuracy with which the Grad-Shafranov equation is being approximated

  13. Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation.

    Science.gov (United States)

    Dione, Ibrahima; Deteix, Jean; Briffard, Thomas; Chamberland, Eric; Doyon, Nicolas

    2016-01-01

    In neural structures with complex geometries, numerical resolution of the Poisson-Nernst-Planck (PNP) equations is necessary to accurately model electrodiffusion. This formalism allows one to describe ionic concentrations and the electric field (even away from the membrane) with arbitrary spatial and temporal resolution which is impossible to achieve with models relying on cable theory. However, solving the PNP equations on complex geometries involves handling intricate numerical difficulties related either to the spatial discretization, temporal discretization or the resolution of the linearized systems, often requiring large computational resources which have limited the use of this approach. In the present paper, we investigate the best ways to use the finite elements method (FEM) to solve the PNP equations on domains with discontinuous properties (such as occur at the membrane-cytoplasm interface). 1) Using a simple 2D geometry to allow comparison with analytical solution, we show that mesh adaptation is a very (if not the most) efficient way to obtain accurate solutions while limiting the computational efforts, 2) We use mesh adaptation in a 3D model of a node of Ranvier to reveal details of the solution which are nearly impossible to resolve with other modelling techniques. For instance, we exhibit a non linear distribution of the electric potential within the membrane due to the non uniform width of the myelin and investigate its impact on the spatial profile of the electric field in the Debye layer. PMID:27548674

  14. Adaptive Fault-Tolerant Routing in 2D Mesh with Cracky Rectangular Model

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2014-01-01

    Full Text Available This paper mainly focuses on routing in two-dimensional mesh networks. We propose a novel faulty block model, which is cracky rectangular block, for fault-tolerant adaptive routing. All the faulty nodes and faulty links are surrounded in this type of block, which is a convex structure, in order to avoid routing livelock. Additionally, the model constructs the interior spanning forest for each block in order to keep in touch with the nodes inside of each block. The procedure for block construction is dynamically and totally distributed. The construction algorithm is simple and ease of implementation. And this is a fully adaptive block which will dynamically adjust its scale in accordance with the situation of networks, either the fault emergence or the fault recovery, without shutdown of the system. Based on this model, we also develop a distributed fault-tolerant routing algorithm. Then we give the formal proof for this algorithm to guarantee that messages will always reach their destinations if and only if the destination nodes keep connecting with these mesh networks. So the new model and routing algorithm maximize the availability of the nodes in networks. This is a noticeable overall improvement of fault tolerability of the system.

  15. Multi-dimensional upwind fluctuation splitting scheme with mesh adaption for hypersonic viscous flow

    Science.gov (United States)

    Wood, William Alfred, III

    production is shown relative to DMFDSFV. Remarkably the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. A viscous Mach 17.6 (perfect gas) cylinder case demonstrates solution monotonicity and heat transfer capability with the fluctuation splitting scheme. While fluctuation splitting is recommended over DMFDSFV, the difference in performance between the schemes is not so great as to obsolete DMFDSFV. The second half of the dissertation develops a local, compact, anisotropic unstructured mesh adaption scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. This alignment behavior stands in contrast to the curvature clustering nature of the local, anisotropic unstructured adaption strategy based upon a posteriori error estimation that is used for comparison. The characteristic alignment is most pronounced for linear advection, with reduced improvement seen for the more complex non-linear advection and advection-diffusion cases. The adaption strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization. The system test case for the adaption strategy is a sting mounted capsule at Mach-10 wind tunnel conditions, considered in both two-dimensional and axisymmetric configurations. For this complex flowfield the adaption results are disappointing since feature alignment does not emerge from the local operations. Aggressive adaption is shown to result in a loss of robustness for the solver, particularly in the bow shock/stagnation point interaction region. Reducing the adaption strength maintains solution robustness but fails to produce significant improvement in the surface heat transfer predictions.

  16. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes

    Science.gov (United States)

    Goffin, Mark A.; Baker, Christopher M. J.; Buchan, Andrew G.; Pain, Christopher C.; Eaton, Matthew D.; Smith, Paul N.

    2013-06-01

    This article presents a method for goal-based anisotropic adaptive methods for the finite element method applied to the Boltzmann transport equation. The neutron multiplication factor, k, is used as the goal of the adaptive procedure. The anisotropic adaptive algorithm requires error measures for k with directional dependence. General error estimators are derived for any given functional of the flux and applied to k to acquire the driving force for the adaptive procedure. The error estimators require the solution of an appropriately formed dual equation. Forward and dual error indicators are calculated by weighting the Hessian of each solution with the dual and forward residual respectively. The Hessian is used as an approximation of the interpolation error in the solution which gives rise to the directional dependence. The two indicators are combined to form a single error metric that is used to adapt the finite element mesh. The residual is approximated using a novel technique arising from the sub-grid scale finite element discretisation. Two adaptive routes are demonstrated: (i) a single mesh is used to solve all energy groups, and (ii) a different mesh is used to solve each energy group. The second method aims to capture the benefit from representing the flux from each energy group on a specifically optimised mesh. The k goal-based adaptive method was applied to three examples which illustrate the superior accuracy in criticality problems that can be obtained.

  17. Kinematic Dynamos using Constrained Transport with High Order Godunov Schemes and Adaptive Mesh Refinement

    CERN Document Server

    Teyssier, R; Fromang, S

    2006-01-01

    We propose to extend the well-known MUSCL-Hancock scheme for Euler equations to the induction equation modeling the magnetic field evolution in kinematic dynamo problems. The scheme is based on an integral form of the underlying conservation law which, in our formulation, results in a ``finite-surface'' scheme for the induction equation. This naturally leads to the well-known ``constrained transport'' method, with additional continuity requirement on the magnetic field representation. The second ingredient in the MUSCL scheme is the predictor step that ensures second order accuracy both in space and time. We explore specific constraints that the mathematical properties of the induction equations place on this predictor step, showing that three possible variants can be considered. We show that the most aggressive formulations (referred to as C-MUSCL and U-MUSCL) reach the same level of accuracy as the other one (referred to as Runge-Kutta), at a lower computational cost. More interestingly, these two schemes a...

  18. Kinematic Dynamos using Constrained Transport with High Order Godunov Schemes and Adaptive Mesh Refinement

    OpenAIRE

    Teyssier, R.; Fromang, S.; Dormy, E.

    2006-01-01

    We propose to extend the well-known MUSCL-Hancock scheme for Euler equations to the induction equation modeling the magnetic field evolution in kinematic dynamo problems. The scheme is based on an integral form of the underlying conservation law which, in our formulation, results in a ``finite-surface'' scheme for the induction equation. This naturally leads to the well-known ``constrained transport'' method, with additional continuity requirement on the magnetic field representation. The sec...

  19. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    CERN Document Server

    Meliani, Zakaria; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2016-01-01

    (Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding ...

  20. Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement

    Energy Technology Data Exchange (ETDEWEB)

    Layton, A.T. [Univ. of North Carolina, Dept. of Mathematics, Chapel Hill, North Carolina (United States)]. E-mail: layton@amath.unc.edu

    2004-07-01

    In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)

  1. Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement

    International Nuclear Information System (INIS)

    In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)

  2. 6th International Meshing Roundtable '97

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  3. Crash: A Block-Adaptive-Mesh Code for Radiative Shock Hydrodynamics - Implementation and Verification

    CERN Document Server

    van der Holst, B; Sokolov, I V; Powell, K G; Holloway, J P; Myra, E S; Stout, Q; Adams, M L; Morel, J E; Drake, R P

    2011-01-01

    We describe the CRASH (Center for Radiative Shock Hydrodynamics) code, a block adaptive mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with the gray or multigroup method and uses a flux limited diffusion approximation to recover the free-streaming limit. The electrons and ions are allowed to have different temperatures and we include a flux limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite volume discretization in either one, two, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator split method is used to solve these equations in three substeps: (1) solve the hydrodynamic equations with shock-capturing schemes, (2) a linear advection of the radiation in frequency-logarithm space, and (3) an implicit solve of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problem...

  4. Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity

    Science.gov (United States)

    Wick, Thomas

    2016-06-01

    In this study, a posteriori error estimation and goal-oriented mesh adaptivity are developed for phase-field fracture propagation. Goal functionals are computed with the dual-weighted residual (DWR) method, which is realized by a recently introduced novel localization technique based on a partition-of-unity (PU). This technique is straightforward to apply since the weak residual is used. The influence of neighboring cells is gathered by the PU. Consequently, neither strong residuals nor jumps over element edges are required. Therefore, this approach facilitates the application of the DWR method to coupled (nonlinear) multiphysics problems such as fracture propagation. These developments then allow for a systematic investigation of the discretization error for certain quantities of interest. Specifically, our focus on the relationship between the phase-field regularization and the spatial discretization parameter in terms of goal functional evaluations is novel.

  5. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the

  6. Study on the Influence of the Refinement of a 3-D Finite Element Mesh in Springback Evaluation of Plane-Strain Channel Sections

    Science.gov (United States)

    Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.

    2007-05-01

    Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the "Numisheet'05 Benchmark♯3", which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is

  7. Development of Adaptive Model Refinement (AMoR) for Multiphysics and Multifidelity Problems

    Energy Technology Data Exchange (ETDEWEB)

    Turinsky, Paul

    2015-02-09

    This project investigated the development and utilization of Adaptive Model Refinement (AMoR) for nuclear systems simulation applications. AMoR refers to utilization of several models of physical phenomena which differ in prediction fidelity. If the highest fidelity model is judged to always provide or exceeded the desired fidelity, than if one can determine the difference in a Quantity of Interest (QoI) between the highest fidelity model and lower fidelity models, one could utilize the fidelity model that would just provide the magnitude of the QoI desired. Assuming lower fidelity models require less computational resources, in this manner computational efficiency can be realized provided the QoI value can be accurately and efficiently evaluated. This work utilized Generalized Perturbation Theory (GPT) to evaluate the QoI, by convoluting the GPT solution with the residual of the highest fidelity model determined using the solution from lower fidelity models. Specifically, a reactor core neutronics problem and thermal-hydraulics problem were studied to develop and utilize AMoR. The highest fidelity neutronics model was based upon the 3D space-time, two-group, nodal diffusion equations as solved in the NESTLE computer code. Added to the NESTLE code was the ability to determine the time-dependent GPT neutron flux. The lower fidelity neutronics model was based upon the point kinetics equations along with utilization of a prolongation operator to determine the 3D space-time, two-group flux. The highest fidelity thermal-hydraulics model was based upon the space-time equations governing fluid flow in a closed channel around a heat generating fuel rod. The Homogenous Equilibrium Mixture (HEM) model was used for the fluid and Finite Difference Method was applied to both the coolant and fuel pin energy conservation equations. The lower fidelity thermal-hydraulic model was based upon the same equations as used for the highest fidelity model but now with coarse spatial

  8. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    Science.gov (United States)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  9. An adaptive computation mesh for the solution of singular perturbation problems

    Science.gov (United States)

    Brackbill, J. U.; Saltzman, J.

    1980-01-01

    In singular perturbation problems, control of zone size variation can affect the effort required to obtain accurate, numerical solutions of finite difference equations. The mesh is generated by the solution of potential equations. Numerical results for a singular perturbation problem in two dimensions are presented. The mesh was used in calculations of resistive magnetohydrodynamic flow in two dimensions.

  10. Geophysical astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation

    Science.gov (United States)

    Rosenberg, Duane; Fournier, Aimé; Fischer, Paul; Pouquet, Annick

    2006-06-01

    An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced. Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight, curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes. Quantitative errors are reported for 2D spatial and temporal convergence of DARe.

  11. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  12. Mesh Generation and Adaption for High Reynolds Number RANS Computations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....

  13. Mesh Generation and Adaption for High Reynolds Number RANS Computations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of our Phase II STTR program is to develop and provide to NASA automatic mesh generation software for the simulation of fluid flows using...

  14. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

    Science.gov (United States)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2008-07-01

    In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

  15. Xuthos: A Discontinuous Galerkin Transport Solver For NEWT Based On Unstructured Triangular Meshes

    International Nuclear Information System (INIS)

    A transport solver has been developed based on a Discontinuous Galerkin Finite Element Formulation with linear and quadratic shape functions. The data structure is general enough to allow for spatial mesh adaptivity. The DGFEM formalism is particularly useful to treat seamlessly problems with locally refined meshes. In the multigroup context, the spatial meshes can be made group-dependent to account for the smoothness of each component of the multigroup scalar flux. Numerical results validate this approach. (authors)

  16. Fluid flow and heat transfer investigation of pebble bed reactors using mesh adaptive large-eddy simulation

    International Nuclear Information System (INIS)

    A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)

  17. Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes

    Directory of Open Access Journals (Sweden)

    D. V. Lukyanenko

    2016-01-01

    Full Text Available The main objective of the paper is to present a new analytic-numerical approach to singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers (fronts. We describe some methods to generate the dynamic adapted meshes for an efficient numerical solution of such problems. It is based on a priori information about the moving front properties provided by the asymptotic analysis. In particular, for the mesh construction we take into account a priori asymptotic evaluation of the location and speed of the moving front, its width and structure. Our algorithms significantly reduce the CPU time and enhance the stability of the numerical process compared with classical approaches.The article is published in the authors’ wording.

  18. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    CERN Document Server

    Li, Xianping

    2010-01-01

    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...

  19. Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation

    Science.gov (United States)

    Weller, Hilary; Browne, Philip; Budd, Chris; Cullen, Mike

    2016-03-01

    An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tessellations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique.

  20. Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh Adaption for Hypersonic Viscous Flow

    OpenAIRE

    Wood, William Alfred

    2001-01-01

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-orde...

  1. Nodeless variable finite element method for heat transfer analysis by means of flux-based formulation and mesh adaptation

    Institute of Scientific and Technical Information of China (English)

    Sutthisak Phongthanapanich; Suthee Traivivatana; Parinya Boonmaruth; Pramote Dechaumphai

    2006-01-01

    Based on flux-based formulation,a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems.The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes.The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method.The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element mesh that can adapt and move along corresponding to the solution behavior.The technique generates small elements in the regions of steep solution gradients to provide accurate solution,and mean while it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory.The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions.These problems are:(a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating,and (b) a transient heat conduction analysis in a long pate subjected to a moving heat source.

  2. Cultural adaptation and health literacy refinement of a brief depression intervention for Latinos in a low-resource setting.

    Science.gov (United States)

    Ramos, Zorangelí; Alegría, Margarita

    2014-04-01

    Few studies addressing the mental health needs of Latinos describe how interventions are tailored or culturally adapted to address the needs of their target population. Without reference to this process, efforts to replicate results and provide working models of the adaptation process for other researchers are thwarted. The purpose of this article is to describe the process of a cultural adaptation that included accommodations for health literacy of a brief telephone cognitive-behavioral depression intervention for Latinos in low-resource settings. We followed a five-stage approach (i.e., information gathering, preliminary adaptation, preliminary testing, adaptation, and refinement) as described by Barrera, Castro, Strycker, and Toobert (2013) to structure our process. Cultural adaptations included condensation of the sessions, review, and modifications of materials presented to participants including the addition of visual aids, culturally relevant metaphors, values, and proverbs. Feedback from key stakeholders, including clinician and study participants, was fundamental to the adaptation process. Areas for further inquiry and adaptation identified in our process include revisions to the presentation of "cognitive restructuring" to participants and the inclusion of participant beliefs about the cause of their depression. Cultural adaptation is a dynamic process, requiring numerous refinements to ensure that an intervention is tailored and relevant to the target population.

  3. Design of Finite Element Tools for Coupled Surface and Volume Meshes

    Institute of Scientific and Technical Information of China (English)

    Daniel K(o)ster; Oliver Kriessl; Kunibert G. Siebert

    2008-01-01

    Many problems with underlying variational structure involve a coupling of volume with surface effects. A straight-forward approach in a finite element discretization is to make use of the surface triangulation that is naturally induced by the volume triangulation. In an adaptive method one wants to facilitate "matching" local mesh modifications, i.e., local refinement and/or coarsening, of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA. We also present several important applications of the mesh coupling.

  4. Refined adaptive optics simulation with wide field of view for the E-ELT

    International Nuclear Information System (INIS)

    Refined simulation tools for wide field AO systems (such as MOAO, MCAO or LTAO) on ELTs present new challenges. Increasing the number of degrees of freedom (scales as the square of the telescope diameter) makes the standard simulation's codes useless due to the huge number of operations to be performed at each step of the Adaptive Optics (AO) loop process. This computational burden requires new approaches in the computation of the DM voltages from WFS data. The classical matrix inversion and the matrix vector multiplication have to be replaced by a cleverer iterative resolution of the Least Square or Minimum Mean Square Error criterion (based on sparse matrices approaches). Moreover, for this new generation of AO systems, concepts themselves will become more complex: data fusion coming from multiple Laser and Natural Guide Stars (LGS / NGS) will have to be optimized, mirrors covering all the field of view associated to dedicated mirrors inside the scientific instrument itself will have to be coupled using split or integrated tomography schemes, differential pupil or/and field rotations will have to be considered, etc. All these new entries should be carefully simulated, analysed and quantified in terms of performance before any implementation in AO systems. For those reasons I developed, in collaboration with the ONERA, a full simulation code, based on iterative solution of linear systems with many parameters (use of sparse matrices). On this basis, I introduced new concepts of filtering and data fusion (LGS / NGS) to effectively manage modes such as tip, tilt and defocus in the entire process of tomographic reconstruction. The code will also eventually help to develop and test complex control laws (Multi-DM and multi-field) who have to manage a combination of adaptive telescope and post-focal instrument including dedicated deformable mirrors. The first application of this simulation tool has been studied in the framework of the EAGLE multi-object spectrograph

  5. Tree-Particle-Mesh an adaptive, efficient, and parallel code for collisionless cosmological simulation

    CERN Document Server

    Bode, P; Bode, Paul; Ostriker, Jeremiah P.

    2003-01-01

    An improved implementation of an N-body code for simulating collisionless cosmological dynamics is presented. TPM (Tree-Particle-Mesh) combines the PM method on large scales with a tree code to handle particle-particle interactions at small separations. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The new implementation includes individual particle time steps within trees, an improved treatment of tidal forces on trees, new criteria for higher force resolution and choice of time step, and parallel treatment of large trees. TPM is compared to P^3M and a tree code (GADGET) and is found to give equivalent results in significantly less time. The implementation is highly portable (requiring a Fortran compiler and MPI) and efficient on parallel machines. The source code can be found at http://astro.princeton.edu/~bode/TPM/

  6. A numerical study of two-phase flow with dynamic capillary pressure using an adaptive moving mesh method

    CERN Document Server

    Zhang, Hong

    2016-01-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a travelling wave ansatz and efficient numerical methods. The travelling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behaviour. Special attention is paid to the non-monotonic profiles. The travelling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  7. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  8. Medical case-based retrieval: integrating query MeSH terms for query-adaptive multi-modal fusion

    Science.gov (United States)

    Seco de Herrera, Alba G.; Foncubierta-Rodríguez, Antonio; Müller, Henning

    2015-03-01

    Advances in medical knowledge give clinicians more objective information for a diagnosis. Therefore, there is an increasing need for bibliographic search engines that can provide services helping to facilitate faster information search. The ImageCLEFmed benchmark proposes a medical case-based retrieval task. This task aims at retrieving articles from the biomedical literature that are relevant for differential diagnosis of query cases including a textual description and several images. In the context of this campaign many approaches have been investigated showing that the fusion of visual and text information can improve the precision of the retrieval. However, fusion does not always lead to better results. In this paper, a new query-adaptive fusion criterion to decide when to use multi-modal (text and visual) or only text approaches is presented. The proposed method integrates text information contained in MeSH (Medical Subject Headings) terms extracted and visual features of the images to find synonym relations between them. Given a text query, the query-adaptive fusion criterion decides when it is suitable to also use visual information for the retrieval. Results show that this approach can decide if a text or multi{modal approach should be used with 77.15% of accuracy.

  9. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  10. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.

    2015-04-27

    This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.

  11. Solution adaptive grids applied to low Reynolds number flow

    Science.gov (United States)

    de With, G.; Holdø, A. E.; Huld, T. A.

    2003-08-01

    A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.

  12. Opfront: mesh

    DEFF Research Database (Denmark)

    2015-01-01

    Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric...

  13. Refining Trait Resilience: Identifying Engineering, Ecological, and Adaptive Facets from Extant Measures of Resilience

    OpenAIRE

    John Maltby; Liz Day; Sophie Hall

    2015-01-01

    The current paper presents a new measure of trait resilience derived from three common mechanisms identified in ecological theory: Engineering, Ecological and Adaptive (EEA) resilience. Exploratory and confirmatory factor analyses of five existing resilience scales suggest that the three trait resilience facets emerge, and can be reduced to a 12-item scale. The conceptualization and value of EEA resilience within the wider trait and well-being psychology is illustrated in terms of differing r...

  14. Determination of an Initial Mesh Density for Finite Element Computations via Data Mining

    Energy Technology Data Exchange (ETDEWEB)

    Kanapady, R; Bathina, S K; Tamma, K K; Kamath, C; Kumar, V

    2001-07-23

    Numerical analysis software packages which employ a coarse first mesh or an inadequate initial mesh need to undergo a cumbersome and time consuming mesh refinement studies to obtain solutions with acceptable accuracy. Hence, it is critical for numerical methods such as finite element analysis to be able to determine a good initial mesh density for the subsequent finite element computations or as an input to a subsequent adaptive mesh generator. This paper explores the use of data mining techniques for obtaining an initial approximate finite element density that avoids significant trial and error to start finite element computations. As an illustration of proof of concept, a square plate which is simply supported at its edges and is subjected to a concentrated load is employed for the test case. Although simplistic, the present study provides insight into addressing the above considerations.

  15. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  16. Final Report for Collaborative Project: Sensitivity of Atmospheric Parametric Formulations to Regional Mesh Refinement in Global Climate Simulations Using CESM-HOMME

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Richard B. [University Corporation For Atmospheric Research, Boulder, CO (United States)

    2015-12-01

    In this project we analyze climate simulations using the Community Earth System Model (CESM) in order to determine the modeled response and sensitivity to horizontal resolution. Simple aqua-planet configurations were used to provide a clean comparison of the response to resolution in CESM. This enables us to easily examine all aspects of the model sensitivity to resolution including mean quantities, variability and physical parameterization tendencies: the chief reflection of resolution sensitivity. An extension to the global resolution sensitivity study is the examination of regional grid refinement where resolution changes are prescribed in a single global simulation. We examine the relevance of the global resolution sensitivity results as applied to these regional refinement simulations. In particular we examine how variations in the grid resolution, centered on different parts of the globe, lead to differences in the parameterized response and the potential to generate residual circulations as a result. Given the potential to generate this resolution sensitivity we examine simple modifications to the parameterized physics that are able to moderate any residual circulations. Finally, we transfer the framework to the standard AMIP configuration to examine the resolution sensitivity in the presence of compounding effects such as land-sea distributions, orography and seasonal variation.

  17. Cosmology on a Mesh

    Science.gov (United States)

    Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.

    2003-04-01

    An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.

  18. The finite cell method for polygonal meshes: poly-FCM

    Science.gov (United States)

    Duczek, Sascha; Gabbert, Ulrich

    2016-10-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  19. Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver

    Science.gov (United States)

    Kim, Byunghyun; Sanders, Brett F.; Schubert, Jochen E.; Famiglietti, James S.

    2014-06-01

    The effect of mesh type on the accuracy and computational demands of a two-dimensional Godunov-type flood inundation model is critically examined. Cartesian grids, constrained and unconstrained triangular grids, constrained quadrilateral grids, and mixed meshes are considered, with and without local time stepping (LTS), to determine the approach that maximizes computational efficiency defined as accuracy relative to computational effort. A mixed-mesh numerical scheme is introduced so all grids are processed by the same solver. Analysis focuses on a wide range of dam-break type test cases, where Godunov-type flood models have proven very successful. Results show that different mesh types excel under different circumstances. Cartesian grids are 2-3 times more efficient with relatively simple terrain features such as rectilinear channels that call for a uniform grid resolution, while unstructured grids are about twice as efficient in complex domains with irregular terrain features that call for localized refinements. The superior efficiency of locally refined, unstructured grids in complex terrain is attributable to LTS; the locally refined unstructured grid becomes less efficient using global time stepping. These results point to mesh-type tradeoffs that should be considered in flood modeling applications. A mixed mesh model formulation with LTS is recommended as a general purpose solver because the mesh type can be adapted to maximize computational efficiency.

  20. 2.5D induced polarization forward modeling using the adaptive finite-element method

    Institute of Scientific and Technical Information of China (English)

    Ye Yi-Xin; Li Yu-Guo; Deng Ju-Zhi; Li Ze-Lin

    2014-01-01

    The conventional finite-element (FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization (IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4%and 1.2%for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.

  1. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    Science.gov (United States)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated

  2. An arbitrary boundary triangle mesh generation method for multi-modality imaging

    Science.gov (United States)

    Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming

    2012-03-01

    Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.

  3. Adaptive learning in a compartmental model of visual cortex - how feedback enables stable category learning and refinement

    Directory of Open Access Journals (Sweden)

    Georg eLayher

    2014-12-01

    Full Text Available The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub- category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory

  4. Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes

    CERN Document Server

    Schroeder, Philipp W

    2016-01-01

    This paper presents heavily grad-div and pressure jump stabilised, equal- and mixed-order discontinuous Galerkin finite element methods for non-isothermal incompressible flows based on the Oberbeck-Boussinesq approximation. In this framework, the enthalpy-porosity model for multiphase flow in melting and solidification problems can be employed. By considering the differentially heated cavity and the melting of pure gallium in a rectangular enclosure, it is shown that both boundary layers and sharp moving interior layers can be handled naturally by the proposed class of non-conforming methods. Due to the stabilising effect of the grad-div term and the robustness of discontinuous Galerkin methods, it is possible to solve the underlying problems accurately on coarse, non-adapted meshes. The interaction of heavy grad-div stabilisation and discontinuous Galerkin methods significantly improves the mass conservation properties and the overall accuracy of the numerical scheme which is observed for the first time. Hen...

  5. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    Science.gov (United States)

    Masterlark, Timothy; Lu, Zhiming; Rykhus, Russ

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992-1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 ??C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE=2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE=0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 ?? 107 m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500-800 ??C. ?? 2005 Elsevier B.V. All rights reserved.

  6. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R W; Pember, R B; Elliott, N S

    2002-10-19

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  7. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R W; Pember, R B; Elliott, N S

    2004-01-28

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  8. Adaptive numerical methods for partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Cololla, P. [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.

  9. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  10. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ.

    Science.gov (United States)

    Coirier, William John

    1994-01-01

    A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a

  11. Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

    KAUST Repository

    Chueh, C.C.

    2010-10-01

    An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.

  12. Numerical simulation of H2/air detonation using unstructured mesh

    Science.gov (United States)

    Togashi, Fumiya; Löhner, Rainald; Tsuboi, Nobuyuki

    2009-06-01

    To explore the capability of unstructured mesh to simulate detonation wave propagation phenomena, numerical simulation of H2/air detonation using unstructured mesh was conducted. The unstructured mesh has several adv- antages such as easy mesh adaptation and flexibility to the complicated configurations. To examine the resolution dependency of the unstructured mesh, several simulations varying the mesh size were conducted and compared with a computed result using a structured mesh. The results show that the unstructured mesh solution captures the detailed structure of detonation wave, as well as the structured mesh solution. To capture the detailed detonation cell structure, the unstructured mesh simulations required at least twice, ideally 5times the resolution of structured mesh solution.

  13. Adaptive Finite Element Methods for Continuum Damage Modeling

    Science.gov (United States)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  14. A new procedure for dynamic adaption of three-dimensional unstructured grids

    Science.gov (United States)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.

  15. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  16. Spherical geodesic mesh generation

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jimmy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenamond, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burton, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  17. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    Science.gov (United States)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-08-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  18. An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman

    2016-06-01

    Full Text Available A new dynamic programming based parallel algorithm adapted to on-board heterogeneous computers for simulation based trajectory optimization is studied in the context of “high-performance sailing”. The algorithm uses a new discrete space of continuously differentiable functions called the multi-splines as its search space representation. A basic version of the algorithm is presented in detail (pseudo-code, time and space complexity, search space auto-adaptation properties. Possible extensions of the basic algorithm are also described. The presented experimental results show that contemporary heterogeneous on-board computers can be effectively used for solving simulation based trajectory optimization problems. These computers can be considered micro high performance computing (HPC platforms-they offer high performance while remaining energy and cost efficient. The simulation based approach can potentially give highly accurate results since the mathematical model that the simulator is built upon may be as complex as required. The approach described is applicable to many trajectory optimization problems due to its black-box represented performance measure and use of OpenCL.

  19. Adaptive Kinetic-Fluid Solvers for Heterogeneous Computing Architectures

    CERN Document Server

    Zabelok, Sergey; Kolobov, Vladimir

    2015-01-01

    This paper describes recent progress towards porting a Unified Flow Solver (UFS) to heterogeneous parallel computing. UFS is an adaptive kinetic-fluid simulation tool, which combines Adaptive Mesh Refinement (AMR) with automatic cell-by-cell selection of kinetic or fluid solvers based on continuum breakdown criteria. The main challenge of porting UFS to graphics processing units (GPUs) comes from the dynamically adapted mesh, which causes irregular data access. We describe the implementation of CUDA kernels for three modules in UFS: the direct Boltzmann solver using discrete velocity method (DVM), the Direct Simulation Monte Carlo (DSMC) module, and the Lattice Boltzmann Method (LBM) solver, all using octree Cartesian mesh with AMR. Double digit speedups on single GPU and good scaling for multi-GPU have been demonstrated.

  20. Adaptive kinetic-fluid solvers for heterogeneous computing architectures

    Science.gov (United States)

    Zabelok, Sergey; Arslanbekov, Robert; Kolobov, Vladimir

    2015-12-01

    We show feasibility and benefits of porting an adaptive multi-scale kinetic-fluid code to CPU-GPU systems. Challenges are due to the irregular data access for adaptive Cartesian mesh, vast difference of computational cost between kinetic and fluid cells, and desire to evenly load all CPUs and GPUs during grid adaptation and algorithm refinement. Our Unified Flow Solver (UFS) combines Adaptive Mesh Refinement (AMR) with automatic cell-by-cell selection of kinetic or fluid solvers based on continuum breakdown criteria. Using GPUs enables hybrid simulations of mixed rarefied-continuum flows with a million of Boltzmann cells each having a 24 × 24 × 24 velocity mesh. We describe the implementation of CUDA kernels for three modules in UFS: the direct Boltzmann solver using the discrete velocity method (DVM), the Direct Simulation Monte Carlo (DSMC) solver, and a mesoscopic solver based on the Lattice Boltzmann Method (LBM), all using adaptive Cartesian mesh. Double digit speedups on single GPU and good scaling for multi-GPUs have been demonstrated.

  1. Overlay Share Mesh for Interactive Group Communication with High Dynamic

    Institute of Scientific and Technical Information of China (English)

    WU Yan-hua; CAI Yun-ze; XU Xiao-ming

    2007-01-01

    An overlay share mesh infrastructure is presented for high dynamic group communication systems, such as distributed interactive simulation (DIS) and distributed virtual environments (DVE). Overlay share mesh infrastructure can own better adapting ability for high dynamic group than tradition multi-tree multicast infrastructure by sharing links among different groups. The mechanism of overlay share mesh based on area of interest (AOI) was discussed in detail in this paper. A large number of simulation experiments were done and the permance of mesh infrastructure was studied. Experiments results proved that overlay mesh infrastructure owns better adaptability than traditional multi-tree infrastructure for high dynamic group communication systems.

  2. An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations

    Science.gov (United States)

    Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.

    2016-08-01

    In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.

  3. Multiple Staggered Mesh Ewald: Boosting the Accuracy of the Smooth Particle Mesh Ewald Method

    CERN Document Server

    Wang, Han; Fang, Jun

    2016-01-01

    The smooth particle mesh Ewald (SPME) method is the standard method for computing the electrostatic interactions in the molecular simulations. In this work, the multiple staggered mesh Ewald (MSME) method is proposed to boost the accuracy of the SPME method. Unlike the SPME that achieves higher accuracy by refining the mesh, the MSME improves the accuracy by averaging the standard SPME forces computed on, e.g. $M$, staggered meshes. We prove, from theoretical perspective, that the MSME is as accurate as the SPME, but uses $M^2$ times less mesh points in a certain parameter range. In the complementary parameter range, the MSME is as accurate as the SPME with twice of the interpolation order. The theoretical conclusions are numerically validated both by a uniform and uncorrelated charge system, and by a three-point-charge water system that is widely used as solvent for the bio-macromolecules.

  4. Coupling of non-conforming meshes in a component mode synthesis method

    NARCIS (Netherlands)

    Akcay-Perdahcioglu, D.; Doreille, M.; Boer, de A.; Ludwig, T.

    2013-01-01

    A common mesh refinement-based coupling technique is embedded into a component mode synthesis method, Craig–Bampton. More specifically, a common mesh is generated between the non-conforming interfaces of the coupled structures, and the compatibility constraints are enforced on that mesh via L2-minim

  5. An adaptive hybrid stress transition quadrilateral finite element method for linear elasticity

    OpenAIRE

    Huang, Feiteng; Xie, Xiaoping; Zhang, Chen-Song

    2014-01-01

    In this paper, we discuss an adaptive hybrid stress finite element method on quadrilateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new transition types of hybrid stress quadrilateral elements with 5 to 7 nodes. In particular, we derive a priori error estimation for the 5-node transition hybrid stress element to show that it is free from Poisson-locking, in the sense that the error bound in the a priori estimate is i...

  6. Service refinement

    Institute of Scientific and Technical Information of China (English)

    HE JiFeng

    2008-01-01

    This paper presents a refinement calculus for service components. We model the behaviour of individual service by a guarded design, which enables one to separate the responsibility of clients from the commitment made by the system, and to iden-tify a component by a set of failures and divergences. Protocols are introduced to coordinate the interactions between a component with the external environment. We adopt the notion of process refinement to formalize the substitutivity of components, and provide a complete proof method based on the notion of simulations.

  7. Spectral mesh segmentation

    OpenAIRE

    Liu, Rong

    2009-01-01

    Polygonal meshes are ubiquitous in geometric modeling. They are widely used in many applications, such as computer games, computer-aided design, animation, and visualization. One of the important problems in mesh processing and analysis is segmentation, where the goal is to partition a mesh into segments to suit the particular application at hand. In this thesis we study structural-level mesh segmentation, which seeks to decompose a given 3D shape into parts according to human intuition. We t...

  8. Effects of mesh style and grid convergence on numerical simulation accuracy of centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 刘明明; 白羽; 董亮

    2015-01-01

    In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage. Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.

  9. ADAPTIVITY IN SPACE AND TIME FOR MAGNETOQUASISTATICS

    Institute of Scientific and Technical Information of China (English)

    Markus Clemens; Jens Lang; Delia Teleaga; Georg Wimmer

    2009-01-01

    This paper addresses fully space-time adaptive magnetic field computations. We de-scribe an adaptive Whitney finite element method for solving the magnetoquasistatic for-mulation of Maxwell's equations on unstructured 3D tetrahedral grids. Spatial mesh re-finement and coarsening are based on hierarchical error estimators especially designed for combining tetrahedral H (curl)-conforming edge elements in space with linearly implicit Rosenbrock methods in time. An embedding technique is applied to get efficiency in time through variable time steps. Finally, we present numerical results for the magnetic recording write head benchmark problem proposed by the Storage Research Consortium in Japan.

  10. Coupling a local adaptive grid refinement technique with an interface sharpening scheme for the simulation of two-phase flow and free-surface flows using VOF methodology

    Science.gov (United States)

    Malgarinos, Ilias; Nikolopoulos, Nikolaos; Gavaises, Manolis

    2015-11-01

    This study presents the implementation of an interface sharpening scheme on the basis of the Volume of Fluid (VOF) method, as well as its application in a number of theoretical and real cases usually modelled in literature. More specifically, the solution of an additional sharpening equation along with the standard VOF model equations is proposed, offering the advantage of "restraining" interface numerical diffusion, while also keeping a quite smooth induced velocity field around the interface. This sharpening equation is solved right after volume fraction advection; however a novel method for its coupling with the momentum equation has been applied in order to save computational time. The advantages of the proposed sharpening scheme lie on the facts that a) it is mass conservative thus its application does not have a negative impact on one of the most important benefits of VOF method and b) it can be used in coarser grids as now the suppression of the numerical diffusion is grid independent. The coupling of the solved equation with an adaptive local grid refinement technique is used for further decrease of computational time, while keeping high levels of accuracy at the area of maximum interest (interface). The numerical algorithm is initially tested against two theoretical benchmark cases for interface tracking methodologies followed by its validation for the case of a free-falling water droplet accelerated by gravity, as well as the normal liquid droplet impingement onto a flat substrate. Results indicate that the coupling of the interface sharpening equation with the HRIC discretization scheme used for volume fraction flux term, not only decreases the interface numerical diffusion, but also allows the induced velocity field to be less perturbed owed to spurious velocities across the liquid-gas interface. With the use of the proposed algorithmic flow path, coarser grids can replace finer ones at the slight expense of accuracy.

  11. Workshop on adaptive grid methods for fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, J.C. [Univ. of Texas, Austin, TX (United States)

    1995-07-01

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  12. Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data

    Science.gov (United States)

    De Hoop, M. V.

    2015-12-01

    We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.

  13. Refinement for administrative policies

    OpenAIRE

    Dekker, M.A.C.; Etalle, S.

    2007-01-01

    Flexibility of management is an important requisite for access control systems as it allows users to adapt the access control system in accordance with practical requirements. This paper builds on earlier work where we defined administrative policies for a general class of RBAC models. We present a formal definition of administrative refinnement and we show that there is an ordering for administrative privileges which yields administrative refinements of policies. We argue (by giving an examp...

  14. Parameterization adaption for 3D shape optimization in aerodynamics

    Directory of Open Access Journals (Sweden)

    Badr Abou El Majd

    2013-10-01

    Full Text Available When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called “Free-Form Deformation” approach based on 3D tensorial Bézier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs.[How to cite this article:  Majd, B.A.. 2014. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering, 6(1:61-69. Doi: 10.12777/ijse.6.1.61-69

  15. Spanish Refining

    International Nuclear Information System (INIS)

    An overview of petroleum refining in Spain is presented (by Repsol YPF) and some views on future trends are discussed. Spain depends heavily on imports. Sub-headings in the article cover: sources of crude imports, investments and logistics and marketing, -detailed data for each are shown diagrammatically. Tables show: (1) economic indicators (e.g. total GDP, vehicle numbers and inflation) for 1998-200; (2) crude oil imports for 1995-2000; (3) oil products balance for 1995-2000; (4) commodities demand, by product; (5) refining in Spain in terms of capacity per region; (6) outlets in Spain and other European countries in 2002 and (7) sales distribution channel by product

  16. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

    International Nuclear Information System (INIS)

    The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

  17. Verification of radiation transport codes with unstructured meshes

    International Nuclear Information System (INIS)

    Confidence in the results of a radiation transport code requires that the code be verified against problems with known solutions. Such verification problems may be generated by means of the method of manufactured solutions. Previously we reported the application of this method to the verification of radiation transport codes for structured meshes, in particular the SCEPTRE code. We extend this work to verification with unstructured meshes and again apply it to SCEPTRE. We report on additional complexities for unstructured mesh verification of transport codes. Refinement of such meshes for error convergence studies is more involved, particularly for tetrahedral meshes. Furthermore, finite element integrations arising from the presence of the streaming operator exhibit different behavior for unstructured meshes than for structured meshes. We verify SCEPTRE with a combination of 'exact' and 'inexact' problems. Errors in the results are consistent with the discretizations, either being limited to roundoff error or displaying the expected rates of convergence with mesh refinement. We also observe behaviors in the results that were difficult to analyze and predict from a strictly theoretical basis, thereby yielding benefits from verification activities beyond demonstrating code correctness. (author)

  18. Segmentation of branching vascular structures using adaptive subdivision surface fitting

    Science.gov (United States)

    Kitslaar, Pieter H.; van't Klooster, Ronald; Staring, Marius; Lelieveldt, Boudewijn P. F.; van der Geest, Rob J.

    2015-03-01

    This paper describes a novel method for segmentation and modeling of branching vessel structures in medical images using adaptive subdivision surfaces fitting. The method starts with a rough initial skeleton model of the vessel structure. A coarse triangular control mesh consisting of hexagonal rings and dedicated bifurcation elements is constructed from this skeleton. Special attention is paid to ensure a topological sound control mesh is created around the bifurcation areas. Then, a smooth tubular surface is obtained from this coarse mesh using a standard subdivision scheme. This subdivision surface is iteratively fitted to the image. During the fitting, the target update locations of the subdivision surface are obtained using a scanline search along the surface normals, finding the maximum gradient magnitude (of the imaging data). In addition to this surface fitting framework, we propose an adaptive mesh refinement scheme. In this step the coarse control mesh topology is updated based on the current segmentation result, enabling adaptation to varying vessel lumen diameters. This enhances the robustness and flexibility of the method and reduces the amount of prior knowledge needed to create the initial skeletal model. The method was applied to publicly available CTA data from the Carotid Bifurcation Algorithm Evaluation Framework resulting in an average dice index of 89.2% with the ground truth. Application of the method to the complex vascular structure of a coronary artery tree in CTA and to MRI images were performed to show the versatility and flexibility of the proposed framework.

  19. ON MOBILE MESH NETWORKS

    OpenAIRE

    Namiot, Dmitry

    2015-01-01

    With the advances in mobile computing technologies and the growth of the Net, mobile mesh networks are going through a set of important evolutionary steps. In this paper, we survey architectural aspects of mobile mesh networks and their use cases and deployment models. Also, we survey challenging areas of mobile mesh networks and describe our vision of promising mobile services. This paper presents a basic introductory material for Masters of Open Information Technologies Lab, interested in m...

  20. Algorithm refinement for stochastic partial differential equations I. linear diffusion

    CERN Document Server

    Alexander, F J; Tartakovsky, D M

    2002-01-01

    A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating hydrodynamic limit. The particles are taken as independent random walkers; the fluctuating diffusion equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass conservation. This methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochastic partial differential equations. Results from a variety of numerical experiments are presented for both steady and time-dependent scenarios. In all cases the mean and variance of density are captured correctly by the stochastic hybrid algorithm. For a nonstochastic version (i.e., using only deterministic continuum fluxes) the mean density is correct, but the variance is reduced except in particle regions away from the interface. Extensions of the methodology to fluid mechanics applications are discussed.

  1. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    Directory of Open Access Journals (Sweden)

    Domingues M. O.

    2013-12-01

    Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.

  2. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations

    KAUST Repository

    Wang, Yaqi

    2009-04-01

    Adaptive mesh refinement (AMR) has been shown to allow solving partial differential equations to significantly higher accuracy at reduced numerical cost. This paper presents a state-of-the-art AMR algorithm applied to the multigroup neutron diffusion equation for reactor applications. In order to follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm for assembling the terms coupling shape functions from different meshes and show how it can be made efficient by deriving all meshes from a common coarse mesh by hierarchic refinement. Our methods are formulated using conforming finite elements of any order, for any number of energy groups. The spatial error distribution is assessed with a generalization of an error estimator originally derived for the Poisson equation. Our implementation of this algorithm is based on the widely used Open Source adaptive finite element library deal.II and is made available as part of this library\\'s extensively documented tutorial. We illustrate our methods with results for 2-D and 3-D reactor simulations using 2 and 7 energy groups, and using conforming finite elements of polynomial degree up to 6. © 2008 Elsevier Ltd. All rights reserved.

  3. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases

    CERN Document Server

    Bucki, Marek; Payan, Yohan; 10.1016/j.media.2010.02.003

    2010-01-01

    Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially...

  4. An Evaluation Method for Distortion Energy Parameterization of Triangular Meshes

    Institute of Scientific and Technical Information of China (English)

    SHI Jing; ZHAO Xiu-yang; ZHANG Cai-ming; YANG Bo

    2013-01-01

    Parameterization of triangle meshes is a fundamental problem for texture mapping, surface fitting, surface reconstruction, and mesh editing. The deformation of triangular meshes caused by the parameterized process is the measurement of parameterization. Traditional standard method has its limitation when evaluating mixture distortion energy parameterizations. Thus an evaluation method bases on distortion energy parameterization of triangular meshes is introduced for the limitation. The novel method employs an adaptive expression form to the mixture energy, and uses a weight factor to represent distortion energy distribution. By using this method, we can evaluate all kinds of parameterization in a uniform measurement and acquire a more intuitive and clear evaluation.

  5. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R W; Elliott, N S; Pember, R B

    2003-02-14

    A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.

  6. Wireless mesh networks

    CERN Document Server

    Held, Gilbert

    2005-01-01

    Wireless mesh networking is a new technology that has the potential to revolutionize how we access the Internet and communicate with co-workers and friends. Wireless Mesh Networks examines the concept and explores its advantages over existing technologies. This book explores existing and future applications, and examines how some of the networking protocols operate.The text offers a detailed analysis of the significant problems affecting wireless mesh networking, including network scale issues, security, and radio frequency interference, and suggests actual and potential solutions for each pro

  7. 自适应Tree-Mesh结构的大棚无线监测网络设计%Design of adaptive tree-mesh hybrid wireless sensor networks for greenhouses

    Institute of Scientific and Technical Information of China (English)

    石繁荣; 黄玉清; 任珍文; 伍春

    2013-01-01

    Wireless sensor networks have been widely utilized in agricultural production in such as crop information monitoring systems, agricultural facilities’wireless control systems, etc. The wireless sensor networks could promote the development of agricultural information and intelligence, and more research has been focused on using ZigBee wireless technology to build the networks in recent years. To collect the base crop status and environmental information of greenhouses in a wireless way, a wireless sensor monitoring network system was designed. The basic work of this paper was the software and hardware system design; further work is projected to be low-power adaptive mechanism design. In analyzing the distribution characteristics of the greenhouse base, it could be seen that the greenhouses were concentrated in their distribution, but independent from each other. So the network topology architecture was designed as clustering Tree-Mesh hybrid topology architecture, and the nodes of the cluster belonged to the same greenhouse. The network was built up by a coordinator, and a large number of routers and sensor nodes were joined in. The coordinator was a sink node, it was designed as a gateway, and there were some routers which played the role of cluster head in the network. The clustering Tree-Mesh hybrid network was built in two steps: First, the mesh network was established by the coordinator and cluster head. Then, the tree network was built by the cluster head, and the tree was a cluster with routers and sensor nodes. The system utilized ZigBee to build the wireless sensor network and multi-hop communication, and the hardware of a single chip multi-sensor wireless node based CC2530 was designed. The modular design of the hardware subsystem was composed of a radio module, sensor module and power module. The finite state machine node software and the low-power improvement were designed based on Z-Stack. The stack ran on a task allocation mechanism that was similar

  8. Mesh implants: An overview of crucial mesh parameters

    Institute of Scientific and Technical Information of China (English)

    Lei-Ming; Zhu; Philipp; Schuster; Uwe; Klinge

    2015-01-01

    Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the Pub Med database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, largepore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation.

  9. Urogynecologic Surgical Mesh Implants

    Science.gov (United States)

    ... be used for urogynecologic procedures, including repair of pelvic organ prolapse (POP) and stress urinary incontinence (SUI). It is ... associated with surgical mesh for transvaginal repair of pelvic organ prolapse 513(e) Proposed Order for Reclassification of Surgical ...

  10. Polygon mesh processing

    CERN Document Server

    Botsch, Mario; Pauly, Mark; Alliez, Pierre; Levy, Bruno

    2010-01-01

    Geometry processing, or mesh processing, is a fast-growing area of research that uses concepts from applied mathematics, computer science, and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation, and transmission of complex 3D models. Applications of geometry processing algorithms already cover a wide range of areas from multimedia, entertainment, and classical computer-aided design, to biomedical computing, reverse engineering, and scientific computing. Over the last several years, triangle meshes have become increasingly popular,

  11. Refined Hopf Link Revisited

    CERN Document Server

    Iqbal, Amer

    2012-01-01

    We establish a relation between the refined Hopf link invariant and the S-matrix of the refined Chern-Simons theory. We show that the refined open string partition function corresponding to the Hopf link, calculated using the refined topological vertex, when expressed in the basis of Macdonald polynomials gives the S-matrix of the refined Chern-Simons theory.

  12. Tropical cyclone activity in nested regional and global grid-refined simulations

    Science.gov (United States)

    Hashimoto, Atsushi; Done, James M.; Fowler, Laura D.; Bruyère, Cindy L.

    2016-07-01

    The capacity of two different grid refinement methods—two-way limited area nesting and variable-mesh refinement—to capture Northwest Pacific Tropical Cyclone (TC) activity is compared in a suite of single-year continuous simulations. Simulations are conducted with and without regional grid refinement from approximately 100-20 km grid spacing over the Northwest Pacific. The capacity to capture smooth transitions between the two resolutions varies by grid refinement method. Nesting shows adverse influence of the nest boundary, with the boundary evident in seasonal average cloud patterns and precipitation, and contortions of the seasonal mean mid-latitude jet. Variable-mesh, on the other hand, reduces many of these effects and produced smoother cloud patterns and mid-latitude jet structure. Both refinement methods lead to increased TC frequency in the region of refinement compared to simulations without grid refinement, although nesting adversely affects TC tracks through the contorted mid-latitude jet. The variable-mesh approach leads to enhanced TC activity over the Southern Indian and Southwest Pacific basins, compared to a uniform mesh simulation. Nesting, on the other hand, does not appear to influence basins outside the region of grid refinement. This study provides evidence that variable mesh may bring benefits to seasonal TC simulation over traditional nesting, and demonstrates capacity of variable mesh refinement for regional climate simulation.

  13. A parallel adaptive finite difference algorithm for petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Hai Minh

    2005-07-01

    Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)

  14. Study of partial cavitation on a plane-convex hydrofoil with mesh development by using gmsh free software

    OpenAIRE

    Hidalgo, Victor Hugo; Luo, Xianwu; Escaler Puigoriol, Francesc Xavier; An, Yu; Valencia, Esteban Alejandro

    2015-01-01

    Commercial programs are widely used to do unstructured and structured meshes for CFD simulations. However, grids and meshes based on free-open source software (FOSS) give to researchers and engineers the possibility to adapt and improve the meshing process for special study cases with a high Reynolds numbers, such as unsteady partial cavitating flows. In order to improve the grid qualities, the FOSS GMSH has been used to do three types of grid, unstructured hexahedral mesh, hybrid mesh and st...

  15. Godunov methods and adaptive algorithms for unsteady fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.; Colella, P.; Trangenstein, J.; Welcome, M.

    1988-06-01

    Higher-order versions of Godunov's method have proven highly successful for high-Mach-number compressible flow. One goal of the research being described in this paper is to extend the range of applicability of these methods to more general systems of hyperbolic conversion laws such as magnetohydrodynamics, flow in porous media and finite deformations of elastic-plastics solids. A second goal is to apply Godunov methods to problems involving more complex physical and solution geometries than can be treated on a simple rectangular grid. This requires the introduction of various adaptive methodologies: global moving and body-fitted meshes, local adaptive mesh refinement, and front tracking. 11 refs., 6 figs.

  16. GIZMO: A New Class of Accurate, Mesh-Free Hydrodynamic Simulation Methods

    CERN Document Server

    Hopkins, Philip F

    2014-01-01

    We present and study two new Lagrangian numerical methods for solving the equations of hydrodynamics, in a systematic comparison with moving-mesh, SPH, and non-moving grid methods. The new methods are designed to capture many advantages of both smoothed-particle hydrodynamics (SPH) and grid-based or adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume 'overlap.' We implement and test a parallel, second-order version of the method with coupled self-gravity & cosmological integration, in the code GIZMO: this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require 'artificial diffusion' terms; and allows fluid elements to move with the flow so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods a...

  17. A LAGUERRE VORONOI BASED SCHEME FOR MESHING PARTICLE SYSTEMS.

    Science.gov (United States)

    Bajaj, Chandrajit

    2005-06-01

    We present Laguerre Voronoi based subdivision algorithms for the quadrilateral and hexahedral meshing of particle systems within a bounded region in two and three dimensions, respectively. Particles are smooth functions over circular or spherical domains. The algorithm first breaks the bounded region containing the particles into Voronoi cells that are then subsequently decomposed into an initial quadrilateral or an initial hexahedral scaffold conforming to individual particles. The scaffolds are subsequently refined via applications of recursive subdivision (splitting and averaging rules). Our choice of averaging rules yield a particle conforming quadrilateral/hexahedral mesh, of good quality, along with being smooth and differentiable in the limit. Extensions of the basic scheme to dynamic re-meshing in the case of addition, deletion, and moving particles are also discussed. Motivating applications of the use of these static and dynamic meshes for particle systems include the mechanics of epoxy/glass composite materials, bio-molecular force field calculations, and gas hydrodynamics simulations in cosmology.

  18. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  19. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  20. An adaptive scaled boundary finite element method by subdividing subdomains for elastodynamic problems

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.

  1. Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation.

    Science.gov (United States)

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2013-01-01

    A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method.

  2. 基于自适应笛卡尔网格的可压缩黏性流动数值模拟%Numerical Simulations of Compressible Viscous Flows with Adaptively Refined Cartesian Grid

    Institute of Scientific and Technical Information of China (English)

    韩玉琪; 张常贤

    2015-01-01

    Navier-Stokes equations were solved with adaptively-refined Cartesian grid approach, grid was ac-cessed based on quad-tree data structure, and solid wall boundary was introduced by a ghost body cell method. The grid was automatically established and refined, and flow field was automatically solved with specified geometries. Supersonic flow around NACA0012 airfoil with shock wave and subsonic flow around double NACA0012 airfoils with recirculation region were numerical simulated, and then compared with published results which were based on stretched Cartesian grid and unstructured grid. The results show that, compressible viscous flows can be adequately simulated with adaptively-refined Cartesian grid, the number of cells is dramatically decreased compared with stretched Cartesian grid, but current approach is inefficient in the resolution of boundary layer when compared with unstructured grid, which needs further development.%基于自适应笛卡尔网格方法求解Navier-Stokes方程,网格以四叉树数据结构存储,固壁边界条件通过一种虚拟单元体方法引入。在几何外形确定的前提下自动完成网格生成、加密和流场的求解任务。对含有激波的NACA0012翼型的超音速绕流工况和含有回流区的双NACA0012翼型亚音速绕流工况进行了数值模拟,并与现有的非等距笛卡尔网格解和非结构网格解进行了对比。结果表明:基于自适应笛卡尔网格能够准确模拟可压缩黏性流动,同非等距笛卡尔网格相比,自适应技术的使用显著降低了网格量,但是同非结构网格相比,现有的自适应笛卡尔网格技术在边界层的分辨上效率较低,有待进一步发展。

  3. 基于自适应笛卡尔网格的可压缩黏性流动数值模拟%Numerical Simulations of Compressible Viscous Flows with Adaptively Refined Cartesian Grid

    Institute of Scientific and Technical Information of China (English)

    韩玉琪; 张常贤

    2015-01-01

    基于自适应笛卡尔网格方法求解Navier-Stokes方程,网格以四叉树数据结构存储,固壁边界条件通过一种虚拟单元体方法引入。在几何外形确定的前提下自动完成网格生成、加密和流场的求解任务。对含有激波的NACA0012翼型的超音速绕流工况和含有回流区的双NACA0012翼型亚音速绕流工况进行了数值模拟,并与现有的非等距笛卡尔网格解和非结构网格解进行了对比。结果表明:基于自适应笛卡尔网格能够准确模拟可压缩黏性流动,同非等距笛卡尔网格相比,自适应技术的使用显著降低了网格量,但是同非结构网格相比,现有的自适应笛卡尔网格技术在边界层的分辨上效率较低,有待进一步发展。%Navier-Stokes equations were solved with adaptively-refined Cartesian grid approach, grid was ac-cessed based on quad-tree data structure, and solid wall boundary was introduced by a ghost body cell method. The grid was automatically established and refined, and flow field was automatically solved with specified geometries. Supersonic flow around NACA0012 airfoil with shock wave and subsonic flow around double NACA0012 airfoils with recirculation region were numerical simulated, and then compared with published results which were based on stretched Cartesian grid and unstructured grid. The results show that, compressible viscous flows can be adequately simulated with adaptively-refined Cartesian grid, the number of cells is dramatically decreased compared with stretched Cartesian grid, but current approach is inefficient in the resolution of boundary layer when compared with unstructured grid, which needs further development.

  4. An adaptive numerical method for free surface flows passing rigidly mounted obstacles

    CERN Document Server

    Nikitin, Kirill D; Terekhov, Kirill M; Vassilevski, Yuri V; Yanbarisov, Ruslan

    2016-01-01

    The paper develops a method for the numerical simulation of a free-surface flow of incompressible viscous fluid around a streamlined body. The body is a rigid stationary construction partially submerged in the fluid. The application we are interested in the paper is a flow around a surface mounted offshore oil platform. The numerical method builds on a hybrid finite volume / finite difference discretization using adaptive octree cubic meshes. The mesh is dynamically refined towards the free surface and the construction. Special care is taken to devise a discretization for the case of curvilinear boundaries and interfaces immersed in the octree Cartesian background computational mesh. To demonstrate the accuracy of the method, we show the results for two benchmark problems: the sloshing 3D container and the channel laminar flow passing the 3D cylinder of circular cross-section. Further, we simulate numerically a flow with surface waves around an offshore oil platform for the realistic set of geophysical data.

  5. Mesh Resolution Effect on 3D RANS Turbomachinery Flow Simulations

    CERN Document Server

    Yershov, Sergiy

    2016-01-01

    The paper presents the study of the effect of a mesh refinement on numerical results of 3D RANS computations of turbomachinery flows. The CFD solver F, which based on the second-order accurate ENO scheme, is used in this study. The simplified multigrid algorithm and local time stepping permit decreasing computational time. The flow computations are performed for a number of turbine and compressor cascades and stages. In all flow cases, the successively refined meshes of H-type with an approximate orthogonalization near the solid walls were generated. The results obtained are compared in order to estimate their both mesh convergence and ability to resolve the transonic flow pattern. It is concluded that for thorough studying the fine phenomena of the 3D turbomachinery flows, it makes sense to use the computational meshes with the number of cells from several millions up to several hundred millions per a single turbomachinery blade channel, while for industrial computations, a mesh of about or less than one mil...

  6. Coloured Petri Net Refinement Specification and Correctness Proof with Coq

    Science.gov (United States)

    Choppy, Christine; Mayero, Micaela; Petrucci, Laure

    2009-01-01

    In this work, we address the formalisation of symmetric nets, a subclass of coloured Petri nets, refinement in COQ. We first provide a formalisation of the net models, and of their type refinement in COQ. Then the COQ proof assistant is used to prove the refinement correctness lemma. An example adapted from a protocol example illustrates our work.

  7. Feature-preserving mesh denoising based on contextual discontinuities

    Institute of Scientific and Technical Information of China (English)

    MAO Zhi-hong; MA Li-zhuang; ZHAO Ming-xi; LI Zhong

    2006-01-01

    Motivated by the conception of Lee et al.(2005)'s mesh saliency and Chen (2005)'s contextual discontinuities, a novel adaptive smoothing approach is proposed for noise removal and feature preservation. Mesh saliency is employed as a multiscale measure to detect contextual discontinuity for feature preserving and control of the smoothing speed. The proposed method is similar to the bilateral filter method. Comparative results demonstrate the simplicity and efficiency of the presented method, which makes it an excellent solution for smoothing 3D noisy meshes.

  8. Electrical properties analysis of wire mesh for mesh reflectors

    Science.gov (United States)

    Li, Tuanjie; Su, Jinguo

    2011-07-01

    The knitted wire mesh is often used as a reflecting surface of large deployable antennas. Different weaves have different electrical properties and it is very important and necessary to research the method of analyzing the electrical properties of wire mesh. This paper has developed an effective method to address the problem. First, a periodic unit of wire model in actual complex mesh structure is converted into an equivalent strip model according to the correlation between strip width and wire diameter. The equivalent regular wire-grid unit of the strip model is derived from the equivalences between the wire-grid unit and the strip model in near and far fields. Then the regular wire-grid units are arranged to form an equivalent mesh surface with the corresponding weave pattern, so the electrical properties of the mesh surface are equivalent to those of the actual mesh structure. Through analyzing electrical properties of the mesh surface including amplitude difference, phase difference and reflecting loss, we can find out the electrical properties of the actual knitted wire mesh. The single satin mesh and a two-bar tricot mesh are used as examples to illustrate the method of electrical properties analysis of wire mesh.

  9. A general boundary capability embedded in an orthogonal mesh

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, D.W.; Yu-Jiuan Chen [Lawrence Livermore National Lab., CA (United States)

    1995-07-01

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.

  10. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption

    Science.gov (United States)

    Arnold, Alexander; Bruhns, Otto T.; Mosler, Jörn

    2011-07-01

    A novel finite element formulation suitable for computing efficiently the stiffness distribution in soft biological tissue is presented in this paper. For that purpose, the inverse problem of finite strain hyperelasticity is considered and solved iteratively. In line with Arnold et al (2010 Phys. Med. Biol. 55 2035), the computing time is effectively reduced by using adaptive finite element methods. In sharp contrast to previous approaches, the novel mesh adaption relies on an r-adaption (re-allocation of the nodes within the finite element triangulation). This method allows the detection of material interfaces between healthy and diseased tissue in a very effective manner. The evolution of the nodal positions is canonically driven by the same minimization principle characterizing the inverse problem of hyperelasticity. Consequently, the proposed mesh adaption is variationally consistent. Furthermore, it guarantees that the quality of the numerical solution is improved. Since the proposed r-adaption requires only a relatively coarse triangulation for detecting material interfaces, the underlying finite element spaces are usually not rich enough for predicting the deformation field sufficiently accurately (the forward problem). For this reason, the novel variational r-refinement is combined with the variational h-adaption (Arnold et al 2010) to obtain a variational hr-refinement algorithm. The resulting approach captures material interfaces well (by using r-adaption) and predicts a deformation field in good agreement with that observed experimentally (by using h-adaption).

  11. Analysis and development of spatial hp-refinement methods for solving the neutron transport equation

    International Nuclear Information System (INIS)

    The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the

  12. A parallel direct solver for the self-adaptive hp Finite Element Method

    KAUST Repository

    Paszyński, Maciej R.

    2010-03-01

    In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.

  13. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.; Weatherby, J.R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Using this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.

  14. Metal-mesh lithography.

    Science.gov (United States)

    Tang, Zhao; Wei, Qingshan; Wei, Alexander

    2011-12-01

    Metal-mesh lithography (MML) is a practical hybrid of microcontact printing and capillary force lithography that can be applied over millimeter-sized areas with a high level of uniformity. MML can be achieved by blotting various inks onto substrates through thin copper grids, relying on preferential wetting and capillary interactions between template and substrate for pattern replication. The resulting mesh patterns, which are inverted relative to those produced by stenciling or serigraphy, can be reproduced with low micrometer resolution. MML can be combined with other surface chemistry and lift-off methods to create functional microarrays for diverse applications, such as periodic islands of gold nanorods and patterned corrals for fibroblast cell cultures.

  15. Optimizing triangular mesh generation from range images

    Science.gov (United States)

    Lu, Tianyu; Yun, David Y.

    2000-03-01

    An algorithm for the automatic reconstruction of triangular mesh surface model form range images is presented. The optimal piecewise linear surface approximation problem is defined as: given a set S of points uniformly sampled from a vibrate function f(x,y) on a rectangular grid of dimension W X H, find a minimum triangular mesh approximating the surface with vertices anchored at a subset S' of S, such that the deviation at any sample point is within a given bound of (epsilon) > 0. The algorithm deploys a multi- agent resource planning approach to achieve adaptive, accurate and concise piecewise linear approximation using the L-(infinity) norm. The resulting manifold triangular mesh can be directly used as 3D rendering model for visualization with controllable and guaranteed quality. Due to this dual optimality, the algorithm achieves both storage efficiency and visual quality. The error control scheme further facilitates the construction of models in multiple levels of details, which is desirable in animation and virtual reality moving scenes. Experiments with various benchmark range images form smooth functional surfaces to satellite terrain images yield succinct, accurate and visually pleasant triangular meshes. Furthermore, the independence and multiplicity of agents suggest a natural parallelism for triangulation computation, which provides a promising solution for the real-time exploration of large data sets.

  16. 基于网格化曲面的自适应自动铺放轨迹算法%Algorithm of Adaptive Path Planning for Automated Placement on Meshed Surface

    Institute of Scientific and Technical Information of China (English)

    熊文磊; 肖军; 王显峰; 李俊斐; 黄志军

    2013-01-01

    This paper analyzes the causes of prepreg distortion and discusses its influence for the requirement of trajectory placement ability. A new algorithm of geodesic generation based on meshed surfaces is proposed according to the definition of geodesic, which possesses features of efficiency and highaccuracy, etc. Both the manufacturability of the prepreg and its distribution of strength in a product are considered in the algorithm of path planning, providing it with the ability of adapting to surfaces. The algorithm first figures out the maximum geodesic curvature allowed for the central path, and applies it to the design of trajectory. The trajectory obtained both has good ability of placement and can satisfy the demands of strength distribution in a product. Finally, the path planning aiming at one type of S-inlet with database of SQL Server and VC+ + is carried out. The disperse trajectory points are then fitted to be a curve in CATIA to verify the validity and effectiveness of the algorithm of geodesic generation and trajectory placement generation.%基于轨迹的可铺放性要求分析了铺放过程中预浸料产生畸变的原因及影响轨迹可铺放性的因素.根据测地线定义构造了一种基于网格化曲面的测地线新算法,具有高效率、高精度等特点;在此基础上综合考虑预浸料的可铺放性和构件强度分布要求,提出了具有曲面自适应功能的铺放轨迹算法,可根据预浸料带宽计算得到铺放轨迹容许的最大测地曲率,并将其运用于铺放轨迹设计,使轨迹能够保证预浸料良好可铺放性的同时又满足构件的强度分布要求.最后通过数据库SQL Server和VC++针对某型号S型进气道进行铺放轨迹设计,在CATIA中将计算获取的离散轨迹点拟合成曲线并进行了实际的铺放试验,验证了测地线生成算法和铺放轨迹生成算法的正确性和有效性.

  17. On Optimal Bilinear Quadrilateral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    D' Azevedo, E.

    1998-10-26

    The novelty of this work is in presenting interesting error properties of two types of asymptotically optimal quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected super-convergence property for certain saddle-shaped data functions. The super-convergent mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near known corner or point singularities.

  18. On Optimal Bilinear Quadrilateral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    D' Azevedo, E

    2000-03-17

    The novelty of this work is in presenting interesting error properties of two types of asymptotically ''optimal'' quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected ''super-convergence'' property for certain saddle-shaped data functions. The ''superconvergent'' mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near corner or point singularities.

  19. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    Directory of Open Access Journals (Sweden)

    Matthew G. Knepley

    2009-01-01

    Full Text Available We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s (PDE algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode not only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.

  20. Mesh Generation and Dynamic Mesh Management for KIVA.3V

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-feng; ZHANG You-tong; XIONG Qing-hui

    2009-01-01

    To improve mesh quality for KIVA-3V a method has been developed for rapid mesh generation and dynamic mesh management with moving valves for internal combustion engines.Two phases are included in rapid mesh generation:the initial mesh generation and the mesh pre-treatment.In the second step (pre-treatment),the connectivity of those cells is generated by a new algorithm added to the KIVA-3V code after the initial mesh generated.In dynamic mesh management phase,a new rezoning algorithm is developed and the basic principle is that the rezoning starts from the moving part.The movement of the adjustment is treated as an "earth quake wave" propagating to the surrounding vertexes.The amount of coordinate adjustment of the surrounding vertexes is determined by the movement of the epicenter and the distance between the vertexes and the "epicenter".Finally,a real IC engine mesh is generated and managed according to the new method.It gives a new theory and a new method for creating and managing the mesh in IC engine.

  1. Refining: restructuring for profit

    International Nuclear Information System (INIS)

    This article examines the options for restructuring the under-performing downstream part of the oil industry to improve profitability for example by integrating the refining and marketing businesses. The future outlook for the refining industry, the shareholders, the emergence of independent downstream companies, and internal refining operations are discussed

  2. On the refinement calculus

    CERN Document Server

    Vickers, Trevor

    1992-01-01

    On the Refinement Calculus gives one view of the development of the refinement calculus and its attempt to bring together - among other things - Z specifications and Dijkstra's programming language. It is an excellent source of reference material for all those seeking the background and mathematical underpinnings of the refinement calculus.

  3. Mesh generation and computational modeling techniques for bioimpedance measurements: an example using the VHP data

    International Nuclear Information System (INIS)

    Here, a workflow for high-resolution efficient numerical modeling of bioimpedance measurements is suggested that includes 3D image segmentation, adaptive mesh generation, finite-element discretization, and the analysis of simulation results. Using the adaptive unstructured tetrahedral meshes enables to decrease significantly a number of mesh elements while keeping model accuracy. The numerical results illustrate current, potential, and sensitivity field distributions for a conventional Kubicek-like scheme of bioimpedance measurements using segmented geometric model of human torso based on Visible Human Project data. The whole body VHP man computational mesh is constructed that contains 574 thousand vertices and 3.3 million tetrahedrons.

  4. Mesh generation and computational modeling techniques for bioimpedance measurements: an example using the VHP data

    Science.gov (United States)

    Danilov, A. A.; Salamatova, V. Yu; Vassilevski, Yu V.

    2012-12-01

    Here, a workflow for high-resolution efficient numerical modeling of bioimpedance measurements is suggested that includes 3D image segmentation, adaptive mesh generation, finite-element discretization, and the analysis of simulation results. Using the adaptive unstructured tetrahedral meshes enables to decrease significantly a number of mesh elements while keeping model accuracy. The numerical results illustrate current, potential, and sensitivity field distributions for a conventional Kubicek-like scheme of bioimpedance measurements using segmented geometric model of human torso based on Visible Human Project data. The whole body VHP man computational mesh is constructed that contains 574 thousand vertices and 3.3 million tetrahedrons.

  5. Adaptive computational methods for SSME internal flow analysis

    Science.gov (United States)

    Oden, J. T.

    1986-01-01

    Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.

  6. OPTIMIZING EUCALYPTUS PULP REFINING

    Institute of Scientific and Technical Information of China (English)

    Vail Manfredi

    2004-01-01

    This paper discusses the refining of bleached eucalyptus kraft pulp (BEKP).Pilot plant tests were carried out in to optimize the refining process and to identify the effects of refining variables on final paper quality and process costs.The following parameters are discussed: pulp consistency, disk pattern design, refiner speed,energy input, refiner configuration (parallel or serial)and refining intensity.The effects of refining on pulp fibers were evaluated against the pulp quality properties, such as physical strengths, bulk, opacity and porosity, as well as the interactions with papermaking process, such as paper machine runnability, paper breaks and refining control.The results showed that process optimization,considering pulp quality and refining costs, were obtained when eucalyptus pulp is refined under the lowest intensity and the highest pulp consistency possible. Changes on the operational refining conditions will have the highest impact on total energy requirements (costs) without any significant effect on final paper properties.It was also observed that classical ways to control the industrial operation, such as those based on drainage measurements, do not represent the best alternative to maximize the final paper properties neither the paper machine runability.

  7. Notes on the Mesh Handler and Mesh Data Conversion

    International Nuclear Information System (INIS)

    At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS

  8. An application of MeSH enrichment analysis in livestock.

    Science.gov (United States)

    Morota, G; Peñagaricano, F; Petersen, J L; Ciobanu, D C; Tsuyuzaki, K; Nikaido, I

    2015-08-01

    An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome-wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.

  9. Gamra: Simple meshing for complex earthquakes

    Science.gov (United States)

    Landry, Walter; Barbot, Sylvain

    2016-05-01

    The static offsets caused by earthquakes are well described by elastostatic models with a discontinuity in the displacement along the fault. A traditional approach to model this discontinuity is to align the numerical mesh with the fault and solve the equations using finite elements. However, this distorted mesh can be difficult to generate and update. We present a new numerical method, inspired by the Immersed Interface Method (Leveque and Li, 1994), for solving the elastostatic equations with embedded discontinuities. This method has been carefully designed so that it can be used on parallel machines on an adapted finite difference grid. We have implemented this method in Gamra, a new code for earth modeling. We demonstrate the correctness of the method with analytic tests, and we demonstrate its practical performance by solving a realistic earthquake model to extremely high precision.

  10. Gamra: Simple Meshes for Complex Earthquakes

    CERN Document Server

    Landry, Walter

    2016-01-01

    The static offsets caused by earthquakes are well described by elastostatic models with a discontinuity in the displacement along the fault. A traditional approach to model this discontinuity is to align the numerical mesh with the fault and solve the equations using finite elements. However, this distorted mesh can be difficult to generate and update. We present a new numerical method, inspired by the Immersed Interface Method, for solving the elastostatic equations with embedded discontinuities. This method has been carefully designed so that it can be used on parallel machines on an adapted finite difference grid. We have implemented this method in Gamra, a new code for earth modelling. We demonstrate the correctness of the method with analytic tests, and we demonstrate its practical performance by solving a realistic earthquake model to extremely high precision.

  11. A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities

    KAUST Repository

    Paszyński, Maciej R.

    2013-04-01

    This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.

  12. Conforming restricted Delaunay mesh generation for piecewise smooth complexes

    OpenAIRE

    Engwirda, Darren

    2016-01-01

    A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted Delaunay framework, this new algorithm combines a number of novel features, including: (i) a consistent, conforming restricted Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve constraints, (ii) a `protection' strategy for domains containing 1-dimensional features that meet at sharply acute angle...

  13. Adaptive and Iterative Methods for Simulations of Nanopores with the PNP-Stokes Equations

    CERN Document Server

    Mitscha-Baude, Gregor; Tulzer, Gerhard; Heitzinger, Clemens

    2016-01-01

    We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equ...

  14. Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation.

    Science.gov (United States)

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2012-12-01

    Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method.

  15. Synthesized Optimization of Triangular Mesh

    Institute of Scientific and Technical Information of China (English)

    HU Wenqiang; YANG Wenyu

    2006-01-01

    Triangular mesh is often used to describe geometric object as computed model in digital manufacture, thus the mesh model with both uniform triangular shape and excellent geometric shape is expected. But in fact, the optimization of triangular shape often is contrary with that of geometric shape. In this paper, one synthesized optimizing algorithm is presented through subdividing triangles to achieve the trade-off solution between the geometric and triangular shape optimization of mesh model. The result mesh with uniform triangular shape and excellent topology are obtained.

  16. Instant Abdominal Wall Reconstruction with Biologic Mesh following Resection of Locally Advanced Colonic Cancer

    OpenAIRE

    Oskay Kaya; Engin Olcucuoglu; Gaye Seker; Hakan Kulacoglu

    2012-01-01

    We present a case of immediate abdominal wall reconstruction with biologic mesh following the resection of locally advanced colonic cancer. The tumor in the right colon did not respond to neoadjuvant chemotherapy. Surgical enbloc excision, including excision of the invasion in the abdominal wall, was achieved, and the defect was reconstructed with porcine dermal collagen mesh. The patient was discharged with no complication, and adaptation of the mesh was excellent at the six-month followup.

  17. Tangle-Free Mesh Motion for Ablation Simulations

    Science.gov (United States)

    Droba, Justin

    2016-01-01

    Problems involving mesh motion-which should not be mistakenly associated with moving mesh methods, a class of adaptive mesh redistribution techniques-are of critical importance in numerical simulations of the thermal response of melting and ablative materials. Ablation is the process by which material vaporizes or otherwise erodes due to strong heating. Accurate modeling of such materials is of the utmost importance in design of passive thermal protection systems ("heatshields") for spacecraft, the layer of the vehicle that ensures survival of crew and craft during re-entry. In an explicit mesh motion approach, a complete thermal solve is first performed. Afterwards, the thermal response is used to determine surface recession rates. These values are then used to generate boundary conditions for an a posteriori correction designed to update the location of the mesh nodes. Most often, linear elastic or biharmonic equations are used to model this material response, traditionally in a finite element framework so that complex geometries can be simulated. A simple scheme for moving the boundary nodes involves receding along the surface normals. However, for all but the simplest problem geometries, evolution in time following such a scheme will eventually bring the mesh to intersect and "tangle" with itself, inducing failure. This presentation demonstrates a comprehensive and sophisticated scheme that analyzes the local geometry of each node with help from user-provided clues to eliminate the tangle and enable simulations on a wide-class of difficult problem geometries. The method developed is demonstrated for linear elastic equations but is general enough that it may be adapted to other modeling equations. The presentation will explicate the inner workings of the tangle-free mesh motion algorithm for both two and three-dimensional meshes. It will show abstract examples of the method's success, including a verification problem that demonstrates its accuracy and

  18. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    CERN Document Server

    Knepley, Matthew G

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical PDE algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or \\emph{arrows}, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode not only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete des...

  19. Adaptive Boundary Elements and Error Estimation for Elastic Problems

    Directory of Open Access Journals (Sweden)

    Jingguo Qu

    2014-02-01

    Full Text Available In traditional thinking, when the elastic problems are solved, we need to repeatedly plot element grids and analyze computing results according to diverse precision requirement. Against the malpractice exists in the above process, a new method of error estimation was suggested on H-R adaptive boundary element method in this paper. Based on the discrete meshes that are generated for the process of H-R adaptive refinement, the solution error was estimated by the interpolation residue. In addition, this method is easy to programming, which is carried out in the program by automatically creating new adaptive data files. Then a great deal of fore-disposal and post-disposal can be saved. Its validity and effectiveness have been confirmed by numerical example

  20. Solution of the incompressible Navier-Stokes equations on unstructured meshes.

    OpenAIRE

    Charlesworth, D. J.

    2004-01-01

    Since Patankar first developed the SIMPLE (Semi Implicit Method for Pressure Linked Equations) algorithm, the incompressible Navier-Stokes equations have been solved using a variety of pressure-based methods. Over the last twenty years these methods have been refined and developed however the majority of this work has been based around the use of structured grids to mesh the fluid domain of interest. Unstructured grids offer considerable advantages over structured meshes when a...

  1. Risk Factors for Mesh Exposure after Transvaginal Mesh Surgery

    Institute of Scientific and Technical Information of China (English)

    Ke Niu; Yong-Xian Lu; Wen-Jie Shen; Ying-Hui Zhang; Wen-Ying Wang

    2016-01-01

    Background:Mesh exposure after surgery continues to be a clinical challenge for urogynecological surgeons.The purpose of this study was to explore the risk factors for polypropylene (PP) mesh exposure after transvaginal mesh (TVM) surgery.Methods:This study included 195 patients with advanced pelvic organ prolapse (POP),who underwent TVM from January 2004to December 2012 at the First Affiliated Hospital of Chinese PLA General Hospital.Clinical data were evaluated including patient's demography,TVM type,concomitant procedures,operation time,blood loss,postoperative morbidity,and mesh exposure.Mesh exposure was identified through postoperative vaginal examination.Statistical analysis was performed to identify risk factors for mesh exposure.Results:Two-hundred and nine transvaginal PP meshes were placed,including 194 in the anterior wall and 15 in the posterior wall.Concomitant tension-free vaginal tape was performed in 61 cases.The mean follow-up time was 35.1 ± 23.6 months.PP mesh exposure was identified in 32 cases (16.4%),with 31 in the anterior wall and 1 in the posterior wall.Significant difference was found in operating time and concomitant procedures between exposed and nonexposed groups (F =7.443,P =0.007;F =4.307,P =0.039,respectively).Binary logistic regression revealed that the number of concomitant procedures and operation time were risk factors for mesh exposure (P =0.001,P =0.043).Conclusion:Concomitant procedures and increased operating time increase the risk for postoperative mesh exposure in patients undergoing TVM surgery for POP.

  2. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow

    Science.gov (United States)

    Hsu, Li-Chieh

    The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.

  3. Parameterization for fitting triangular mesh

    Institute of Scientific and Technical Information of China (English)

    LIN Hongwei; WANG Guojin; LIU Ligang; BAO Hujun

    2006-01-01

    In recent years, with the development of 3D data acquisition equipments, the study on reverse engineering has become more and more important. However, the existing methods for parameterization can hardly ensure that the parametric domain is rectangular, and the parametric curve grid is regular. In order to overcome these limitations, we present a novel method for parameterization of triangular meshes in this paper. The basic idea is twofold: first, because the isotherms in the steady temperature do not intersect with each other, and are distributed uniformly, no singularity (fold-over) exists in the parameterization; second, a 3D harmonic equation is solved by the finite element method to obtain the steady temperature field on a 2D triangular mesh surface with four boundaries. Therefore, our proposed method avoids the embarrassment that it is impossible to solve the 2D quasi-harmonic equation on the 2D triangular mesh without the parametric values at mesh vertices. Furthermore, the isotherms on the temperature field are taken as a set of iso-parametric curves on the triangular mesh surface. The other set of iso-parametric curves can be obtained by connecting the points with the same chord-length on the isotherms sequentially. The obtained parametric curve grid is regular, and distributed uniformly, and can map the triangular mesh surface to the unit square domain with boundaries of mesh surface to boundaries of parametric domain, which ensures that the triangular mesh surface or point cloud can be fitted with the NURBS surface.

  4. An Improved Moving Mesh Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    we consider an iterative algorithm of mesh optimization for finite element solution, and give an improved moving mesh strategy that reduces rapidly the complexity and cost of solving variational problems.A numerical result is presented for a 2-dimensional problem by the improved algorithm.

  5. Application of self-adaptive procedure to the thermal problems analysis under steady-state and transient regimens; Aplicacao de procedimento auto-adaptativo na analise de problemas termicos no regime permanente e transiente

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Paulo Roberto Maciel [Pernambuco Univ., Recife, PE (Brazil). Dept. de Engenharia Civil

    1990-12-31

    This work describes a procedure for the adaptive time dependent Finite Element Method using an automatic mesh refinement (H-Version) that efficiently reduces estimated errors ( a posteriori) below pre-assigned limits. Classical model problem for steady-state heat transfer are investigated, and the results are compared with the analytical solution. Then some typical time-dependent problem are qualitatively analysed. (author) 10 refs., 7 figs.

  6. Adaptive Parametrization of Multivariate B-splines for Image Registration

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Glocker, Benjamin; Navab, Nassir;

    2008-01-01

    We present an adaptive parametrization scheme for dynamic mesh refinement in the application of parametric image registration. The scheme is based on a refinement measure ensuring that the control points give an efficient representation of the warp fields, in terms of minimizing the registration...... cost function. In the current work we introduce multivariate B-splines as a novel alternative to the widely used tensor B-splines enabling us to make efficient use of the derived measure.The multivariate B-splines of order n are Cn- 1 smooth and are based on Delaunay configurations of arbitrary 2D or 3...... reside on a regular grid. In contrast, by efficient non- constrained placement of the knots, the multivariate B- splines are shown to give a good representation of inho- mogeneous objects in natural settings. The wide applicability of the method is illustrated through its application on medical data and...

  7. Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations

    KAUST Repository

    Calo, Victor M.

    2011-05-14

    In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.

  8. OPTIMIZING EUCALYPTUS PULP REFINING

    Institute of Scientific and Technical Information of China (English)

    VailManfredi

    2004-01-01

    This paper discusses the refining of bleachedeucalyptus kraft pulp (BEKP).Pilot plant tests were carded out in to optimize therefining process and to identify the effects of refiningvariables on final paper quality and process costs.The following parameters are discussed: pulpconsistency, disk pattern design, refiner speed,energy input, refiner configuration (parallel or serial)and refining intensity.The effects of refining on pulp fibers were evaluatedagainst the pulp quality properties, such as physicalstrengths, bulk, opacity and porosity, as well as theinteractions with papermaking process, such as papermachine runnability, paper breaks and refiningcontrol.The results showed that process optimization,considering pulp quality and refining costs, wereobtained when eucalyptus pulp is refined under thelowest intensity and the highest pulp consistencypossible. Changes on the operational refiningconditions will have the highest impact on totalenergy requirements (costs) without any significanteffect on final paper properties.It was also observed that classical ways to control theindustrial operation, such as those based on drainagemeasurements, do not represent the best alternative tomaximize the final paper properties neither the papermachine runability.

  9. Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows

    KAUST Repository

    Unterweger, K.

    2015-01-01

    © Springer International Publishing Switzerland 2015. We propose to couple our adaptive mesh refinement software PeanoClaw with existing solvers for complex overland flows that are tailored to regular Cartesian meshes. This allows us to augment them with spatial adaptivity and local time-stepping without altering the computational kernels. FullSWOF2D—Full Shallow Water Overland Flows—here is our software of choice though all paradigms hold for other solvers as well.We validate our hybrid simulation software in an artificial test scenario before we provide results for a large-scale flooding scenario of the Mecca region. The latter demonstrates that our coupling approach enables the simulation of complex “real-world” scenarios.

  10. SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD BASED ON ELEMENT ENERGY PROJECTION METHOD

    Institute of Scientific and Technical Information of China (English)

    YUAN Si; HE Xue-feng

    2006-01-01

    Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM),the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient.This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea,implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.

  11. Tetrahedral mesh for needle insertion

    OpenAIRE

    Syvertsen, Rolf Anders

    2007-01-01

    This is a Master’s thesis in how to make a tetrahedral mesh for use in a needle insertion simulator. It also describes how it is possible to make the simulator, and how to improve it to make it as realistic as possible. The medical simulator uses a haptic device, a haptic scene graph and a FEM for realistic soft tissue deformation and interaction. In this project a tetrahedral mesh is created from a polygon model, and then the mesh has been loaded into the HaptX haptic scene graph. The object...

  12. Nanowire mesh solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  13. Challenges for Japanese refining

    International Nuclear Information System (INIS)

    This article examines the importance of Japan in the Asian petroleum market and traces Japan's economic growth since the 1960s, the impact of the oil price shocks, and Japanese energy and oil demand. Overviews of Japans refining industry and oil trade are presented with details given of refining capacity and major refiners, and growing environmental awareness and environmental programmes are considered. Plots of Japanese petroleum product demand (1985-2000) and the average sizes and number of refineries (1980-2000) are shown

  14. Checking Model Transformation Refinement

    OpenAIRE

    Büttner, Fabian; Egea, Marina; Guerra, Esther; Lara, Juan De

    2013-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38883-5_15 Proceedings of 6th International Conference, ICMT 2013, Budapest, Hungary, June 18-19, 2013 Refinement is a central notion in computer science, meaning that some artefact S can be safely replaced by a refinement R, which preserves S’s properties. Having available techniques and tools to check transformation refinement would enable (a) the reasoning on whether a transformation correctly impl...

  15. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution

    Science.gov (United States)

    Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.

    2015-08-01

    The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.

  16. Mesh sensitivity effects on fatigue crack growth by crack-tip blunting and re-sharpening

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading is one of the basic mechanisms for fatigue crack growth in ductile metals. Based on an elastic–perfectly plastic material model, crack growth computations have been continued up to 700 full cycles by using...... refinement is used to study the possibility of this type of behaviour within the present method. Even with much refined meshes no indication of crack surface folding is found here....

  17. Toward Interoperable Mesh, Geometry and Field Components for PDE Simulation Development

    Energy Technology Data Exchange (ETDEWEB)

    Chand, K K; Diachin, L F; Li, X; Ollivier-Gooch, C; Seol, E S; Shephard, M; Tautges, T; Trease, H

    2005-07-11

    Mesh-based PDE simulation codes are becoming increasingly sophisticated and rely on advanced meshing and discretization tools. Unfortunately, it is still difficult to interchange or interoperate tools developed by different communities to experiment with various technologies or to develop new capabilities. To address these difficulties, we have developed component interfaces designed to support the information flow of mesh-based PDE simulations. We describe this information flow and discuss typical roles and services provided by the geometry, mesh, and field components of the simulation. Based on this delineation for the roles of each component, we give a high-level description of the abstract data model and set of interfaces developed by the Department of Energy's Interoperable Tools for Advanced Petascale Simulation (ITAPS) center. These common interfaces are critical to our interoperability goal, and we give examples of several services based upon these interfaces including mesh adaptation and mesh improvement.

  18. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  19. Linearly Refined Session Types

    Directory of Open Access Journals (Sweden)

    Pedro Baltazar

    2012-11-01

    Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.

  20. Big Data Refinement

    OpenAIRE

    Boiten, Eerke Albert

    2016-01-01

    "Big data" has become a major area of research and associated funding, as well as a focus of utopian thinking. In the still growing research community, one of the favourite optimistic analogies for data processing is that of the oil refinery, extracting the essence out of the raw data. Pessimists look for their imagery to the other end of the petrol cycle, and talk about the "data exhausts" of our society. Obviously, the refinement community knows how to do "refining". This paper explores...

  1. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant. PMID:15959688

  2. GENERATION OF IRREGULAR HEXAGONAL MESHES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-07-01

    Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.

  3. Image-driven mesh optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P; Turk, G

    2001-01-05

    We describe a method of improving the appearance of a low vertex count mesh in a manner that is guided by rendered images of the original, detailed mesh. This approach is motivated by the fact that greedy simplification methods often yield meshes that are poorer than what can be represented with a given number of vertices. Our approach relies on edge swaps and vertex teleports to alter the mesh connectivity, and uses the downhill simplex method to simultaneously improve vertex positions and surface attributes. Note that this is not a simplification method--the vertex count remains the same throughout the optimization. At all stages of the optimization the changes are guided by a metric that measures the differences between rendered versions of the original model and the low vertex count mesh. This method creates meshes that are geometrically faithful to the original model. Moreover, the method takes into account more subtle aspects of a model such as surface shading or whether cracks are visible between two interpenetrating parts of the model.

  4. Improved AFEM algorithm for bioluminescence tomography based on dual-mesh alternation strategy

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Heng Zhao; Xiaochao Qu; Yanbin Hou; Xueli Chen; Duofang Chen; Xiaowei He; Qitan Zhang; Jimin Liang

    2012-01-01

    Adaptive finite element method (AFEM) is broadly adopted to recover the internal source in biological tissues.In this letter,a novel dual-mesh alternation strategy (dual-mesh AFEM) is developed for bioluminescence tomography.By comprehensively considering the error estimation of the finite element method solution on each mesh,two different adaptive strategies based on the error indicator of the reconstructed source and the photon flux density are used alternately in the process.Combined with the constantly adjusted permissible region in the adaptive process,the new algorithm can achieve a more accurate source location compared with the AFEM in the previous experiments.%Adaptive finite element method (AFEM) is broadly adopted to recover the internal source in biological tissues. In this letter, a novel dual-mesh alternation strategy (dual-mesh AFEM) is developed for biolumi-nescence tomography. By comprehensively considering the error estimation of the finite element method solution on each mesh, two different adaptive strategies based on the error indicator of the reconstructed source and the photon flux density are used alternately in the process. Combined with the constantly adjusted permissible region in the adaptive process, the new algorithm can achieve a more accurate source location compared with the AFEM in the previous experiments.

  5. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries

    Science.gov (United States)

    Popinet, Stéphane

    2003-09-01

    An adaptive mesh projection method for the time-dependent incompressible Euler equations is presented. The domain is spatially discretised using quad/octrees and a multilevel Poisson solver is used to obtain the pressure. Complex solid boundaries are represented using a volume-of-fluid approach. Second-order convergence in space and time is demonstrated on regular, statically and dynamically refined grids. The quad/octree discretisation proves to be very flexible and allows accurate and efficient tracking of flow features. The source code of the method implementation is freely available.

  6. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  7. The Origins of Spontaneous Grain Refinement in Deeply Undercooled Metallic Melts

    Directory of Open Access Journals (Sweden)

    Andrew M. Mullis

    2014-05-01

    Full Text Available Phase-field modeling of rapid alloy solidification, in which the rejection of latent heat from the growing solid cannot be ignored, has lagged significantly behind the modeling of conventional casting practices which can be approximated as isothermal. This is in large part due to the fact that if realistic materials properties are adopted, the ratio of the thermal to solute diffusivity (the Lewis number is typically 103–104, leading to severe multi-scale problems. However, use of state-of-the-art numerical techniques, such as local mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver, allow these difficulties to be overcome. Here we describe how the application of such a model, formulated in the thin-interface limit, can help to explain the long-standing phenomenon of spontaneous grain refinement in deeply undercooled melts. We find that at intermediate undercoolings the operating point parameter, σ*, may collapse to zero, resulting in the growth of non-dendritic morphologies such as doublons and ‘dendritic seaweed’. Further increases in undercooling then lead to the re-establishment of stable dendritic growth. We postulate that remelting of such seaweed structures gives rise to the low undercooling instance of grain refinement observed in alloys.

  8. Application of a finite element algorithm for high speed viscous flows using structured and unstructured meshes

    Science.gov (United States)

    Vemaganti, Gururaja R.; Wieting, Allan R.

    1990-01-01

    A higher-order streamline upwinding Petrov-Galerkin finite element method is employed for high speed viscous flow analysis using structured and unstructured meshes. For a Mach 8.03 shock interference problem, successive mesh adaptation was performed using an adaptive remeshing method. Results from the finite element algorithm compare well with both experimental data and results from an upwind cell-centered method. Finite element results for a Mach 14.1 flow over a 24 degree compression corner compare well with experimental data and two other numerical algorithms for both structured and unstructured meshes.

  9. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  10. Diffraction analysis of mesh deployable reflector antennas

    Science.gov (United States)

    Rahmat-Samii, Y.

    1985-04-01

    A formulation and many representative numerical results for mesh reflector antennas are presented. The reflection coefficient matrix for the prescribed mesh configuration was determined and the local coordinate system of the mesh cells at each point on the curved reflector surface was accentuated. A novel strip aperture model was used to formulate the transmission coefficient matrix for a variety of mesh cell configurations. Numerical data are tailored to the dimensions of a conceptually designed land mobile satellite system (LMSS) which employs a large mesh deployable offset parabolic antenna. Results are shown for an offset parabolic reflector with mesh surfaces similar to the mesh surface of tracking and data relay satellite system (TDRSS).

  11. Diffraction Analysis of Mesh Deployable Reflector Antennas

    Science.gov (United States)

    Rahmat-Samii, Y.

    1985-01-01

    A formulation and many representative numerical results for mesh reflector antennas are presented. The reflection coefficient matrix for the prescribed mesh configuration was determined and the local coordinate system of the mesh cells at each point on the curved reflector surface was accentuated. A novel strip aperture model was used to formulate the transmission coefficient matrix for a variety of mesh cell configurations. Numerical data are tailored to the dimensions of a conceptually designed land mobile satellite system (LMSS) which employs a large mesh deployable offset parabolic antenna. Results are shown for an offset parabolic reflector with mesh surfaces similar to the mesh surface of tracking and data relay satellite system (TDRSS).

  12. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  13. Grid refinement for entropic lattice Boltzmann models

    CERN Document Server

    Dorschner, B; Chikatamarla, S S; Karlin, I V

    2016-01-01

    We propose a novel multi-domain grid refinement technique with extensions to entropic incompressible, thermal and compressible lattice Boltzmann models. Its validity and accuracy are accessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the set-ups of turbulent channel flow, flow past a sphere, Rayleigh-Benard convection as well as the supersonic flow around an airfoil. Special attention is payed to analyzing the adaptive features of entropic lattice Boltzmann models for multi-grid simulations.

  14. Tetrahedral meshing via maximal Poisson-disk sampling

    KAUST Repository

    Guo, Jianwei

    2016-02-15

    In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.

  15. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.

    1998-12-10

    OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  16. A Discontinuous Petrov-Galerkin Methodology for Adaptive Solutions to the Incompressible Navier-Stokes Equations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nathan V.; Demkowiz, Leszek; Moser, Robert

    2015-11-15

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18, 20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates—the inf-sup constants governing the convergence are mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.

  17. Refining and petrochemicals

    International Nuclear Information System (INIS)

    In 2004, refining margins showed a clear improvement that persisted throughout the first three quarters of 2005. This enabled oil companies to post significantly higher earnings for their refining activity in 2004 compared to 2003, with the results of the first half of 2005 confirming this trend. As for petrochemicals, despite a steady rise in the naphtha price, higher cash margins enabled a turnaround in 2004 as well as a clear improvement in oil company financial performance that should continue in 2005, judging by the net income figures reported for the first half-year. Despite this favorable business environment, capital expenditure in refining and petrochemicals remained at a low level, especially investment in new capacity, but a number of projects are being planned for the next five years. (author)

  18. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Constancio, Silva

    2006-07-01

    In 2004, refining margins showed a clear improvement that persisted throughout the first three quarters of 2005. This enabled oil companies to post significantly higher earnings for their refining activity in 2004 compared to 2003, with the results of the first half of 2005 confirming this trend. As for petrochemicals, despite a steady rise in the naphtha price, higher cash margins enabled a turnaround in 2004 as well as a clear improvement in oil company financial performance that should continue in 2005, judging by the net income figures reported for the first half-year. Despite this favorable business environment, capital expenditure in refining and petrochemicals remained at a low level, especially investment in new capacity, but a number of projects are being planned for the next five years. (author)

  19. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  20. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed high-level operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques.

  1. Development of an adaptive hp-version finite element method for computational optimal control

    Science.gov (United States)

    Hodges, Dewey H.; Warner, Michael S.

    1994-01-01

    In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.

  2. Refining - Panorama 2008

    International Nuclear Information System (INIS)

    Investment rallied in 2007, and many distillation and conversion projects likely to reach the industrial stage were announced. With economic growth sustained in 2006 and still pronounced in 2007, oil demand remained strong - especially in emerging countries - and refining margins stayed high. Despite these favorable business conditions, tensions persisted in the refining sector, which has fallen far behind in terms of investing in refinery capacity. It will take renewed efforts over a long period to catch up. Looking at recent events that have affected the economy in many countries (e.g. the sub-prime crisis), prudence remains advisable

  3. Using OpenRefine

    CERN Document Server

    Verborgh, Ruben

    2013-01-01

    The book is styled on a Cookbook, containing recipes - combined with free datasets - which will turn readers into proficient OpenRefine users in the fastest possible way.This book is targeted at anyone who works on or handles a large amount of data. No prior knowledge of OpenRefine is required, as we start from the very beginning and gradually reveal more advanced features. You don't even need your own dataset, as we provide example data to try out the book's recipes.

  4. A new self-adaptive remeshing approach

    Institute of Scientific and Technical Information of China (English)

    Wu Yong; He Yuanjun; Zhang Lin

    2006-01-01

    This paper proposes a self-adaptive approach to converting irregular genus-0 meshes into those with subdivision connectivity. To assure a maximal utilization of the multiresolution techniques on the remesh,we map the original mesh onto the unit sphere and construct a base mesh with only four vertices. We also introduce a self-adaptive relocation operation, which is used to adapt the vertex distribution of the spherical subdivision mesh to that of the parameterized mesh, to improve the visual appearance of the remesh.The experimental results show that our method can not only make the number of irregular vertices in the remesh as small as possible, but also preserve the details of the original mesh well.

  5. Secure Routing in Wireless Mesh Networks

    CERN Document Server

    Sen, Jaydip

    2011-01-01

    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are des...

  6. Acquiring Plausible Predications from MEDLINE by Clustering MeSH Annotations.

    Science.gov (United States)

    Miñarro-Giménez, Jose Antonio; Kreuzthaler, Markus; Bernhardt-Melischnig, Johannes; Martínez-Costa, Catalina; Schulz, Stefan

    2015-01-01

    The massive accumulation of biomedical knowledge is reflected by the growth of the literature database MEDLINE with over 23 million bibliographic records. All records are manually indexed by MeSH descriptors, many of them refined by MeSH subheadings. We use subheading information to cluster types of MeSH descriptor co-occurrences in MEDLINE by processing co-occurrence information provided by the UMLS. The goal is to infer plausible predicates to each resulting cluster. In an initial experiment this was done by grouping disease-pharmacologic substance co-occurrences into six clusters. Then, a domain expert manually performed the assignment of meaningful predicates to the clusters. The mean accuracy of the best ten generated biomedical facts of each cluster was 85%. This result supports the evidence of the potential of MeSH subheadings for extracting plausible medical predications from MEDLINE.

  7. Automatic processing of an orientation map into a finite element mesh that conforms to grain boundaries

    Science.gov (United States)

    Dancette, S.; Browet, A.; Martin, G.; Willemet, M.; Delannay, L.

    2016-06-01

    A new procedure for microstructure-based finite element modeling of polycrystalline aggregates is presented. The proposed method relies (i) on an efficient graph-based community detection algorithm for crystallographic data segmentation and feature contour extraction and (ii) on the generation of selectively refined meshes conforming to grain boundaries. It constitutes a versatile and close to automatic environment for meshing complex microstructures. The procedure is illustrated with polycrystal microstructures characterized by orientation imaging microscopy. Hot deformation of a Duplex stainless steel is investigated based on ex-situ EBSD measurements performed on the same region of interest before and after deformation. A finite element mesh representing the initial microstructure is generated and then used in a crystal plasticity simulation of the plane strain compression. Simulation results and experiments are in relatively good agreement, confirming a large potential for such directly coupled experimental and modeling analyses, which is facilitated by the present image-based meshing procedure.

  8. Efficient Packet Forwarding in Mesh Network

    CERN Document Server

    Kanrar, Soumen

    2012-01-01

    Wireless Mesh Network (WMN) is a multi hop low cost, with easy maintenance robust network providing reliable service coverage. WMNs consist of mesh routers and mesh clients. In this architecture, while static mesh routers form the wireless backbone, mesh clients access the network through mesh routers as well as directly meshing with each other. Different from traditional wireless networks, WMN is dynamically self-organized and self-configured. In other words, the nodes in the mesh network automatically establish and maintain network connectivity. Over the years researchers have worked, to reduce the redundancy in broadcasting packet in the mesh network in the wireless domain for providing reliable service coverage, the source node deserves to broadcast or flood the control packets. The redundant control packet consumes the bandwidth of the wireless medium and significantly reduces the average throughput and consequently reduces the overall system performance. In this paper I study the optimization problem in...

  9. On Linear Spaces of Polyhedral Meshes.

    Science.gov (United States)

    Poranne, Roi; Chen, Renjie; Gotsman, Craig

    2015-05-01

    Polyhedral meshes (PM)-meshes having planar faces-have enjoyed a rise in popularity in recent years due to their importance in architectural and industrial design. However, they are also notoriously difficult to generate and manipulate. Previous methods start with a smooth surface and then apply elaborate meshing schemes to create polyhedral meshes approximating the surface. In this paper, we describe a reverse approach: given the topology of a mesh, we explore the space of possible planar meshes having that topology. Our approach is based on a complete characterization of the maximal linear spaces of polyhedral meshes contained in the curved manifold of polyhedral meshes with a given topology. We show that these linear spaces can be described as nullspaces of differential operators, much like harmonic functions are nullspaces of the Laplacian operator. An analysis of this operator provides tools for global and local design of a polyhedral mesh, which fully expose the geometric possibilities and limitations of the given topology.

  10. Panorama 2012 - Refining 2030

    International Nuclear Information System (INIS)

    The major uncertainty characterizing the global energy landscape impacts particularly on transport, which remains the virtually-exclusive bastion of the oil industry. The industry must therefore respond to increasing demand for mobility against a background marked by the emergence of alternatives to oil-based fuels and the need to reduce emissions of pollutants and greenhouse gases (GHG). It is in this context that the 'Refining 2030' study conducted by IFP Energies Nouvelles (IFPEN) forecasts what the global supply and demand balance for oil products could be, and highlights the type and geographical location of the refinery investment required. Our study shows that the bulk of the refining investment will be concentrated in the emerging countries (mainly those in Asia), whilst the areas historically strong in refining (Europe and North America) face reductions in capacity. In this context, the drastic reduction in the sulphur specification of bunker oil emerges as a structural issue for European refining, in the same way as increasingly restrictive regulation of refinery CO2 emissions (quotas/taxation) and the persistent imbalance between gasoline and diesel fuels. (authors)

  11. Improved Butterfly Subdivision Scheme for Meshes with Arbitrary Topology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; MA Yong-you; ZHANG Cheng; JIANG Shou-wei

    2005-01-01

    Based on the butterfly subdivision scheme and the modified butterfly subdivision scheme, an improved butterfly subdivision scheme is proposed. The scheme uses a small stencil of six points to calculate new inserting vertex, 2n new vertices are inserted in the 2n triangle faces in each recursion, and the n old vertices are kept, special treatment is given to the boundary, achieving higher smoothness while using small stencils is realized. With the proposed scheme, the number of triangle faces increases only by a factor of 3 in each refinement step. Compared with the butterfly subdivision scheme and the modified butterfly subdivision scheme, the size of triangle faces changes more gradually, which allows one to have greater control over the resolution of a refined mesh.

  12. The evolution of oil refining in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A. [CONCAWE, Brussels (Belgium)

    2013-04-01

    Back in 1963 when CONCAWE was founded, the world looked very different from what it is today, and so did the global and European refining industry. Oil product markets were expanding fast and new refineries were being built at a steady rate. The oil crisis of the 1970s brought an abrupt end to this, heralding a long era of consolidation and stepwise adaptation. At the same time the nature of the global oil business shifted from fully integrated companies producing, transporting and refining their own oil to a much more diversified situation where oil production ('upstream') and refining/distribution ('downstream') gradually became two essentially separate businesses. From being purely a 'cost centre' in an integrated chain, refining has become a separate activity in its own right, operating as a 'profit centre' between two global markets - crude oil and products - which, although not entirely independent, have their own dynamics and influences. In addition demand gradually shifted towards lighter products while the quality requirements on all products were considerably tightened. This article explores the new challenges that these changes have imposed on EU refiners, and describes CONCAWE's contributions to understanding their impact on refinery production and investments.

  13. Massively parallel-in-space-time, adaptive finite element framework for non-linear parabolic equations

    CERN Document Server

    Dyja, Robert; van der Zee, Kristoffer G

    2016-01-01

    We present an adaptive methodology for the solution of (linear and) non-linear time dependent problems that is especially tailored for massively parallel computations. The basic concept is to solve for large blocks of space-time unknowns instead of marching sequentially in time. The methodology is a combination of a computationally efficient implementation of a parallel-in-space-time finite element solver coupled with a posteriori space-time error estimates and a parallel mesh generator. This methodology enables, in principle, simultaneous adaptivity in both space and time (within the block) domains. We explore this basic concept in the context of a variety of time-steppers including $\\Theta$-schemes and Backward Differentiate Formulas. We specifically illustrate this framework with applications involving time dependent linear, quasi-linear and semi-linear diffusion equations. We focus on investigating how the coupled space-time refinement indicators for this class of problems affect spatial adaptivity. Final...

  14. Fitting polynomial surfaces to triangular meshes with Voronoi Squared Distance Minimization

    KAUST Repository

    Nivoliers, Vincent

    2011-12-01

    This paper introduces Voronoi Squared Distance Minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of Centroidal Voronoi Tesselation (CVT), and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh to best approximate the input, without estimating any differential quantities. Therefore it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated.

  15. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent

    2012-11-06

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of the one minimized by centroidal Voronoi tessellation, and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh elements to best approximate the input, without estimating any differential quantities. Therefore, it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated. © 2012 Springer-Verlag London.

  16. A Numerical Study of Blowup in the Harmonic Map Heat Flow Using the MMPDE Moving Mesh Method

    NARCIS (Netherlands)

    Haynes, R.D.; Huang, W.; Zegeling, P.A.

    2013-01-01

    The numerical solution of the harmonic heat map flow problems with blowup in finite or infinite time is considered using an adaptive moving mesh method. A properly chosen monitor function is derived so that the moving mesh method can be used to simulate blowup and produce accurate blowup profiles wh

  17. Panorama 2009 - refining

    International Nuclear Information System (INIS)

    For oil companies to invest in new refining and conversion capacity, favorable conditions over time are required. In other words, refining margins must remain high and demand sustained over a long period. That was the situation prevailing before the onset of the financial crisis in the second half of 2008. The economic conjuncture has taken a substantial turn for the worse since then and the forecasts for 2009 do not look bright. Oil demand is expected to decrease in the OECD countries and to grow much more slowly in the emerging countries. It is anticipated that refining margins will fall in 2009 - in 2008, they slipped significantly in the United States - as a result of increasingly sluggish demand, especially for light products. The next few months will probably be unfavorable to investment. In addition to a gloomy business outlook, there may also be a problem of access to sources of financing. As for investment projects, a mainstream trend has emerged in the last few years: a shift away from the regions that have historically been most active (the OECD countries) towards certain emerging countries, mostly in Asia or the Middle East. The new conjuncture will probably not change this trend

  18. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics

    Science.gov (United States)

    Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.

    2012-02-01

    Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed of light. Significant progress in its numerical modeling emerged in the last two decades, and we highlight specifically the need for grid-adaptive, shock-capturing treatments found in several contemporary codes in active use and development. Our discussion highlights one such code, MPI-AMRVAC (Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code), but includes generic strategies for allowing massively parallel, block-tree adaptive simulations in any dimensionality. We provide implementation details reflecting the underlying data structures as used in MPI-AMRVAC. Parallelization strategies and scaling efficiencies are discussed for representative applications, along with guidelines for data formats suitable for parallel I/O. Refinement strategies available in MPI-AMRVAC are presented, which cover error estimators in use in many modern AMR frameworks. A test suite for relativistic hydro and magnetohydrodynamics is provided, chosen to cover all aspects encountered in high-resolution, shock-governed astrophysical applications. This test suite provides ample examples highlighting the advantages of AMR in relativistic flow problems.

  19. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron

    1998-12-08

    Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  20. BOT3P5.2, 3D Mesh Generator and Graphical Display of Geometry for Radiation Transport Codes, Display of Results

    International Nuclear Information System (INIS)

    describe the user's scheme. According to the mesh grid refinement options, GGTM introduces further co-ordinate values, which complete the input mesh grid. A loop for each cell is performed to determine the zone and the material to be attributed to the cell. The cell is ideally represented by its centre and it is relatively simple to determine which material zone the cell belongs to. Material zones may have very complicated geometrical shapes in space thanks to the combinatorial geometry among volumes existing in GGTM. Moreover, the priority parameter associated to each material zone can easily solve any overlapping situation among zones. Fixed neutron sources, if any, are adapted to the mesh refinement at the same time. As from version 5.0, GGTM can optionally calculate errors in volume values due to the stair-cased approximation in geometry. GGTM considers a 'very' refined uniform sub-grid for those single meshes cutting more than one material zone at zone interfaces and works in same way as previously described in the mesh attribution to zones for each single sub-mesh. This method lets users calculate the exact material zone volume values with great precision, independently of the geometry complexity and lets GGTM automatically update material zone densities to conserve mass. As for the plot programs DDM, DTM2 and DTM3, they do not make any value interpolations among cell values to have contours, when used as post-processors or to plot any fixed neutron source distribution; they simply attribute the entire single mesh grid cell the colour corresponding to the adopted value scale. This simple and fast method lets users faithfully reproduce transport results and overlap material, zone, body or mesh borders on the same plots without overcrowding them with too many lines. 3 - Restrictions on the complexity of the problem: Only a continuous space mesh grid can be generated by GGDM and GGTM and input to DDM, DTM2, DTM3, RVARSCL, COMPARE and MKSRC

  1. An adaptive finite volume solver for steady Euler equations with non-oscillatory k-exact reconstruction

    Science.gov (United States)

    Hu, Guanghui; Yi, Nianyu

    2016-05-01

    In this paper, we present an adaptive finite volume method for steady Euler equations with a non-oscillatory k-exact reconstruction on unstructured mesh. The numerical framework includes a Newton method as an outer iteration to linearize the Euler equations, and a geometrical multigrid method as an inner iteration to solve the derived linear system. A non-oscillatory k-exact reconstruction of the conservative solution in each element is proposed for the high order and non-oscillatory behavior of the numerical solutions. The importance on handling the curved boundary in an appropriate way is also studied with the numerical experiments. The h-adaptive method is introduced to enhance the efficiency of the algorithm. The numerical tests show successfully that the quality solutions can be obtained smoothly with the proposed algorithm, i.e., the expected convergence order of the numerical solution with the mesh refinement can be reached, while the non-oscillation shock structure can be obtained. Furthermore, the mesh adaptive method with the appropriate error indicators can effectively enhance the implementation efficiency of numerical method, while the steady state convergence and numerical accuracy are kept in the meantime.

  2. Interactive graphical tools for three-dimensional mesh redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, L.A.

    1996-03-01

    Three-dimensional meshes modeling nonlinear problems such as sheet metal forming, metal forging, heat transfer during welding, the propagation of microwaves through gases, and automobile crashes require highly refined meshes in local areas to accurately represent areas of high curvature, stress, and strain. These locally refined areas develop late in the simulation and/or move during the course of the simulation, thus making it difficult to predict their exact location. This thesis is a systematic study of new tools scientists can use with redistribution algorithms to enhance the solution results and reduce the time to build, solve, and analyze nonlinear finite element problems. Participatory design techniques including Contextual Inquiry and Design were used to study and analyze the process of solving such problems. This study and analysis led to the in-depth understanding of the types of interactions performed by FEM scientists. Based on this understanding, a prototype tool was designed to support these interactions. Scientists participated in evaluating the design as well as the implementation of the prototype tool. The study, analysis, prototype tool design, and the results of the evaluation of the prototype tool are described in this thesis.

  3. The Village Telco project: a reliable and practical wireless mesh telephony infrastructure

    Directory of Open Access Journals (Sweden)

    Gardner-Stephen Paul

    2011-01-01

    Full Text Available Abstract VoIP (Voice over IP over mesh networks could be a potential solution to the high cost of making phone calls in most parts of Africa. The Village Telco (VT is an easy to use and scalable VoIP over meshed WLAN (Wireless Local Area Network telephone infrastructure. It uses a mesh network of mesh potatoes to form a peer-to-peer network to relay telephone calls without landlines or cell phone towers. This paper discusses the Village Telco infrastructure, how it addresses the numerous difficulties associated with wireless mesh networks, and its efficient deployment for VoIP services in some communities around the globe. The paper also presents the architecture and functions of a mesh potato and a novel combined analog telephone adapter (ATA and WiFi access point that routes calls. Lastly, the paper presents the results of preliminary tests that have been conducted on a mesh potato. The preliminary results indicate very good performance and user acceptance of the mesh potatoes. The results proved that the infrastructure is deployable in severe and under-resourced environments as a means to make cheap phone calls and render Internet and IP-based services. As a result, the VT project contributes to bridging the digital divide in developing areas.

  4. Wireless mesh networked radios optimized for UGS applications

    Science.gov (United States)

    Calcutt, Wade; Williams, Jonathan; Jones, Barry

    2010-04-01

    Wireless mesh networked (WMN) radios have been applied to unattended ground sensor (UGS) applications for a number of years. However, adapting commercial off-the-shelf (COTS) WMN protocols and hardware for UGS applications has not yielded the desired performance because of compromises inherent to these existing radios. As a leading provider of UGS systems, McQ Inc. has been developing custom WMN protocols and radio hardware that are adapted specifically for the unique scenarios of the UGS situation. This paper presents the McQ designs, the tradeoffs made in developing the designs, and test and performance results.

  5. Sequential Synergy of Alkaline Peroxide Treatment and Refining in Co-generating Filler for Pulp Web Augmentation

    Directory of Open Access Journals (Sweden)

    Arniza Ghazali

    2012-01-01

    Full Text Available Desired pulp-based product properties can be achieved by addition of filler in the pulp network. In exploring this, fines co-generated upon refining the alkaline peroxide treated oil palm empty fruit bunches (EFB were collected based on their passage and retention capacities when subjected to varying mesh-sizes stainless-steel square mesh wires. Pulp network incorporating fines produced from the synergy of low alkaline peroxide (AP and low energy refining effects shows that blending 12% of the 400-mesh fines (P300/R400 with the normal 200-mesh pulp fraction enhanced paper tensile strength by 100% due to their favourable dimensions. This defines the usefulness of fibrillar particles whose cell wall collapsibility increases the web density by increasing bonding ability and thus, strength of pulp-based products. Fines produced from more extreme synergy between alkaline peroxide and degree of refining, exhibit unique submicron fibrils and ‘nano-CGF’ also responsible for further augmentation of EFB alkaline peroxide pulp network. Whether from the simple (low-AP and low energy refining or the extreme synergy of AP and refining, the co-generated fines are apparently suitable materials for use as natural filler for augmentation of pulp network. Particularly for the simple AP and refining synergy, the introduced recovery and utilization of the co-generated filler (CGF was found to reduce 74% turbidity and this improvement will help reduce the complexity of whitewater generation in the pulping system.

  6. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    Science.gov (United States)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  7. A numbering algorithm for finite element on extruded meshes which avoids the unstructured mesh penalty

    OpenAIRE

    Bercea, Gheorghe-Teodor; McRae, Andrew T. T.; Ham, David A.; Mitchell, Lawrence; Rathgeber, Florian; Nardi, Luigi; Luporini, Fabio; Kelly, Paul H. J.

    2016-01-01

    We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of 3D high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented ...

  8. The moving mesh code Shadowfax

    CERN Document Server

    Vandenbroucke, Bert

    2016-01-01

    We introduce the moving mesh code Shadowfax, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public License. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare Shadowfax with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.

  9. 21st International Meshing Roundtable

    CERN Document Server

    Weill, Jean-Christophe

    2013-01-01

    This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.

  10. Confined helium on Lagrange meshes

    CERN Document Server

    Baye, Daniel

    2015-01-01

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  11. 22nd International Meshing Roundtable

    CERN Document Server

    Staten, Matthew

    2014-01-01

    This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA.  The first IMR was held in 1992, and the conference series has been held annually since.  Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics.  The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.

  12. The moving mesh code SHADOWFAX

    Science.gov (United States)

    Vandenbroucke, B.; De Rijcke, S.

    2016-07-01

    We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.

  13. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  14. An adaptive finite element procedure for crack propagation analysis

    Institute of Scientific and Technical Information of China (English)

    ALSHOAIBI Abdulnaser M.; HADI M.S.A.; ARIFFIN A.K.

    2007-01-01

    This paper presents the adaptive mesh finite element estimation method for analyzing 2D linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors.The maximum circumference theory is used for the latter. In evaluating the accuracy of the estimated stress intensity factors, four cases are tested consisting of compact tension specimen, three-point bending specimen, central cracked plate and double edge notched plate. These were carried out and compared to the results from other studies. The crack trajectories of these specimen tests are also illustrated.

  15. Mesh networked unattended ground sensors

    Science.gov (United States)

    Colling, Kent; Calcutt, Wade; Winston, Mark; Jones, Barry

    2006-05-01

    McQ has developed a family of low cost unattended ground sensors that utilize self-configured, mesh network communications for wireless sensing. Intended for use in an urban environment, the area monitored by the sensor system poses a communication challenge. A discussion into the sensor's communication performance and how it affects sensor installation and the operation of the system once deployed is presented.

  16. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Benazzi, E

    2003-07-01

    Down sharply in 2002, refining margins showed a clear improvement in the first half-year of 2003. As a result, the earnings reported by oil companies for financial year 2002 were significantly lower than in 2001, but the prospects are brighter for 2003. In the petrochemicals sector, slow demand and higher feedstock prices eroded margins in 2002, especially in Europe and the United States. The financial results for the first part of 2003 seem to indicate that sector profitability will not improve before 2004. (author)

  17. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Benazzi, E.; Alario, F

    2004-07-01

    In 2003, refining margins showed a clear improvement that continued throughout the first three quarters of 2004. Oil companies posted significantly higher earnings in 2003 compared to 2002, with the results of first quarter 2004 confirming this trend. Due to higher feedstock prices, the implementation of new capacity and more intense competition, the petrochemicals industry was not able to boost margins in 2003. In such difficult business conditions, aggravated by soaring crude prices, the petrochemicals industry is not likely to see any improvement in profitability before the second half of 2004. (author)

  18. Image meshing via hierarchical optimization*

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONGS

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  19. Image meshing via hierarchical optimization

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONG‡

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., defi nition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to fi nd a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to fi nd a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to fi ner ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  20. Cluster parallel rendering based on encoded mesh

    Institute of Scientific and Technical Information of China (English)

    QIN Ai-hong; XIONG Hua; PENG Hao-yu; LIU Zhen; SHI Jiao-ying

    2006-01-01

    Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes' boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.

  1. Optimizing the geometrical accuracy of curvilinear meshes

    CERN Document Server

    Toulorge, Thomas; Remacle, Jean-François

    2015-01-01

    This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a part...

  2. Biologic mesh for abdominal wall reconstruction

    Directory of Open Access Journals (Sweden)

    King KS

    2014-11-01

    Full Text Available Kathryn S King,1 Frank P Albino,2 Parag Bhanot3 1School of Medicine, Georgetown University Hospital, Washington, DC, USA; 2Department of Plastic Surgery, 3Department of General Surgery, Georgetown University Hospital, Washington, DC, USA Background: Mesh reinforcement significantly decreases rates of recurrence following ventral hernia repair. Historically, biologic mesh was touted as superior in the setting of infection; however, selecting the appropriate mesh for a given clinical scenario is often a matter of debate. The purpose of this review is to highlight a number of the more commonly used biologic mesh products with a review of outcomes from the current literature. Methods: Outcomes following abdominal wall reconstruction using biologic mesh were reviewed for acellular cadaveric human dermis, cross-linked porcine dermis, non-cross-linked porcine dermis, porcine small intestine submucosa, acellular bovine pericardial, and acellular bovine dermal mesh. Studies with rigorous methods, adequate patient samples, and sufficient follow-up were selected for review. Results: Hernia recurrence rates following biologic mesh reinforcement vary widely. Porcine small intestine submucosa and bovine pericardium were associated with the lowest hernia recurrence rates. Porcine cross-linked dermal mesh products resulted in higher rates of adhesion formation and lower rates of tissue incorporation compared to non-cross-linked porcine mesh. Conclusion: Successful ventral hernia repair can be achieved with acceptable complications rates for each of the reviewed mesh products. Biologic meshes have an advantage over synthetic mesh in contaminated wounds but their use may not be cost-effective in all patient populations. Those with and/or at high risk for wound complications may also undergo repair with biologic mesh. Keywords: biologic mesh, ventral hernia repair, acellular dermal matrix 

  3. Petroleum refining industry in China

    International Nuclear Information System (INIS)

    The oil refining industry in China has faced rapid growth in oil imports of increasingly sour grades of crude with which to satisfy growing domestic demand for a slate of lighter and cleaner finished products sold at subsidized prices. At the same time, the world petroleum refining industry has been moving from one that serves primarily local and regional markets to one that serves global markets for finished products, as world refining capacity utilization has increased. Globally, refined product markets are likely to experience continued globalization until refining investments significantly expand capacity in key demand regions. We survey the oil refining industry in China in the context of the world market for heterogeneous crude oils and growing world trade in refined petroleum products.

  4. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    Science.gov (United States)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  5. Macromolecular crystallographic estructure refinement

    Directory of Open Access Journals (Sweden)

    Afonine, Pavel V.

    2015-04-01

    Full Text Available Model refinement is a key step in crystallographic structure determination that ensures final atomic structure of macromolecule represents measured diffraction data as good as possible. Several decades have been put into developing methods and computational tools to streamline this step. In this manuscript we provide a brief overview of major milestones of crystallographic computing and methods development pertinent to structure refinement.El refinamiento es un paso clave en el proceso de determinación de una estructura cristalográfica al garantizar que la estructura atómica de la macromolécula final represente de la mejor manera posible los datos de difracción. Han hecho falta varias décadas para poder desarrollar nuevos métodos y herramientas computacionales dirigidas a dinamizar esta etapa. En este artículo ofrecemos un breve resumen de los principales hitos en la computación cristalográfica y de los nuevos métodos relevantes para el refinamiento de estructuras.

  6. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-14

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  7. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  8. European refiners re-adjust margins strategy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.G. [ed.

    1996-05-01

    Refiners in Europe are adjusting operating strategies to reflect the volatilities of tight operating margins. From the unexpected availability of quality crudes (e.g., Brent, 0.3% sulfur), to the role of government in refinery planning, the European refining industry is positioning itself to reverse the past few years of steadily declining profitability. Unlike expected increases in US gasoline demand, European gasoline consumption is not expected to increase, and heavy fuel oil consumption is also declining. However, diesel fuel consumption is expected to increase, even though diesel processing capacity has recently decreased (i.e., more imports). Some of the possible strategies that Europeans may adapt to improve margins and reduce volatility include: Increase conversion capacity to supply growing demand for middle distillates and LPG; alleviate refinery cash flow problems with alliances; and direct discretionary investment toward retail merchandising (unless there is a clear trend toward a widening of the sweet-sour crude price differential).

  9. Mesh Plug Repair of Inguinal Hernia; Single Surgeon Experience

    Directory of Open Access Journals (Sweden)

    Ahmet Serdar Karaca

    2013-10-01

    Full Text Available Aim: Mesh repair of inguinal hernia repairs are shown to be an effective and reliable method. In this study, a single surgeon%u2019s experience with plug-mesh method performs inguinal hernia repair have been reported. Material and Method: 587 patients with plug-mesh repair of inguinal hernia, preoperative age, body / mass index, comorbid disease were recorded in terms of form. All of the patients during the preoperative and postoperative hernia classification of information, duration of operation, antibiotics, perioperative complications, and later, the early and late postoperative complications, infection, recurrence rates and return to normal daily activity, verbal pain scales in terms of time and postoperative pain were evaluated. Added to this form of long-term pain ones. The presence of wound infection was assessed by the presence of purulent discharge from the incision. Visual analog scale pain status of the patients was measured. Results: 587 patients underwent repair of primary inguinal hernia mesh plug. One of the patients, 439 (74% of them have adapted follow-ups. Patients%u2019 ages ranged from 18-86. Was calculated as the mean of 47±18:07. Follow-up period of the patients was found to be a minimum of 3 months, maximum 55 months. Found an average of 28.2±13.4 months. Mean duration of surgery was 35.07±4.00 min (min:22mn-max:52mn, respectively. When complication rates of patients with recurrence in 2 patients (0.5%, hematoma development (1.4% in 6 patients, the development of infection in 11 patients (2.5% and long-term groin pain in 4 patients (0.9% appeared. Discussion: In our experience, the plug-mesh repair of primary inguinal hernia repair safe, effective low recurrence and complication rates can be used.

  10. Refinement for administrative policies

    NARCIS (Netherlands)

    Dekker, M.A.C.; Etalle, S.

    2007-01-01

    Flexibility of management is an important requisite for access control systems as it allows users to adapt the access control system in accordance with practical requirements. This paper builds on earlier work where we defined administrative policies for a general class of RBAC models. We present a

  11. Refinement for Administrative Policies

    NARCIS (Netherlands)

    Dekker, M.A.C.; Etalle, S.

    2007-01-01

    Flexibility of management is an important requisite for access control systems as it allows users to adapt the access control system in accordance with practical requirements. This paper builds on earlier work where we defined administrative policies for a general class of RBAC models. We present a

  12. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    Science.gov (United States)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  13. An object-oriented decomposition of the adaptive-hp finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, J.C.

    1994-12-13

    Adaptive-hp methods are those which use a refinement control strategy driven by a local error estimate to locally modify the element size, h, and polynomial order, p. The result is an unstructured mesh in which each node may be associated with a different polynomial order and which generally require complex data structures to implement. Object-oriented design strategies and languages which support them, e.g., C++, help control the complexity of these methods. Here an overview of the major classes and class structure of an adaptive-hp finite element code is described. The essential finite element structure is described in terms of four areas of computation each with its own dynamic characteristics. Implications of converting the code for a distributed-memory parallel environment are also discussed.

  14. Adaptive thermo-fluid moving boundary computations for interfacial dynamics

    Institute of Scientific and Technical Information of China (English)

    Chih-Kuang Kuan; Jaeheon Sim; Wei Shyy

    2012-01-01

    In this study,we present adaptive moving boundary computation technique with parallel implementation on a distributed memory multi-processor system for large scale thermo-fluid and interfacial flow computations.The solver utilizes Eulerian-Lagrangian method to track moving (Lagrangian) interfaces explicitly on the stationary (Eulerian)Cartesian grid where the flow fields are computed. We address the domain decomposition strategies of EulerianLagrangian method by illustrating its intricate complexity of the computation involved on two different spaces interactively and consequently,and then propose a trade-off approach aiming for parallel scalability.Spatial domain decomposition is adopted for both Eulerian and Lagrangian domain due to easy load balancing and data locality for minimum communication between processors.In addition,parallel cell-based unstructured adaptive mesh refinement (AMR)technique is implemented for the flexible local refinement and even-distributed computational workload among processors.Selected cases are presented to highlight the computational capabilities,including Faraday type interfacial waves with capillary and gravitational forcing,flows around varied geometric configurations and induced by boundary conditions and/or body forces,and thermo-fluid dynamics with phase change.With the aid of the present techniques,large scale challenging moving boundary problems can be effectively addressed.

  15. Developing a new high energy absorption mesh

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, Y.; Giles, G. [University of Western Australia, Crawley, WA (Australia)

    2009-10-01

    One of the main tools used by mining operations to mitigate the risk of rockburst is the installation of a so-called 'dynamic resistant' ground support system to absorb the impact of shock waves from mine induced seismic events. Ground support systems are composed of rock reinforcement (rock bolts or cable bolts) and surface support (mesh or shotcrete). Shotcrete is strong but not flexible, normal weld-mesh has some flexibility but is not very strong. The Australian Centre for Geomechanics in collaboration with Onesteel Reinforcing Pty Ltd. is currently working on a new high energy absorption mesh that combines strength and flexibility. The new mesh can be installed with a Jumbo drill, in a similar way as the widely used sheet of weld-mesh. The paper describes the development of this the mesh systems. 8 refs., 12 figs.

  16. Association Discovery Protocol for Hybrid Wireless Mesh Networks

    OpenAIRE

    Adjih, Cédric; Cho, Song Yean; Jacquet, Philippe

    2006-01-01

    Wireless mesh networks (WMNs) consist of two kinds of nodes: mesh routers which form the backbones of WMNs and mesh clients which associate with mesh routers to access networks. Because of the discrepancy between mesh routers and mesh clients, WMNs have a hybrid structure. Their hybrid structure presents an opportunity to integrate WMNs with different networks such as wireless LAN, Bluetooth and sensor networks through bridging functions in mesh routers. Because of the ability to integrate va...

  17. On LAGOON nose landing gear CFD/CAA computation over unstructured mesh using a ZDES approach.

    OpenAIRE

    De La Puente, F.; Sanders, L.; Vuillot, F

    2014-01-01

    This paper is part of ONERA's effort to compute the noise generation around landing gears, effort that has been shown with studies on a variety of configurations such as the ones included inside the BANC-II (Benchmark problems for Airframe Noise Computations). In this case, the addressed geometry is the LAGOON baseline nose landing gear. On the present computation, a refined unstructured mesh is generated for resolving the boundary layer up to y+ around one. The simulation of the flow was per...

  18. Delaunay mesh generation for an unstructured-grid ocean general circulation model

    OpenAIRE

    Legrand, S.; Legat, V.; E. Deleersnijder

    2000-01-01

    An incremental method is presented to generate automatically boundary-fitted Delaunay triangulations of the global ocean. The method takes into account Earth curvature and allows local mesh refinement in order to resolve topological or dynamical features like midocean ridges or western boundary currents. Crucial issues like the nodes insertion process, the boundary integrity problem or the creation of inner nodes are explained. Finally, the quality of generated triangulations is discussed.

  19. Towards Perceptual Quality Evaluation of Dynamic Meshes

    OpenAIRE

    Torkhani, Fakhri; Wang, Kai; Montanvert, Annick

    2011-01-01

    In practical applications, it is common that a 3D mesh undergoes some lossy operations. Since the end users of 3D meshes are often human beings, it is thus important to derive metrics that can faithfully assess the perceptual distortions induced by these operations. Like in the case of image quality assessment, metrics based on mesh geometric distances (e.g. Hausdorff distance and root mean squared error) cannot correctly predict the visual quality degradation. Recently, several perceptually-...

  20. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  1. Delaunay triangulation and computational fluid dynamics meshes

    Science.gov (United States)

    Posenau, Mary-Anne K.; Mount, David M.

    1992-01-01

    In aerospace computational fluid dynamics (CFD) calculations, the Delaunay triangulation of suitable quadrilateral meshes can lead to unsuitable triangulated meshes. Here, we present case studies which illustrate the limitations of using structured grid generation methods which produce points in a curvilinear coordinate system for subsequent triangulations for CFD applications. We discuss conditions under which meshes of quadrilateral elements may not produce a Delaunay triangulation suitable for CFD calculations, particularly with regard to high aspect ratio, skewed quadrilateral elements.

  2. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    International Nuclear Information System (INIS)

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module

  3. Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy

    Institute of Scientific and Technical Information of China (English)

    LI Ying; YANG Zhou-wang; DENG Jian-song

    2006-01-01

    The problem of spherical parametrization is that of mapping a genus-zero mesh onto a spherical surface. For a given mesh, different parametrizations can be obtained by different methods. And for a certain application, some parametrization results might behave better than others. In this paper, we will propose a method to parametrize a genus-zero mesh so that a surface fitting algorithm with PHT-splines can generate good result. Here the parametrization results are obtained by minimizing discrete harmonic energy subject to spherical constraints. Then some applications are given to illustrate the advantages of our results. Based on PHT-splines, parametric surfaces can be constructed efficiently and adaptively to fit genus-zero meshes after their spherical parametrization has been obtained.

  4. Converting skeletal structures to quad dominant meshes

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

    2012-01-01

    We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...... polar region. The algorithm produces high quality meshes which contain irregular vertices only at the poles or where several regions join. It is trivial to produce a stripe parametrization for the output meshes which also lend themselves well to polar subdivision. After an initial description of SQM, we...

  5. Self Organizing Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    P. Sharnya

    2013-06-01

    Full Text Available A communication network with radio nodes which is organized in a mesh topology is called as wireless mesh network or WMN. They are used for variety application such as building automation, transportation, citywide wireless Internet services etc. The WMN experience link failure due to application bandwidth demands, channel interference etc. These failures will cause performance degradation. Reconfiguration is needed to preserve the network from dynamic link failure. The most of the existing algorithms are not able to give full improvement at the time of dynamic link failure. The resource allocation require global configuration changes, greedy channel assignment algorithm might not be able to realize full improvement. The proposed work is for reconfigure the network at the time of dynamic link failure. Autonomous reconfiguration system (ARS is used to reconfigure the network. The system generates necessary changes in channel assignment in order to recover from link failure. The performance is evaluated using different types of quality parameters such as throughput, PDR, delay. Comparing with existing schemes this will provide fast recovery.

  6. Structure refinement of astrophyllite

    Institute of Scientific and Technical Information of China (English)

    MA; Zhesheng

    2001-01-01

    [1]Abdel-Fattah M. Abdel-Rahman., Mineral chemistry and paragenesis of astrophyllite from Egypt, Mineralogical Magazine, 1992, 56: 17-26.[2]Liu Yan, Ma Zhesheng, Han Xiuling et al, Astrophyllite from the Namjabarwa Area, Eastern Tibet, Acta Petrologica et Mineralogica, 1997,16(4): 338-340.[3]Peng Zhizhong, Ma Zhesheng, The crystal structure of astrophyllite (in Russian), Scientia Sinica, 1963, 12(2): 272-276.[4]Pen Zhizhong, Ma Zhesheng, The crystal structure of Tricinic Mangano-astrophyllite (in Russian), Scientia Sinica (Scien-ce in China), 1964, 13(7): 1180-1183.[5]Shi Nicheng, Ma Zhesheng, Li Guowu et al., Stucyure Refinement of Monoclinic astrophyllite, Acta Crystallographica, Section B, 1998, B54: 109-114.[6]Woodrow, P. J., The Crystal structure of astrophyllite, Acta Crystallographica, 1967, 22: 673-678.[7]СеменовЕ. И., Куплетскит-Новый Минерал Группы Астрофиллита, ДАН, 1956, 108(5), 933-936.[8]Nickel, E. H., Rowland, J. E., Charette, D. J., Niobophyllite the niobium analogue of astrophyllite: A new mineral from Sead Laxe Labrador, Canad. Mine., 1964, 8(1): 40.[9]X-Ray Laboratory of Hubei Geologic College, The crystal chemistry of astrophyllite group minerals (in Chinese), Scientia Geologica Sinica, 1974, (1): 18-30.[10]Sheldrick, G. M., Program for the solution of crystal structures, SHELX86, University of G?ttingen, 1985, Germany.[11]Sheldrick, G. M., Program for the refinement of crystal structures, SHELXL93, University of G?ttingen, 1993, Germany.[12]Liebau, F., Structural Chemistry of Silicates Structure, Bonding, and Classification, Heidelberg: Springer-Verlag QD181, S6L614, 1985.[13]Ferraris, G., Ivaldi, G., Khomyakov, A. P. et al., Nafertisite, a layer titanosilicate member of a polysomatic series including mica, Eur. J. Mineral.,1996, 8: 241-249.[14]Ferraris, G., Polysomatism as a tool for correlating properties and structure, in EMU Notes in

  7. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures.

    Science.gov (United States)

    Pavarino, E; Neves, L A; Machado, J M; de Godoy, M F; Shiyou, Y; Momente, J C; Zafalon, G F D; Pinto, A R; Valêncio, C R

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  8. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    Directory of Open Access Journals (Sweden)

    E. Pavarino

    2013-01-01

    Full Text Available The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS. The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context.

  9. Mesh Exposure and Associated Risk Factors in Women Undergoing Transvaginal Prolapse Repair with Mesh

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Frankman

    2013-01-01

    Full Text Available Objective. To determine frequency, rate, and risk factors associated with mesh exposure in women undergoing transvaginal prolapse repair with polypropylene mesh. Methods. Retrospective chart review was performed for all women who underwent Prolift Pelvic Floor Repair System (Gynecare, Somerville, NJ between September 2005 and September 2008. Multivariable logistic regression was performed to identify risk factors for mesh exposure. Results. 201 women underwent Prolift. Mesh exposure occurred in 12% (24/201. Median time to mesh exposure was 62 days (range: 10–372. When mesh was placed in the anterior compartment, the frequency of mesh exposure was higher than that when mesh was placed in the posterior compartment (8.7% versus 2.9%, P=0.04. Independent risk factors for mesh exposure were diabetes (AOR = 7.7, 95% CI 1.6–37.6; P=0.01 and surgeon (AOR = 7.3, 95% CI 1.9–28.6; P=0.004. Conclusion. Women with diabetes have a 7-fold increased risk for mesh exposure after transvaginal prolapse repair using Prolift. The variable rate of mesh exposure amongst surgeons may be related to technique. The anterior vaginal wall may be at higher risk of mesh exposure as compared to the posterior vaginal wall.

  10. Mesh Geometric Editing Approach Based on Gpu Texture

    Directory of Open Access Journals (Sweden)

    Guiping Qian

    2012-09-01

    Full Text Available This paper presents a novel interactive mesh editing approach based on GPU texture mapping. The main feature is that it copies 2D surface geometry information to GPU frame buffer. The planar mesh information is transformed into GPU texture and placed on apposite position of target mesh. 3D information is retrieved after stitching two mesh components from the primitive vertex coordinates. When running real-time mesh cloning operator, our mesh editing approach can copy arbitrary irregular geometric features from source mesh to target mesh. Experimental results indicate that our method can outperform previous related mesh editing techniques.

  11. Qingdao Refining Project Kicks off

    Institute of Scientific and Technical Information of China (English)

    Xiao Hao

    2005-01-01

    @@ In June 22, a ground breaking ceremony was warmly held for Qingdao Refining Project. It marked that the construction of Qingdao Refining Project have entered into a fast progressing period, and that the construction of a ten-millionton refinery "being the first level in the world and taking the lead in China" in the 21 st century have been completely launched.

  12. A software platform for continuum modeling of ion channels based on unstructured mesh

    International Nuclear Information System (INIS)

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)

  13. High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set

    Science.gov (United States)

    Nourgaliev, R. R.; Theofanous, T. G.

    2007-06-01

    The interface-capturing-fidelity issue of the level set method is addressed wholly within the Eulerian framework. Our aim is for a practical and efficient way to realize the expected benefits of grid resolution and high order schemes. Based on a combination of structured adaptive mesh refinement (SAMR), rather than quad/octrees, and on high-order spatial discretization, rather than the use of Lagrangian particles, our method is tailored to compressible flows, while it provides a potentially useful alternative to the particle level set (PLS) for incompressible flows. Interesting salient features of our method include (a) avoidance of limiting (in treating the Hamiltonian of the level set equation), (b) anchoring the level set in a manner that ensures no drift and no spurious oscillations of the zero level during PDE-reinitialization, and (c) a non-linear tagging procedure for defining the neighborhood of the interface subject to mesh refinement. Numerous computational results on a set of benchmark problems (strongly deforming, stretching and tearing interfaces) demonstrate that with this approach, implemented up to 11th order accuracy, the level set method becomes essentially free of mass conservation errors and also free of parasitic interfacial oscillations, while it is still highly efficient, and convenient for 3D parallel implementation. In addition, demonstration of performance in fully-coupled simulations is presented for multimode Rayleigh-Taylor instability (low-Mach number regime) and shock-induced, bubble-collapse (highly compressible regime).

  14. Robust a Posteriori Error Control and Adaptivity for Multiscale, Multinumerics, and Mortar Coupling

    KAUST Repository

    Pencheva, Gergina V.

    2013-01-01

    We consider discretizations of a model elliptic problem by means of different numerical methods applied separately in different subdomains, termed multinumerics, coupled using the mortar technique. The grids need not match along the interfaces. We are also interested in the multiscale setting, where the subdomains are partitioned by a mesh of size h, whereas the interfaces are partitioned by a mesh of much coarser size H, and where lower-order polynomials are used in the subdomains and higher-order polynomials are used on the mortar interface mesh. We derive several fully computable a posteriori error estimates which deliver a guaranteed upper bound on the error measured in the energy norm. Our estimates are also locally efficient and one of them is robust with respect to the ratio H/h under an assumption of sufficient regularity of the weak solution. The present approach allows bounding separately and comparing mutually the subdomain and interface errors. A subdomain/interface adaptive refinement strategy is proposed and numerically tested. © 2013 Society for Industrial and Applied Mathematics.

  15. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy

    Science.gov (United States)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.

    2016-07-01

    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  16. Integrating process models with planning and scheduling in refining operations

    Energy Technology Data Exchange (ETDEWEB)

    Mullick, Sanjeev [Aspen Technology, Inc., Houston, TX (United States)

    2012-10-15

    The refining industry is experiencing increased volatility on a global basis. This is felt in areas such as crude supply and demand fluctuations, product availability, pricing and, therefore, refining margins. These factors have a direct impact on business operations. This volatility requires refiners to make complex business decisions with the agility to adapt to changing market conditions. These decisions determine the choice of crudes and their supply sources, playing a key role in determining the profitability of operations. Tools that help enable the optimisation of these decisions provide significant value and contribute to the success of refining operations. Different decision-support tools have been developed for specific business functions, such as process modelling, design, simulation and optimisation, production planning and scheduling, performance monitoring, energy management and more. These solutions improve accuracy and reduce decision making time. However, there has been little integration between the functions. Solutions are now available for new best practices that improve integrated operating efficiencies and profitability. (orig.)

  17. 7th International Meshing Roundtable '98

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  18. Optimal Point Placement for Mesh Smoothing

    OpenAIRE

    Amenta, Nina; Bern, Marshall; Eppstein, David

    1998-01-01

    We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do not fit into the generalized linear programming paradigm.

  19. Coupled Elastic-Thermal Dynamics of Deployable Mesh Reflectors

    Science.gov (United States)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a coupled elastic-thermal dynamic model and a quasi-static strategy on the analysis of the reflector dynamics in the space mission. The linearized model, its natural frequencies and mode shapes are then derived upon the nonlinear static equilibrium of the structure. The numerical example is provided to fully adapt the strategy and investigate the dynamic behaviors of the structure. Finally the proposed method is applied on the sample of the deployable mesh reflector and the simulation results are presented. The research work delivered in the paper will be used to design the feedback surface in future.

  20. Mesh deformation based on artificial neural networks

    Science.gov (United States)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  1. Characteristics of Mesh Wave Impedance in FDTD Non-Uniform Mesh

    Institute of Scientific and Technical Information of China (English)

    REN Wu; LIU Bo; GAO Ben-qing

    2005-01-01

    In order to increase the evaluating precision of mesh reflection wave, the mesh wave impedance(MWI) is extended to the non-uniform mesh in 1-D and 2-D cases for the first time on the basis of the Yee's positional relation for electromagnetic field components. Lots of characteristics are obtained for different mesh sizes and frequencies. Then the reflection coefficient caused by the non-uniform mesh can be calculated according to the theory of equivalent transmission line. By comparing it with that calculated by MWI in the uniform mesh, it is found that the evaluating error can be largely reduced and is in good agreement with that directly computed by FDTD method. And this extension of MWI can be used in the error analysis of complex mesh.

  2. Update on Development of Mesh Generation Algorithms in MeshKit

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Vanderzee, Evan [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.

  3. Generation and Adaptive Modification of Anisotropic Meshes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to quickly and reliably simulate high-speed flows over a wide range of geometrically complex configurations is critical to many of NASA's missions....

  4. Long-Range Motion Trajectories Extraction of Articulated Human Using Mesh Evolution

    Science.gov (United States)

    Wu, Yuanyuan; He, Xiaohai; Kang, Byeongkeun; Song, Haiying; Nguyen, Truong Q.

    2016-04-01

    This letter presents a novel approach to extract reliable dense and long-range motion trajectories of articulated human in a video sequence. Compared with existing approaches that emphasize temporal consistency of each tracked point, we also consider the spatial structure of tracked points on the articulated human. We treat points as a set of vertices, and build a triangle mesh to join them in image space. The problem of extracting long-range motion trajectories is changed to the issue of consistency of mesh evolution over time. First, self-occlusion is detected by a novel mesh-based method and an adaptive motion estimation method is proposed to initialize mesh between successive frames. Furthermore, we propose an iterative algorithm to efficiently adjust vertices of mesh for a physically plausible deformation, which can meet the local rigidity of mesh and silhouette constraints. Finally, we compare the proposed method with the state-of-the-art methods on a set of challenging sequences. Evaluations demonstrate that our method achieves favorable performance in terms of both accuracy and integrity of extracted trajectories.

  5. Hex-dominant mesh generation for basin modeling with complex geometry

    International Nuclear Information System (INIS)

    Basin modeling aims to reconstruct the geological history of a basin and its oil system by means of fluid flow simulations, which is done by using a series of meshes describing basin geometry at each geological instant. These meshes are preferably hexahedral rather than tetrahedral in virtue for better numerical results. The basin can simply consist of geological layers delimited one from another by horizons. It can be geometrically complex with one or more faults interrupting the layers, which is barely studied but increasingly demanded. This paper exposes an automatic method which generates hex-dominant meshes for basin modeling with complex geometry. Firstly, based on their triangulations at the latest instant, 3D surface grids are generated with identical topology for all the horizons, and with some quadrilaterals being split across the diagonals to adapt to fault traces. Afterwards, all instants are iterated to generate corresponding meshes by firstly applying horizon and fault displacement on the mesh generated for precedent instant; the method then connects the bottom and top surface grids of the new layer along corresponding nodes, and splits certain cells along faults when necessary. Simulations have been carried out on generated meshes with satisfactory results.

  6. Quadratically consistent projection from particles to mesh

    CERN Document Server

    Duque, Daniel

    2016-01-01

    The advantage of particle Lagrangian methods in computational fluid dynamics is that advection is accurately modeled. However, this complicates the calculation of space derivatives. If a mesh is employed, it must be updated at each time step. On the other hand, fixed mesh, Eulerian, formulations benefit from the mesh being defined at the beginning of the simulation, but feature non-linear advection terms. It therefore seems natural to combine the two approaches, using a fixed mesh to perform calculations related to space derivatives, and using the particles to advect the information with time. The idea of combining Lagrangian particles and a fixed mesh goes back to Particle-in-Cell methods, and is here considered within the context of the finite element method (FEM) for the fixed mesh, and the particle FEM (pFEM) for the particles. Our results, in agreement with recent works, show that interpolation ("projection") errors, especially from particles to mesh, are the culprits of slow convergence of the method if...

  7. Adaptive Finite Element Modeling of Marine Controlled-Source Electromagnetic Fields in Two-Dimensional General Anisotropic Media

    Institute of Scientific and Technical Information of China (English)

    LI Yuguo; LUO Ming; PEI Jianxin

    2013-01-01

    In this paper,we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using an adaptive finite element approach.In comparison to a dipping anisotropy case,the first order spatial derivatives of the strike-parallel components arise in the partial differential equations for generally anisotropic media,which cause a non-symmetric linear system of equations for finite element modeling.The adaptive finite element method is employed to obtain numerical solutions on a sequence of refined unstructured triangular meshes,which allows for arbitrary model geometries including bathymetry and dipping layers.Numerical results of a 2D anisotropic model show both anisotropy strike and dipping angles have great influence on the marine CSEM responses.

  8. On Modal Refinement and Consistency

    DEFF Research Database (Denmark)

    Nyman, Ulrik; Larsen, Kim Guldstrand; Wasowski, Andrzej

    2007-01-01

    Almost 20 years after the original conception, we revisit several fundamental question about modal transition systems. First, we demonstrate the incompleteness of the standard modal refinement using a counterexample due to Hüttel. Deciding any refinement, complete with respect to the standard...... notions of implementation, is shown to be computationally hard (co-NP hard). Second, we consider four forms of consistency (existence of implementations) for modal specifications. We characterize each operationally, giving algorithms for deciding, and for synthesizing implementations, together...

  9. Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen

    International Nuclear Information System (INIS)

    Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future

  10. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  11. Local enhancement and denoising algorithms on arbitrary mesh surfaces

    Science.gov (United States)

    Agaian, Sos S.; Sartor, Richard

    2012-06-01

    In the process of analyzing the surfaces of 3d scanned objects, it is desirable to perform per-vertex calculations on a region of connected vertices, much in the same way that 2d image filters perform per-pixel calculations on a window of adjacent pixels. Operations such as blurring, averaging, and noise reduction would be useful for these applications, and are already well-established in 2d image enhancement. In this paper, we present a method for adapting simple windowed 2d image processing operations to the problem domain of 3d mesh surfaces. The primary obstacle is that mesh surfaces are usually not flat, and their vertices are usually not arranged in a grid, so adapting the 2d algorithms requires a change of analytical models. First we characterize 2d rectangular arrays as a special case of a graph, with edges between adjacent pixels. Next we treat filter windows as a limitation on the walks from a given source node to every other reachable node in the graph. We tested the common windowed average, weighted average, and median operations. We used 3d meshes comprised of sets of vertices and polygons, modeled as weighted undirected graphs. The edge weights are taken as the Euclidean distance between two vertices, calculated from their XYZ coordinates in the usual way. Our method successfully provides a new way to utilize these existing 2d filters. In addition, further generalizations and applications are discussed, including potential applications in any field that uses graph theory, such as social networking, marketing, telecom networks, epidemiology, and others.

  12. Recent progress in designing moving meshes for complex turbulent flows

    Directory of Open Access Journals (Sweden)

    Claudia Liersch

    2014-09-01

    Full Text Available This is concerned with an automated adaptive mesh design approach for Large Eddy Simulation (LES of turbulent flows. Based on a dynamic moving mesh partial differential equation (MMPDE, a fixed number of grid points is redistributed according to statistical quantities of interest (QoI selected to capture certain mean flow properties. Physically motivated LES-specific QoI, as the time-averaged gradient of streamwise velocity and the production rate, as well as more general QoI derived from the dual weighted residual method (DWRM for time-averaged statistics are investigated for a flow over periodic hills with Re=10595$Re=10\\,595$. Special emphasis is put on optimizing the grid adjustment phase. It is mainly determined by defining the length of the time interval for computing new time-averaged QoI, the number of time steps to solve the MMPDE, and the overall number of grid adjustment steps. The modifications proposed are nearly auto-adaptive with respect to the chosen QoI and lead to a reduction of the CPU time by more than one order of magnitude compared to the standard approach used so far. On the other hand, the DWRM not only provides suitable QoI to steer the grid movement, but also can be understood as a rigorous error analysis to assess the quality of numerical and subgrid modelling contributions of an LES. The numerical results compared to a highly resolved LES reference solution show the high potential of moving mesh methods to efficiently improve the resolution of turbulent flow features.

  13. Biomechanical and morphological study of a new elastic mesh (Ciberlastic) to repair abdominal wall defects.

    Science.gov (United States)

    Calvo, B; Pascual, G; Peña, E; Pérez-Khöler, B; Rodríguez, M; Bellón, J M

    2016-06-01

    The aim of this study was to conduct a preclinical evaluation of the behaviour of a new type of abdominal LW prosthesis (Ciberlastic), which was designed with a non-absorbable elastic polyurethane monofilament (Assuplus, Assut Europe, Italy) to allow greater adaptability to mechanical area requirements and higher bio-mimicking with the newly formed surrounding tissues. Our hypothesis was that an increase in the elasticity of the mesh filament could improve the benefits of LW prostheses. To verify our hypothesis, we compared the short- and long-term behaviour of Ciberlastic and Optilene(®) elastic commercial meshes by repairing the partially herniated abdomen in New Zealand White rabbits. The implanted meshes were mechanically and histologically assessed at 14 and 180 days post-implant. We mechanically characterized the partially herniated repaired muscle tissue and also determined mesh shrinkage at different post-implant times. This was followed by a histological study in which the tissue incorporation process was analysed over time. The new prosthesis designed by our group achieved good behaviour that was similar to that of Optilene(®), one of the most popular LW prostheses on the market, with the added advantage of its elastic property. The mechanical properties are significantly lower than those of the polypropylene Optilene(®) mesh, and the new elastic mesh meets the basic mechanical requirements for positioning in the abdominal wall, which was also demonstrated by the absence of recurrences after implantation in the experimental model. We found that the growth of a connective tissue rich in collagen over the hernial defect and the proper deposit of the collagen fibres in the regenerated tissue substantially modified the original properties of the mesh, thereby increasing its biomechanical strength and making the whole tissue/mesh stiffer.

  14. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  15. Markov Random Fields on Triangle Meshes

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas;

    2010-01-01

    In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process labels...... mesh edges according to a feature detecting prior. Since we should not smooth across a sharp feature, we use edge labels to control the vertex process. In a Bayesian framework, MRF priors are combined with the likelihood function related to the mesh formation method. The output of our algorithm...

  16. SURFACE MESH PARAMETERIZATION WITH NATURAL BOUNDARY

    Institute of Scientific and Technical Information of China (English)

    Ye Ming; Zhu Xiaofeng; Wang Chengtao

    2003-01-01

    Using the projected curve of surface mesh boundary as parameter domain border, linear mapping parameterization with natural boundary is realized. A fast algorithm for least squares fitting plane of vertices in the mesh boundary is proposed. After the mesh boundary is projected onto the fitting plane, low-pass filtering is adopted to eliminate crossovers, sharp corners and cavities in the projected curve and convert it into an eligible convex parameter domain boundary. In order to facilitate quantitative evaluations of parameterization schemes, three distortion-measuring formulae are presented.

  17. Application of mesh network radios to UGS

    Science.gov (United States)

    Calcutt, Wade; Jones, Barry; Roeder, Brent

    2008-04-01

    During the past five years McQ has been actively pursuing integrating and applying wireless mesh network radios as a communications solution for unattended ground sensor (UGS) systems. This effort has been rewarded with limited levels of success and has ultimately resulted in a corporate position regarding the use of mesh network radios for UGS systems. A discussion into the background of the effort, the challenges of implementing commercial off-the-shelf (COTS) mesh radios with UGSs, the tradeoffs involved, and an overview of the future direction is presented.

  18. Optimization-based Fluid Simulation on Unstructured Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Bridson, Robert; Erleben, Kenny;

    We present a novel approach to fluid simulation, allowing us to take into account the surface energy in a pre- cise manner. This new approach combines a novel, topology-adaptive approach to deformable interface track- ing, called the deformable simplicial complexes method (DSC) with an optimization......-based, linear finite element method for solving the incompressible Euler equations. The deformable simplicial complexes track the surface of the fluid: the fluid-air interface is represented explicitly as a piecewise linear surface which is a subset of tetra- hedralization of the space, such that the interface...... can be also represented implicitly as a set of faces separating tetrahedra marked as inside from the ones marked as outside. This representation introduces insignificant and con- trollable numerical diffusion, allows robust topological adaptivity and provides both a volumetric finite element mesh...

  19. Refining Nodes and Edges of State Machines

    OpenAIRE

    Hallerstede, Stefan; Snook, Colin

    2011-01-01

    State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple conventions, they can be combined into one method of refinement. In the combined method, node refinement can be used to develop architectural aspects of a model and edge refinement to develop algorithmic aspect...

  20. Refinement of Parallel and Reactive Programs

    OpenAIRE

    Back, R.J.R.

    1992-01-01

    We show how to apply the refinement calculus to stepwise refinement of parallel and reactive programs. We use action systems as our basic program model. Action systems are sequential programs which can be implemented in a parallel fashion. Hence refinement calculus methods, originally developed for sequential programs, carry over to the derivation of parallel programs. Refinement of reactive programs is handled by data refinement techniques originally developed for the sequential refinement c...