WorldWideScience

Sample records for adaptive intrusion detection

  1. An Adaptive Database Intrusion Detection System

    Science.gov (United States)

    Barrios, Rita M.

    2011-01-01

    Intrusion detection is difficult to accomplish when attempting to employ current methodologies when considering the database and the authorized entity. It is a common understanding that current methodologies focus on the network architecture rather than the database, which is not an adequate solution when considering the insider threat. Recent…

  2. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei; Guyet, Thomas; Quiniou, René ; Cordier, Marie-Odile; Masseglia, Florent; Zhang, Xiangliang

    2014-01-01

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  3. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei

    2014-06-22

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  4. Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems

    International Nuclear Information System (INIS)

    Claassen, J.P.; Patterson, M.M.

    1981-01-01

    Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals

  5. Performance Analysis of Hierarchical Group Key Management Integrated with Adaptive Intrusion Detection in Mobile ad hoc Networks

    Science.gov (United States)

    2016-04-05

    applications in wireless networks such as military battlefields, emergency response, mobile commerce , online gaming, and collaborative work are based on the...www.elsevier.com/locate/peva Performance analysis of hierarchical group key management integrated with adaptive intrusion detection in mobile ad hoc...Accepted 19 September 2010 Available online 26 September 2010 Keywords: Mobile ad hoc networks Intrusion detection Group communication systems Group

  6. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  7. Interior intrusion detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.R.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Dry, B. (BE, Inc., Barnwell, SC (United States))

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  8. Interior intrusion detection systems

    International Nuclear Information System (INIS)

    Rodriguez, J.R.; Matter, J.C.; Dry, B.

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs

  9. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  10. Intrusion detection system elements

    International Nuclear Information System (INIS)

    Eaton, M.J.; Mangan, D.L.

    1980-09-01

    This report highlights elements required for an intrusion detection system and discusses problems which can be encountered in attempting to make the elements effective. Topics discussed include: sensors, both for exterior detection and interior detection; alarm assessment systems, with the discussion focused on video assessment; and alarm reporting systems, including alarm communication systems and dislay/console considerations. Guidance on careful planning and design of a new or to-be-improved system is presented

  11. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  12. Adaptive Intrusion Data System (AIDS)

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  13. Data Mining for Intrusion Detection

    Science.gov (United States)

    Singhal, Anoop; Jajodia, Sushil

    Data Mining Techniques have been successfully applied in many different fields including marketing, manufacturing, fraud detection and network management. Over the past years there is a lot of interest in security technologies such as intrusion detection, cryptography, authentication and firewalls. This chapter discusses the application of Data Mining techniques to computer security. Conclusions are drawn and directions for future research are suggested.

  14. Network Intrusion Forensic Analysis Using Intrusion Detection System

    OpenAIRE

    Manish Kumar; Dr. M. Hanumanthappa; Dr. T.V. Suresh Kumar

    2011-01-01

    The need for computer intrusion forensics arises from the alarming increase in the number of computer crimes that are committed annually. After a computer system has been breached and an intrusion has been detected, there is a need for a computer forensics investigation to follow. Computer forensics is used to bring to justice, those responsible for conducting attacks on computer systems throughout the world. Because of this the law must be follow precisely when conducting a forensics investi...

  15. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  16. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-07-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  17. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou

    2004-06-01

    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  18. A Fusion of Multiagent Functionalities for Effective Intrusion Detection System

    OpenAIRE

    Dhanalakshmi Krishnan Sadhasivan; Kannapiran Balasubramanian

    2017-01-01

    Provision of high security is one of the active research areas in the network applications. The failure in the centralized system based on the attacks provides less protection. Besides, the lack of update of new attacks arrival leads to the minimum accuracy of detection. The major focus of this paper is to improve the detection performance through the adaptive update of attacking information to the database. We propose an Adaptive Rule-Based Multiagent Intrusion Detection System (ARMA-IDS) to...

  19. NIST Special Publication on Intrusion Detection Systems

    National Research Council Canada - National Science Library

    Bace, Rebecca Gurley

    2001-01-01

    Intrusion detection systems (IDSs) are software or hardware systems that automate the process of monitoring the events occurring in a computer system or network, analyzing them for signs of security problems...

  20. When Intrusion Detection Meets Blockchain Technology: A Review

    DEFF Research Database (Denmark)

    Meng, Weizhi; Tischhauser, Elmar Wolfgang; Wang, Qingju

    2018-01-01

    developed, which allow IDS nodes to exchange data with each other. However, data and trust management still remain two challenges for current detection architectures, which may degrade the effectiveness of such detection systems. In recent years, blockchain technology has shown its adaptability in many...... fields such as supply chain management, international payment, interbanking and so on. As blockchain can protect the integrity of data storage and ensure process transparency, it has a potential to be applied to intrusion detection domain. Motivated by this, this work provides a review regarding...... the intersection of IDSs and blockchains. In particular, we introduce the background of intrusion detection and blockchain, discuss the applicability of blockchain to intrusion detection, and identify open challenges in this direction....

  1. Autonomous Rule Creation for Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-04-01

    Many computational intelligence techniques for anomaly based network intrusion detection can be found in literature. Translating a newly discovered intrusion recognition criteria into a distributable rule can be a human intensive effort. This paper explores a multi-modal genetic algorithm solution for autonomous rule creation. This algorithm focuses on the process of creating rules once an intrusion has been identified, rather than the evolution of rules to provide a solution for intrusion detection. The algorithm was demonstrated on anomalous ICMP network packets (input) and Snort rules (output of the algorithm). Output rules were sorted according to a fitness value and any duplicates were removed. The experimental results on ten test cases demonstrated a 100 percent rule alert rate. Out of 33,804 test packets 3 produced false positives. Each test case produced a minimum of three rule variations that could be used as candidates for a production system.

  2. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  3. Intrusion Detection amp Prevention Systems - Sourcefire Snort

    Directory of Open Access Journals (Sweden)

    Rajesh Vuppala

    2015-08-01

    Full Text Available Information security is a challenging issue for all business organizations today amidst increasing cyber threats. While there are many alternative intrusion detection amp prevention systems available to choose from selecting the best solution to implement to detect amp prevent cyber-attacks is a difficult task. The best solution is of the one that gets the best reviews and suits the organizations needs amp budget. In this review paper we summarize various classes of intrusion detection and prevention systems compare features of alternative solutions and make recommendation for implementation of one as the best solution for business organization in Fiji.

  4. Evidential reasoning research on intrusion detection

    Science.gov (United States)

    Wang, Xianpei; Xu, Hua; Zheng, Sheng; Cheng, Anyu

    2003-09-01

    In this paper, we mainly aim at D-S theory of evidence and the network intrusion detection these two fields. It discusses the method how to apply this probable reasoning as an AI technology to the Intrusion Detection System (IDS). This paper establishes the application model, describes the new mechanism of reasoning and decision-making and analyses how to implement the model based on the synscan activities detection on the network. The results suggest that if only rational probability values were assigned at the beginning, the engine can, according to the rules of evidence combination and hierarchical reasoning, compute the values of belief and finally inform the administrators of the qualities of the traced activities -- intrusions, normal activities or abnormal activities.

  5. Intrusion Detection System In IoT

    OpenAIRE

    Nygaard, Frederik

    2017-01-01

    Intrusion detection detects misbehaving nodes in a network. In Internet of Things(IoT), IPv6 Routing for Low-Power and Lossy Networks (RPL) is the standard routing protocol. In IoT, devices commonly have low energy, storage and memory, which is why the implemented intrusion algorithm in this thesis will try to minimize the usage of these resources. IDS for RPL-networks have been implemented before, but the use of resources or the number of packets sent was too high to be successful when findi...

  6. Access Control from an Intrusion Detection Perspective

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.

    Access control and intrusion detection are essential components for securing an organization's information assets. In practice, these components are used in isolation, while their fusion would contribute to increase the range and accuracy of both. One approach to accomplish this fusion is the

  7. Unconventional applications of conventional intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.; Matter, J.C.

    1983-01-01

    A number of conventional intrusion detection sensors exists for the detection of persons entering buildings, moving within a given volume, and crossing a perimeter isolation zone. Unconventional applications of some of these sensors have recently been investigated. Some of the applications which are discussed include detection on the edges and tops of buildings, detection in storm sewers, detection on steam and other types of large pipes, and detection of unauthorized movement within secure enclosures. The enclosures can be used around complicated control valves, electrical control panels, emergency generators, etc

  8. Multilayer Statistical Intrusion Detection in Wireless Networks

    Science.gov (United States)

    Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine

    2008-12-01

    The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  9. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  10. Research on IPv6 intrusion detection system Snort-based

    Science.gov (United States)

    Shen, Zihao; Wang, Hui

    2010-07-01

    This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.

  11. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  12. Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Jae Song

    2009-07-01

    Full Text Available Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

  13. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  14. Perimeter intrusion detection and assessment system

    International Nuclear Information System (INIS)

    Eaton, M.J.; Jacobs, J.; McGovern, D.E.

    1977-11-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  15. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  16. The state of the art in intrusion prevention and detection

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    The State of the Art in Intrusion Prevention and Detection analyzes the latest trends and issues surrounding intrusion detection systems in computer networks, especially in communications networks. Its broad scope of coverage includes wired, wireless, and mobile networks; next-generation converged networks; and intrusion in social networks.Presenting cutting-edge research, the book presents novel schemes for intrusion detection and prevention. It discusses tracing back mobile attackers, secure routing with intrusion prevention, anomaly detection, and AI-based techniques. It also includes infor

  17. Environmental data processor of the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Rogers, M.S.

    1977-06-01

    A data acquisition system oriented specifically toward collection and processing of various meteorological and environmental parameters has been designed around a National Semiconductor IMP-16 microprocessor, This system, called the Environmental Data Processor (EDP), was developed specifically for use with the Adaptive Intrusion Data System (AIDS) in a perimeter intrusion alarm evaluation, although its design is sufficiently general to permit use elsewhere. This report describes in general detail the design of the EDP and its interaction with other AIDS components

  18. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  19. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    Science.gov (United States)

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  20. Multi-User Low Intrusive Occupancy Detection.

    Science.gov (United States)

    Pratama, Azkario Rizky; Widyawan, Widyawan; Lazovik, Alexander; Aiello, Marco

    2018-03-06

    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers' mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87-90% accuracy, demonstrating the effectiveness of the proposed approach.

  1. Multi-User Low Intrusive Occupancy Detection

    Science.gov (United States)

    Widyawan, Widyawan; Lazovik, Alexander

    2018-01-01

    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach. PMID:29509693

  2. Multi-User Low Intrusive Occupancy Detection

    Directory of Open Access Journals (Sweden)

    Azkario Rizky Pratama

    2018-03-01

    Full Text Available Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS of BLE (Bluetooth Low Energy nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach.

  3. Abstracting audit data for lightweight intrusion detection

    KAUST Repository

    Wang, Wei

    2010-01-01

    High speed of processing massive audit data is crucial for an anomaly Intrusion Detection System (IDS) to achieve real-time performance during the detection. Abstracting audit data is a potential solution to improve the efficiency of data processing. In this work, we propose two strategies of data abstraction in order to build a lightweight detection model. The first strategy is exemplar extraction and the second is attribute abstraction. Two clustering algorithms, Affinity Propagation (AP) as well as traditional k-means, are employed to extract the exemplars, and Principal Component Analysis (PCA) is employed to abstract important attributes (a.k.a. features) from the audit data. Real HTTP traffic data collected in our institute as well as KDD 1999 data are used to validate the two strategies of data abstraction. The extensive test results show that the process of exemplar extraction significantly improves the detection efficiency and has a better detection performance than PCA in data abstraction. © 2010 Springer-Verlag.

  4. An intrusion detection system based on fiber hydrophone

    Science.gov (United States)

    Liu, Junrong; Qiu, Xiufen; Shen, Heping

    2017-10-01

    This paper provides a new intrusion detection system based on fiber hydrophone, focusing beam forming figure positioning according to the near field and high precision sound source location algorithm which can accurately position the intrusion; obtaining its behavior path , obtaining the intrusion events related information such as speed form tracking intrusion trace; And analyze identification the detected intrusion behavior. If the monitor area is larger, the algorithm will take too much time once, and influence the system response time, for reduce the calculating time. This paper provides way that coarse location first, and then scanned for accuracy, so as to realize the intrusion events (such as car, etc.) the remote monitoring of positioning. The system makes up the blank in process capture of the fiber optic intrusion detection technology, and improves the understanding of the invasion. Through the capture of the process of intrusion behavior, and the fusion detection of intrusion behavior itself, thus analysis, judgment, identification of the intrusion information can greatly reduce the rate of false positives, greatly improved the reliability and practicability of the perimeter security system.

  5. An Immune-inspired Adaptive Automated Intrusion Response System Model

    Directory of Open Access Journals (Sweden)

    Ling-xi Peng

    2012-09-01

    Full Text Available An immune-inspired adaptive automated intrusion response system model, named as , is proposed. The descriptions of self, non-self, immunocyte, memory detector, mature detector and immature detector of the network transactions, and the realtime network danger evaluation equations are given. Then, the automated response polices are adaptively performed or adjusted according to the realtime network danger. Thus, not only accurately evaluates the network attacks, but also greatly reduces the response times and response costs.

  6. A Fusion of Multiagent Functionalities for Effective Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Dhanalakshmi Krishnan Sadhasivan

    2017-01-01

    Full Text Available Provision of high security is one of the active research areas in the network applications. The failure in the centralized system based on the attacks provides less protection. Besides, the lack of update of new attacks arrival leads to the minimum accuracy of detection. The major focus of this paper is to improve the detection performance through the adaptive update of attacking information to the database. We propose an Adaptive Rule-Based Multiagent Intrusion Detection System (ARMA-IDS to detect the anomalies in the real-time datasets such as KDD and SCADA. Besides, the feedback loop provides the necessary update of attacks in the database that leads to the improvement in the detection accuracy. The combination of the rules and responsibilities for multiagents effectively detects the anomaly behavior, misuse of response, or relay reports of gas/water pipeline data in KDD and SCADA, respectively. The comparative analysis of the proposed ARMA-IDS with the various existing path mining methods, namely, random forest, JRip, a combination of AdaBoost/JRip, and common path mining on the SCADA dataset conveys that the effectiveness of the proposed ARMA-IDS in the real-time fault monitoring. Moreover, the proposed ARMA-IDS offers the higher detection rate in the SCADA and KDD cup 1999 datasets.

  7. When Intrusion Detection Meets Blockchain Technology: A Review

    OpenAIRE

    Meng, Weizhi; Tischhauser, Elmar Wolfgang; Wang, Qingju; Wang, Yu; Han, Jinguang

    2018-01-01

    With the purpose of identifying cyber threats and possible incidents, intrusion detection systems (IDSs) are widely deployed in various computer networks. In order to enhance the detection capability of a single IDS, collaborative intrusion detection networks (or collaborative IDSs) have been developed, which allow IDS nodes to exchange data with each other. However, data and trust management still remain two challenges for current detection architectures, which may degrade the effectiveness ...

  8. Security Enrichment in Intrusion Detection System Using Classifier Ensemble

    Directory of Open Access Journals (Sweden)

    Uma R. Salunkhe

    2017-01-01

    Full Text Available In the era of Internet and with increasing number of people as its end users, a large number of attack categories are introduced daily. Hence, effective detection of various attacks with the help of Intrusion Detection Systems is an emerging trend in research these days. Existing studies show effectiveness of machine learning approaches in handling Intrusion Detection Systems. In this work, we aim to enhance detection rate of Intrusion Detection System by using machine learning technique. We propose a novel classifier ensemble based IDS that is constructed using hybrid approach which combines data level and feature level approach. Classifier ensembles combine the opinions of different experts and improve the intrusion detection rate. Experimental results show the improved detection rates of our system compared to reference technique.

  9. An evaluation of classification algorithms for intrusion detection ...

    African Journals Online (AJOL)

    An evaluation of classification algorithms for intrusion detection. ... Log in or Register to get access to full text downloads. ... Most of the available IDSs use all the 41 features in the network to evaluate and search for intrusive pattern in which ...

  10. Mass memory formatter subsystem of the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-09-01

    The Mass Memory Formatter was developed as part of the Adaptive Intrusion Data System (AIDS) to control a 2.4-megabit mass memory. The data from a Memory Controlled Processor is formatted before it is stored in the memory and reformatted during the readout mode. The data is then transmitted to a NOVA 2 minicomputer-controlled magnetic tape recorder for storage. Techniques and circuits are described

  11. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  12. Unique Challenges in WiFi Intrusion Detection

    OpenAIRE

    Milliken, Jonny

    2014-01-01

    The Intrusion Detection System (IDS) is a common means of protecting networked systems from attack or malicious misuse. The deployment of an IDS can take many different forms dependent on protocols, usage and cost. This is particularly true of Wireless Intrusion Detection Systems (WIDS) which have many detection challenges associated with data transmission through an open, shared medium, facilitated by fundamental changes at the Physical and MAC layers. WIDS need to be considered in more deta...

  13. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  14. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    Directory of Open Access Journals (Sweden)

    Jayakumar Kaliappan

    2015-01-01

    Full Text Available An intrusion detection system (IDS helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU, there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  15. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  16. Implementing an Intrusion Detection System in the Mysea Architecture

    National Research Council Canada - National Science Library

    Tenhunen, Thomas

    2008-01-01

    .... The objective of this thesis is to design an intrusion detection system (IDS) architecture that permits administrators operating on MYSEA client machines to conveniently view and analyze IDS alerts from the single level networks...

  17. How Intrusion Detection Can Improve Software Decoy Applications

    National Research Council Canada - National Science Library

    Monteiro, Valter

    2003-01-01

    This research concerns information security and computer-network defense. It addresses how to handle the information of log files and intrusion-detection systems to recognize when a system is under attack...

  18. Ant colony induced decision trees for intrusion detection

    CSIR Research Space (South Africa)

    Botes, FH

    2017-06-01

    Full Text Available platform. Intrusion Detection Systems (IDS) analyse network traffic to identify suspicious patterns with the intention to compromise the system. Practitioners train classifiers to classify the data within different categories e.g. malicious or normal...

  19. Resilient Control and Intrusion Detection for SCADA Systems

    Science.gov (United States)

    2014-05-01

    Lowe. The myths and facts behind cyber security risks for industrial control systems . VDE Congress, 2004. [45] I. S. C37.1-1994. Ieee standard...Resilient Control and Intrusion Detection for SCADA Systems Bonnie Xia Zhu Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Resilient Control and Intrusion Detection for SCADA Systems 5a. CONTRACT

  20. Multisensor Fusion for Intrusion Detection and Situational Awareness

    OpenAIRE

    Hallstensen, Christoffer V

    2017-01-01

    Cybercrime damage costs the world several trillion dollars annually. And al-though technical solutions to protect organizations from hackers are being con-tinuously developed, criminals learn fast to circumvent them. The question is,therefore, how to create leverage to protect an organization by improving in-trusion detection and situational awareness? This thesis seeks to contribute tothe prior art in intrusion detection and situational awareness by using a multi-sensor data fusion...

  1. Stochastic Tools for Network Intrusion Detection

    OpenAIRE

    Yu, Lu; Brooks, Richard R.

    2017-01-01

    With the rapid development of Internet and the sharp increase of network crime, network security has become very important and received a lot of attention. We model security issues as stochastic systems. This allows us to find weaknesses in existing security systems and propose new solutions. Exploring the vulnerabilities of existing security tools can prevent cyber-attacks from taking advantages of the system weaknesses. We propose a hybrid network security scheme including intrusion detecti...

  2. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  3. Approaches in anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Di Pietro, R.; Mancini, L.V.

    2008-01-01

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  4. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  5. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  6. Boosting Web Intrusion Detection Systems by Inferring Positive Signatures

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    2008-01-01

    We present a new approach to anomaly-based network intrusion detection for web applications. This approach is based on dividing the input parameters of the monitored web application in two groups: the "regular" and the "irregular" ones, and applying a new method for anomaly detection on the

  7. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  8. Data Fusion for Network Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Guoquan Li

    2018-01-01

    Full Text Available Rapid progress of networking technologies leads to an exponential growth in the number of unauthorized or malicious network actions. As a component of defense-in-depth, Network Intrusion Detection System (NIDS has been expected to detect malicious behaviors. Currently, NIDSs are implemented by various classification techniques, but these techniques are not advanced enough to accurately detect complex or synthetic attacks, especially in the situation of facing massive high-dimensional data. Besides, the inherent defects of NIDSs, namely, high false alarm rate and low detection rate, have not been effectively solved. In order to solve these problems, data fusion (DF has been applied into network intrusion detection and has achieved good results. However, the literature still lacks thorough analysis and evaluation on data fusion techniques in the field of intrusion detection. Therefore, it is necessary to conduct a comprehensive review on them. In this article, we focus on DF techniques for network intrusion detection and propose a specific definition to describe it. We review the recent advances of DF techniques and propose a series of criteria to compare their performance. Finally, based on the results of the literature review, a number of open issues and future research directions are proposed at the end of this work.

  9. Railway clearance intrusion detection method with binocular stereo vision

    Science.gov (United States)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  10. A subtractive approach to interior intrusion detection system design

    International Nuclear Information System (INIS)

    Sons, R.J.; Graham, R.H. Jr.

    1986-01-01

    This paper discusses the subtractive approach to interior intrusion detection system design which assumes that all sensors are viable candidates until they are subjected to the constraints imposed by a particular facility. The constraints are determined by a sequence of questions concerning parameters such as threat definition, facility description and operation, environment, assets to be protected, security system capabilities, and cost. As a result of the questioning, some sensors will be eliminated from the candidate list, and the ''best'' set of sensors for the facility will remain. This form of questioning could be incorporated into an expert system aiding future intrusion detection system designs

  11. Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

    Science.gov (United States)

    Şen, Sevil; Clark, John A.; Tapiador, Juan E.

    Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.

  12. Alerts Visualization and Clustering in Network-based Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee; Gasior, Wade C [ORNL; Dasireddy, Swetha [University of Tennessee

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  13. Abstracting audit data for lightweight intrusion detection

    KAUST Repository

    Wang, Wei; Zhang, Xiangliang; Pitsilis, Georgios

    2010-01-01

    are used to validate the two strategies of data abstraction. The extensive test results show that the process of exemplar extraction significantly improves the detection efficiency and has a better detection performance than PCA in data abstraction. © 2010

  14. Capability for intrusion detection at nuclear fuel sites

    International Nuclear Information System (INIS)

    1978-03-01

    A safeguards vulnerability assessment was conducted at three separate licensed nuclear processing facilities. Emphasis was placed on: (1) performance of the total intrusion detection system, and (2) vulnerability of the system to compromise by insiders. The security guards were interviewed to evaluate their effectiveness in executing their duties in accordance with the plant's security plan and to assess their knowledge regarding the operation of the security equipment. A review of the training schedule showed that the guards, along with the other plant employees, are required to periodically attend in-plant training sessions. The vulnerability assessments continued with interviews of the personnel responsible for maintaining the security equipment, with discussions of detector false alarm and maintenance problems. The second part of the vulnerability assessments was to evaluate the effectiveness of the intrusion detection systems including the interior and the perimeter sensors, CCTV surveillance devices and the exterior lighting. Two types of perimeter detectors are used at the sites, a fence disturbance sensor and an infrared barrier type detector. Infrared barrier type detectors have a higher probability of detection, especially in conjunction with dedicated CCTV cameras. The exterior lights satisfy the 0.2 footcandle illumination requirement. The interior intrusion detection systems included ultrasonic motion detectors, microwave motion detectors,balanced magnetic switches, and CCTV cameras. Entrance doors to the materials access areas and vital areas are protected with balanced magnetic switches. The interior intrusion detection systems at the three nuclear processing sites are considered satisfactory with the exception of the areas protected with ultrasonic motion detectors

  15. A Labeled Data Set For Flow-based Intrusion Detection

    NARCIS (Netherlands)

    Sperotto, Anna; Sadre, R.; van Vliet, Frank; Pras, Aiko; Nunzi, Giorgio; Scoglio, Caterina; Li, Xing

    2009-01-01

    Flow-based intrusion detection has recently become a promising security mechanism in high speed networks (1-10 Gbps). Despite the richness in contributions in this field, benchmarking of flow-based IDS is still an open issue. In this paper, we propose the first publicly available, labeled data set

  16. AANtID: an alternative approach to network intrusion detection ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... Security has become not just a feature of an information system, but the core and a necessity especially the systems that communicate and transmit data over the Internet for they are more ... Keywords: Intrusion, Genetic Algorithm, detection, Security, DARPA dataset ...

  17. State of the Practice of Intrusion Detection Technologies

    Science.gov (United States)

    2000-01-01

    functions, procedures, and scripts, an Oracle database structure, Borne shell scripts, and configuration files which together communicate with ASIM Sensor...34Plugging the Holes in eCommerce Leads to 135% Growth in the Intrusion Detection and Vulnerability Assessment Software Market," PRNewswire. August

  18. Anomaly-based intrusion detection for SCADA systems

    International Nuclear Information System (INIS)

    Yang, D.; Usynin, A.; Hines, J. W.

    2006-01-01

    Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper will briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)

  19. Abstracting massive data for lightweight intrusion detection in computer networks

    KAUST Repository

    Wang, Wei

    2016-10-15

    Anomaly intrusion detection in big data environments calls for lightweight models that are able to achieve real-time performance during detection. Abstracting audit data provides a solution to improve the efficiency of data processing in intrusion detection. Data abstraction refers to abstract or extract the most relevant information from the massive dataset. In this work, we propose three strategies of data abstraction, namely, exemplar extraction, attribute selection and attribute abstraction. We first propose an effective method called exemplar extraction to extract representative subsets from the original massive data prior to building the detection models. Two clustering algorithms, Affinity Propagation (AP) and traditional . k-means, are employed to find the exemplars from the audit data. . k-Nearest Neighbor (k-NN), Principal Component Analysis (PCA) and one-class Support Vector Machine (SVM) are used for the detection. We then employ another two strategies, attribute selection and attribute extraction, to abstract audit data for anomaly intrusion detection. Two http streams collected from a real computing environment as well as the KDD\\'99 benchmark data set are used to validate these three strategies of data abstraction. The comprehensive experimental results show that while all the three strategies improve the detection efficiency, the AP-based exemplar extraction achieves the best performance of data abstraction.

  20. Data mining approach to web application intrusions detection

    Science.gov (United States)

    Kalicki, Arkadiusz

    2011-10-01

    Web applications became most popular medium in the Internet. Popularity, easiness of web application script languages and frameworks together with careless development results in high number of web application vulnerabilities and high number of attacks performed. There are several types of attacks possible because of improper input validation: SQL injection Cross-site scripting, Cross-Site Request Forgery (CSRF), web spam in blogs and others. In order to secure web applications intrusion detection (IDS) and intrusion prevention systems (IPS) are being used. Intrusion detection systems are divided in two groups: misuse detection (traditional IDS) and anomaly detection. This paper presents data mining based algorithm for anomaly detection. The principle of this method is the comparison of the incoming HTTP traffic with a previously built profile that contains a representation of the "normal" or expected web application usage sequence patterns. The frequent sequence patterns are found with GSP algorithm. Previously presented detection method was rewritten and improved. Some tests show that the software catches malicious requests, especially long attack sequences, results quite good with medium length sequences, for short length sequences must be complemented with other methods.

  1. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  2. Intrusion Detection Systems with Live Knowledge System

    Science.gov (United States)

    2016-05-31

    people try to reveal sensitive information of Internet users, also called as phishing. Phishing detection has received great attention but there has...node. Figure 3 describes the result of modified nodes from the original RDR rule tree. Red- coloured ‘X’ sign represents the stopping rule, and the...green- coloured boxes describe the refined rule. However, when human knowledge is applied to those incorrectly classified data, not all of the

  3. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  4. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eung Jun Cho

    2013-11-01

    Full Text Available The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  5. Misuse and intrusion detection at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1995-04-01

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in system audit records, in system vulnerability postures, and in other evidence found through active system testing. Since 1989 we have implemented a misuse and intrusion detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter, or NADIR. NADIR currently audits a Kerberos distributed authentication system, file activity on a mass, storage system, and four Cray supercomputers that run the UNICOS operating system. NADIR summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations, As NADIR is constantly evolving, this paper reports its development to date.

  6. An Automata Based Intrusion Detection Method for Internet of Things

    Directory of Open Access Journals (Sweden)

    Yulong Fu

    2017-01-01

    Full Text Available Internet of Things (IoT transforms network communication to Machine-to-Machine (M2M basis and provides open access and new services to citizens and companies. It extends the border of Internet and will be developed as one part of the future 5G networks. However, as the resources of IoT’s front devices are constrained, many security mechanisms are hard to be implemented to protect the IoT networks. Intrusion detection system (IDS is an efficient technique that can be used to detect the attackers when cryptography is broken, and it can be used to enforce the security of IoT networks. In this article, we analyzed the intrusion detection requirements of IoT networks and then proposed a uniform intrusion detection method for the vast heterogeneous IoT networks based on an automata model. The proposed method can detect and report the possible IoT attacks with three types: jam-attack, false-attack, and reply-attack automatically. We also design an experiment to verify the proposed IDS method and examine the attack of RADIUS application.

  7. Attack Pattern Analysis Framework for a Multiagent Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Krzysztof Juszczyszyn

    2008-08-01

    Full Text Available The paper proposes the use of attack pattern ontology and formal framework for network traffic anomalies detection within a distributed multi-agent Intrusion Detection System architecture. Our framework assumes ontology-based attack definition and distributed processing scheme with exchange of communicates between agents. The role of traffic anomalies detection was presented then it has been discussed how some specific values characterizing network communication can be used to detect network anomalies caused by security incidents (worm attack, virus spreading. Finally, it has been defined how to use the proposed techniques in distributed IDS using attack pattern ontology.

  8. Securing Cloud Computing from Different Attacks Using Intrusion Detection Systems

    Directory of Open Access Journals (Sweden)

    Omar Achbarou

    2017-03-01

    Full Text Available Cloud computing is a new way of integrating a set of old technologies to implement a new paradigm that creates an avenue for users to have access to shared and configurable resources through internet on-demand. This system has many common characteristics with distributed systems, hence, the cloud computing also uses the features of networking. Thus the security is the biggest issue of this system, because the services of cloud computing is based on the sharing. Thus, a cloud computing environment requires some intrusion detection systems (IDSs for protecting each machine against attacks. The aim of this work is to present a classification of attacks threatening the availability, confidentiality and integrity of cloud resources and services. Furthermore, we provide literature review of attacks related to the identified categories. Additionally, this paper also introduces related intrusion detection models to identify and prevent these types of attacks.

  9. Use of behavioral biometrics in intrusion detection and online gaming

    Science.gov (United States)

    Yampolskiy, Roman V.; Govindaraju, Venu

    2006-04-01

    Behavior based intrusion detection is a frequently used approach for insuring network security. We expend behavior based intrusion detection approach to a new domain of game networks. Specifically, our research shows that a unique behavioral biometric can be generated based on the strategy used by an individual to play a game. We wrote software capable of automatically extracting behavioral profiles for each player in a game of Poker. Once a behavioral signature is generated for a player, it is continuously compared against player's current actions. Any significant deviations in behavior are reported to the game server administrator as potential security breaches. Our algorithm addresses a well-known problem of user verification and can be re-applied to the fields beyond game networks, such as operating systems and non-game networks security.

  10. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  11. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  12. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  13. A Targeted Attack For Enhancing Resiliency of Intelligent Intrusion Detection Modules in Energy Cyber Physical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Tarek [Florida Intl Univ., Miami, FL (United States); El Hariri, Mohammad [Florida Intl Univ., Miami, FL (United States); Habib, Hani [Florida Intl Univ., Miami, FL (United States); Mohammed, Osama [Florida Intl Univ., Miami, FL (United States); Harmon, E [Florida Intl Univ., Miami, FL (United States)

    2017-02-28

    Abstract— Secure high-speed communication is required to ensure proper operation of complex power grid systems and prevent malicious tampering activities. In this paper, artificial neural networks with temporal dependency are introduced for false data identification and mitigation for broadcasted IEC 61850 SMV messages. The fast responses of such intelligent modules in intrusion detection make them suitable for time- critical applications, such as protection. However, care must be taken in selecting the appropriate intelligence model and decision criteria. As such, this paper presents a customizable malware script to sniff and manipulate SMV messages and demonstrates the ability of the malware to trigger false positives in the neural network’s response. The malware developed is intended to be as a vaccine to harden the intrusion detection system against data manipulation attacks by enhancing the neural network’s ability to learn and adapt to these attacks.

  14. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  15. Hybrid feature selection for supporting lightweight intrusion detection systems

    Science.gov (United States)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  16. Effective approach toward Intrusion Detection System using data mining techniques

    Directory of Open Access Journals (Sweden)

    G.V. Nadiammai

    2014-03-01

    Full Text Available With the tremendous growth of the usage of computers over network and development in application running on various platform captures the attention toward network security. This paradigm exploits security vulnerabilities on all computer systems that are technically difficult and expensive to solve. Hence intrusion is used as a key to compromise the integrity, availability and confidentiality of a computer resource. The Intrusion Detection System (IDS plays a vital role in detecting anomalies and attacks in the network. In this work, data mining concept is integrated with an IDS to identify the relevant, hidden data of interest for the user effectively and with less execution time. Four issues such as Classification of Data, High Level of Human Interaction, Lack of Labeled Data, and Effectiveness of Distributed Denial of Service Attack are being solved using the proposed algorithms like EDADT algorithm, Hybrid IDS model, Semi-Supervised Approach and Varying HOPERAA Algorithm respectively. Our proposed algorithm has been tested using KDD Cup dataset. All the proposed algorithm shows better accuracy and reduced false alarm rate when compared with existing algorithms.

  17. Messaging Attacks on Android: Vulnerabilities and Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Khodor Hamandi

    2015-01-01

    Full Text Available Currently, Android is the leading mobile operating system in number of users worldwide. On the security side, Android has had significant challenges despite the efforts of the Android designers to provide a secure environment for apps. In this paper, we present numerous attacks targeting the messaging framework of the Android system. Our focus is on SMS, USSD, and the evolution of their associated security in Android and accordingly the development of related attacks. Also, we shed light on the Android elements that are responsible for these attacks. Furthermore, we present the architecture of an intrusion detection system (IDS that promises to thwart SMS messaging attacks. Our IDS shows a detection rate of 87.50% with zero false positives.

  18. Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which are utili......To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which...... are utilized by insider attacks (e.g., betrayal attacks). In our previous research, we developed a notion of intrusion sensitivity and identified that it can help improve the detection of insider attacks, whereas it is still a challenge for these nodes to automatically assign the values. In this article, we...... of intrusion sensitivity based on expert knowledge. In the evaluation, we compare the performance of three different supervised classifiers in assigning sensitivity values and investigate our trust model under different attack scenarios and in a real wireless sensor network. Experimental results indicate...

  19. CRITICAL INFORMATION INFRASTRUCTURE SECURITY - NETWORK INTRUSION DETECTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cristea DUMITRU

    2011-12-01

    Full Text Available Critical Information Infrastructure security will always be difficult to ensure, just because of the features that make it irreplaceable tor other critical infrastructures normal operation. It is decentralized, interconnected interdependent, controlled by multiple actors (mainly private and incorporating diverse types of technologies. It is almost axiomatic that the disruption of the Critical Information Infrastructure affects systems located much farther away, and the cyber problems have direct consequences on the real world. Indeed the Internet can be used as a multiplier in order to amplify the effects of an attack on some critical infrastructures. Security challenges increase with the technological progress. One of the last lines of defense which comes to complete the overall security scheme of the Critical Information Infrastructure is represented by the Network Intrusion Detection Systems.

  20. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    CERN Document Server

    INSPIRE-00416173; Kebschull, Udo

    2015-01-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machin...

  1. INTRUSION DETECTION PREVENTION SYSTEM (IDPS PADA LOCAL AREA NETWORK (LAN

    Directory of Open Access Journals (Sweden)

    Didit Suhartono

    2015-02-01

    Full Text Available Penelitian ini berjudul “Intrusion Detection Prevention System Local Area Network (LAN” yang bertujuan untuk memproteksi jaringan dari usaha- usaha penyusupan yang dilakukan oleh seorang intruder. Metode yang digunakan pada penelitian ini adalah menggunakan metode kerangka pikir sebagai acuan dari tahap- tahap penelitian yang penulis lakukan. IDS difungsikan sebagai pendeteksi adanya serangan sesuai rule yang ada kemudian pesan peringatan disimpan dalam database dan dikirim via sms kepada seorang network administrator, sedangkan Firewall digunakan sebagai packet filtering dengan cara menentukan security policy yang dinilai penting. Hasilnya adalah ketika IDS memberikanpesan peringatan ketika ada serangan, seorang network administrator dapat memblok adanya serangan tersebut dengan cara manual dengan firewall, ataupun firewall akan memblok sendiri serangan tersebut sesuai dengan security policy yang diterapkan oleh network adminisrator sebelumnya

  2. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  3. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan [Northwesten University

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  4. Detection of network attacks based on adaptive resonance theory

    Science.gov (United States)

    Bukhanov, D. G.; Polyakov, V. M.

    2018-05-01

    The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.

  5. DFCL: DYNAMIC FUZZY LOGIC CONTROLLER FOR INTRUSION DETECTION

    Directory of Open Access Journals (Sweden)

    Abdulrahim Haroun Ali

    2014-08-01

    Full Text Available Intrusions are a problem with the deployment of Networks which give misuse and abnormal behavior in running reliable network operations and services. In this work, a Dynamic Fuzzy Logic Controller (DFLC is proposed for an anomaly detection problem, with the aim of solving the problem of attack detection rate and faster response process. Data is collected by PingER project. PingER project actively measures the worldwide Internet’s end-to-end performance. It covers over 168 countries around the world. PingER uses simple ubiquitous Internet Ping facility to calculate number of useful performance parameters. From each set of 10 pings between a monitoring host and a remote host, the features being calculated include Minimum Round Trip Time (RTT, Jitter, Packet loss, Mean Opinion Score (MOS, Directness of Connection (Alpha, Throughput, ping unpredictability and ping reachability. A set of 10 pings is being sent from the monitoring node to the remote node every 30 minutes. The received data shows the current characteristic and behavior of the networks. Any changes in the received data signify the existence of potential threat or abnormal behavior. D-FLC uses the combination of parameters as an input to detect the existence of any abnormal behavior of the network. The proposed system is simulated in Matlab Simulink environment. Simulations results show that the system managed to catch 95% of the anomalies with the ability to distinguish normal and abnormal behavior of the network.

  6. Towards Reliable Evaluation of Anomaly-Based Intrusion Detection Performance

    Science.gov (United States)

    Viswanathan, Arun

    2012-01-01

    This report describes the results of research into the effects of environment-induced noise on the evaluation process for anomaly detectors in the cyber security domain. This research was conducted during a 10-week summer internship program from the 19th of August, 2012 to the 23rd of August, 2012 at the Jet Propulsion Laboratory in Pasadena, California. The research performed lies within the larger context of the Los Angeles Department of Water and Power (LADWP) Smart Grid cyber security project, a Department of Energy (DoE) funded effort involving the Jet Propulsion Laboratory, California Institute of Technology and the University of Southern California/ Information Sciences Institute. The results of the present effort constitute an important contribution towards building more rigorous evaluation paradigms for anomaly-based intrusion detectors in complex cyber physical systems such as the Smart Grid. Anomaly detection is a key strategy for cyber intrusion detection and operates by identifying deviations from profiles of nominal behavior and are thus conceptually appealing for detecting "novel" attacks. Evaluating the performance of such a detector requires assessing: (a) how well it captures the model of nominal behavior, and (b) how well it detects attacks (deviations from normality). Current evaluation methods produce results that give insufficient insight into the operation of a detector, inevitably resulting in a significantly poor characterization of a detectors performance. In this work, we first describe a preliminary taxonomy of key evaluation constructs that are necessary for establishing rigor in the evaluation regime of an anomaly detector. We then focus on clarifying the impact of the operational environment on the manifestation of attacks in monitored data. We show how dynamic and evolving environments can introduce high variability into the data stream perturbing detector performance. Prior research has focused on understanding the impact of this

  7. Context-aware local Intrusion Detection in SCADA systems : a testbed and two showcases

    NARCIS (Netherlands)

    Chromik, Justyna Joanna; Haverkort, Boudewijn R.H.M.; Remke, Anne Katharina Ingrid; Pilch, Carina; Brackmann, Pascal; Duhme, Christof; Everinghoff, Franziska; Giberlein, Artur; Teodorowicz, Thomas; Wieland, Julian

    2017-01-01

    This paper illustrates the use of a testbed that we have developed for context-aware local intrusion detection. This testbed is based on the co-simulation framework Mosaik and allows for the validation of local intrusion detection mechanisms at field stations in power distribution networks. For two

  8. Nuisance alarm suppression techniques for fibre-optic intrusion detection systems

    Science.gov (United States)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-02-01

    The suppression of nuisance alarms without degrading sensitivity in fibre-optic intrusion detection systems is important for maintaining acceptable performance. Signal processing algorithms that maintain the POD and minimize nuisance alarms are crucial for achieving this. A level crossings algorithm is presented for suppressing torrential rain-induced nuisance alarms in a fibre-optic fence-based perimeter intrusion detection system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr, and intrusion events can be detected simultaneously during rain periods. The use of a level crossing based detection and novel classification algorithm is also presented demonstrating the suppression of nuisance events and discrimination of nuisance and intrusion events in a buried pipeline fibre-optic intrusion detection system. The sensor employed for both types of systems is a distributed bidirectional fibre-optic Mach Zehnder interferometer.

  9. Case-Based Multi-Sensor Intrusion Detection

    Science.gov (United States)

    Schwartz, Daniel G.; Long, Jidong

    2009-08-01

    Multi-sensor intrusion detection systems (IDSs) combine the alerts raised by individual IDSs and possibly other kinds of devices such as firewalls and antivirus software. A critical issue in building a multi-sensor IDS is alert-correlation, i.e., determining which alerts are caused by the same attack. This paper explores a novel approach to alert correlation using case-based reasoning (CBR). Each case in the CBR system's library contains a pattern of alerts raised by some known attack type, together with the identity of the attack. Then during run time, the alert streams gleaned from the sensors are compared with the patterns in the cases, and a match indicates that the attack described by that case has occurred. For this purpose the design of a fast and accurate matching algorithm is imperative. Two such algorithms were explored: (i) the well-known Hungarian algorithm, and (ii) an order-preserving matching of our own device. Tests were conducted using the DARPA Grand Challenge Problem attack simulator. These showed that the both matching algorithms are effective in detecting attacks; but the Hungarian algorithm is inefficient; whereas the order-preserving one is very efficient, in fact runs in linear time.

  10. A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2014-01-01

    abnormal nodes from normal nodes by observing their abnormal behaviors, and we analyse parameter selection and error rate of the intrusion detection system. The paper elaborates on the design and implementation of the detection system. This system has achieved efficient, rapid intrusion detection by improving the wireless ad hoc on-demand distance vector routing protocol (Ad hoc On-Demand Distance the Vector Routing, AODV. Finally, the test results show that: the system has high detection accuracy and speed, in accordance with the requirement of wireless sensor network intrusion detection.

  11. Intrusion Detection Algorithm for Mitigating Sinkhole Attack on LEACH Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ranjeeth Kumar Sundararajan

    2015-01-01

    Full Text Available In wireless sensor network (WSN, the sensors are deployed and placed uniformly to transmit the sensed data to a centralized station periodically. So, the major threat of the WSN network layer is sinkhole attack and it is still being a challenging issue on the sensor networks, where the malicious node attracts the packets from the other normal sensor nodes and drops the packets. Thus, this paper proposes an Intrusion Detection System (IDS mechanism to detect the intruder in the network which uses Low Energy Adaptive Clustering Hierarchy (LEACH protocol for its routing operation. In the proposed algorithm, the detection metrics, such as number of packets transmitted and received, are used to compute the intrusion ratio (IR by the IDS agent. The computed numeric or nonnumeric value represents the normal or malicious activity. As and when the sinkhole attack is captured, the IDS agent alerts the network to stop the data transmission. Thus, it can be a resilient to the vulnerable attack of sinkhole. Above all, the simulation result is shown for the proposed algorithm which is proven to be efficient compared with the existing work, namely, MS-LEACH, in terms of minimum computational complexity and low energy consumption. Moreover, the algorithm was numerically analyzed using TETCOS NETSIM.

  12. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    Science.gov (United States)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-12-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.

  13. An ethernet/IP security review with intrusion detection applications

    International Nuclear Information System (INIS)

    Laughter, S. A.; Williams, R. D.

    2006-01-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IP networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)

  14. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    International Nuclear Information System (INIS)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-01-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware. (paper)

  15. Uncertainty quantification for criticality problems using non-intrusive and adaptive Polynomial Chaos techniques

    International Nuclear Information System (INIS)

    Gilli, L.; Lathouwers, D.; Kloosterman, J.L.; Hagen, T.H.J.J. van der; Koning, A.J.; Rochman, D.

    2013-01-01

    Highlights: ► Non-intrusive spectral techniques are applied to perform UQ of criticality problems. ► A new adaptive algorithm based on the definition of sparse grid is derived. ► The method is applied to two reference criticality problems. - Abstract: In this paper we present the implementation and the application of non-intrusive spectral techniques for uncertainty analysis of criticality problems. Spectral techniques can be used to reconstruct stochastic quantities of interest by means of a Fourier-like expansion. Their application to uncertainty propagation problems can be performed in a non-intrusive fashion by evaluating a set of projection integrals that are used to reconstruct the spectral expansion. This can be done either by using standard Monte Carlo integration approaches or by adopting numerical quadrature rules. We present the derivation of a new adaptive quadrature algorithm, based on the definition of a sparse grid, which can be used to reduce the computational cost associated with non-intrusive spectral techniques. This new adaptive algorithm and the Monte Carlo integration alternative are then applied to two reference problems. First, a stochastic multigroup diffusion problem is introduced by considering the microscopic cross-sections of the system to be random quantities. Then a criticality benchmark is defined for which a set of resonance parameters in the resolved region are assumed to be stochastic

  16. Semantic intrusion detection with multisensor data fusion using ...

    Indian Academy of Sciences (India)

    spatiotemporal relations to form complex events which model the intrusion patterns. ... Wireless sensor networks; complex event processing; event stream; ...... of the 2006 ACM SIGMOD International Conference on Management of Data, 407– ...

  17. A survey of intrusion detection techniques in Cloud

    OpenAIRE

    Modi, C.; Patel, D.; Patel, H.; Borisaniya, B.; Patel, A.; Rajarajan, M.

    2013-01-01

    Cloud computing provides scalable, virtualized on-demand services to the end users with greater flexibility and lesser infrastructural investment. These services are provided over the Internet using known networking protocols, standards and formats under the supervision of different managements. Existing bugs and vulnerabilities in underlying technologies and legacy protocols tend to open doors for intrusion. This paper, surveys different intrusions affecting availability, confidentiality and...

  18. A Privacy-Preserving Framework for Collaborative Intrusion Detection Networks Through Fog Computing

    DEFF Research Database (Denmark)

    Wang, Yu; Xie, Lin; Li, Wenjuan

    2017-01-01

    Nowadays, cyber threats (e.g., intrusions) are distributed across various networks with the dispersed networking resources. Intrusion detection systems (IDSs) have already become an essential solution to defend against a large amount of attacks. With the development of cloud computing, a modern IDS...

  19. Cyclone, Salinity Intrusion and Adaptation and Coping Measures in Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Sebak Kumar Saha

    2017-06-01

    Full Text Available Although households in the coastal areas of Bangladesh undertake various adaptation and coping measures to minimise their vulnerability to cyclone hazards and salinity intrusion, these autonomous measures have received little attention in the past. However, the Government of Bangladesh has recently emphasised the importance of understanding these measures so that necessary interventions to make households more resilient to natural hazards and the adverse impacts of climate change can be introduced. This paper, based on secondary sources, explores adaptation and coping measures that households in the coastal areas of Bangladesh undertake to minimise their vulnerability to cyclone hazards and salinity intrusion. This paper shows that many of the adaptation and coping measures contribute to making households less vulnerable and more resilient to cyclone hazards and salinity intrusion, although some coping measures do the opposite as they reduce households’ adaptive capacities instead of improving them. This paper argues that the adaptation and coping measures that contribute to reducing households’ vulnerability to natural hazards need to be supported and guided by the government and NGOs to make them more effective. Additionally, measures that make households more vulnerable also need to be addressed by the government and NGOs, as most of these measures are related to and constrained by both poverty, and because the households have little or no access to economic opportunities.

  20. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    Science.gov (United States)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2012-01-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  1. Cross-layer design for intrusion detection and data security in wireless ad hoc sensor networks

    Science.gov (United States)

    Hortos, William S.

    2007-09-01

    and trust neighborhood, collecting parametric information and executing assigned decision tasks. The communications overhead due to security mechanisms and the latency in network response are thus minimized by reducing the need to move large amounts of audit data through resource-limited nodes and by locating detection/identification programs closer to audit data. If network partitioning occurs due to uncoordinated node exhaustion, data compromise or other effects of the attacks, the mobile agents can continue to operate, thereby increasing fault tolerance in the network response to intrusions. Since the mobile agents behave like an ant colony in securing the WSN, published ant colony optimization (ACO) routines and other evolutionary algorithms are adapted to protect network security, using data at and through nodes to create audit records to detect and respond to denial-of-service attacks. Performance evaluations of algorithms are performed by simulation of a few intrusion attacks, such as black hole, flooding, Sybil and others, to validate the ability of the cross-layer algorithms to enable WSNs to survive the attacks. Results are compared for the different algorithms.

  2. A Comprehensive Review and meta-analysis on Applications of Machine Learning Techniques in Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Manojit Chattopadhyay

    2018-05-01

    Full Text Available Securing a machine from various cyber-attacks has been of serious concern for researchers, statutory bodies such as governments, business organizations and users in both wired and wireless media. However, during the last decade, the amount of data handling by any device, particularly servers, has increased exponentially and hence the security of these devices has become a matter of utmost concern. This paper attempts to examine the challenges in the application of machine learning techniques to intrusion detection. We review different inherent issues in defining and applying the machine learning techniques to intrusion detection. We also attempt to identify the best technological solution for changing usage pattern by comparing different machine learning techniques on different datasets and summarizing their performance using various performance metrics. This paper highlights the research challenges and future trends of intrusion detection in dynamic scenarios of intrusion detection problems in diverse network technologies.

  3. Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection

    Science.gov (United States)

    Elfers, Carsten; Horstmann, Mirko; Sohr, Karsten; Herzog, Otthein

    Intrusion detection in computer networks faces the problem of a large number of both false alarms and unrecognized attacks. To improve the precision of detection, various machine learning techniques have been proposed. However, one critical issue is that the amount of reference data that contains serious intrusions is very sparse. In this paper we present an inference process with linear chain conditional random fields that aims to solve this problem by using domain knowledge about the alerts of different intrusion sensors represented in an ontology.

  4. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian L; Vallentin, Matthias; Sommer, Robin; Lee, Jason; Leres, Craig; Paxson, Vern; Tierney, Brian

    2007-09-19

    In this work we present a NIDS cluster as a scalable solution for realizing high-performance, stateful network intrusion detection on commodity hardware. The design addresses three challenges: (i) distributing traffic evenly across an extensible set of analysis nodes in a fashion that minimizes the communication required for coordination, (ii) adapting the NIDS's operation to support coordinating its low-level analysis rather than just aggregating alerts; and (iii) validating that the cluster produces sound results. Prototypes of our NIDS cluster now operate at the Lawrence Berkeley National Laboratory and the University of California at Berkeley. In both environments the clusters greatly enhance the power of the network security monitoring.

  5. Anomaly-Based Intrusion Detection Systems Utilizing System Call Data

    Science.gov (United States)

    2012-03-01

    52 Table 7. Place Reachability Statistics for Low Level CPN...54 Table 8. Place Reachability Statistics for High Level CPN................................................. 55 Table 9. Password Stealing...the efficiency of traditional anti-virus software tools that are dependent on gigantic , continuously updated databases. Fortunately, Intrusion

  6. Scalable High-Performance Parallel Design for Network Intrusion Detection Systems on Many-Core Processors

    OpenAIRE

    Jiang, Hayang; Xie, Gaogang; Salamatian, Kavé; Mathy, Laurent

    2013-01-01

    Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. Both hardware accelerated and parallel software-based NIDS solutions, based on commodity multi-core and GPU processors, have been proposed to overcome these challenges. Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. ...

  7. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  8. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  9. Intrusion detection techniques for plant-wide network in a nuclear power plant

    International Nuclear Information System (INIS)

    Rajasekhar, P.; Shrikhande, S.V.; Biswas, B.B.; Patil, R.K.

    2012-01-01

    Nuclear power plants have a lot of critical data to be sent to the operator workstations. A plant wide integrated communication network, with high throughput, determinism and redundancy, is required between the workstations and the field. Switched Ethernet network is a promising prospect for such an integrated communication network. But for such an integrated system, intrusion is a major issue. Hence the network should have an intrusion detection system to make the network data secure and enhance the network availability. Intrusion detection is the process of monitoring the events occurring in a network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of network security policies, acceptable user policies, or standard security practices. This paper states the various intrusion detection techniques and approaches which are applicable for analysis of a plant wide network. (author)

  10. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  11. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  12. Ensemble regression model-based anomaly detection for cyber-physical intrusion detection in smart grids

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Gehrke, Oliver

    2016-01-01

    The shift from centralised large production to distributed energy production has several consequences for current power system operation. The replacement of large power plants by growing numbers of distributed energy resources (DERs) increases the dependency of the power system on small scale......, distributed production. Many of these DERs can be accessed and controlled remotely, posing a cybersecurity risk. This paper investigates an intrusion detection system which evaluates the DER operation in order to discover unauthorized control actions. The proposed anomaly detection method is based...

  13. A Comparative Study of Data Mining Algorithms for High Detection Rate in Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Nabeela Ashraf

    2018-01-01

    Full Text Available Due to the fast growth and tradition of the internet over the last decades, the network security problems are increasing vigorously. Humans can not handle the speed of processes and the huge amount of data required to handle network anomalies. Therefore, it needs substantial automation in both speed and accuracy. Intrusion Detection System is one of the approaches to recognize illegal access and rare attacks to secure networks. In this proposed paper, Naive Bayes, J48 and Random Forest classifiers are compared to compute the detection rate and accuracy of IDS. For experiments, the KDD_NSL dataset is used.

  14. Full distributed fiber optical sensor for intrusion detection in application to buried pipelines

    Science.gov (United States)

    Gao, Jianzhong; Jiang, Zhuangde; Zhao, Yulong; Zhu, Li; Zhao, Guoxian

    2005-11-01

    Based on the microbend effect of optical fiber, a distributed sensor for real-time continuous monitoring of intrusion in application to buried pipelines is proposed. The sensing element is a long cable with a special structure made up of an elastic polymer wire, an optical fiber, and a metal wire. The damage point is located with an embedded optical time domain reflectometry (OTDR) instrument. The intrusion types can be indicated by the amplitude of output voltage. Experimental results show that the detection system can alarm adequately under abnormal load and can locate the intrusion point within 22.4 m for distance of 3.023 km.

  15. Description, operation, and diagnostic routines for the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Corlis, N.E.; Johnson, C.S.

    1978-03-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-metal, analog, and video data. This manual covers the procedures for operating AIDS. Instructions are given to guide the operator in software programming and control option selections required to program AIDS for data collection. Software diagnostic programs are included in this manual as a method of isolating system problems

  16. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  17. Reading between the fields: practical, effective intrusion detection for industrial control systems

    NARCIS (Netherlands)

    Yüksel, Ömer; den Hartog, Jeremy; Etalle, Sandro

    2016-01-01

    Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because

  18. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid.

    Science.gov (United States)

    Li, Yuancheng; Qiu, Rixuan; Jing, Sitong

    2018-01-01

    Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.

  19. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  20. Wireless sensing without sensors—an experimental study of motion/intrusion detection using RF irregularity

    International Nuclear Information System (INIS)

    Lee, Pius W Q; Tan, Hwee-Pink; Seah, Winston K G; Yao, Zexi

    2010-01-01

    Motion and intrusion detection are often cited as wireless sensor network (WSN) applications with typical configurations comprising clusters of wireless nodes equipped with motion sensors to detect human motion. Currently, WSN performance is subjected to several constraints, namely radio irregularity and finite on-board computation/energy resources. Radio irregularity in radio frequency (RF) propagation rises to a higher level in the presence of human activity due to the absorption effect of the human body. In this paper, we investigate the feasibility of monitoring RF transmission for the purpose of intrusion detection through experimentation. With empirical data obtained from the Crossbow TelosB platform in several different environments, the impact of human activity on the signal strength of RF signals in a WSN is evaluated. We then propose a novel approach to intrusion detection by turning a constraint in WSN, namely radio irregularity, into an advantage for the purpose of intrusion detection, using signal fluctuations to detect the presence of human activity within the WSN. Unlike RF fingerprinting, the 'intruders' here neither transmit nor receive any RF signals. By enabling existing wireless infrastructures to serve as intrusion detectors instead of deploying numerous costly sensors, this approach shows great promise for providing novel solutions

  1. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  2. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  3. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  4. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  5. A novel intrusion detection method based on OCSVM and K-means recursive clustering

    Directory of Open Access Journals (Sweden)

    Leandros A. Maglaras

    2015-01-01

    Full Text Available In this paper we present an intrusion detection module capable of detecting malicious network traffic in a SCADA (Supervisory Control and Data Acquisition system, based on the combination of One-Class Support Vector Machine (OCSVM with RBF kernel and recursive k-means clustering. Important parameters of OCSVM, such as Gaussian width o and parameter v affect the performance of the classifier. Tuning of these parameters is of great importance in order to avoid false positives and over fitting. The combination of OCSVM with recursive k- means clustering leads the proposed intrusion detection module to distinguish real alarms from possible attacks regardless of the values of parameters o and v, making it ideal for real-time intrusion detection mechanisms for SCADA systems. Extensive simulations have been conducted with datasets extracted from small and medium sized HTB SCADA testbeds, in order to compare the accuracy, false alarm rate and execution time against the base line OCSVM method.

  6. Intrusion detection in Mobile Ad-hoc Networks: Bayesian game formulation

    Directory of Open Access Journals (Sweden)

    Basant Subba

    2016-06-01

    Full Text Available Present Intrusion Detection Systems (IDSs for MANETs require continuous monitoring which leads to rapid depletion of a node's battery life. To address this issue, we propose a new IDS scheme comprising a novel cluster leader election process and a hybrid IDS. The cluster leader election process uses the Vickrey–Clarke–Groves mechanism to elect the cluster leader which provides the intrusion detection service. The hybrid IDS comprises a threshold based lightweight module and a powerful anomaly based heavyweight module. Initially, only the lightweight module is activated. The decision to activate the heavyweight module is taken by modeling the intrusion detection process as an incomplete information non-cooperative game between the elected leader node and the potential malicious node. Simulation results show that the proposed scheme significantly reduces the IDS traffic and overall power consumption in addition to maintaining a high detection rate and accuracy.

  7. Technologies, Methodologies and Challenges in Network Intrusion Detection and Prevention Systems

    Directory of Open Access Journals (Sweden)

    Nicoleta STANCIU

    2013-01-01

    Full Text Available This paper presents an overview of the technologies and the methodologies used in Network Intrusion Detection and Prevention Systems (NIDPS. Intrusion Detection and Prevention System (IDPS technologies are differentiated by types of events that IDPSs can recognize, by types of devices that IDPSs monitor and by activity. NIDPSs monitor and analyze the streams of network packets in order to detect security incidents. The main methodology used by NIDPSs is protocol analysis. Protocol analysis requires good knowledge of the theory of the main protocols, their definition, how each protocol works.

  8. Correlating intrusion detection alerts on bot malware infections using neural network

    DEFF Research Database (Denmark)

    Kidmose, Egon; Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    Millions of computers are infected with bot malware, form botnets and enable botmaster to perform malicious and criminal activities. Intrusion Detection Systems are deployed to detect infections, but they raise many correlated alerts for each infection, requiring a large manual investigation effort...

  9. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  10. Towards software-based signature detection for intrusion prevention on the network card

    NARCIS (Netherlands)

    Bos, H.; Huang, Kaiming

    2006-01-01

    CardGuard is a signature detection system for intrusion detection and prevention that scans the entire payload of packets for suspicious patterns and is implemented in software on a network card equiped with an Intel IXP1200 network processor. One card can be used to protect either a single host, or

  11. Panacea: Automating Attack Classification for Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro; Hartel, Pieter H.; Kirda, E.; Jha, S.; Balzarotti, D.

    Anomaly-based intrusion detection systems are usually criticized because they lack a classication of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  12. Panacea : Automating attack classification for anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Hartel, P.H.; Kirda, E.; Jha, S.; Balzarotti, D.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attacks, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  13. Panacea : Automating attack classification for anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Hartel, P.H.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  14. Panacea: Automating Attack Classification for Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro; Hartel, Pieter H.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classication of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  15. Towards real-time intrusion detection for NetFlow and IPFIX

    NARCIS (Netherlands)

    Hofstede, R.J.; Bartos, Vaclav; Sperotto, Anna; Pras, Aiko

    2013-01-01

    DDoS attacks bring serious economic and technical damage to networks and enterprises. Timely detection and mitigation are therefore of great importance. However, when flow monitoring systems are used for intrusion detection, as it is often the case in campus, enterprise and backbone networks, timely

  16. A Survey on Cross-Layer Intrusion Detection System for Wireless ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... forwarding, and open wireless medium are the factors that make ... Wireless Sensor Network (WSN) is a kind of network that ... These tiny sensors are mainly small sized and have low ..... they were integrated to WSN for intrusion detection in ..... Anomaly Detection Techniques for Smart City Wireless Sensor.

  17. Attacks and Intrusion Detection in Cloud Computing Using Neural Networks and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmad Shokuh Saljoughi

    2018-01-01

    Full Text Available Today, cloud computing has become popular among users in organizations and companies. Security and efficiency are the two major issues facing cloud service providers and their customers. Since cloud computing is a virtual pool of resources provided in an open environment (Internet, cloud-based services entail security risks. Detection of intrusions and attacks through unauthorized users is one of the biggest challenges for both cloud service providers and cloud users. In the present study, artificial intelligence techniques, e.g. MLP Neural Network sand particle swarm optimization algorithm, were used to detect intrusion and attacks. The methods were tested for NSL-KDD, KDD-CUP datasets. The results showed improved accuracy in detecting attacks and intrusions by unauthorized users.

  18. LIDeA: A Distributed Lightweight Intrusion Detection Architecture for Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Athanasios; Krontiris, Ioannis; Dimitriou, Tassos

    2008-01-01

    to achieve a more autonomic and complete defense mechanism, even against attacks that have not been anticipated in advance. In this paper, we present a lightweight intrusion detection system, called LIDeA, designed for wireless sensor networks. LIDeA is based on a distributed architecture, in which nodes......Wireless sensor networks are vulnerable to adversaries as they are frequently deployed in open and unattended environments. Preventive mechanisms can be applied to protect them from an assortment of attacks. However, more sophisticated methods, like intrusion detection systems, are needed...

  19. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    Science.gov (United States)

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  20. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin; Stoleru, Radu; Shihada, Basem

    2011-01-01

    in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous

  1. Real-Time and Resilient Intrusion Detection: A Flow-Based Approach

    NARCIS (Netherlands)

    Hofstede, R.J.; Pras, Aiko

    Due to the demanding performance requirements of packet-based monitoring solutions on network equipment, flow-based intrusion detection systems will play an increasingly important role in current high-speed networks. The required technologies are already available and widely deployed: NetFlow and

  2. Anomaly based intrusion detection for a biometric identification system using neural networks

    CSIR Research Space (South Africa)

    Mgabile, T

    2012-10-01

    Full Text Available detection technique that analyses the fingerprint biometric network traffic for evidence of intrusion. The neural network algorithm that imitates the way a human brain works is used in this study to classify normal traffic and learn the correct traffic...

  3. Feature selection for anomaly–based network intrusion detection using cluster validity indices

    CSIR Research Space (South Africa)

    Naidoo, T

    2015-09-01

    Full Text Available for Anomaly–Based Network Intrusion Detection Using Cluster Validity Indices Tyrone Naidoo_, Jules–Raymond Tapamoy, Andre McDonald_ Modelling and Digital Science, Council for Scientific and Industrial Research, South Africa 1tnaidoo2@csir.co.za 3...

  4. ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Crispo, Bruno; Etalle, Sandro

    2007-01-01

    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network

  5. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease

    Directory of Open Access Journals (Sweden)

    Etienne Waleckx

    2015-05-01

    Full Text Available Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions.

  6. Automatic, non-intrusive, flame detection in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.D.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Al-Himyary, T.J. [Al-Himyary Consulting Inc., Calgary, AB (Canada)

    2004-07-01

    Flames have been known to occur within small diameter pipes operating under conditions of high turbulent flow. Although there are several methods of flame detection, few offer remote, non-line-of-site detection. In particular, combustion cannot be detected in cases where flammable mixtures are carried in flare lines, storage tank vents, air drilling or improperly designed purging operations. Combustion noise is being examined as a means to address this problem. A study was conducted in which flames within a small diameter tube were automatically detected using high speed pressure measurements and a newly developed algorithm. Commercially available, high-pressure, dynamic-pressure transducers were used for the measurements. The results of an experimental study showed that combustion noise can be distinguished from other sources of noise by its inverse power law relationship with frequency. This paper presented a newly developed algorithm which provides early detection of flames when combined with high-speed pressure measurements. The algorithm can also separate combustion noise automatically from other sources of noise when combined with other filters. In this study, the noise generated by a fluttering check valve was attenuated using a stop band filter. This detection method was found to be very reliable under the conditions tests, as long as there was no flow restriction between the sensor and the flame. A flow restriction would have resulted in the detection of only the strongest flame noise. It was shown that acoustic flame detection can be applied successfully in flare stacks, industrial burners and turbine combustors. It can be 15 times more sensitive than optical or electrical methods in diagnosing combustion problems with lean burning combustors. It may also be the only method available in applications that require remote, non-line-of-sight detection. 11 refs., 3 tabs., 15 figs.

  7. Creating a two-layered augmented artificial immune system for application to computer network intrusion detection

    Science.gov (United States)

    Judge, Matthew G.; Lamont, Gary B.

    2009-05-01

    Computer network security has become a very serious concern of commercial, industrial, and military organizations due to the increasing number of network threats such as outsider intrusions and insider covert activities. An important security element of course is network intrusion detection which is a difficult real world problem that has been addressed through many different solution attempts. Using an artificial immune system has been shown to be one of the most promising results. By enhancing jREMISA, a multi-objective evolutionary algorithm inspired artificial immune system, with a secondary defense layer; we produce improved accuracy of intrusion classification and a flexibility in responsiveness. This responsiveness can be leveraged to provide a much more powerful and accurate system, through the use of increased processing time and dedicated hardware which has the flexibility of being located out of band.

  8. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  9. Abstracting massive data for lightweight intrusion detection in computer networks

    KAUST Repository

    Wang, Wei; Liu, Jiqiang; Pitsilis, Georgios; Zhang, Xiangliang

    2016-01-01

    detection. Data abstraction refers to abstract or extract the most relevant information from the massive dataset. In this work, we propose three strategies of data abstraction, namely, exemplar extraction, attribute selection and attribute abstraction. We

  10. Dynamic Modeling of Internet Traffic for Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Stephan Bohacek

    2007-01-01

    Full Text Available Computer network traffic is analyzed via mutual information techniques, implemented using linear and nonlinear canonical correlation analyses, with the specific objective of detecting UDP flooding attacks. NS simulation of HTTP, FTP, and CBR traffic shows that flooding attacks are accompanied by a change of mutual information, either at the link being flooded or at another upstream or downstream link. This observation appears to be topology independent, as the technique is demonstrated on the so-called parking-lot topology, random 50-node topology, and 100-node transit-stub topology. This technique is also employed to detect UDP flooding with low false alarm rate on a backbone link. These results indicate that a change in mutual information provides a useful detection criterion when no other signature of the attack is available.

  11. Towards Effective Network Intrusion Detection: A Hybrid Model Integrating Gini Index and GBDT with PSO

    Directory of Open Access Journals (Sweden)

    Longjie Li

    2018-01-01

    Full Text Available In order to protect computing systems from malicious attacks, network intrusion detection systems have become an important part in the security infrastructure. Recently, hybrid models that integrating several machine learning techniques have captured more attention of researchers. In this paper, a novel hybrid model was proposed with the purpose of detecting network intrusion effectively. In the proposed model, Gini index is used to select the optimal subset of features, the gradient boosted decision tree (GBDT algorithm is adopted to detect network attacks, and the particle swarm optimization (PSO algorithm is utilized to optimize the parameters of GBDT. The performance of the proposed model is experimentally evaluated in terms of accuracy, detection rate, precision, F1-score, and false alarm rate using the NSL-KDD dataset. Experimental results show that the proposed model is superior to the compared methods.

  12. On Cyber Attacks and Signature Based Intrusion Detection for MODBUS Based Industrial Control Systems

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-03-01

    Full Text Available Industrial control system communication networks are vulnerable to reconnaissance, response injection, command injection, and denial of service attacks.  Such attacks can lead to an inability to monitor and control industrial control systems and can ultimately lead to system failure. This can result in financial loss for control system operators and economic and safety issues for the citizens who use these services.  This paper describes a set of 28 cyber attacks against industrial control systems which use the MODBUS application layer network protocol. The paper also describes a set of standalone and state based intrusion detection system rules which can be used to detect cyber attacks and to store evidence of attacks for post incident analysis. All attacks described in this paper were validated in a laboratory environment. The detection rate of the intrusion detection system rules presented by attack class is also presented.

  13. Using discriminant analysis to detect intrusions in external communication for self-driving vehicles

    Directory of Open Access Journals (Sweden)

    Khattab M.Ali Alheeti

    2017-08-01

    Full Text Available Security systems are a necessity for the deployment of smart vehicles in our society. Security in vehicular ad hoc networks is crucial to the reliable exchange of information and control data. In this paper, we propose an intelligent Intrusion Detection System (IDS to protect the external communication of self-driving and semi self-driving vehicles. This technology has the ability to detect Denial of Service (DoS and black hole attacks on vehicular ad hoc networks (VANETs. The advantage of the proposed IDS over existing security systems is that it detects attacks before they causes significant damage. The intrusion prediction technique is based on Linear Discriminant Analysis (LDA and Quadratic Discriminant Analysis (QDA which are used to predict attacks based on observed vehicle behavior. We perform simulations using Network Simulator 2 to demonstrate that the IDS achieves a low rate of false alarms and high accuracy in detection.

  14. Designing and Implementing a Family of Intrusion Detection Systems

    Science.gov (United States)

    2004-11-01

    configure (train), generates many false alarms – Misuse detection (signature analysis) (NFR, Emerald , Snort, STAT) • Generates few false alarms • Detects...to create .rhosts file in world-writable ftp home directory – rlogin using bogus .rhosts file S0 create_file read_rhosts S3S2 login S1 STAT KN-14...world-writable ftp home directory – rlogin using bogus .rhosts file S0 create_file read_rhosts S3S2 login S1 STAT KN-17 ftp-write in STATL use ustat

  15. A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems

    Science.gov (United States)

    1999-06-01

    administrator whenever a system binary file (such as the ps, login , or ls program) is modified. Normal users have no legitimate reason to alter these files...development of EMERALD [46], which combines statistical anomaly detection from NIDES with signature verification. Specification-based intrusion detection...the creation of a single host that can act as many hosts. Daemons that provide network services—including telnetd, ftpd, and login — display banners

  16. Design and implementation of an intrusion detection system based on IPv6 protocol

    Science.gov (United States)

    Liu, Bin; Li, Zhitang; Li, Yao; Li, Zhanchun

    2005-11-01

    Network intrusion detection systems (NIDS) are important parts of network security architecture. Although many NIDS have been proposed, there is little effort to expand the current set of NIDS to support IPv6 protocol. This paper presents the design and implementation of a Network-based Intrusion Detection System that supports both IPv6 protocol and IPv4 protocol. It characters rules based logging to perform content pattern matching and detect a variety of attacks and probes from IPv4 and IPv6.There are four primary subsystems to make it up: packet capture, packet decoder, detection engine, and logging and alerting subsystem. A new approach to packet capture that combined NAPI with MMAP is proposed in this paper. The test results show that the efficiency of packet capture can be improved significantly by this method. Several new attack tools for IPv6 have been developed for intrusion detection evaluation. Test shows that more than 20 kinds of IPv6 attacks can be detected by this system and it also has a good performance under heavy traffic load.

  17. Research on intrusion detection based on Kohonen network and support vector machine

    Science.gov (United States)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  18. Multimodal UAV detection: study of various intrusion scenarios

    Science.gov (United States)

    Hengy, Sebastien; Laurenzis, Martin; Schertzer, Stéphane; Hommes, Alexander; Kloeppel, Franck; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Rassy, Oussama; Christnacher, Frank

    2017-10-01

    Small unmanned aerial vehicles (UAVs) are becoming increasingly popular and affordable the last years for professional and private consumer market, with varied capacities and performances. Recent events showed that illicit or hostile uses constitute an emergent, quickly evolutionary threat. Recent developments in UAV technologies tend to bring autonomous, highly agile and capable unmanned aerial vehicles to the market. These UAVs can be used for spying operations as well as for transporting illicit or hazardous material (smuggling, flying improvised explosive devices). The scenario of interest concerns the protection of sensitive zones against the potential threat constituted by small drones. In the recent past, field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small FMCW RADAR systems and optical sensors. While acoustics and RADAR was applied to monitor a wide azimuthal area (360°), optical sensors were used for sequentially identification. The localization results have been compared to the ground truth data to estimate the efficiency of each detection system. Seven-microphone acoustic arrays allow single source localization. The mean azimuth and elevation estimation error has been measured equal to 1.5 and -2.5 degrees respectively. The FMCW radar allows tracking of multiple UAVs by estimating their range, azimuth and motion speed. Both technologies can be linked to the electro-optical system for final identification of the detected object.

  19. Prototype of Intrusion Detection Model using UML 5.0 and Forward Engineering

    Directory of Open Access Journals (Sweden)

    Muthaiyan MADIAJAGAN,

    2011-01-01

    Full Text Available In this paper we are using UML (Unified Modeling Language which is the blueprint language between the programmers, analysts, and designer’s for easy representation of pictures or diagrammatic notation with some textual data. Here we are using UML 5.0 to show “prototype of the Intrusion Detection Model” and by explaining it by combining various parts by drawing various UML diagrams such as Use cases and Activity diagrams and Class Diagram using which we show forward engineering using the class diagram of the IDM( Intrusion Detection Model. IDM is a device or software that works on detecting malicious activities by unauthorized users that can cause breach to the security policy within a network.

  20. Intrusion detection in cloud computing based attack patterns and risk assessment

    Directory of Open Access Journals (Sweden)

    Ben Charhi Youssef

    2017-05-01

    Full Text Available This paper is an extension of work originally presented in SYSCO CONF.We extend our previous work by presenting the initial results of the implementation of intrusion detection based on risk assessment on cloud computing. The idea focuses on a novel approach for detecting cyber-attacks on the cloud environment by analyzing attacks pattern using risk assessment methodologies. The aim of our solution is to combine evidences obtained from Intrusion Detection Systems (IDS deployed in a cloud with risk assessment related to each attack pattern. Our approach presents a new qualitative solution for analyzing each symptom, indicator and vulnerability analyzing impact and likelihood of distributed and multi-steps attacks directed to cloud environments. The implementation of this approach will reduce the number of false alerts and will improve the performance of the IDS.

  1. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-05-01

    Full Text Available This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  2. A Novel Algorithm for Intrusion Detection Based on RASL Model Checking

    Directory of Open Access Journals (Sweden)

    Weijun Zhu

    2013-01-01

    Full Text Available The interval temporal logic (ITL model checking (MC technique enhances the power of intrusion detection systems (IDSs to detect concurrent attacks due to the strong expressive power of ITL. However, an ITL formula suffers from difficulty in the description of the time constraints between different actions in the same attack. To address this problem, we formalize a novel real-time interval temporal logic—real-time attack signature logic (RASL. Based on such a new logic, we put forward a RASL model checking algorithm. Furthermore, we use RASL formulas to describe attack signatures and employ discrete timed automata to create an audit log. As a result, RASL model checking algorithm can be used to automatically verify whether the automata satisfy the formulas, that is, whether the audit log coincides with the attack signatures. The simulation experiments show that the new approach effectively enhances the detection power of the MC-based intrusion detection methods for a number of telnet attacks, p-trace attacks, and the other sixteen types of attacks. And these experiments indicate that the new algorithm can find several types of real-time attacks, whereas the existing MC-based intrusion detection approaches cannot do that.

  3. Improving Accuracy of Intrusion Detection Model Using PCA and optimized SVM

    Directory of Open Access Journals (Sweden)

    Sumaiya Thaseen Ikram

    2016-06-01

    Full Text Available Intrusion detection is very essential for providing security to different network domains and is mostly used for locating and tracing the intruders. There are many problems with traditional intrusion detection models (IDS such as low detection capability against unknown network attack, high false alarm rate and insufficient analysis capability. Hence the major scope of the research in this domain is to develop an intrusion detection model with improved accuracy and reduced training time. This paper proposes a hybrid intrusiondetection model by integrating the principal component analysis (PCA and support vector machine (SVM. The novelty of the paper is the optimization of kernel parameters of the SVM classifier using automatic parameter selection technique. This technique optimizes the punishment factor (C and kernel parameter gamma (γ, thereby improving the accuracy of the classifier and reducing the training and testing time. The experimental results obtained on the NSL KDD and gurekddcup dataset show that the proposed technique performs better with higher accuracy, faster convergence speed and better generalization. Minimum resources are consumed as the classifier input requires reduced feature set for optimum classification. A comparative analysis of hybrid models with the proposed model is also performed.

  4. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM in advanced metering infrastructure of smart grid.

    Directory of Open Access Journals (Sweden)

    Yuancheng Li

    Full Text Available Advanced Metering Infrastructure (AMI realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.

  5. Enhancing Trust Management for Wireless Intrusion Detection via Traffic Sampling in the Era of Big Data

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Su, Chunhua

    2017-01-01

    many kinds of information among sensors, whereas such network is vulnerable to a wide range of attacks, especially insider attacks, due to its natural environment and inherent unreliable transmission. To safeguard its security, intrusion detection systems (IDSs) are widely adopted in a WSN to defend...... against insider attacks through implementing proper trustbased mechanisms. However, in the era of big data, sensors may generate excessive information and data, which could degrade the effectiveness of trust computation. In this paper, we focus on this challenge and propose a way of combining Bayesian......-based trust management with traffic sampling for wireless intrusion detection under a hierarchical structure. In the evaluation, we investigate the performance of our approach in both a simulated and a real network environment. Experimental results demonstrate that packet-based trust management would become...

  6. Indian program for development of technologies relevant to reliable, non-intrusive, concealed-contraband detection

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    2007-01-01

    Generating capability for reliable, non-intrusive detection of concealed-contraband, particularly, organic contraband like explosives and narcotics, has become a national priority. This capability spans a spectrum of technologies. If a technology mission addressing the needs of a highly sophisticated technology like PFNA is set up, the capabilities acquired would be adequate to meet the requirements of many other sets of technologies. This forms the background of the Indian program for development of technologies relevant to reliable, non-intrusive, concealed contraband detection. One of the central themes of the technology development programs would be modularization of the neutron source and detector technologies, so that common elements can be combined in different ways for meeting a variety of application requirements. (author)

  7. Accurate Modeling of The Siemens S7 SCADA Protocol For Intrusion Detection And Digital Forensic

    Directory of Open Access Journals (Sweden)

    Amit Kleinmann

    2014-09-01

    Full Text Available The Siemens S7 protocol is commonly used in SCADA systems for communications between a Human Machine Interface (HMI and the Programmable Logic Controllers (PLCs. This paper presents a model-based Intrusion Detection Systems (IDS designed for S7 networks. The approach is based on the key observation that S7 traffic to and from a specific PLC is highly periodic; as a result, each HMI-PLC channel can be modeled using its own unique Deterministic Finite Automaton (DFA. The resulting DFA-based IDS is very sensitive and is able to flag anomalies such as a message appearing out of its position in the normal sequence or a message referring to a single unexpected bit. The intrusion detection approach was evaluated on traffic from two production systems. Despite its high sensitivity, the system had a very low false positive rate - over 99.82% of the traffic was identified as normal.

  8. SOOA: Exploring Special On-Off Attacks on Challenge-Based Collaborative Intrusion Detection Networks

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    The development of collaborative intrusion detection networks (CIDNs) aims to enhance the performance of a single intrusion detection system (IDS), through communicating and collecting information from other IDS nodes. To defend CIDNs against insider attacks, trust-based mechanisms are crucial...... and render CIDNs still vulnerable to advanced insider attacks in a practical deployment. In this paper, our motivation is to investigate the effect of On-Off attacks on challenge-based CIDNs. In particular, as a study, we explore a special On-Off attack (called SOOA), which can keep responding normally...... to one node while acting abnormally to another node. In the evaluation, we explore the attack performance under simulated CIDN environments. Experimental results indicate that our attack can interfere the effectiveness of trust computation for CIDN nodes....

  9. PMFA: Toward Passive Message Fingerprint Attacks on Challenge-Based Collaborative Intrusion Detection Networks

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2016-01-01

    To enhance the performance of single intrusion detection systems (IDSs), collaborative intrusion detection networks (CIDNs) have been developed, which enable a set of IDS nodes to communicate with each other. In such a distributed network, insider attacks like collusion attacks are the main threat...... to advanced insider attacks in practical deployment. In this paper, we design a novel type of collusion attack, called passive message fingerprint attack (PMFA), which can collect messages and identify normal requests in a passive way. In the evaluation, we explore the attack performance under both simulated...... and real network environments. Experimental results indicate that under our attack, malicious nodes can send malicious responses to normal requests while maintaining their trust values....

  10. Developing advanced fingerprint attacks on challenge-based collaborative intrusion detection networks

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    Traditionally, an isolated intrusion detection system (IDS) is vulnerable to various types of attacks. In order to enhance IDS performance, collaborative intrusion detection networks (CIDNs) are developed through enabling a set of IDS nodes to communicate with each other. Due to the distributed...... network architecture, insider attacks are one of the major threats. In the literature, challenge-based trust mechanisms have been built to identify malicious nodes by evaluating the satisfaction levels between challenges and responses. However, such mechanisms rely on two major assumptions, which may...... result in a weak threat model. In this case, CIDNs may be still vulnerable to advanced insider attacks in real-world deployment. In this paper, we propose a novel collusion attack, called passive message fingerprint attack (PMFA), which can collect messages and identify normal requests in a passive way...

  11. A Novel Architecture for Intrusion Detection in Mobile Ad hoc Network

    OpenAIRE

    Atul Patel; Ruchi Kansara; Dr. Paresh Virparia

    2011-01-01

    Today’s wireless networks are vulnerable in many ways including illegal use, unauthorized access, denial of service attacks, eavesdropping so called war chalking. These problems are one of the main issues for wider uses of wireless network. On wired network intruder can access by wire but in wireless it has possibilities to access the computer anywhere in neighborhood. However, securing MANETs is highly challenging issue due to their inherent characteristics. Intrusion detection is an importa...

  12. Geophysical detection of marine intrusions in Black Sea coastal areas (Romania) using VES and ERT data

    OpenAIRE

    CHITEA, Florina; GEORGESCU, Paul; IOANE, Dumitru

    2011-01-01

    Abstract. Communities living in coastal areas depend in a great extent on the fresh water resources exploited from aquifers which are usually in a natural hydrodynamic equilibrium with the sea water. The contamination of fresh water with marine saltwater determines a significant increase in the aquifers electric conductivity, allowing an efficient application of resistivity methods in detecting and monitoring the marine intrusions. We present case studies from Romania (Costinesti and Vama Vec...

  13. Provide a model to improve the performance of intrusion detection systems in the cloud

    OpenAIRE

    Foroogh Sedighi

    2016-01-01

    High availability of tools and service providers in cloud computing and the fact that cloud computing services are provided by internet and deal with public, have caused important challenges for new computing model. Cloud computing faces problems and challenges such as user privacy, data security, data ownership, availability of services, and recovery after breaking down, performance, scalability, programmability. So far, many different methods are presented for detection of intrusion in clou...

  14. A framework for implementing a Distributed Intrusion Detection System (DIDS) with interoperabilty and information analysis

    OpenAIRE

    Davicino, Pablo; Echaiz, Javier; Ardenghi, Jorge Raúl

    2011-01-01

    Computer Intrusion Detection Systems (IDS) are primarily designed to protect availability, condentiality and integrity of critical information infrastructures. A Distributed IDS (DIDS) consists of several IDS over a large network(s), all of which communicate with each other, with a central server or with a cluster of servers that facilitates advanced network monitoring. In a distributed environment, DIDS are implemented using cooperative intelligent sensors distributed across the network(s). ...

  15. A Metrics-Based Approach to Intrusion Detection System Evaluation for Distributed Real-Time Systems

    Science.gov (United States)

    2002-04-01

    Based Approach to Intrusion Detection System Evaluation for Distributed Real - Time Systems Authors: G. A. Fink, B. L. Chappell, T. G. Turner, and...Distributed, Security. 1 Introduction Processing and cost requirements are driving future naval combat platforms to use distributed, real - time systems of...distributed, real - time systems . As these systems grow more complex, the timing requirements do not diminish; indeed, they may become more constrained

  16. Industrial Control System Process-Oriented Intrusion Detection (iPoid) Algorithm

    Science.gov (United States)

    2016-08-01

    SUBJECT TERMS supervisory control and data acquisition (SCADA), Modbus, industrial control system, intrusion detection system 16. SECURITY...List of Tables iv Acknowledgments v 1. Background 1 2. iPoid Modbus Packet-Inspection Capability 2 2.1 Software Requirements 2 2.2 Startup ...Mr Curtis Arnold’s support of Industrial Control Systems–Supervisory Control and Data Acquisition research at the US Army Research Laboratory

  17. Anomaly-based online intrusion detection system as a sensor for cyber security situational awareness system

    OpenAIRE

    Kokkonen, Tero

    2016-01-01

    Almost all the organisations and even individuals rely on complex structures of data networks and networked computer systems. That complex data ensemble, the cyber domain, provides great opportunities, but at the same time it offers many possible attack vectors that can be abused for cyber vandalism, cyber crime, cyber espionage or cyber terrorism. Those threats produce requirements for cyber security situational awareness and intrusion detection capability. This dissertation conc...

  18. A Distributed Intrusion Detection Scheme about Communication Optimization in Smart Grid

    Directory of Open Access Journals (Sweden)

    Yunfa Li

    2013-01-01

    Full Text Available We first propose an efficient communication optimization algorithm in smart grid. Based on the optimization algorithm, we propose an intrusion detection algorithm to detect malicious data and possible cyberattacks. In this scheme, each node acts independently when it processes communication flows or cybersecurity threats. And neither special hardware nor nodes cooperation is needed. In order to justify the feasibility and the availability of this scheme, a series of experiments have been done. The results show that it is feasible and efficient to detect malicious data and possible cyberattacks with less computation and communication cost.

  19. Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)

    Energy Technology Data Exchange (ETDEWEB)

    Jared Verba; Michael Milvich

    2008-05-01

    Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting malicious activity.

  20. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    Directory of Open Access Journals (Sweden)

    P. Amudha

    2015-01-01

    Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  1. Robust Adaptable Video Copy Detection

    DEFF Research Database (Denmark)

    Assent, Ira; Kremer, Hardy

    2009-01-01

    in contrast). Our query processing combines filtering and indexing structures for efficient multistep computation of video copies under this model. We show that our model successfully identifies altered video copies and does so more reliably than existing models.......Video copy detection should be capable of identifying video copies subject to alterations e.g. in video contrast or frame rates. We propose a video copy detection scheme that allows for adaptable detection of videos that are altered temporally (e.g. frame rate change) and/or visually (e.g. change...

  2. Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems

    Science.gov (United States)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.

  3. Intrusion detection model using fusion of chi-square feature selection and multi class SVM

    Directory of Open Access Journals (Sweden)

    Ikram Sumaiya Thaseen

    2017-10-01

    Full Text Available Intrusion detection is a promising area of research in the domain of security with the rapid development of internet in everyday life. Many intrusion detection systems (IDS employ a sole classifier algorithm for classifying network traffic as normal or abnormal. Due to the large amount of data, these sole classifier models fail to achieve a high attack detection rate with reduced false alarm rate. However by applying dimensionality reduction, data can be efficiently reduced to an optimal set of attributes without loss of information and then classified accurately using a multi class modeling technique for identifying the different network attacks. In this paper, we propose an intrusion detection model using chi-square feature selection and multi class support vector machine (SVM. A parameter tuning technique is adopted for optimization of Radial Basis Function kernel parameter namely gamma represented by ‘ϒ’ and over fitting constant ‘C’. These are the two important parameters required for the SVM model. The main idea behind this model is to construct a multi class SVM which has not been adopted for IDS so far to decrease the training and testing time and increase the individual classification accuracy of the network attacks. The investigational results on NSL-KDD dataset which is an enhanced version of KDDCup 1999 dataset shows that our proposed approach results in a better detection rate and reduced false alarm rate. An experimentation on the computational time required for training and testing is also carried out for usage in time critical applications.

  4. A New Unified Intrusion Anomaly Detection in Identifying Unseen Web Attacks

    Directory of Open Access Journals (Sweden)

    Muhammad Hilmi Kamarudin

    2017-01-01

    Full Text Available The global usage of more sophisticated web-based application systems is obviously growing very rapidly. Major usage includes the storing and transporting of sensitive data over the Internet. The growth has consequently opened up a serious need for more secured network and application security protection devices. Security experts normally equip their databases with a large number of signatures to help in the detection of known web-based threats. In reality, it is almost impossible to keep updating the database with the newly identified web vulnerabilities. As such, new attacks are invisible. This research presents a novel approach of Intrusion Detection System (IDS in detecting unknown attacks on web servers using the Unified Intrusion Anomaly Detection (UIAD approach. The unified approach consists of three components (preprocessing, statistical analysis, and classification. Initially, the process starts with the removal of irrelevant and redundant features using a novel hybrid feature selection method. Thereafter, the process continues with the application of a statistical approach to identifying traffic abnormality. We performed Relative Percentage Ratio (RPR coupled with Euclidean Distance Analysis (EDA and the Chebyshev Inequality Theorem (CIT to calculate the normality score and generate a finest threshold. Finally, Logitboost (LB is employed alongside Random Forest (RF as a weak classifier, with the aim of minimising the final false alarm rate. The experiment has demonstrated that our approach has successfully identified unknown attacks with greater than a 95% detection rate and less than a 1% false alarm rate for both the DARPA 1999 and the ISCX 2012 datasets.

  5. Applying long short-term memory recurrent neural networks to intrusion detection

    Directory of Open Access Journals (Sweden)

    Ralf C. Staudemeyer

    2015-07-01

    Full Text Available We claim that modelling network traffic as a time series with a supervised learning approach, using known genuine and malicious behaviour, improves intrusion detection. To substantiate this, we trained long short-term memory (LSTM recurrent neural networks with the training data provided by the DARPA / KDD Cup ’99 challenge. To identify suitable LSTM-RNN network parameters and structure we experimented with various network topologies. We found networks with four memory blocks containing two cells each offer a good compromise between computational cost and detection performance. We applied forget gates and shortcut connections respectively. A learning rate of 0.1 and up to 1,000 epochs showed good results. We tested the performance on all features and on extracted minimal feature sets respectively. We evaluated different feature sets for the detection of all attacks within one network and also to train networks specialised on individual attack classes. Our results show that the LSTM classifier provides superior performance in comparison to results previously published results of strong static classifiers. With 93.82% accuracy and 22.13 cost, LSTM outperforms the winning entries of the KDD Cup ’99 challenge by far. This is due to the fact that LSTM learns to look back in time and correlate consecutive connection records. For the first time ever, we have demonstrated the usefulness of LSTM networks to intrusion detection.

  6. A Multiagent-based Intrusion Detection System with the Support of Multi-Class Supervised Classification

    Science.gov (United States)

    Shyu, Mei-Ling; Sainani, Varsha

    The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.

  7. An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Angelo Catalano

    2014-09-01

    Full Text Available We demonstrate the ability of Fiber Bragg Gratings (FBGs sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology.

  8. Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array

    Science.gov (United States)

    Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively. PMID:28273838

  9. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    Science.gov (United States)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  10. Intrusion Detection in NEAR System by Anti-denoising Traffic Data Series using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    VANCEA, F.

    2014-11-01

    Full Text Available The paper presents two methods for detecting anomalies in data series derived from network traffic. Intrusion detection systems based on network traffic analysis are able to respond to incidents never seen before by detecting anomalies in data series extracted from the traffic. Some anomalies manifest themselves as pulses of various sizes and shapes, superimposed on series corresponding to normal traffic. In order to detect those impulses we propose two methods based on discrete wavelet transformation. Their effectiveness expressed in relative thresholds on pulse amplitude for no false negatives and no false positives is then evaluated against pulse duration and Hurst characteristic of original series. Different base functions are also evaluated for efficiency in the context of the proposed methods.

  11. A Real-Time Intrusion Detection System using Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Fang-Yie Leu

    2008-04-01

    Full Text Available Presently, most computers authenticate user ID and password before users can login these systems. However, danger soon comes if the two items are known to hackers. In this paper, we propose a system, named Intrusion Detection and Identification System (IDIS, which builds a profile for each user in an intranet to keep track his/her usage habits as forensic features with which IDIS can identify who the underlying user in the intranet is. Our experimental results show that the recognition accuracy of students of computer science department is up to 98.99%.

  12. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  13. A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems.

    Science.gov (United States)

    Raman, M R Gauthama; Somu, Nivethitha; Kirthivasan, Kannan; Sriram, V S Shankar

    2017-08-01

    Over the past few decades, the design of an intelligent Intrusion Detection System (IDS) remains an open challenge to the research community. Continuous efforts by the researchers have resulted in the development of several learning models based on Artificial Neural Network (ANN) to improve the performance of the IDSs. However, there exists a tradeoff with respect to the stability of ANN architecture and the detection rate for less frequent attacks. This paper presents a novel approach based on Helly property of Hypergraph and Arithmetic Residue-based Probabilistic Neural Network (HG AR-PNN) to address the classification problem in IDS. The Helly property of Hypergraph was exploited for the identification of the optimal feature subset and the arithmetic residue of the optimal feature subset was used to train the PNN. The performance of HG AR-PNN was evaluated using KDD CUP 1999 intrusion dataset. Experimental results prove the dominance of HG AR-PNN classifier over the existing classifiers with respect to the stability and improved detection rate for less frequent attacks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin

    2011-07-18

    Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.

  15. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  16. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  17. Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection

    Science.gov (United States)

    Nikles, Marc

    2009-05-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions where pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Third party intentional interference or accidental intrusions are a major cause of pipeline failures leading to large leaks or even explosions. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. The description is supported by case studies and illustrated by field data.

  18. The Use of Artificial-Intelligence-Based Ensembles for Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Gulshan Kumar

    2012-01-01

    Full Text Available In supervised learning-based classification, ensembles have been successfully employed to different application domains. In the literature, many researchers have proposed different ensembles by considering different combination methods, training datasets, base classifiers, and many other factors. Artificial-intelligence-(AI- based techniques play prominent role in development of ensemble for intrusion detection (ID and have many benefits over other techniques. However, there is no comprehensive review of ensembles in general and AI-based ensembles for ID to examine and understand their current research status to solve the ID problem. Here, an updated review of ensembles and their taxonomies has been presented in general. The paper also presents the updated review of various AI-based ensembles for ID (in particular during last decade. The related studies of AI-based ensembles are compared by set of evaluation metrics driven from (1 architecture & approach followed; (2 different methods utilized in different phases of ensemble learning; (3 other measures used to evaluate classification performance of the ensembles. The paper also provides the future directions of the research in this area. The paper will help the better understanding of different directions in which research of ensembles has been done in general and specifically: field of intrusion detection systems (IDSs.

  19. Non-intrusive gesture recognition system combining with face detection based on Hidden Markov Model

    Science.gov (United States)

    Jin, Jing; Wang, Yuanqing; Xu, Liujing; Cao, Liqun; Han, Lei; Zhou, Biye; Li, Minggao

    2014-11-01

    A non-intrusive gesture recognition human-machine interaction system is proposed in this paper. In order to solve the hand positioning problem which is a difficulty in current algorithms, face detection is used for the pre-processing to narrow the search area and find user's hand quickly and accurately. Hidden Markov Model (HMM) is used for gesture recognition. A certain number of basic gesture units are trained as HMM models. At the same time, an improved 8-direction feature vector is proposed and used to quantify characteristics in order to improve the detection accuracy. The proposed system can be applied in interaction equipments without special training for users, such as household interactive television

  20. Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection

    International Nuclear Information System (INIS)

    Vries, H.S.M. de; Harren, F.J.M.; Wyers, G.P.; Otjes, R.P.; Slanina, J.; Reuss, J.

    1995-01-01

    A recently developed non-intrusive photothermal deflection (PTD) instrument allows sensitive, rapid and quantitative detection of local ammonia concentrations in the air. Ammonia is vibrationally excited by an infrared CO 2 laser in an intracavity configuration. A HeNe beam passing over the CO 2 laser beam (multipass arrangement) is deflected by the induced refractive index gradient. The detection limit for ammonia in ambient air is 0.5 ppbv with a spatial resolution of a few mm 3 . The time resolution is 0.1 s (single line) or 15 s (multi line). The system is fully automated and suited for non-stop measuring periods of at least one week. Results were compared to those obtained with a continuous-flow denuder (CFD). (author)

  1. Alerts Analysis and Visualization in Network-based Intrusion Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee

    2010-08-01

    The alerts produced by network-based intrusion detection systems, e.g. Snort, can be difficult for network administrators to efficiently review and respond to due to the enormous number of alerts generated in a short time frame. This work describes how the visualization of raw IDS alert data assists network administrators in understanding the current state of a network and quickens the process of reviewing and responding to intrusion attempts. The project presented in this work consists of three primary components. The first component provides a visual mapping of the network topology that allows the end-user to easily browse clustered alerts. The second component is based on the flocking behavior of birds such that birds tend to follow other birds with similar behaviors. This component allows the end-user to see the clustering process and provides an efficient means for reviewing alert data. The third component discovers and visualizes patterns of multistage attacks by profiling the attacker s behaviors.

  2. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    Science.gov (United States)

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  3. Intrusion detection on oil pipeline right of way using monogenic signal representation

    Science.gov (United States)

    Nair, Binu M.; Santhaseelan, Varun; Cui, Chen; Asari, Vijayan K.

    2013-05-01

    We present an object detection algorithm to automatically detect and identify possible intrusions such as construction vehicles and equipment on the regions designated as the pipeline right-of-way (ROW) from high resolution aerial imagery. The pipeline industry has buried millions of miles of oil pipelines throughout the country and these regions are under constant threat of unauthorized construction activities. We propose a multi-stage framework which uses a pyramidal template matching scheme in the local phase domain by taking a single high resolution training image to classify a construction vehicle. The proposed detection algorithm makes use of the monogenic signal representation to extract the local phase information. Computing the monogenic signal from a two dimensional object region enables us to separate out the local phase information (structural details) from the local energy (contrast) thereby achieving illumination invariance. The first stage involves the local phase based template matching using only a single high resolution training image in a local region at multiple scales. Then, using the local phase histogram matching, the orientation of the detected region is determined and a voting scheme gives a certain weightage to the resulting clusters. The final stage involves the selection of clusters based on the number of votes attained and using the histogram of oriented phase feature descriptor, the object is located at the correct orientation and scale. The algorithm is successfully tested on four different datasets containing imagery with varying image resolution and object orientation.

  4. Intelligent Intrusion Detection of Grey Hole and Rushing Attacks in Self-Driving Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Khattab M. Ali Alheeti

    2016-07-01

    Full Text Available Vehicular ad hoc networks (VANETs play a vital role in the success of self-driving and semi self-driving vehicles, where they improve safety and comfort. Such vehicles depend heavily on external communication with the surrounding environment via data control and Cooperative Awareness Messages (CAMs exchanges. VANETs are potentially exposed to a number of attacks, such as grey hole, black hole, wormhole and rushing attacks. This work presents an intelligent Intrusion Detection System (IDS that relies on anomaly detection to protect the external communication system from grey hole and rushing attacks. These attacks aim to disrupt the transmission between vehicles and roadside units. The IDS uses features obtained from a trace file generated in a network simulator and consists of a feed-forward neural network and a support vector machine. Additionally, the paper studies the use of a novel systematic response, employed to protect the vehicle when it encounters malicious behaviour. Our simulations of the proposed detection system show that the proposed schemes possess outstanding detection rates with a reduction in false alarms. This safe mode response system has been evaluated using four performance metrics, namely, received packets, packet delivery ratio, dropped packets and the average end to end delay, under both normal and abnormal conditions.

  5. Improving Intrusion Detection System Based on Snort Rules for Network Probe Attacks Detection with Association Rules Technique of Data Mining

    Directory of Open Access Journals (Sweden)

    Nattawat Khamphakdee

    2015-07-01

    Full Text Available The intrusion detection system (IDS is an important network security tool for securing computer and network systems. It is able to detect and monitor network traffic data. Snort IDS is an open-source network security tool. It can search and match rules with network traffic data in order to detect attacks, and generate an alert. However, the Snort IDS  can detect only known attacks. Therefore, we have proposed a procedure for improving Snort IDS rules, based on the association rules data mining technique for detection of network probe attacks.  We employed the MIT-DARPA 1999 data set for the experimental evaluation. Since behavior pattern traffic data are both normal and abnormal, the abnormal behavior data is detected by way of the Snort IDS. The experimental results showed that the proposed Snort IDS rules, based on data mining detection of network probe attacks, proved more efficient than the original Snort IDS rules, as well as icmp.rules and icmp-info.rules of Snort IDS.  The suitable parameters for the proposed Snort IDS rules are defined as follows: Min_sup set to 10%, and Min_conf set to 100%, and through the application of eight variable attributes. As more suitable parameters are applied, higher accuracy is achieved.

  6. Preliminary experimental results for a non-intrusive scheme for the detection of flaws in metal pipelines

    Science.gov (United States)

    Aydin, K.; Shinde, S.; Suhail, M.; Vyas, A.; Zieher, K. W.

    2002-05-01

    An acoustic pulse echo scheme for non-intrusive detection of flaws in metal pipelines has been investigated in the laboratory. The primary pulse is generated by a pulsed magnetic field enclosing a short section of a free pipe. The detection is by an electrostatic detector surrounding a short section of the pipe. Reflected pulses from thin areas, with a longitudinal extension of about one pipe radius and a reduction of the wall thickness of 40%, can be detected clearly.

  7. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang; Germain, Cé cile; Sebag, Michè le

    2010-01-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting

  8. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Guogang; Dong Jinlong; Liu Wanying; Geng Yingsan

    2014-01-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc. (low temperature plasma)

  9. Investigating the Influence of Special On–Off Attacks on Challenge-Based Collaborative Intrusion Detection Networks

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2018-01-01

    Full Text Available Intrusions are becoming more complicated with the recent development of adversarial techniques. To boost the detection accuracy of a separate intrusion detector, the collaborative intrusion detection network (CIDN has thus been developed by allowing intrusion detection system (IDS nodes to exchange data with each other. Insider attacks are a great threat for such types of collaborative networks, where an attacker has the authorized access within the network. In literature, a challenge-based trust mechanism is effective at identifying malicious nodes by sending challenges. However, such mechanisms are heavily dependent on two assumptions, which would cause CIDNs to be vulnerable to advanced insider attacks in practice. In this work, we investigate the influence of advanced on–off attacks on challenge-based CIDNs, which can respond truthfully to one IDS node but behave maliciously to another IDS node. To evaluate the attack performance, we have conducted two experiments under a simulated and a real CIDN environment. The obtained results demonstrate that our designed attack is able to compromise the robustness of challenge-based CIDNs in practice; that is, some malicious nodes can behave untruthfully without a timely detection.

  10. Proposed Network Intrusion Detection System ‎Based on Fuzzy c Mean Algorithm in Cloud ‎Computing Environment

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Nowadays cloud computing had become is an integral part of IT industry, cloud computing provides Working environment allow a user of environmental to share data and resources over the internet. Where cloud computing its virtual grouping of resources offered over the internet, this lead to different matters related to the security and privacy in cloud computing. And therefore, create intrusion detection very important to detect outsider and insider intruders of cloud computing with high detection rate and low false positive alarm in the cloud environment. This work proposed network intrusion detection module using fuzzy c mean algorithm. The kdd99 dataset used for experiments .the proposed system characterized by a high detection rate with low false positive alarm

  11. Proposed Network Intrusion Detection System ‎In Cloud Environment Based on Back ‎Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over the internet. This low-cost service fulfills the basic requirements of users. Because of the open nature and services introduced by cloud computing intruders impersonate legitimate users and misuse cloud resource and services. To detect intruders and suspicious activities in and around the cloud computing environment, intrusion detection system used to discover the illegitimate users and suspicious action by monitors different user activities on the network .this work proposed based back propagation artificial neural network to construct t network intrusion detection in the cloud environment. The proposed module evaluated with kdd99 dataset the experimental results shows promising approach to detect attack with high detection rate and low false alarm rate

  12. PERFORMANCE COMPARISON OF INTRUSION DETECTION SYSTEM USING VARIOUS TECHNIQUES – A REVIEW

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2013-09-01

    Full Text Available Nowadays, the security has become a critical part of any organization or industry information systems. The Intrusion Detection System is an effective method to deal with the new kind of threats such as DoS, Porbe, R2L and U2R. In this paper, we analyze the various approaches such as Hidden Semi Markov Model, Conditional Random Fields and Layered Approach, Bayesian classification, Data Mining techniques, Clustering Algorithms such as K-Means and Fuzzy c-Means, Back Propagation Neural Network, SOM Neural Network, Rough Set Neural Network Algorithm, Genetic Algorithm, Pattern Matching, Principle Component Analysis, Linear Discriminant Analysis, Independent Component Analysis, Multivariate Statistical Analysis, SOM/PSO algorithm etc. The performance is measured for two different datasets using various approaches. The datasets are trained and tested for identifying the new attacks that will affect the hosts or networks. The well known KDD Cup 1999 or DARPA 1999 dataset has been used to improve the accuracy and performance. The four groups of attacks are identified as Probe, DoS, U2R and R2L. The dataset used for training set is 494,021 and testing set is 311,028. The aim is to improve the detection rate and performance of the proposed system.

  13. Intrusion Detection System Based on Decision Tree over Big Data in Fog Environment

    Directory of Open Access Journals (Sweden)

    Kai Peng

    2018-01-01

    Full Text Available Fog computing, as the supplement of cloud computing, can provide low-latency services between mobile users and the cloud. However, fog devices may encounter security challenges as a result of the fog nodes being close to the end users and having limited computing ability. Traditional network attacks may destroy the system of fog nodes. Intrusion detection system (IDS is a proactive security protection technology and can be used in the fog environment. Although IDS in tradition network has been well investigated, unfortunately directly using them in the fog environment may be inappropriate. Fog nodes produce massive amounts of data at all times, and, thus, enabling an IDS system over big data in the fog environment is of paramount importance. In this study, we propose an IDS system based on decision tree. Firstly, we propose a preprocessing algorithm to digitize the strings in the given dataset and then normalize the whole data, to ensure the quality of the input data so as to improve the efficiency of detection. Secondly, we use decision tree method for our IDS system, and then we compare this method with Naïve Bayesian method as well as KNN method. Both the 10% dataset and the full dataset are tested. Our proposed method not only completely detects four kinds of attacks but also enables the detection of twenty-two kinds of attacks. The experimental results show that our IDS system is effective and precise. Above all, our IDS system can be used in fog computing environment over big data.

  14. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.

    Science.gov (United States)

    N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash

    2016-01-01

    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.

  15. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.

    Directory of Open Access Journals (Sweden)

    Malik N Ahmed

    Full Text Available Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.

  16. A comparative performance evaluation of intrusion detection techniques for hierarchical wireless sensor networks

    Directory of Open Access Journals (Sweden)

    H.H. Soliman

    2012-11-01

    Full Text Available An explosive growth in the field of wireless sensor networks (WSNs has been achieved in the past few years. Due to its important wide range of applications especially military applications, environments monitoring, health care application, home automation, etc., they are exposed to security threats. Intrusion detection system (IDS is one of the major and efficient defensive methods against attacks in WSN. Therefore, developing IDS for WSN have attracted much attention recently and thus, there are many publications proposing new IDS techniques or enhancement to the existing ones. This paper evaluates and compares the most prominent anomaly-based IDS systems for hierarchical WSNs and identifying their strengths and weaknesses. For each IDS, the architecture and the related functionality are briefly introduced, discussed, and compared, focusing on both the operational strengths and weakness. In addition, a comparison of the studied IDSs is carried out using a set of critical evaluation metrics that are divided into two groups; the first one related to performance and the second related to security. Finally based on the carried evaluation and comparison, a set of design principles are concluded, which have to be addressed and satisfied in future research of designing and implementing IDS for WSNs.

  17. A Survey on Cross-Layer Intrusion Detection System for Wireless ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... excessive packet collision, artificially increases contention, decrease signal .... Intelligent security architecture was conducted by [36], as an intrusion ... the main disadvantages of this scheme is: The IDS node is static (runs ...

  18. Adaptive prediction applied to seismic event detection

    International Nuclear Information System (INIS)

    Clark, G.A.; Rodgers, P.W.

    1981-01-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data

  19. Adaptive prediction applied to seismic event detection

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Rodgers, P.W.

    1981-09-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data.

  20. An adapter-aware, non-intrusive dependency injection framework for Java

    NARCIS (Netherlands)

    Roemers, Arnout; Hatun, Kardelen; Bockisch, Christoph

    In strongly typed Object-Oriented Programming languages, it is common to encounter type incompatibilities between separately developed software components one desires to compose. Using the Adapter pattern to overcome these type incompatibilities is only an option if changing the source code of the

  1. Cloud Detours: A Non-intrusive Approach for Automatic Software Adaptation to the Cloud

    OpenAIRE

    Maia , Paulo; Vasconcelos , Michel; Mendonça , Nabor ,

    2015-01-01

    Part 1: Research Track; International audience; A major challenge facing cloud migration is the need to change a legacy (on-premise) application’s source code so that it can better benefit from the inherit cloud computing characteristics, such as resource elasticity and high scalability. When performed manually, those changes are error-prone and may require a great effort from application developers. This paper presents a novel approach to support organizations in automatically adapting their...

  2. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    Directory of Open Access Journals (Sweden)

    Minho Choi

    2016-05-01

    Full Text Available Non-intrusive electrocardiogram (ECG monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements.

  3. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang

    2010-10-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting the changes in a grid system can help to alarm the anomalies, clean the noises, and report the new patterns. In this paper, we proposed an approach of self-adaptive change detection based on the Page-Hinkley statistic test. It handles the non-stationary distribution without the assumption of data distribution and the empirical setting of parameters. We validate the approach on the EGEE streaming jobs, and report its better performance on achieving higher accuracy comparing to the other change detection methods. Meanwhile this change detection process could help to discover the device fault which was not claimed in the system logs. © 2010 IEEE.

  5. BLACK HOLE ATTACK IN AODV & FRIEND FEATURES UNIQUE EXTRACTION TO DESIGN DETECTION ENGINE FOR INTRUSION DETECTION SYSTEM IN MOBILE ADHOC NETWORK

    Directory of Open Access Journals (Sweden)

    HUSAIN SHAHNAWAZ

    2012-10-01

    Full Text Available Ad-hoc network is a collection of nodes that are capable to form dynamically a temporary network without the support of any centralized fixed infrastructure. Since there is no central controller to determine the reliable & secure communication paths in Mobile Adhoc Network, each node in the ad hoc network has to rely on each other in order to forward packets, thus highly cooperative nodes are required to ensure that the initiated data transmission process does not fail. In a mobile ad hoc network (MANET where security is a crucial issue and they are forced to rely on the neighbor node, trust plays an important role that could improve the number of successful data transmission. Larger the number of trusted nodes, higher successful data communication process rates could be expected. In this paper, Black Hole attack is applied in the network, statistics are collected to design intrusion detection engine for MANET Intrusion Detection System (IDS. Feature extraction and rule inductions are applied to find out the accuracy of detection engine by using support vector machine. In this paper True Positive generated by the detection engine is very high and this is a novel approach in the area of Mobile Adhoc Intrusion detection system.

  6. Large scale applicability of a Fully Adaptive Non-Intrusive Spectral Projection technique: Sensitivity and uncertainty analysis of a transient

    International Nuclear Information System (INIS)

    Perkó, Zoltán; Lathouwers, Danny; Kloosterman, Jan Leen; Hagen, Tim van der

    2014-01-01

    Highlights: • Grid and basis adaptive Polynomial Chaos techniques are presented for S and U analysis. • Dimensionality reduction and incremental polynomial order reduce computational costs. • An unprotected loss of flow transient is investigated in a Gas Cooled Fast Reactor. • S and U analysis is performed with MC and adaptive PC methods, for 42 input parameters. • PC accurately estimates means, variances, PDFs, sensitivities and uncertainties. - Abstract: Since the early years of reactor physics the most prominent sensitivity and uncertainty (S and U) analysis methods in the nuclear community have been adjoint based techniques. While these are very effective for pure neutronics problems due to the linearity of the transport equation, they become complicated when coupled non-linear systems are involved. With the continuous increase in computational power such complicated multi-physics problems are becoming progressively tractable, hence affordable and easily applicable S and U analysis tools also have to be developed in parallel. For reactor physics problems for which adjoint methods are prohibitive Polynomial Chaos (PC) techniques offer an attractive alternative to traditional random sampling based approaches. At TU Delft such PC methods have been studied for a number of years and this paper presents a large scale application of our Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm for performing the sensitivity and uncertainty analysis of a Gas Cooled Fast Reactor (GFR) Unprotected Loss Of Flow (ULOF) transient. The transient was simulated using the Cathare 2 code system and a fully detailed model of the GFR2400 reactor design that was investigated in the European FP7 GoFastR project. Several sources of uncertainty were taken into account amounting to an unusually high number of stochastic input parameters (42) and numerous output quantities were investigated. The results show consistently good performance of the applied adaptive PC

  7. Human intrusion

    International Nuclear Information System (INIS)

    Hora, S.; Neill, R.; Williams, R.; Bauser, M.; Channell, J.

    1993-01-01

    This paper focused on the possible approaches to evaluating the impacts of human intrusion on nuclear waste disposal. Several major issues were reviewed. First, it was noted that human intrusion could be addressed either quantitatively through performance assessments or qualitatively through design requirements. Second, it was decided that it was impossible to construct a complete set of possible future human intrusion scenarios. Third, the question of when the effect of possible human intrusion should be considered, before or after site selection was reviewed. Finally, the time frame over which human intrusion should be considered was discussed

  8. Research on the technology of detecting the SQL injection attack and non-intrusive prevention in WEB system

    Science.gov (United States)

    Hu, Haibin

    2017-05-01

    Among numerous WEB security issues, SQL injection is the most notable and dangerous. In this study, characteristics and procedures of SQL injection are analyzed, and the method for detecting the SQL injection attack is illustrated. The defense resistance and remedy model of SQL injection attack is established from the perspective of non-intrusive SQL injection attack and defense. Moreover, the ability of resisting the SQL injection attack of the server has been comprehensively improved through the security strategies on operation system, IIS and database, etc.. Corresponding codes are realized. The method is well applied in the actual projects.

  9. Towards effective and robust list-based packet filter for signature-based network intrusion detection: an engineering approach

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam For

    2017-01-01

    Network intrusion detection systems (NIDSs) which aim to identify various attacks, have become an essential part of current security infrastructure. In particular, signature-based NIDSs are being widely implemented in industry due to their low rate of false alarms. However, the signature matching...... this problem, packet filtration is a promising solution to reduce unwanted traffic. Motivated by this, in this work, a list-based packet filter was designed and an engineering method of combining both blacklist and whitelist techniques was introduced. To further secure such filters against IP spoofing attacks...... in traffic filtration as well as workload reduction, and is robust against IP spoofing attacks....

  10. Adaptive skin detection based on online training

    Science.gov (United States)

    Zhang, Ming; Tang, Liang; Zhou, Jie; Rong, Gang

    2007-11-01

    Skin is a widely used cue for porn image classification. Most conventional methods are off-line training schemes. They usually use a fixed boundary to segment skin regions in the images and are effective only in restricted conditions: e.g. good lightness and unique human race. This paper presents an adaptive online training scheme for skin detection which can handle these tough cases. In our approach, skin detection is considered as a classification problem on Gaussian mixture model. For each image, human face is detected and the face color is used to establish a primary estimation of skin color distribution. Then an adaptive online training algorithm is used to find the real boundary between skin color and background color in current image. Experimental results on 450 images showed that the proposed method is more robust in general situations than the conventional ones.

  11. Hybrid Modified K-Means with C4.5 for Intrusion Detection Systems in Multiagent Systems.

    Science.gov (United States)

    Laftah Al-Yaseen, Wathiq; Ali Othman, Zulaiha; Ahmad Nazri, Mohd Zakree

    2015-01-01

    Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.

  12. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non-stationary distribution helps to alarm the anomalies, to clean the noises, and to report the new patterns. In this paper, we employ a novel approach for detecting changes in streaming data with the purpose of improving the quality of modeling the data streams. Through observing the outliers, this approach of change detection uses a weighted standard deviation to monitor the evolution of the distribution of data streams. A cumulative statistical test, Page-Hinkley, is employed to collect the evidence of changes in distribution. The parameter used for reporting the changes is self-adaptively adjusted according to the distribution of data streams, rather than set by a fixed empirical value. The self-adaptability of the novel approach enhances the effectiveness of modeling data streams by timely catching the changes of distributions. We validated the approach on an online clustering framework with a benchmark KDDcup 1999 intrusion detection data set as well as with a real-world grid data set. The validation results demonstrate its better performance on achieving higher accuracy and lower percentage of outliers comparing to the other change detection approaches. © 2010 Springer-Verlag.

  13. QRS Detection Based on Improved Adaptive Threshold

    Directory of Open Access Journals (Sweden)

    Xuanyu Lu

    2018-01-01

    Full Text Available Cardiovascular disease is the first cause of death around the world. In accomplishing quick and accurate diagnosis, automatic electrocardiogram (ECG analysis algorithm plays an important role, whose first step is QRS detection. The threshold algorithm of QRS complex detection is known for its high-speed computation and minimized memory storage. In this mobile era, threshold algorithm can be easily transported into portable, wearable, and wireless ECG systems. However, the detection rate of the threshold algorithm still calls for improvement. An improved adaptive threshold algorithm for QRS detection is reported in this paper. The main steps of this algorithm are preprocessing, peak finding, and adaptive threshold QRS detecting. The detection rate is 99.41%, the sensitivity (Se is 99.72%, and the specificity (Sp is 99.69% on the MIT-BIH Arrhythmia database. A comparison is also made with two other algorithms, to prove our superiority. The suspicious abnormal area is shown at the end of the algorithm and RR-Lorenz plot drawn for doctors and cardiologists to use as aid for diagnosis.

  14. Adaptive distributed outlier detection for WSNs.

    Science.gov (United States)

    De Paola, Alessandra; Gaglio, Salvatore; Lo Re, Giuseppe; Milazzo, Fabrizio; Ortolani, Marco

    2015-05-01

    The paradigm of pervasive computing is gaining more and more attention nowadays, thanks to the possibility of obtaining precise and continuous monitoring. Ease of deployment and adaptivity are typically implemented by adopting autonomous and cooperative sensory devices; however, for such systems to be of any practical use, reliability and fault tolerance must be guaranteed, for instance by detecting corrupted readings amidst the huge amount of gathered sensory data. This paper proposes an adaptive distributed Bayesian approach for detecting outliers in data collected by a wireless sensor network; our algorithm aims at optimizing classification accuracy, time complexity and communication complexity, and also considering externally imposed constraints on such conflicting goals. The performed experimental evaluation showed that our approach is able to improve the considered metrics for latency and energy consumption, with limited impact on classification accuracy.

  15. Reactive and multiphase modelling for the identification of monitoring parameters to detect CO2 intrusion into freshwater aquifers

    Science.gov (United States)

    Fahrner, S.; Schaefer, D.; Wiegers, C.; Köber, R.; Dahmke, A.

    2011-12-01

    A monitoring at geological CO2 storage sites has to meet environmental, regulative, financial and public demands and thus has to enable the detection of CO2 leakages. Current monitoring concepts for the detection of CO2 intrusion into freshwater aquifers located above saline storage formations in course of leakage events lack the identification of monitoring parameters. Their response to CO2 intrusion still has to be enlightened. Scenario simulations of CO2 intrusion in virtual synthetic aquifers are performed using the simulators PhreeqC and TOUGH2 to reveal relevant CO2-water-mineral interactions and multiphase behaviour on potential monitoring parameters. The focus is set on pH, total dissolved inorganic carbon (TIC) and the hydroelectric conductivity (EC). The study aims at identifying at which conditions the parameters react rapidly, durable and in a measurable degree. The depth of the aquifer, the mineralogy, the intrusion rates, the sorption specification and capacities, and groundwater flow velocities are varied in the course of the scenario modelling. All three parameters have been found suited in most scenarios. However, in case of a lack of calcite combined with low saturation of the water with respect to CO2 and shallow conditions, changes are close to the measurement resolution. Predicted changes in EC result from the interplay between carbonic acid production and its dissociation, and pH buffering by mineral dissolution. The formation of a discrete gas phase in cases of full saturation of the groundwater in confined aquifers illustrates the potential bipartite resistivity response: An increased hydroelectric conductivity at locations with dissolved CO2, and a high resistivity where the gas phase dominates the pore volume occupation. Increased hydrostatic pressure with depth and enhanced groundwater flow velocities enforce gas dissolution and diminish the formation of a discrete gas phase. Based on the results, a monitoring strategy is proposed which

  16. Network Intrusion Detection System (NIDS in Cloud Environment based on Hidden Naïve Bayes Multiclass Classifier

    Directory of Open Access Journals (Sweden)

    Hafza A. Mahmood

    2018-04-01

    Full Text Available Cloud Environment is next generation internet based computing system that supplies customiza-ble services to the end user to work or access to the various cloud applications. In order to provide security and decrease the damage of information system, network and computer system it is im-portant to provide intrusion detection system (IDS. Now Cloud environment are under threads from network intrusions, as one of most prevalent and offensive means Denial of Service (DoS attacks that cause dangerous impact on cloud computing systems. This paper propose Hidden naïve Bayes (HNB Classifier to handle DoS attacks which is a data mining (DM model used to relaxes the conditional independence assumption of Naïve Bayes classifier (NB, proposed sys-tem used HNB Classifier supported with discretization and feature selection where select the best feature enhance the performance of the system and reduce consuming time. To evaluate the per-formance of proposal system, KDD 99 CUP and NSL KDD Datasets has been used. The experi-mental results show that the HNB classifier improves the performance of NIDS in terms of accu-racy and detecting DoS attacks, where the accuracy of detect DoS is 100% in three test KDD cup 99 dataset by used only 12 feature that selected by use gain ratio while in NSL KDD Dataset the accuracy of detect DoS attack is 90 % in three Experimental NSL KDD dataset by select 10 fea-ture only.

  17. Adaptive sampling algorithm for detection of superpoints

    Institute of Scientific and Technical Information of China (English)

    CHENG Guang; GONG Jian; DING Wei; WU Hua; QIANG ShiQiang

    2008-01-01

    The superpoints are the sources (or the destinations) that connect with a great deal of destinations (or sources) during a measurement time interval, so detecting the superpoints in real time is very important to network security and management. Previous algorithms are not able to control the usage of the memory and to deliver the desired accuracy, so it is hard to detect the superpoints on a high speed link in real time. In this paper, we propose an adaptive sampling algorithm to detect the superpoints in real time, which uses a flow sample and hold module to reduce the detection of the non-superpoints and to improve the measurement accuracy of the superpoints. We also design a data stream structure to maintain the flow records, which compensates for the flow Hash collisions statistically. An adaptive process based on different sampling probabilities is used to maintain the recorded IP ad dresses in the limited memory. This algorithm is compared with the other algo rithms by analyzing the real network trace data. Experiment results and mathematic analysis show that this algorithm has the advantages of both the limited memory requirement and high measurement accuracy.

  18. Catalog of physical protection equipment. Book 1: Volume II. Intrusion detection components

    International Nuclear Information System (INIS)

    Haberman, W.

    1977-06-01

    This volume covers acoustic components, microwave/radar components, electro-optic barriers, electric field components, orientation components, ferrous metal detection components, proximity detection components, vibration detection components, seismic components, pressure-sensitive components, pressure mats, continuity components, electrical/magnetic switches, fire detection components, and mechanical contact switches

  19. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail

    2016-09-13

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  20. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  1. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    Science.gov (United States)

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  2. Adaptive algorithm of magnetic heading detection

    Science.gov (United States)

    Liu, Gong-Xu; Shi, Ling-Feng

    2017-11-01

    Magnetic data obtained from a magnetic sensor usually fluctuate in a certain range, which makes it difficult to estimate the magnetic heading accurately. In fact, magnetic heading information is usually submerged in noise because of all kinds of electromagnetic interference and the diversity of the pedestrian’s motion states. In order to solve this problem, a new adaptive algorithm based on the (typically) right-angled corridors of a building or residential buildings is put forward to process heading information. First, a 3D indoor localization platform is set up based on MPU9250. Then, several groups of data are measured by changing the experimental environment and pedestrian’s motion pace. The raw data from the attached inertial measurement unit are calibrated and arranged into a time-stamped array and written to a data file. Later, the data file is imported into MATLAB for processing and analysis using the proposed adaptive algorithm. Finally, the algorithm is verified by comparison with the existing algorithm. The experimental results show that the algorithm has strong robustness and good fault tolerance, which can detect the heading information accurately and in real-time.

  3. Adaptive and accelerated tracking-learning-detection

    Science.gov (United States)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  4. Improving Air Force Active Network Defense Systems through an Analysis of Intrusion Detection Techniques

    National Research Council Canada - National Science Library

    Dunklee, David R

    2007-01-01

    .... The research then presents four recommendations to improve DCC operations. These include: Transition or improve the current signature-based IDS systems to include the capability to query and visualize network flows to detect malicious traffic...

  5. Network Intrusion Dataset Assessment

    Science.gov (United States)

    2013-03-01

    International Conference on Computational Intelligence and Natural Computing, volume 2, pages 413–416, June 2009. • Rung Ching Chen, Kai -Fan Cheng, and...Chia-Fen Hsieh . “Using rough set and support vector machine for network intrusion detection.” International Journal of Network Security & Its...intrusion detection using FP tree rules.” Journal Of Advanced Networking and Applications, 1(1):30–39, 2009. • Ming-Yang Su, Gwo-Jong Yu , and Chun-Yuen

  6. Statistical Algorithm for the Adaptation of Detection Thresholds

    DEFF Research Database (Denmark)

    Stotsky, Alexander A.

    2008-01-01

    Many event detection mechanisms in spark ignition automotive engines are based on the comparison of the engine signals to the detection threshold values. Different signal qualities for new and aged engines necessitate the development of an adaptation algorithm for the detection thresholds...... remains constant regardless of engine age and changing detection threshold values. This, in turn, guarantees the same event detection performance for new and aged engines/sensors. Adaptation of the engine knock detection threshold is given as an example. Udgivelsesdato: 2008...

  7. Intrusion Detection and light weight Firewall for the 6LoWPAN networks

    OpenAIRE

    Shreenivas, Dharmini

    2014-01-01

    IPv6 over Low power WPAN (6loWPAN) is an adaption layer introduced between the link layer and the network layer in the TCP/IP protocol stack to t the IPv6 datagrams over the IEEE 802.15.4 link layer. 6loWPAN networks comprise of internet enabled resource-constrained smart objects which are interconnected with each other through the Internet Protocol (IPv6). In Internet of Things (IoT), smart devices of the 6loWPAN networks are connected to the unsecured public Internet. RPL (Routing Protocol ...

  8. Zero Trust Intrusion Containment for Telemedicine

    National Research Council Canada - National Science Library

    Sood, Arun

    2002-01-01

    .... Our objective is the design and analysis of 'zero-trust' Intrusion Tolerant Systems. These are systems built under the extreme assumption that all intrusion detection techniques will eventually fail...

  9. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang; Wang, Wei

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non

  10. Quality-of-service sensitivity to bio-inspired/evolutionary computational methods for intrusion detection in wireless ad hoc multimedia sensor networks

    Science.gov (United States)

    Hortos, William S.

    2012-06-01

    In the author's previous work, a cross-layer protocol approach to wireless sensor network (WSN) intrusion detection an identification is created with multiple bio-inspired/evolutionary computational methods applied to the functions of the protocol layers, a single method to each layer, to improve the intrusion-detection performance of the protocol over that of one method applied to only a single layer's functions. The WSN cross-layer protocol design embeds GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layer, respectively. The construct neglects to assess the net effect of the combined bioinspired methods on the quality-of-service (QoS) performance for "normal" data streams, that is, streams without intrusions. Analytic expressions of throughput, delay, and jitter, coupled with simulation results for WSNs free of intrusion attacks, are the basis for sensitivity analyses of QoS metrics for normal traffic to the bio-inspired methods.

  11. Fast clustering using adaptive density peak detection.

    Science.gov (United States)

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  12. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.

    Science.gov (United States)

    Chang, Ge; Lin, Lin; Yan, Hao

    2018-03-01

    Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.

  13. Anomalous human behavior detection: An Adaptive approach

    NARCIS (Netherlands)

    Leeuwen, C. van; Halma, A.; Schutte, K.

    2013-01-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous

  14. Profile-based adaptive anomaly detection for network security.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

    2005-11-01

    As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress

  15. 基于信息熵的SVM入侵检测技术%Exploring SVM-based intrusion detection through information entropy theory

    Institute of Scientific and Technical Information of China (English)

    朱文杰; 王强; 翟献军

    2013-01-01

    在传统基于SVM的入侵检测中,核函数构造和特征选择采用先验知识,普遍存在准确度不高、效率低下的问题.通过信息熵理论与SVM算法相结合的方法改进为基于信息熵的SVM入侵检测算法,可以提高入侵检测的准确性,提升入侵检测的效率.基于信息熵的SVM入侵检测算法包括两个方面:一方面,根据样本包含的用户信息熵和方差,将样本特征统一,以特征是否属于置信区间来度量.将得到的样本特征置信向量作为SVM核函数的构造参数,既可保证训练样本集与最优分类面之间的对应关系,又可得到入侵检测需要的最大分类间隔;另一方面,将样本包含的用户信息量作为度量大幅度约简样本特征子集,不但降低了样本计算规模,而且提高了分类器的训练速度.实验表明,该算法在入侵检测系统中的应用优于传统的SVM算法.%In traditional SVM based intrusion detection approaches,both core function construction and feature selection use prior knowdege.Due to this,they are not only inefficient but also inaccurate.It is observed that integrating information entropy theory into SVM-based intrusion detection can enhance both the precision and the speed.Concludely speaking,SVM-based entropy intrusion detection algorithms are made up of two aspects:on one hand,setting sample confidence vector as core function's constructor of SVM algorithm can guarantee the mapping relationship between training sample and optimization classification plane.Also,the intrusion detection's maximum interval can be acquired.On the other hand,simplifying feature subset with samples's entropy as metric standard can not only shrink the computing scale but also improve the speed.Experiments prove that the SVM based entropy intrusion detection algoritm outperfomrs other tradional algorithms.

  16. Adaptive gaze control for object detection

    NARCIS (Netherlands)

    De Croon, G.C.H.E.; Postma, E.O.; Van den Herik, H.J.

    2011-01-01

    We propose a novel gaze-control model for detecting objects in images. The model, named act-detect, uses the information from local image samples in order to shift its gaze towards object locations. The model constitutes two main contributions. The first contribution is that the model’s setup makes

  17. Perimeter intrusion sensors

    International Nuclear Information System (INIS)

    Eaton, M.J.

    1977-01-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  18. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  19. From intrusive to oscillating thoughts.

    Science.gov (United States)

    Peirce, Anne Griswold

    2007-10-01

    This paper focused on the possibility that intrusive thoughts (ITs) are a form of an evolutionary, adaptive, and complex strategy to prepare for and resolve stressful life events through schema formation. Intrusive thoughts have been studied in relation to individual conditions, such as traumatic stress disorder and obsessive-compulsive disorder. They have also been documented in the average person experiencing everyday stress. In many descriptions of thought intrusion, it is accompanied by thought suppression. Several theories have been put forth to describe ITs, although none provides a satisfactory explanation as to whether ITs are a normal process, a normal process gone astray, or a sign of pathology. There is also no consistent view of the role that thought suppression plays in the process. I propose that thought intrusion and thought suppression may be better understood by examining them together as a complex and adaptive mechanism capable of escalating in times of need. The ability of a biological mechanism to scale up in times of need is one hallmark of a complex and adaptive system. Other hallmarks of complexity, including self-similarity across scales, sensitivity to initial conditions, presence of feedback loops, and system oscillation, are also discussed in this article. Finally, I propose that thought intrusion and thought suppression are better described together as an oscillatory cycle.

  20. Adaptive search and detection of laser radiation

    International Nuclear Information System (INIS)

    Efendiev, F.A.; Kasimova, F.I.

    2008-01-01

    Formation of cosmic optical line connected with the solving of difficult problems, among which stand out spatial search task, detection and target tracking. Indeed, the main advantage of systems of the optical diapason, high radiation direction leads to a challenging task of entering in communication, consisting in mutual targeting antenna receiving and transmitting systems. Algorithm detection, obtained by solving the corresponding statistical optimal detection test synthesis tasks detector determines the structure and quality of his work which depend on the average characteristics of the signal and the background radiation of the thermal noise require full priori certainty about the conditions of observation. Algorithm of the optimal detector of laser light modulated on a sub carrier frequency of intensity assumes a priori known intensity and efficiency background radiation and internal noise power photo detector

  1. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  2. Intrusive trauma memory: A review and functional analysis

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.; Holmes, E.A.

    2009-01-01

    Our contribution to this special issue focuses on the phenomenon of intrusive trauma memory. While intrusive trauma memories can undoubtedly cause impairment, we argue that they may exist for a potentially adaptive reason. Theory and experimental research on intrusion development are reviewed and

  3. Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold

    Directory of Open Access Journals (Sweden)

    Hamed Komari Alaie

    2018-01-01

    Full Text Available This paper presents the results of an experimental investigation about target detecting with passive sonar in Persian Gulf. Detecting propagated sounds in the water is one of the basic challenges of the researchers in sonar field. This challenge will be complex in shallow water (like Persian Gulf and noise less vessels. Generally, in passive sonar, the targets are detected by sonar equation (with constant threshold that increases the detection error in shallow water. The purpose of this study is proposed a new method for detecting targets in passive sonars using adaptive threshold. In this method, target signal (sound is processed in time and frequency domain. For classifying, Bayesian classification is used and posterior distribution is estimated by Maximum Likelihood Estimation algorithm. Finally, target was detected by combining the detection points in both domains using Least Mean Square (LMS adaptive filter. Results of this paper has showed that the proposed method has improved true detection rate by about 24% when compared other the best detection method.

  4. Locally adaptive decision in detection of clustered microcalcifications in mammograms

    Science.gov (United States)

    Sainz de Cea, María V.; Nishikawa, Robert M.; Yang, Yongyi

    2018-02-01

    In computer-aided detection or diagnosis of clustered microcalcifications (MCs) in mammograms, the performance often suffers from not only the presence of false positives (FPs) among the detected individual MCs but also large variability in detection accuracy among different cases. To address this issue, we investigate a locally adaptive decision scheme in MC detection by exploiting the noise characteristics in a lesion area. Instead of developing a new MC detector, we propose a decision scheme on how to best decide whether a detected object is an MC or not in the detector output. We formulate the individual MCs as statistical outliers compared to the many noisy detections in a lesion area so as to account for the local image characteristics. To identify the MCs, we first consider a parametric method for outlier detection, the Mahalanobis distance detector, which is based on a multi-dimensional Gaussian distribution on the noisy detections. We also consider a non-parametric method which is based on a stochastic neighbor graph model of the detected objects. We demonstrated the proposed decision approach with two existing MC detectors on a set of 188 full-field digital mammograms (95 cases). The results, evaluated using free response operating characteristic (FROC) analysis, showed a significant improvement in detection accuracy by the proposed outlier decision approach over traditional thresholding (the partial area under the FROC curve increased from 3.95 to 4.25, p-value  FPs at a given sensitivity level. The proposed adaptive decision approach could not only reduce the number of FPs in detected MCs but also improve case-to-case consistency in detection.

  5. ADAPTIVE ANT COLONY OPTIMIZATION BASED GRADIENT FOR EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    Febri Liantoni

    2014-08-01

    Full Text Available Ant Colony Optimization (ACO is a nature-inspired optimization algorithm which is motivated by ants foraging behavior. Due to its favorable advantages, ACO has been widely used to solve several NP-hard problems, including edge detection. Since ACO initially distributes ants at random, it may cause imbalance ant distribution which later affects path discovery process. In this paper an adaptive ACO is proposed to optimize edge detection by adaptively distributing ant according to gradient analysis. Ants are adaptively distributed according to gradient ratio of each image regions. Region which has bigger gradient ratio, will have bigger number of ant distribution. Experiments are conducted using images from various datasets. Precision and recall are used to quantitatively evaluate performance of the proposed algorithm. Precision and recall of adaptive ACO reaches 76.98 % and 96.8 %. Whereas highest precision and recall for standard ACO are 69.74 % and 74.85 %. Experimental results show that the adaptive ACO outperforms standard ACO which randomly distributes ants.

  6. Adaptive DSP Algorithms for UMTS: Blind Adaptive MMSE and PIC Multiuser Detection

    NARCIS (Netherlands)

    Potman, J.

    2003-01-01

    A study of the application of blind adaptive Minimum Mean Square Error (MMSE) and Parallel Interference Cancellation (PIC) multiuser detection techniques to Wideband Code Division Multiple Access (WCDMA), the physical layer of Universal Mobile Telecommunication System (UMTS), has been performed as

  7. Orthodontic intrusion : Conventional and mini-implant assisted intrusion mechanics

    Directory of Open Access Journals (Sweden)

    Anup Belludi

    2012-01-01

    intrusion has revolutionized orthodontic anchorage and biomechanics by making anchorage perfectly stable. This article addresses various conventional clinical intrusion mechanics and especially intrusion using mini-implants that have proven effective over the years for intrusion of maxillary anteriors.

  8. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  9. Human intrusion: New ideas?

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    Inadvertent human intrusion has been an issue for the disposal of solid radioactive waste for many years. This paper discusses proposals for an approach for evaluating the radiological significance of human intrusion as put forward by ICRP with contribution from work at IAEA. The approach focuses on the consequences of the intrusion. Protective actions could, however, include steps to reduce the probability of human intrusion as well as the consequences. (author)

  10. Windows Based Data Sets for Evaluation of Robustness of Host Based Intrusion Detection Systems (IDS to Zero-Day and Stealth Attacks

    Directory of Open Access Journals (Sweden)

    Waqas Haider

    2016-07-01

    Full Text Available The Windows Operating System (OS is the most popular desktop OS in the world, as it has the majority market share of both servers and personal computing necessities. However, as its default signature-based security measures are ineffectual for detecting zero-day and stealth attacks, it needs an intelligent Host-based Intrusion Detection System (HIDS. Unfortunately, a comprehensive data set that reflects the modern Windows OS’s normal and attack surfaces is not publicly available. To fill this gap, in this paper two open data sets generated by the cyber security department of the Australian Defence Force Academy (ADFA are introduced, namely: Australian Defence Force Academy Windows Data Set (ADFA-WD; and Australian Defence Force Academy Windows Data Set with a Stealth Attacks Addendum (ADFA-WD: SAA. Statistical analysis results based on these data sets show that, due to the low foot prints of modern attacks and high similarity of normal and attacked data, both these data sets are complex, and highly intelligent Host based Anomaly Detection Systems (HADS design will be required.

  11. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  12. Adaptive 4d Psi-Based Change Detection

    Science.gov (United States)

    Yang, Chia-Hsiang; Soergel, Uwe

    2018-04-01

    In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.

  13. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  14. Neural communication patterns underlying conflict detection, resolution, and adaptation.

    Science.gov (United States)

    Oehrn, Carina R; Hanslmayr, Simon; Fell, Juergen; Deuker, Lorena; Kremers, Nico A; Do Lam, Anne T; Elger, Christian E; Axmacher, Nikolai

    2014-07-30

    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4-8 Hz) modulated enhancement of DLPFC γ-band (30-100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC. Copyright © 2014 the authors 0270-6474/14/3410438-15$15.00/0.

  15. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Science.gov (United States)

    2007-03-01

    Optimization Coello, Van Veldhuizen , and Lamont define global optimization as, “the process of finding the global minimum4 within some search space S [CVL02...Technology, Shapes Markets, and Manages People, Simon & Schuster, New York, 1995. [CVL02] Coello, C., Van Veldhuizen , D., Lamont, G.B., Evolutionary...Anomaly Detection, Technical Report CS- 2003-02, Computer Science Department, Florida Institute of Technology, 2003. [Marmelstein99] Marmelstein, R., Van

  16. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  17. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  18. Domain Adaptation for Pedestrian Detection Based on Prediction Consistency

    Directory of Open Access Journals (Sweden)

    Yu Li-ping

    2014-01-01

    Full Text Available Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene.

  19. Adaptive filtering for hidden node detection and tracking in networks.

    Science.gov (United States)

    Hamilton, Franz; Setzer, Beverly; Chavez, Sergio; Tran, Hien; Lloyd, Alun L

    2017-07-01

    The identification of network connectivity from noisy time series is of great interest in the study of network dynamics. This connectivity estimation problem becomes more complicated when we consider the possibility of hidden nodes within the network. These hidden nodes act as unknown drivers on our network and their presence can lead to the identification of false connections, resulting in incorrect network inference. Detecting the parts of the network they are acting on is thus critical. Here, we propose a novel method for hidden node detection based on an adaptive filtering framework with specific application to neuronal networks. We consider the hidden node as a problem of missing variables when model fitting and show that the estimated system noise covariance provided by the adaptive filter can be used to localize the influence of the hidden nodes and distinguish the effects of different hidden nodes. Additionally, we show that the sequential nature of our algorithm allows for tracking changes in the hidden node influence over time.

  20. Implementation Issues of Adaptive Energy Detection in Heterogeneous Wireless Networks

    Science.gov (United States)

    Sobron, Iker; Eizmendi, Iñaki; Martins, Wallace A.; Diniz, Paulo S. R.; Ordiales, Juan Luis; Velez, Manuel

    2017-01-01

    Spectrum sensing (SS) enables the coexistence of non-coordinated heterogeneous wireless systems operating in the same band. Due to its computational simplicity, energy detection (ED) technique has been widespread employed in SS applications; nonetheless, the conventional ED may be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing ED algorithms from theoretical and simulation viewpoints relies on several assumptions and simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements imposed by real propagation environments. This work addresses those problems by dealing with practical implementation issues of adaptive least mean square (LMS)-based ED algorithms. The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS convergence in time-varying environments. Several implementation guidelines are provided and, additionally, an empirical assessment and validation with a software defined radio-based hardware is carried out. Experimental results show good performance in terms of probabilities of detection (Pd>0.9) and false alarm (Pf∼0.05) in a range of low signal-to-noise ratios around [-4,1] dB, in both single-node and cooperative modes. The proposed sensing methodology enables a seamless monitoring of the radio electromagnetic spectrum in order to provide band occupancy information for an efficient usage among several wireless communications systems. PMID:28441751

  1. The adaptive value of primate color vision for predator detection.

    Science.gov (United States)

    Pessoa, Daniel Marques Almeida; Maia, Rafael; de Albuquerque Ajuz, Rafael Cavalcanti; De Moraes, Pedro Zurvaino Palmeira Melo Rosa; Spyrides, Maria Helena Constantino; Pessoa, Valdir Filgueiras

    2014-08-01

    The complex evolution of primate color vision has puzzled biologists for decades. Primates are the only eutherian mammals that evolved an enhanced capacity for discriminating colors in the green-red part of the spectrum (trichromatism). However, while Old World primates present three types of cone pigments and are routinely trichromatic, most New World primates exhibit a color vision polymorphism, characterized by the occurrence of trichromatic and dichromatic females and obligatory dichromatic males. Even though this has stimulated a prolific line of inquiry, the selective forces and relative benefits influencing color vision evolution in primates are still under debate, with current explanations focusing almost exclusively at the advantages in finding food and detecting socio-sexual signals. Here, we evaluate a previously untested possibility, the adaptive value of primate color vision for predator detection. By combining color vision modeling data on New World and Old World primates, as well as behavioral information from human subjects, we demonstrate that primates exhibiting better color discrimination (trichromats) excel those displaying poorer color visions (dichromats) at detecting carnivoran predators against the green foliage background. The distribution of color vision found in extant anthropoid primates agrees with our results, and may be explained by the advantages of trichromats and dichromats in detecting predators and insects, respectively. © 2014 Wiley Periodicals, Inc.

  2. Adaptive Road Crack Detection System by Pavement Classification

    Directory of Open Access Journals (Sweden)

    Alejandro Amírola

    2011-10-01

    Full Text Available This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.

  3. Robust online tracking via adaptive samples selection with saliency detection

    Science.gov (United States)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  4. Flow-based intrusion detection

    NARCIS (Netherlands)

    Sperotto, Anna

    2010-01-01

    The spread of 1-10Gbps technology has in recent years paved the way to a flourishing landscape of new, high-bandwidth Internet services. As users, we depend on the Internet in our daily life for simple tasks such as checking e-mails, but also for managing private and financial information. However,

  5. Extremely Lightweight Intrusion Detection (ELIDe)

    Science.gov (United States)

    2013-12-01

    conventional computing platform (Dell Inspiron 15N laptop running Mint Maya as the operating system, dual-core Core i5 CPU, 8 GB RAM), Snort exhibited a peak...distribute network monitoring duties amongst the participants in the network with the goal of conserving the network’s overall computational demand

  6. Intrusion Detection in SCADA Networks

    NARCIS (Netherlands)

    Barbosa, R.R.R.; Pras, Aiko; Stiller, Burckhard; De Turck, Filip

    Supervisory Control and Data Acquisition (SCADA) sys- tems are a critical part of large industrial facilities, such as water dis- tribution infrastructures. With the goal of reducing costs and increas- ing efficiency, these systems are becoming increasingly interconnected. However, this has also

  7. Community-Based Intrusion Detection

    OpenAIRE

    Weigert, Stefan

    2017-01-01

    Today, virtually every company world-wide is connected to the Internet. This wide-spread connectivity has given rise to sophisticated, targeted, Internet-based attacks. For example, between 2012 and 2013 security researchers counted an average of about 74 targeted attacks per day. These attacks are motivated by economical, financial, or political interests and commonly referred to as “Advanced Persistent Threat (APT)” attacks. Unfortunately, many of these attacks are successful and the advers...

  8. Flow-Based Intrusion Detection

    NARCIS (Netherlands)

    Sperotto, Anna; Pras, Aiko

    The spread of 1-10 Gbps technology has in recent years paved the way to a flourishing landscape of new, high-bandwidth Internet services.At the same time, we have also observed increasingly frequent and widely diversified attacks. To this threat, the research community has answered with a growing

  9. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  10. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    Science.gov (United States)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  11. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Chen, Rengxiang; Liu, Ziran

    2016-01-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  12. Large-Scale Topic Detection and Language Model Adaptation

    National Research Council Canada - National Science Library

    Seymore, Kristie

    1997-01-01

    .... We have developed a language model adaptation scheme that takes apiece of text, chooses the most similar topic clusters from a set of over 5000 elemental topics, and uses topic specific language...

  13. Diabetes Intrusiveness and Wellness among Elders: A Test of the Illness Intrusiveness Model

    Science.gov (United States)

    DeCoster, Vaughn A.; Killian, Tim; Roessler, Richard T.

    2013-01-01

    Using data collected from 147 predominately African American senior citizens in Arkansas, this research examined the Illness Intrusiveness Model (Devins, 1991; Devins & Seland, 1987; Devins & Shnek, 2000) to explain variations in wellness specifically related to participants' adaptation to diabetes. The theoretical model hypothesized that…

  14. Interior intrusion alarm systems

    International Nuclear Information System (INIS)

    Prell, J.A.

    1978-01-01

    In meeting the requirements for the safeguarding of special nuclear material and the physical protection of licensed facilities, the licensee is required to design a physical security system that will meet minimum performance requirements. An integral part of any physical security system is the interior intrusion alarm system. The purpose of this report is to provide the potential user of an interior intrusion alarm system with information on the various types, components, and performance capabilities available so that he can design and install the optimum alarm system for his particular environment. In addition, maintenance and testing procedures are discussed and recommended which, if followed, will help the user obtain the optimum results from his system

  15. A high-throughput multiplex method adapted for GMO detection.

    Science.gov (United States)

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  16. Detecting content adaptive scaling of images for forensic applications

    Science.gov (United States)

    Fillion, Claude; Sharma, Gaurav

    2010-01-01

    Content-aware resizing methods have recently been developed, among which, seam-carving has achieved the most widespread use. Seam-carving's versatility enables deliberate object removal and benign image resizing, in which perceptually important content is preserved. Both types of modifications compromise the utility and validity of the modified images as evidence in legal and journalistic applications. It is therefore desirable that image forensic techniques detect the presence of seam-carving. In this paper we address detection of seam-carving for forensic purposes. As in other forensic applications, we pose the problem of seam-carving detection as the problem of classifying a test image in either of two classes: a) seam-carved or b) non-seam-carved. We adopt a pattern recognition approach in which a set of features is extracted from the test image and then a Support Vector Machine based classifier, trained over a set of images, is utilized to estimate which of the two classes the test image lies in. Based on our study of the seam-carving algorithm, we propose a set of intuitively motivated features for the detection of seam-carving. Our methodology for detection of seam-carving is then evaluated over a test database of images. We demonstrate that the proposed method provides the capability for detecting seam-carving with high accuracy. For images which have been reduced 30% by benign seam-carving, our method provides a classification accuracy of 91%.

  17. Adapting Local Features for Face Detection in Thermal Image

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-11-01

    Full Text Available A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses. We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.

  18. Detecting users handedness for ergonomic adaptation of mobile user interfaces

    DEFF Research Database (Denmark)

    Löchtefeld, Markus; Schardt, Phillip; Krüger, Antonio

    2015-01-01

    ) for users with average hand sizes. One solution is to offer adaptive user interfaces for such one-handed interactions. These modes have to be triggered manually and thus induce a critical overhead. They are further designed to bring all content closer, regardless of whether the phone is operated...... with the left or right hand. In this paper, we present an algorithm that allows determining the users' interacting hand from their unlocking behavior. Our algorithm correctly distinguishes one- and twohanded usage as well as left- and right handed unlocking in 98.51% of all cases. This is achieved through a k...

  19. Adaptive Pseudo Dilation for Gestalt Edge Grouping and Contour Detection

    NARCIS (Netherlands)

    Papari, Giuseppe; Petkov, Nicolai

    2008-01-01

    We consider the problem of detecting object contours in natural images. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of

  20. Adapting Parameterized Motions using Iterative Learning and Online Collision Detection

    DEFF Research Database (Denmark)

    Laursen, Johan Sund; Sørensen, Lars Carøe; Schultz, Ulrik Pagh

    2018-01-01

    utilizing Gaussian Process learning. This allows for motion parameters to be optimized using real world trials which incorporate all uncertainties inherent in the assembly process without requiring advanced robot and sensor setups. The result is a simple and straightforward system which helps the user...... automatically find robust and uncertainty-tolerant motions. We present experiments for an assembly case showing both detection and learning in the real world and how these combine to a robust robot system....

  1. Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors.

    Science.gov (United States)

    Pürerfellner, Helmut; Sanders, Prashanthan; Sarkar, Shantanu; Reisfeld, Erin; Reiland, Jerry; Koehler, Jodi; Pokushalov, Evgeny; Urban, Luboš; Dekker, Lukas R C

    2017-10-03

    Intermittent change in p-wave discernibility during periods of ectopy and sinus arrhythmia is a cause of inappropriate atrial fibrillation (AF) detection in insertable cardiac monitors (ICM). To address this, we developed and validated an enhanced AF detection algorithm. Atrial fibrillation detection in Reveal LINQ ICM uses patterns of incoherence in RR intervals and absence of P-wave evidence over a 2-min period. The enhanced algorithm includes P-wave evidence during RR irregularity as evidence of sinus arrhythmia or ectopy to adaptively optimize sensitivity for AF detection. The algorithm was developed and validated using Holter data from the XPECT and LINQ Usability studies which collected surface electrocardiogram (ECG) and continuous ICM ECG over a 24-48 h period. The algorithm detections were compared with Holter annotations, performed by multiple reviewers, to compute episode and duration detection performance. The validation dataset comprised of 3187 h of valid Holter and LINQ recordings from 138 patients, with true AF in 37 patients yielding 108 true AF episodes ≥2-min and 449 h of AF. The enhanced algorithm reduced inappropriately detected episodes by 49% and duration by 66% with adapts sensitivity for AF detection reduced inappropriately detected episodes and duration with minimal reduction in sensitivity. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology

  2. An adaptive prediction and detection algorithm for multistream syndromic surveillance

    Directory of Open Access Journals (Sweden)

    Magruder Steve F

    2005-10-01

    Full Text Available Abstract Background Surveillance of Over-the-Counter pharmaceutical (OTC sales as a potential early indicator of developing public health conditions, in particular in cases of interest to biosurvellance, has been suggested in the literature. This paper is a continuation of a previous study in which we formulated the problem of estimating clinical data from OTC sales in terms of optimal LMS linear and Finite Impulse Response (FIR filters. In this paper we extend our results to predict clinical data multiple steps ahead using OTC sales as well as the clinical data itself. Methods The OTC data are grouped into a few categories and we predict the clinical data using a multichannel filter that encompasses all the past OTC categories as well as the past clinical data itself. The prediction is performed using FIR (Finite Impulse Response filters and the recursive least squares method in order to adapt rapidly to nonstationary behaviour. In addition, we inject simulated events in both clinical and OTC data streams to evaluate the predictions by computing the Receiver Operating Characteristic curves of a threshold detector based on predicted outputs. Results We present all prediction results showing the effectiveness of the combined filtering operation. In addition, we compute and present the performance of a detector using the prediction output. Conclusion Multichannel adaptive FIR least squares filtering provides a viable method of predicting public health conditions, as represented by clinical data, from OTC sales, and/or the clinical data. The potential value to a biosurveillance system cannot, however, be determined without studying this approach in the presence of transient events (nonstationary events of relatively short duration and fast rise times. Our simulated events superimposed on actual OTC and clinical data allow us to provide an upper bound on that potential value under some restricted conditions. Based on our ROC curves we argue that a

  3. Improved pulsed photoacoustic detection by means of an adapted filter

    Science.gov (United States)

    González, M.; Santiago, G.; Peuriot, A.; Slezak, V.; Mosquera, C.

    2005-06-01

    We present a numerical and experimental study of two adapted filters devised to the quantitative analysis of weak photoacoustic signals. The first one is a simple convolution-type one and the other is based on neural networks of the multilayer perceptron type. The theoretical signal used as one of the inputs in both filters is derived from the solution of the transient response of the acoustic cell modeled with a simple transmission-line analogue. The filters were tested numerically by using the theoretical signal corrupted with white noise. After 500 iterations it was possible to define an average error for the returned value of each filter. Since the neural network outperformed the convolution-type, we assessed its performance by measuring SF6 traces diluted in N2 and excited by tuned TEA CO2 laser. The results show the use of the neural network filter allows recovering a signal with poor signal-to-noise ratio without resorting to extensive averaging, thus reducing the acquisition time while improving the precision of the measurement.

  4. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  5. Brain shaving: adaptive detection for brain PET data

    International Nuclear Information System (INIS)

    Grecchi, Elisabetta; Doyle, Orla M; Turkheimer, Federico E; Bertoldo, Alessandra; Pavese, Nicola

    2014-01-01

    The intricacy of brain biology is such that the variation of imaging end-points in health and disease exhibits an unpredictable range of spatial distributions from the extremely localized to the very diffuse. This represents a challenge for the two standard approaches to analysis, the mass univariate and the multivariate that exhibit either strong specificity but not as good sensitivity (the former) or poor specificity and comparatively better sensitivity (the latter). In this work, we develop an analytical methodology for positron emission tomography that operates an extraction (‘shaving’) of coherent patterns of signal variation while maintaining control of the type I error. The methodology operates two rotations on the image data, one local using the wavelet transform and one global using the singular value decomposition. The control of specificity is obtained by using the gap statistic that selects, within each eigenvector, a subset of significantly coherent elements. Face-validity of the algorithm is demonstrated using a paradigmatic data-set with two radiotracers, [ 11 C]-raclopride and [ 11 C]-(R)-PK11195, measured on the same Huntington's disease patients, a disorder with a genetic based diagnosis. The algorithm is able to detect the two well-known separate but connected processes of dopamine neuronal loss (localized in the basal ganglia) and neuroinflammation (diffusive around the whole brain). These processes are at the two extremes of the distributional envelope, one being very sparse and the latter being perfectly Gaussian and they are not adequately detected by the univariate and the multivariate approaches. (paper)

  6. Brain shaving: adaptive detection for brain PET data

    Science.gov (United States)

    Grecchi, Elisabetta; Doyle, Orla M.; Bertoldo, Alessandra; Pavese, Nicola; Turkheimer, Federico E.

    2014-05-01

    The intricacy of brain biology is such that the variation of imaging end-points in health and disease exhibits an unpredictable range of spatial distributions from the extremely localized to the very diffuse. This represents a challenge for the two standard approaches to analysis, the mass univariate and the multivariate that exhibit either strong specificity but not as good sensitivity (the former) or poor specificity and comparatively better sensitivity (the latter). In this work, we develop an analytical methodology for positron emission tomography that operates an extraction (‘shaving’) of coherent patterns of signal variation while maintaining control of the type I error. The methodology operates two rotations on the image data, one local using the wavelet transform and one global using the singular value decomposition. The control of specificity is obtained by using the gap statistic that selects, within each eigenvector, a subset of significantly coherent elements. Face-validity of the algorithm is demonstrated using a paradigmatic data-set with two radiotracers, [11C]-raclopride and [11C]-(R)-PK11195, measured on the same Huntington's disease patients, a disorder with a genetic based diagnosis. The algorithm is able to detect the two well-known separate but connected processes of dopamine neuronal loss (localized in the basal ganglia) and neuroinflammation (diffusive around the whole brain). These processes are at the two extremes of the distributional envelope, one being very sparse and the latter being perfectly Gaussian and they are not adequately detected by the univariate and the multivariate approaches.

  7. Research Progress of Space-Time Adaptive Detection for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Wang Yong-liang

    2014-04-01

    Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.

  8. Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views

    OpenAIRE

    Massa, Francisco; Russell, Bryan; Aubry, Mathieu

    2015-01-01

    This paper presents an end-to-end convolutional neural network (CNN) for 2D-3D exemplar detection. We demonstrate that the ability to adapt the features of natural images to better align with those of CAD rendered views is critical to the success of our technique. We show that the adaptation can be learned by compositing rendered views of textured object models on natural images. Our approach can be naturally incorporated into a CNN detection pipeline and extends the accuracy and speed benefi...

  9. Ship detection for high resolution optical imagery with adaptive target filter

    Science.gov (United States)

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  10. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  11. Distributed fiber optic moisture intrusion sensing system

    Science.gov (United States)

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  12. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  13. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  14. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  15. Detection of person misfit in computerized adaptive tests with polytomous items

    NARCIS (Netherlands)

    van Krimpen-Stoop, Edith; Meijer, R.R.

    2000-01-01

    Item scores that do not fit an assumed item response theory model may cause the latent trait value to be estimated inaccurately. For computerized adaptive tests (CAT) with dichotomous items, several person-fit statistics for detecting nonfitting item score patterns have been proposed. Both for

  16. Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm

    Science.gov (United States)

    Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong

    2018-06-01

    The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.

  17. Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Jesus Adolfo Cariño-Corrales

    2016-01-01

    Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.

  18. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  19. Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window

    Science.gov (United States)

    Wang, Teng; Lu, Guo-Liang; Liu, Jie; Yan, Peng

    2017-11-01

    Detection of structural changes from an operational process is a major goal in machine condition monitoring. Existing methods for this purpose are mainly based on retrospective analysis, resulting in a large detection delay that limits their usages in real applications. This paper presents a new adaptive real-time change detection algorithm, an extension of the recent research by combining with an incremental sliding-window strategy, to handle the multi-change detection in long-term monitoring of machine operations. In particular, in the framework, Hilbert space embedding of distribution is used to map the original data into the Re-producing Kernel Hilbert Space (RKHS) for change detection; then, a new adaptive threshold strategy can be developed when making change decision, in which a global factor (used to control the coarse-to-fine level of detection) is introduced to replace the fixed value of threshold. Through experiments on a range of real testing data which was collected from an experimental rotating machinery system, the excellent detection performances of the algorithm for engineering applications were demonstrated. Compared with state-of-the-art methods, the proposed algorithm can be more suitable for long-term machinery condition monitoring without any manual re-calibration, thus is promising in modern industries.

  20. High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection

    Directory of Open Access Journals (Sweden)

    Nitin Chandrachoodan

    2002-09-01

    Full Text Available The problem of detecting negative weight cycles in a graph is examined in the context of the dynamic graph structures that arise in the process of high level synthesis (HLS. The concept of adaptive negative cycle detection is introduced, in which a graph changes over time and negative cycle detection needs to be done periodically, but not necessarily after every individual change. We present an algorithm for this problem, based on a novel extension of the well-known Bellman-Ford algorithm that allows us to adapt existing cycle information to the modified graph, and show by experiments that our algorithm significantly outperforms previous incremental approaches for dynamic graphs. In terms of applications, the adaptive technique leads to a very fast implementation of Lawlers algorithm for the computation of the maximum cycle mean (MCM of a graph, especially for a certain form of sparse graph. Such sparseness often occurs in practical circuits and systems, as demonstrated, for example, by the ISCAS 89/93 benchmarks. The application of the adaptive technique to design-space exploration (synthesis is also demonstrated by developing automated search techniques for scheduling iterative data-flow graphs.

  1. SODA-IIoT4Factory: Blockchain to keep the A.I. of your Intrusion Detection System up-to-date

    OpenAIRE

    Planchon , Frederic; Costa , Fernand; Nicaise , Vincent; Bouzerna , Nabil

    2017-01-01

    International audience; Co-designed with FPC Ingénierie, SODA-IIoT4Factory offers a secure way to update CyPRES rule engines & cyber security/attack models.CyPRES is an intelligent IDS that strengthens industrial information systems. It learns then verifies the operation and behaviour of the system to the lowest level of detail. It detects the first signs of attacks before damage is incurred.

  2. A spectrally efficient detect-and-forward scheme with two-tier adaptive cooperation

    KAUST Repository

    Benjillali, Mustapha

    2011-09-01

    We propose a simple relay-based adaptive cooperation scheme to improve the spectral efficiency of "Detect-and-Forward" (DetF) half-duplex relaying in fading channels. In a new common framework, we show that the proposed scheme offers considerable gainsin terms of the achievable information ratescompared to conventional DetF relaying schemes for both orthogonal and non-orthogonal source/relay transmissions. The analysis leads on to a general adaptive cooperation strategy based on the maximization of information rates at the destination which needs to observe only the average signal-to-noise ratios of the links. © 2006 IEEE.

  3. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.

  4. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  5. Working memory and inhibitory control across the life span: Intrusion errors in the Reading Span Test.

    Science.gov (United States)

    Robert, Christelle; Borella, Erika; Fagot, Delphine; Lecerf, Thierry; de Ribaupierre, Anik

    2009-04-01

    The aim of this study was to examine to what extent inhibitory control and working memory capacity are related across the life span. Intrusion errors committed by children and younger and older adults were investigated in two versions of the Reading Span Test. In Experiment 1, a mixed Reading Span Test with items of various list lengths was administered. Older adults and children recalled fewer correct words and produced more intrusions than did young adults. Also, age-related differences were found in the type of intrusions committed. In Experiment 2, an adaptive Reading Span Test was administered, in which the list length of items was adapted to each individual's working memory capacity. Age groups differed neither on correct recall nor on the rate of intrusions, but they differed on the type of intrusions. Altogether, these findings indicate that the availability of attentional resources influences the efficiency of inhibition across the life span.

  6. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    Science.gov (United States)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  7. An Improved Semisupervised Outlier Detection Algorithm Based on Adaptive Feature Weighted Clustering

    Directory of Open Access Journals (Sweden)

    Tingquan Deng

    2016-01-01

    Full Text Available There exist already various approaches to outlier detection, in which semisupervised methods achieve encouraging superiority due to the introduction of prior knowledge. In this paper, an adaptive feature weighted clustering-based semisupervised outlier detection strategy is proposed. This method maximizes the membership degree of a labeled normal object to the cluster it belongs to and minimizes the membership degrees of a labeled outlier to all clusters. In consideration of distinct significance of features or components in a dataset in determining an object being an inlier or outlier, each feature is adaptively assigned different weights according to the deviation degrees between this feature of all objects and that of a certain cluster prototype. A series of experiments on a synthetic dataset and several real-world datasets are implemented to verify the effectiveness and efficiency of the proposal.

  8. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    Science.gov (United States)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  9. Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm

    Directory of Open Access Journals (Sweden)

    Manuel Prado-Velasco

    2013-10-01

    Full Text Available Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results.

  10. AN AMELIORATED DETECTION STATISTICS FOR ADAPTIVE MASK MEDIAN FILTRATION OF HEAVILY NOISED DIGITAL IMAGES

    Directory of Open Access Journals (Sweden)

    Geeta Hanji

    2016-11-01

    Full Text Available Noise reduction is an important area of research in image processing applications. The performance of the digital image noise filtering method primarily depends upon the accuracy of noise detection scheme. This paper presents an effective detector based, adaptive mask, median filtration of heavily noised digital images affected with fixed value (or salt and pepper impulse noise. The proposed filter presents a novel approach; an ameliorated Rank Ordered Absolute Deviation (ROAD statistics to judge whether the input pixel is noised or noise free. If a pixel is detected as corrupted, it is subjected to adaptive mask median filtration; otherwise, it is kept unchanged. Extensive experimental results and comparative performance evaluations demonstrate that the proposed filter outperforms the existing decision type, median based filters with powerful noise detectors in terms of objective performance measures and visual retrieviation accuracy.

  11. Early pack-off diagnosis in drilling using an adaptive observer and statistical change detection

    DEFF Research Database (Denmark)

    Willersrud, Anders; Imsland, Lars; Blanke, Mogens

    2015-01-01

    in the well. A model-based adaptive observer is used to estimate these friction parameters as well as flow rates. Detecting changes to these estimates can then be used for pack-off diagnosis, which due to measurement noise is done using statistical change detection. Isolation of incident type and location...... is done using a multivariate generalized likelihood ratio test, determining the change direction of the estimated mean values. The method is tested on simulated data from the commercial high-fidelity multi-phase simulator OLGA, where three different pack-offs at different locations and with different...

  12. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  13. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2000-01-01

    There are certain shortcomings for the endpoint detection by time-waveform envelope and/or by checking the travel table (both labelled as the artificial detection method). Based on the analysis of the auto-correlation function, the notion of the distance between auto-correlation functions was quoted, and the characterizations of the noise and the signal with noise were discussed by using the distance. Then, the method of auto-adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low SNR circumstance

  14. Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.

    Science.gov (United States)

    Ze Wang; Chi Man Wong; Feng Wan

    2017-07-01

    An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.

  15. Adaptive Fault Detection for Complex Dynamic Processes Based on JIT Updated Data Set

    Directory of Open Access Journals (Sweden)

    Jinna Li

    2012-01-01

    Full Text Available A novel fault detection technique is proposed to explicitly account for the nonlinear, dynamic, and multimodal problems existed in the practical and complex dynamic processes. Just-in-time (JIT detection method and k-nearest neighbor (KNN rule-based statistical process control (SPC approach are integrated to construct a flexible and adaptive detection scheme for the control process with nonlinear, dynamic, and multimodal cases. Mahalanobis distance, representing the correlation among samples, is used to simplify and update the raw data set, which is the first merit in this paper. Based on it, the control limit is computed in terms of both KNN rule and SPC method, such that we can identify whether the current data is normal or not by online approach. Noted that the control limit obtained changes with updating database such that an adaptive fault detection technique that can effectively eliminate the impact of data drift and shift on the performance of detection process is obtained, which is the second merit in this paper. The efficiency of the developed method is demonstrated by the numerical examples and an industrial case.

  16. Detection of plant adaptation responses to saline environment in rhizosphere using microwave sensing

    International Nuclear Information System (INIS)

    Shimomachi, T.; Kobashikawa, C.; Tanigawa, H.; Omoda, E.

    2008-01-01

    The physiological adaptation responses in plants to environmental stress, such as water stress and salt stress induce changes in physicochemical conditions of the plant, since formation of osmotic-regulatory substances can be formed during the environmental adaptation responses. Strong electrolytes, amino acids, proteins and saccharides are well-known as osmoregulatory substances. Since these substances are ionic conductors and their molecules are electrically dipolar, it can be considered that these substances cause changes in the dielectric properties of the plant, which can be detected by microwave sensing. The dielectric properties (0.3 to 3GHz), water content and water potential of plant leaves which reflect the physiological condition of the plant under salt stress were measured and analyzed. Experimental results showed the potential of the microwave sensing as a method for monitoring adaptation responses in plants under saline environment and that suggested the saline environment in rhizosphere can be detected noninvasively and quantitatively by the microwave sensing which detects the changes in complex dielectric properties of the plant

  17. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2017-05-01

    Full Text Available Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k-means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  18. Computing Adaptive Feature Weights with PSO to Improve Android Malware Detection

    Directory of Open Access Journals (Sweden)

    Yanping Xu

    2017-01-01

    Full Text Available Android malware detection is a complex and crucial issue. In this paper, we propose a malware detection model using a support vector machine (SVM method based on feature weights that are computed by information gain (IG and particle swarm optimization (PSO algorithms. The IG weights are evaluated based on the relevance between features and class labels, and the PSO weights are adaptively calculated to result in the best fitness (the performance of the SVM classification model. Moreover, to overcome the defects of basic PSO, we propose a new adaptive inertia weight method called fitness-based and chaotic adaptive inertia weight-PSO (FCAIW-PSO that improves on basic PSO and is based on the fitness and a chaotic term. The goal is to assign suitable weights to the features to ensure the best Android malware detection performance. The results of experiments indicate that the IG weights and PSO weights both improve the performance of SVM and that the performance of the PSO weights is better than that of the IG weights.

  19. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Li, Zhenjia; Li, Shuyuan; Lin, Shouying

    2017-05-04

    Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k -means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  20. Saltwater intrusion monitoring in Florida

    Science.gov (United States)

    Prinos, Scott T.

    2016-01-01

    Florida's communities are largely dependent on freshwater from groundwater aquifers. Existing saltwater in the aquifers, or seawater that intrudes parts of the aquifers that were fresh, can make the water unusable without additional processing. The quality of Florida's saltwater intrusion monitoring networks varies. In Miami-Dade and Broward Counties, for example, there is a well-designed network with recently constructed short open-interval monitoring wells that bracket the saltwater interface in the Biscayne aquifer. Geochemical analyses of water samples from the network help scientists evaluate pathways of saltwater intrusion and movement of the saltwater interface. Geophysical measurements, collected in these counties, aid the mapping of the saltwater interface and the design of monitoring networks. In comparison, deficiencies in the Collier County monitoring network include the positioning of monitoring wells, reliance on wells with long open intervals that when sampled might provide questionable results, and the inability of existing analyses to differentiate between multiple pathways of saltwater intrusion. A state-wide saltwater intrusion monitoring network is being planned; the planned network could improve saltwater intrusion monitoring by adopting the applicable strategies of the networks of Miami-Dade and Broward Counties, and by addressing deficiencies such as those described for the Collier County network.

  1. Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and model adaptation.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus

    2018-07-12

    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample-associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect changes in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling's T 2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling's T 2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active

  2. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  3. Water System Adaptation To Hydrological Changes: Module 6, Synchronous Management of Storm Surge, Sea Level Rise, and Salt Water Intrusion: Case Study in Mattapoisett, Massachusetts, U.S.A.

    Science.gov (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  4. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    Science.gov (United States)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  5. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    International Nuclear Information System (INIS)

    Treiber, O; Wanninger, F; Fuehr, H; Panzer, W; Regulla, D; Winkler, G

    2003-01-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography

  6. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  7. Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG

    Science.gov (United States)

    Natarajan, Annamalai; Angarita, Gustavo; Gaiser, Edward; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin M.

    2016-01-01

    Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data. PMID:28090605

  8. Extraction of ECG signal with adaptive filter for hearth abnormalities detection

    Science.gov (United States)

    Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti

    2018-04-01

    This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.

  9. Failure detection by adaptive lattice modelling using Kalman filtering methodology : application to NPP

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1991-03-01

    Detection of failure in the operational status of a NPP is described. The method uses lattice form of the signal modelling established by means of Kalman filtering methodology. In this approach each lattice parameter is considered to be a state and the minimum variance estimate of the states is performed adaptively by optimal parameter estimation together with fast convergence and favourable statistical properties. In particular, the state covariance is also the covariance of the error committed by that estimate of the state value and the Mahalanobis distance formed for pattern comparison takes x 2 distribution for normally distributed signals. The failure detection is performed after a decision making process by probabilistic assessments based on the statistical information provided. The failure detection system is implemented in multi-channel signal environment of Borssele NPP and its favourable features are demonstrated. (author). 29 refs.; 7 figs

  10. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    Science.gov (United States)

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  11. Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image

    Science.gov (United States)

    Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.

    2017-12-01

    Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.

  12. Dim small targets detection based on self-adaptive caliber temporal-spatial filtering

    Science.gov (United States)

    Fan, Xiangsuo; Xu, Zhiyong; Zhang, Jianlin; Huang, Yongmei; Peng, Zhenming

    2017-09-01

    To boost the detect ability of dim small targets, this paper began by using improved anisotropy for background prediction (IABP), followed by target enhancement by improved high-order cumulates (HQS). Finally, on the basis of image pre-processing, to address the problem of missed and wrong detection caused by fixed caliber of traditional pipeline filtering, this paper used targets' multi-frame movement correlation in the time-space domain, combined with the scale-space theory, to propose a temporal-spatial filtering algorithm which allows the caliber to make self-adaptive changes according to the changes of the targets' scale, effectively solving the detection-related issues brought by unchanged caliber and decreased/increased size of the targets. Experiments showed that the improved anisotropic background predication could be loyal to the true background of the original image to the maximum extent, presenting a superior overall performance to other background prediction methods; the improved HQS significantly increased the signal-noise ratio of images; when the signal-noise ratio was lower than 2.6 dB, this detection algorithm could effectively eliminate noise and detect targets. For the algorithm, the lowest signal-to-noise ratio of the detectable target is 0.37.

  13. Adaptive Ridge Point Refinement for Seeds Detection in X-Ray Coronary Angiogram

    Directory of Open Access Journals (Sweden)

    Ruoxiu Xiao

    2015-01-01

    Full Text Available Seed point is prerequired condition for tracking based method for extracting centerline or vascular structures from the angiogram. In this paper, a novel seed point detection method for coronary artery segmentation is proposed. Vessels on the image are first enhanced according to the distribution of Hessian eigenvalue in multiscale space; consequently, centerlines of tubular vessels are also enhanced. Ridge point is extracted as candidate seed point, which is then refined according to its mathematical definition. The theoretical feasibility of this method is also proven. Finally, all the detected ridge points are checked using a self-adaptive threshold to improve the robustness of results. Clinical angiograms are used to evaluate the performance of the proposed algorithm, and the results show that the proposed algorithm can detect a large set of true seed points located on most branches of vessels. Compared with traditional seed point detection algorithms, the proposed method can detect a larger number of seed points with higher precision. Considering that the proposed method can achieve accurate seed detection without any human interaction, it can be utilized for several clinical applications, such as vessel segmentation, centerline extraction, and topological identification.

  14. An integration time adaptive control method for atmospheric composition detection of occultation

    Science.gov (United States)

    Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin

    2018-01-01

    When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.

  15. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    Science.gov (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  16. Non-intrusive refractometer sensor

    Indian Academy of Sciences (India)

    An experimental realization of a simple non-intrusive refractometer sensor .... and after amplification is finally read by a digital multimeter (Fluke make: 179 true ... To study the response of the present FO refractometer, propylene glycol has been ... values of all the samples were initially measured by Abbe's refractometer.

  17. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Science.gov (United States)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  18. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  19. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.

    Science.gov (United States)

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei

    2018-04-08

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  20. Sanshool on The Fingertip Interferes with Vibration Detection in a Rapidly-Adapting (RA Tactile Channel.

    Directory of Open Access Journals (Sweden)

    Scinob Kuroki

    Full Text Available An Asian spice, Szechuan pepper (sanshool, is well known for the tingling sensation it induces on the mouth and on the lips. Electrophysiological studies have revealed that its active ingredient can induce firing of mechanoreceptor fibres that typically respond to mechanical vibration. Moreover, a human behavioral study has reported that the perceived frequency of sanshool-induced tingling matches with the preferred frequency range of the tactile rapidly adapting (RA channel, suggesting the contribution of sanshool-induced RA channel firing to its unique perceptual experience. However, since the RA channel may not be the only channel activated by sanshool, there could be a possibility that the sanshool tingling percept may be caused in whole or in part by other sensory channels. Here, by using a perceptual interference paradigm, we show that the sanshool-induced RA input indeed contributes to the human tactile processing. The absolute detection thresholds for vibrotactile input were measured with and without sanshool application on the fingertip. Sanshool significantly impaired detection of vibrations at 30 Hz (RA channel dominant frequency, but did not impair detection of higher frequency vibrations at 240 Hz (Pacinian-corpuscle (PC channel dominant frequency or lower frequency vibrations at 1 Hz (slowly adapting 1 (SA1 channel dominant frequency. These results show that the sanshool induces a peripheral RA channel activation that is relevant for tactile perception. This anomalous activation of RA channels may contribute to the unique tingling experience of sanshool.

  1. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2018-04-01

    Full Text Available A Fiber Bragg Grating (FBG interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA and advanced RISC machine (ARM platform, tunable Fabry–Perot (F–P filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  2. A software tool for network intrusion detection

    CSIR Research Space (South Africa)

    Van der Walt, C

    2012-10-01

    Full Text Available ? Online services include internet banking, e-commerce, video streaming, Gmail ? Data services include Dropbox, Google Docs, Google Drive ? Threats: hacking, Denial of Service (DoS) attacks ? Victims of DoS attacks include Yahoo, eBay, e-trade, CNN...S attacks use the TCP protocol ? SYN flood is the most commonly-used TCP attack ? Exploits the limitation of the three-way hand shake , that maintains half-open connections for a certain time period ? Neptune - SYN flood denial of service on one or more...

  3. Intrusion Detection in Bluetooth Enabled Mobile Phones

    CSIR Research Space (South Africa)

    Nair, Kishor Krishnan

    2015-11-23

    Full Text Available . Bluetooth Logging Agent (BLA) is a mechanism that has been developed for this purpose. It alleviates the current security issues by making the users aware of their incoming Bluetooth connections and gives them an option to either accept or reject...

  4. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  5. Intrusion Detection using Open Source Tools

    OpenAIRE

    Jack TIMOFTE

    2008-01-01

    We have witnessed in the recent years that open source tools have gained popularity among all types of users, from individuals or small businesses to large organizations and enterprises. In this paper we will present three open source IDS tools: OSSEC, Prelude and SNORT.

  6. Cloud Intrusion Detection and Repair (CIDAR)

    Science.gov (United States)

    2016-02-01

    form for VLC , Swftools-png2swf, Swftools-jpeg2swf, Dillo and GIMP. The superscript indicates the bit width of each expression atom. “sext(v, w... challenges in input rectification is the need to deal with nested fields. In general, input formats are in tree structures containing arbitrarily...length indicator constraints is challeng - ing, because of the presence of nested fields in hierarchical input format. For example, an integer field may

  7. Stress, intrusive imagery, and chronic distress

    International Nuclear Information System (INIS)

    Baum, A.

    1990-01-01

    Discusses the nature of stress in the context of problems with its definition and sources of confusion regarding its usefulness and specificity. Stress can be defined as a negative emotional experience accompanied by predictable biochemical, physiological, and behavioral changes that are directed toward adaptation either by manipulating the situation to alter the stressor or by accommodating its effects. Chronic stress is more complex than most definitions suggest and is clearly not limited to situations in which stressors persist for long periods of time. Responses may habituate before a stressor disappears or may persist long beyond the physical presence of the stressor. This latter case, in which chronic stress and associated biobehavioral changes outlast their original cause, is considered in light of research at Three Mile Island and among Vietnam veterans. The role of intrusive images of the stressor or uncontrollable thoughts about it in maintaining stress is explored

  8. Detecting the presence of a magnetic field under Gaussian and non-Gaussian noise by adaptive measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian

    2017-06-15

    Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.

  9. Intrusive luxation of 60 permanent incisors

    DEFF Research Database (Denmark)

    Tsilingaridis, Georgios; Malmgren, Barbro; Andreasen, Jens O

    2012-01-01

    Intrusive luxation in the permanent dentition is an uncommon injury but it is considered one of the most severe types of dental trauma because of the risk for damage to the periodontal ligament, pulp and alveolar bone. Management of intrusive luxation in the permanent dentition is controversial....... The purpose of this study was to evaluate pulp survival and periodontal healing in intrusive luxated permanent teeth in relation to treatment alternatives, degree of intrusion and root development....

  10. Detection of circuit-board components with an adaptive multiclass correlation filter

    Science.gov (United States)

    Diaz-Ramirez, Victor H.; Kober, Vitaly

    2008-08-01

    A new method for reliable detection of circuit-board components is proposed. The method is based on an adaptive multiclass composite correlation filter. The filter is designed with the help of an iterative algorithm using complex synthetic discriminant functions. The impulse response of the filter contains information needed to localize and classify geometrically distorted circuit-board components belonging to different classes. Computer simulation results obtained with the proposed method are provided and compared with those of known multiclass correlation based techniques in terms of performance criteria for recognition and classification of objects.

  11. Improved spectral kurtosis with adaptive redundant multiwavelet packet and its applications for rotating machinery fault detection

    International Nuclear Information System (INIS)

    Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Yuan, Jing

    2012-01-01

    Rotating machinery fault detection is significant to avoid serious accidents and huge economic losses effectively. However, due to the vibration signal with the character of non-stationarity and nonlinearity, the detection and extraction of the fault feature turn into a challenging task. Therefore, a novel method called improved spectral kurtosis (ISK) with adaptive redundant multiwavelet packet (ARMP) is proposed for this task. Spectral kurtosis (SK) has been proved to be a powerful tool to detect and characterize the non-stationary signal. To improve the SK in filter limitation and enhance the resolution of spectral analysis as well as match fault feature optimally, the ARMP is introduced into the SK. Moreover, since kurtosis does not reflect the actual trend of periodic impulses, the SK is improved by incorporating an evaluation index called envelope spectrum entropy as supplement. The proposed method is applied to the rolling element bearing and gear fault detection to validate its reliability and effectiveness. Compared with the conventional frequency spectrum, envelope spectrum, original SK and some single wavelet methods, the results indicate that it could improve the accuracy of frequency-band selection and enhance the ability of rotating machinery fault detection. (paper)

  12. A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors

    Directory of Open Access Journals (Sweden)

    Hengwei Li

    2007-02-01

    Full Text Available In this paper, an approach is presented to detect faint signals with strong noises in sensors by stochastic resonance (SR. We adopt the power spectrum as the evaluation tool of SR, which can be obtained by the fast Fourier transform (FFT. Furthermore, we introduce the adaptive filtering scheme to realize signal processing automatically. The key of the scheme is how to adjust the barrier height to satisfy the optimal condition of SR in the presence of any input. For the given input signal, we present an operable procedure to execute the adjustment scheme. An example utilizing one audio sensor to detect the fault information from the power supply is given. Simulation results show that th

  13. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    Science.gov (United States)

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-04-13

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  14. Influence of seawater intrusion on microbial communities in groundwater.

    Science.gov (United States)

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    Science.gov (United States)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  16. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    International Nuclear Information System (INIS)

    Liu, Dunge; Xu, Xin; Huang, Chao; Zhu, Wanhua; Liu, Xiaojun; Fang, Guangyou; Yu, Gang

    2015-01-01

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21 dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4 dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems. (paper)

  17. Phenotypic- and Genotypic-Resistance Detection for Adaptive Resistance Management in Tetranychus urticae Koch.

    Directory of Open Access Journals (Sweden)

    Deok Ho Kwon

    Full Text Available Rapid resistance detection is necessary for the adaptive management of acaricide-resistant populations of Tetranychus urticae. Detection of phenotypic and genotypic resistance was conducted by employing residual contact vial bioassay (RCV and quantitative sequencing (QS methods, respectively. RCV was useful for detecting the acaricide resistance levels of T. urticae, particularly for on-site resistance detection; however, it was only applicable for rapid-acting acaricides (12 out of 19 tested acaricides. QS was effective for determining the frequencies of resistance alleles on a population basis, which corresponded to 12 nonsynonymous point mutations associated with target-site resistance to five types of acaricides [organophosphates (monocrotophos, pirimiphos-methyl, dimethoate and chlorpyrifos, pyrethroids (fenpropathrin and bifenthrin, abamectin, bifenazate and etoxazole]. Most field-collected mites exhibited high levels of multiple resistance, as determined by RCV and QS data, suggesting the seriousness of their current acaricide resistance status in rose cultivation areas in Korea. The correlation analyses revealed moderate to high levels of positive relationships between the resistance allele frequencies and the actual resistance levels in only five of the acaricides evaluated, which limits the general application of allele frequency as a direct indicator for estimating actual resistance levels. Nevertheless, the resistance allele frequency data alone allowed for the evaluation of the genetic resistance potential and background of test mite populations. The combined use of RCV and QS provides basic information on resistance levels, which is essential for choosing appropriate acaricides for the management of resistant T. urticae.

  18. SuBSENSE: a universal change detection method with local adaptive sensitivity.

    Science.gov (United States)

    St-Charles, Pierre-Luc; Bilodeau, Guillaume-Alexandre; Bergevin, Robert

    2015-01-01

    Foreground/background segmentation via change detection in video sequences is often used as a stepping stone in high-level analytics and applications. Despite the wide variety of methods that have been proposed for this problem, none has been able to fully address the complex nature of dynamic scenes in real surveillance tasks. In this paper, we present a universal pixel-level segmentation method that relies on spatiotemporal binary features as well as color information to detect changes. This allows camouflaged foreground objects to be detected more easily while most illumination variations are ignored. Besides, instead of using manually set, frame-wide constants to dictate model sensitivity and adaptation speed, we use pixel-level feedback loops to dynamically adjust our method's internal parameters without user intervention. These adjustments are based on the continuous monitoring of model fidelity and local segmentation noise levels. This new approach enables us to outperform all 32 previously tested state-of-the-art methods on the 2012 and 2014 versions of the ChangeDetection.net dataset in terms of overall F-Measure. The use of local binary image descriptors for pixel-level modeling also facilitates high-speed parallel implementations: our own version, which used no low-level or architecture-specific instruction, reached real-time processing speed on a midlevel desktop CPU. A complete C++ implementation based on OpenCV is available online.

  19. Adaptive hidden Markov model with anomaly States for price manipulation detection.

    Science.gov (United States)

    Cao, Yi; Li, Yuhua; Coleman, Sonya; Belatreche, Ammar; McGinnity, Thomas Martin

    2015-02-01

    Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models.

  20. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi

    2016-04-01

    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  1. Intrusive Images in Psychological Disorders

    OpenAIRE

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in th...

  2. Automatic change detection in vision: Adaptation, memory mismatch, or both? II: Oddball and adaptation effects on event-related potentials.

    Science.gov (United States)

    Bodnár, Flóra; File, Domonkos; Sulykos, István; Kecskés-Kovács, Krisztina; Czigler, István

    2017-11-01

    In this study we compared the event-related potentials (ERPs) obtained in two different paradigms: a passive visual oddball paradigm and an adaptation paradigm. The aim of the study was to investigate the relation between the effects of activity decrease following an adaptor (stimulus-specific adaptation) and the effects of an infrequent stimulus within sequences of frequent ones. In Experiment 1, participants were presented with different line textures. The frequent (standard) and rare (deviant) texture elements differed in their orientation. In Experiment 2, windmill pattern stimuli were presented in which the number of vanes differentiated the deviant and standard stimuli. In Experiment 1 the ERP differences elicited between the oddball deviant and the standard were similar to the differences between the ERPs to the nonadapted and adapted stimuli in the adaptation paradigm. In both paradigms the differences appeared as a posterior negativity with the latency of 120-140 ms. This finding demonstrates that the representation of a sequential rule (successive presentation of the standard) and the violation of this rule are not necessary for deviancy effects to emerge. In Experiment 2 (windmill pattern), in the oddball paradigm the difference potentials appeared as a long-lasting negativity. In the adaptation condition, the later part of this negativity (after 200 ms) was absent. We identified the later part of the oddball difference potential as the genuine visual mismatch negativity-that is, an ERP correlate of sequence violations. The latencies of the difference potentials (deviant minus standard) and the endogenous components (P1 and N1) diverged; therefore, the adaptation of these particular ERP components cannot explain the deviancy effect. Accordingly, the sources contributing to the standard-versus-deviant modulations differed from those related to visual adaptation; that is, they generated distinct ERP components.

  3. Automatic Extraction and Coordination of Audit Data and Features for Intrusion and Damage Assessment

    National Research Council Canada - National Science Library

    Ye, Nong

    2006-01-01

    .... We create a new attack-norm separation approach to developing detection models for building cyber sensors monitoring and identifying intrusion data characteristics at various points along the path...

  4. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  5. REFERENCE-LESS DETECTION, ASTROMETRY, AND PHOTOMETRY OF FAINT COMPANIONS WITH ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Gladysz, Szymon; Christou, Julian C.

    2009-01-01

    We propose a complete framework for the detection, astrometry, and photometry of faint companions from a sequence of adaptive optics (AO) corrected short exposures. The algorithms exploit the difference in statistics between the on-axis and off-axis intensity of the AO point-spread function (PSF) to differentiate real sources from speckles. We validate the new approach and illustrate its performance using moderate Strehl ratio data obtained with the natural guide star AO system on the Lick Observatory's 3 m Shane Telescope. We obtain almost a 2 mag gain in achievable contrast by using our detection method compared to 5σ detectability in long exposures. We also present a first guide to expected accuracy of differential photometry and astrometry with the new techniques. Our approach performs better than PSF-fitting in general and especially so for close companions, which are located within the uncompensated seeing (speckle) halo. All three proposed algorithms are self-calibrating, i.e., they do not require observation of a calibration star. One of the advantages of this approach is improved observing efficiency.

  6. Adapting plant measurement data to improve hardware fault detection performance in pressurised water reactors

    International Nuclear Information System (INIS)

    Cilliers, A.C.; Mulder, E.J.

    2012-01-01

    Highlights: ► Attempt was to use available resources at a nuclear plant in a value added fashion. ► Includes plant measurement data and plant training and engineering simulator capabilities. ► Solving the fault masking effect by the distributed control systems in the plant. ► Modelling the effect of inaccuracies in plant models used in the simulators. ► Combination of above resulted in the development of a deterministic fault identifications system. -- Abstract: With the fairly recent adoption of digital control and instrumentation systems in the nuclear industry a lot of research now focus on the development expert fault identification systems. The fault identification systems enable detecting early onset faults of fault causes which allows maintenance planning on the equipment showing signs of deterioration or failure. This includes valve and leaks and small cracks in steam generator tubes usually detected by means of ultrasonic inspection. Detecting faults early during transient operation in NPPs is problematic due to the absence of a reliable reference to compare plant measurements with during transients. The distributed application of control systems operating independently to keep the plant operating within the safe operating boundaries complicates the problem since the control systems would not only operate to reduce the effect of transient disturbances but fault disturbances as well. This paper provides a method to adapt the plant measurements that isolates the control actions on the fault and re-introduces it into the measurement data, thereby improving plant diagnostic performance.

  7. A System based on Adaptive Background Subtraction Approach for Moving Object Detection and Tracking in Videos

    Directory of Open Access Journals (Sweden)

    Bahadır KARASULU

    2013-04-01

    Full Text Available Video surveillance systems are based on video and image processing research areas in the scope of computer science. Video processing covers various methods which are used to browse the changes in existing scene for specific video. Nowadays, video processing is one of the important areas of computer science. Two-dimensional videos are used to apply various segmentation and object detection and tracking processes which exists in multimedia content-based indexing, information retrieval, visual and distributed cross-camera surveillance systems, people tracking, traffic tracking and similar applications. Background subtraction (BS approach is a frequently used method for moving object detection and tracking. In the literature, there exist similar methods for this issue. In this research study, it is proposed to provide a more efficient method which is an addition to existing methods. According to model which is produced by using adaptive background subtraction (ABS, an object detection and tracking system’s software is implemented in computer environment. The performance of developed system is tested via experimental works with related video datasets. The experimental results and discussion are given in the study

  8. A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.

    Science.gov (United States)

    Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A

    2018-01-01

    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.

  9. Edge Detection on Images of Pseudoimpedance Section Supported by Context and Adaptive Transformation Model Images

    Directory of Open Access Journals (Sweden)

    Kawalec-Latała Ewa

    2014-03-01

    Full Text Available Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.

  10. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Adal, Kedir M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sidebe, Desire [Univ. of Burgundy, Dijon (France); Ali, Sharib [Univ. of Burgundy, Dijon (France); Chaum, Edward [Univ. of Tennessee, Knoxville, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meriaudeau, Fabrice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  11. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    Science.gov (United States)

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  12. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    Science.gov (United States)

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  13. Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

    Science.gov (United States)

    Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice

    2014-04-01

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Evaluation of intrusion sensors and video assessment in areas of restricted passage

    International Nuclear Information System (INIS)

    Hoover, C.E.; Ringler, C.E.

    1996-04-01

    This report discusses an evaluation of intrusion sensors and video assessment in areas of restricted passage. The discussion focuses on applications of sensors and video assessment in suspended ceilings and air ducts. It also includes current and proposed requirements for intrusion detection and assessment. Detection and nuisance alarm characteristics of selected sensors as well as assessment capabilities of low-cost board cameras were included in the evaluation

  15. Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images.

    Science.gov (United States)

    Basset, Antoine; Boulanger, Jérôme; Salamero, Jean; Bouthemy, Patrick; Kervrann, Charles

    2015-11-01

    Accurately detecting subcellular particles in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking, or classification. Our primary goal is to segment vesicles likely to share nearly the same size in fluorescence microscopy images. Our method termed adaptive thresholding of Laplacian of Gaussian (LoG) images with autoselected scale (ATLAS) automatically selects the optimal scale corresponding to the most frequent spot size in the image. Four criteria are proposed and compared to determine the optimal scale in a scale-space framework. Then, the segmentation stage amounts to thresholding the LoG of the intensity image. In contrast to other methods, the threshold is locally adapted given a probability of false alarm (PFA) specified by the user for the whole set of images to be processed. The local threshold is automatically derived from the PFA value and local image statistics estimated in a window whose size is not a critical parameter. We also propose a new data set for benchmarking, consisting of six collections of one hundred images each, which exploits backgrounds extracted from real microscopy images. We have carried out an extensive comparative evaluation on several data sets with ground-truth, which demonstrates that ATLAS outperforms existing methods. ATLAS does not need any fine parameter tuning and requires very low computation time. Convincing results are also reported on real total internal reflection fluorescence microscopy images.

  16. The score statistic of the LD-lod analysis: detecting linkage adaptive to linkage disequilibrium.

    Science.gov (United States)

    Huang, J; Jiang, Y

    2001-01-01

    We study the properties of a modified lod score method for testing linkage that incorporates linkage disequilibrium (LD-lod). By examination of its score statistic, we show that the LD-lod score method adaptively combines two sources of information: (a) the IBD sharing score which is informative for linkage regardless of the existence of LD and (b) the contrast between allele-specific IBD sharing scores which is informative for linkage only in the presence of LD. We also consider the connection between the LD-lod score method and the transmission-disequilibrium test (TDT) for triad data and the mean test for affected sib pair (ASP) data. We show that, for triad data, the recessive LD-lod test is asymptotically equivalent to the TDT; and for ASP data, it is an adaptive combination of the TDT and the ASP mean test. We demonstrate that the LD-lod score method has relatively good statistical efficiency in comparison with the ASP mean test and the TDT for a broad range of LD and the genetic models considered in this report. Therefore, the LD-lod score method is an interesting approach for detecting linkage when the extent of LD is unknown, such as in a genome-wide screen with a dense set of genetic markers. Copyright 2001 S. Karger AG, Basel

  17. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  18. Adaptive Near-Optimal Multiuser Detection Using a Stochastic and Hysteretic Hopfield Net Receiver

    Directory of Open Access Journals (Sweden)

    Gábor Jeney

    2003-01-01

    Full Text Available This paper proposes a novel adaptive MUD algorithm for a wide variety (practically any kind of interference limited systems, for example, code division multiple access (CDMA. The algorithm is based on recently developed neural network techniques and can perform near optimal detection in the case of unknown channel characteristics. The proposed algorithm consists of two main blocks; one estimates the symbols sent by the transmitters, the other identifies each channel of the corresponding communication links. The estimation of symbols is carried out either by a stochastic Hopfield net (SHN or by a hysteretic neural network (HyNN or both. The channel identification is based on either the self-organizing feature map (SOM or the learning vector quantization (LVQ. The combination of these two blocks yields a powerful real-time detector with near optimal performance. The performance is analyzed by extensive simulations.

  19. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  20. Intrusion scenarios in fusion waste disposal sites

    International Nuclear Information System (INIS)

    Zucchetti, M.; Zucchetti, M.; Rocco, P.

    1998-01-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  1. Intrusion scenarios in fusion waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Zucchetti, M.; Rocco, P. [Energetics Dept., Polytechnic of Turin (Italy)

    1998-07-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  2. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    Science.gov (United States)

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  3. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  4. An international perspective on Facebook intrusion.

    Science.gov (United States)

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela Magdalena; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem

    2016-08-30

    Facebook has become one of the most popular social networking websites in the world. The main aim of the study was to present an international comparison of Facebook intrusion and Internet penetration while examining possible gender differences. The study consisted of 2589 participants from eight countries: China, Greece, Israel, Italy, Poland, Romania, Turkey, USA. Facebook intrusion and Internet penetration were taken into consideration. In this study the relationship between Facebook intrusion and Internet penetration was demonstrated. Facebook intrusion was slightly negatively related to Internet penetration in each country. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Intrusive Images in Psychological Disorders

    Science.gov (United States)

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in the medial and lateral parietal cortices, the lateral temporal cortex, and the medial temporal lobe. Evidence from cognitive psychology and neuroscience implies distinct neural bases to abstract, flexible, contextualized representations (C-reps) and to inflexible, sensory-bound representations (S-reps). We revise our previous dual representation theory of posttraumatic stress disorder to place it within a neural systems model of healthy memory and imagery. The revised model is used to explain how the different types of distressing visual intrusions associated with clinical disorders arise, in terms of the need for correct interaction between the neural systems supporting S-reps and C-reps via visuospatial working memory. Finally, we discuss the treatment implications of the new model and relate it to existing forms of psychological therapy. PMID:20063969

  6. Intrusive and Non-Intrusive Load Monitoring (A Survey

    Directory of Open Access Journals (Sweden)

    Marco Danilo Burbano Acuña

    2015-05-01

    Full Text Available There is not discussion about the need of energyconservation, it is well known that energy resources are limitedmoreover the global energy demands will double by the end of2030, which certainly will bring implications on theenvironment and hence to all of us.Non-Intrusive load monitoring (NILM is the process ofrecognize electrical devices and its energy consumption basedon whole home electric signals, where this aggregated load datais acquired from a single point of measurement outside thehousehold. The aim of this approach is to get optimal energyconsumption and avoid energy wastage. Intrusive loadmonitoring (ILM is the process of identify and locate singledevices through the use of sensing systems to support control,monitor and intervention of such devices. The aim of thisapproach is to offer a base for the development of importantapplications for remote and automatic intervention of energyconsumption inside buildings and homes as well. For generalpurposes this paper states a general framework of NILM andILM approaches.Appliance discerns can be tackled using approaches fromdata mining and machine learning, finding out the techniquesthat fit the best this requirements, is a key factor for achievingfeasible and suitable appliance load monitoring solutions. Thispaper presents common and interesting methods used.Privacy concerns have been one of the bigger obstacles forimplementing a widespread adoption of these solutions; despitethis fact, developed countries like those inside the EU and theUK have established a deadline for the implementation ofsmart meters in the whole country, whereas USA governmentstill struggles with the acceptance of this solution by itscitizens.The implementation of security over these approachesalong with fine-grained energy monitoring would lead to abetter public agreement of these solutions and hence a fasteradoption of such approaches. This paper reveals a lack ofsecurity over these approaches with a real scenario.

  7. Multi-vehicle detection with identity awareness using cascade Adaboost and Adaptive Kalman filter for driver assistant system.

    Directory of Open Access Journals (Sweden)

    Baofeng Wang

    Full Text Available Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness.

  8. Multi-vehicle detection with identity awareness using cascade Adaboost and Adaptive Kalman filter for driver assistant system.

    Science.gov (United States)

    Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng

    2017-01-01

    Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness.

  9. Human intrusion: issues concerning its assessment

    International Nuclear Information System (INIS)

    Grimwood, P.D.; Smith, G.M.

    1989-01-01

    The potential significance of human intrusion in the performance assessment of radioactive waste repositories has been increasingly recognized in recent years. It is however an area of assessment in which subjective judgments dominate. This paper identifies some of the issues involved. These include regulatory criteria, scenario development, probability assignment, consequence assessment and measures to mitigate human intrusion

  10. Unconventional signal detection techniques with Gaussian probability mixtures adaptation in non-AWGN channels: full resolution receiver

    Science.gov (United States)

    Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.

    2011-04-01

    In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.

  11. Deterministic preparation of superpositions of vacuum plus one photon by adaptive homodyne detection: experimental considerations

    International Nuclear Information System (INIS)

    Pozza, Nicola Dalla; Wiseman, Howard M; Huntington, Elanor H

    2015-01-01

    The preparation stage of optical qubits is an essential task in all the experimental setups employed for the test and demonstration of quantum optics principles. We consider a deterministic protocol for the preparation of qubits as a superposition of vacuum and one photon number states, which has the advantage to reduce the amount of resources required via phase-sensitive measurements using a local oscillator (‘dyne detection’). We investigate the performances of the protocol using different phase measurement schemes: homodyne, heterodyne, and adaptive dyne detection (involving a feedback loop). First, we define a suitable figure of merit for the prepared state and we obtain an analytical expression for that in terms of the phase measurement considered. Further, we study limitations that the phase measurement can exhibit, such as delay or limited resources in the feedback strategy. Finally, we evaluate the figure of merit of the protocol for different mode-shapes handily available in an experimental setup. We show that even in the presence of such limitations simple feedback algorithms can perform surprisingly well, outperforming the protocols when simple homodyne or heterodyne schemes are employed. (paper)

  12. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    Science.gov (United States)

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  13. Signal-adapted tomography as a tool for dust devil detection

    Science.gov (United States)

    Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.

    2017-12-01

    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.

  14. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Jiang, S; Shao, Y; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) due to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range

  15. Computerized Adaptive Tests Detect Change Following Orthopaedic Surgery in Youth with Cerebral Palsy.

    Science.gov (United States)

    Mulcahey, M J; Slavin, Mary D; Ni, Pengsheng; Vogel, Lawrence C; Kozin, Scott H; Haley, Stephen M; Jette, Alan M

    2015-09-16

    The Cerebral Palsy Computerized Adaptive Test (CP-CAT) is a parent-reported outcomes instrument for measuring lower and upper-extremity function, activity, and global health across impairment levels and a broad age range of children with cerebral palsy (CP). This study was performed to examine whether the Lower Extremity/Mobility (LE) CP-CAT detects change in mobility following orthopaedic surgery in children with CP. This multicenter, longitudinal study involved administration of the LE CP-CAT, the Pediatric Outcomes Data Collection Instrument (PODCI) Transfer/Mobility and Sports/Physical Functioning domains, and the Timed "Up & Go" test (TUG) before and after elective orthopaedic surgery in a convenience sample of 255 children, four to twenty years of age, who had CP and a Gross Motor Function Classification System (GMFCS) level of I, II, or III. Standardized response means (SRMs) and 95% confidence intervals (CIs) were calculated for all measures at six, twelve, and twenty-four months following surgery. SRM estimates for the LE CP-CAT were significantly greater than the SRM estimates for the PODCI Transfer/Mobility domain at twelve months, the PODCI Sports/Physical Functioning domain at twelve months, and the TUG at twelve and twenty-four months. When the results for the children at GMFCS levels I, II, and III were grouped together, the improvements in function detected by the LE CP-CAT at twelve and twenty-four months were found to be greater than the changes detected by the PODCI Transfer/Mobility and Sports/Physical Functioning scales. The LE CP-CAT outperformed the PODCI scales for GMFCS levels I and III at both of these follow-up intervals; none of the scales performed well for patients with GMFCS level II. The results of this study showed that the LE CP-CAT displayed superior sensitivity to change than the PODCI and TUG scales after musculoskeletal surgery in children with CP. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  16. Development of an Assessment Procedure for Seawater Intrusion Mitigation

    Science.gov (United States)

    Hsi Ting, F.; Yih Chi, T.

    2017-12-01

    The Pingtung Plain is one of the areas with extremely plentiful groundwater resources in Taiwan. Due to that the application of the water resource is restricted by significant variation of precipitation between wet and dry seasons, groundwater must be used as a recharge source to implement the insufficient surface water resource during dry seasons. In recent years, the coastal aquaculture rises, and the over withdrawn of groundwater by private well results in fast drop of groundwater level. Then it causes imbalance of groundwater supply and leads to serious seawater intrusion in the coastal areas. The purpose of this study is to develop an integrated numerical model of groundwater resources and seawater intrusion. Soil and Water Assessment Tool (SWAT), MODFLOW and MT3D models were applied to analyze the variation of the groundwater levels and salinity concentration to investigate the correlation of parameters, which are used to the model applications in order to disposal saltwater intrusion. The data of groundwater levels, pumping capacity and hydrogeological data to were collected to build an integrated numerical model. Firstly, we will collect the information of layered aquifer and the data of hydrological parameters to build the groundwater numerical model at Pingtung Plain, and identify the amount of the groundwater which flow into the sea. In order to deal with the future climate change conditions or extreme weather conditions, we will consider the recharge with groundwater model to improve the seawater intrusion problem. The integrated numerical model which describes that seawater intrusion to deep confined aquifers and shallow unsaturated aquifers. Secondly, we will use the above model to investigate the weights influenced by different factors to the amount area of seawater intrusion, and predict the salinity concentration distribution of evaluation at coastal area of Pingtung Plain. Finally, we will simulate groundwater recharge/ injection at the coastal

  17. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  18. Intrusion mechanics according to Burstone with the NiTi-SE-steel uprighting spring.

    Science.gov (United States)

    Sander, F G; Wichelhaus, A; Schiemann, C

    1996-08-01

    Intrusion mechanics according to Burstone can be regarded as a practicable method for the intrusion of incisors. 1. By applying the NiTi-SE-steel uprighting spring, relatively constant forces can be exerted over a large range of intrusion on both sides of the anterior tooth archwire. 2. By bending a 150 degrees tip-back bend or a curvature into the steel portion, the uprighting spring presented here is brought into the plastic range of the characteristic curve of force. 3. Application of sliding hooks on the intrusion spring permits readjustment for force transfer onto the anterior archwire. 4. Connecting the anterior archwire with the posterior elements by means of a steel ligature can be recommended only in some cases, because sagittally directed forces may be produced. 5. The adult patients presented showed an average intrusion of 0.6 mm/month, if a linear connection was presupposed. 6. An intrusive effect on the incisors could first be detected clinically after 6 to 8 weeks. 7. Application of a torque-key proves especially useful in controlling the incisor position during intrusion in order to avoid unnecessary radiography. 8. Actual prediction of the centre of resistance with the help of a cephalometric radiograph proved not to be feasible. 9. The calculated maximal intrusion of the mandibular incisors was 7 mm. 10. The torque-segmented archwire with crimped hooks and pseudoelastic springs between the molars and the crimped hooks proved very effective for retrusion and intrusion of maxillary incisors. The maxillary anterior teeth can be retruded by a total of 7 mm without readjustment. 11. Constant moments and forces could be transferred by applying preformed arch wires and segmented arch wires.

  19. Alpha intrusion on ovenight polysomnogram

    Directory of Open Access Journals (Sweden)

    Nahapetian R

    2014-06-01

    Full Text Available No abstract available. Article truncated after 150 words. A 30 year-old Army veteran with a past medical history significant for chronic lumbar back pain stemming from a fall-from-height injury sustained in 2006 was referred to the sleep laboratory for evaluation of chronic fatigue and excessive daytime hypersomnolence. His Epworth sleepiness scale score was 16. He denied a history of snoring and witnessed apnea. Body Mass Index (BMI was 25.7 kg/m2. His main sleep related complaints were frequent nocturnal arousals, poor sleep quality, un-refreshing sleep, prolonged latency to sleep onset, and nightmares. An In-lab attended diagnostic polysomnogram was performed. Sleep efficiency was reduced (73% and overall arousal index was not significantly elevated (3.2 events/hour. The sleep study showed rapid eye movement (REM related sleep disordered breathing that did not meet diagnostic criteria for sleep apnea. There was no evidence for period limb movement disorder. However, the study was significant for alpha wave intrusion in stage N2 non-REM and stage ...

  20. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  1. Periodontal changes following molar intrusion with miniscrews

    Directory of Open Access Journals (Sweden)

    Shahin Bayani

    2015-01-01

    Conclusion: Within the limitations of this study, these results suggest that not only periodontal status was not negatively affected by intrusion, but also there were signs of periodontal improvement including attachment gain and shortening of clinical crown height.

  2. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  3. Acknowledging the dilemmas of intrusive media

    DEFF Research Database (Denmark)

    Mathieu, David; Finger, Juliane; Dias, Patrcia

    2017-01-01

    Part of the stakeholder consultation addressed strategies that media audiences are developing to cope with pressures and intrusions in a changing media environment, characterised by digitalisation and interactive possibilities. We interviewed ten stakeholders representing interests such as content...... production, media literacy, media regulation, and activism. Consulting with these stakeholders left the impression that pressures and intrusions from media lack widespread acknowledgement, and that little is known about audiences’ strategies to cope with media. Even when intrusions are acknowledged, we find...... no consensual motivation, nor any clear avenue for action. Therefore, we have analysed different discursive positions that prevent acknowledging or taking action upon the pressures and intrusions that we presented to these stakeholders. The discursive positions are outlined below....

  4. Prevention and analysis of hacker's intrusion

    International Nuclear Information System (INIS)

    Liu Baoxu; An Dehai; Xu Rongsheng

    2000-01-01

    The author analyzes the behavior characteristics and relevant technologies about the hacker's intrusion, and gives some corresponding solutions pertinently. To the recent events about hackers, the author gives detailed introduction and puts forward the relevant advice and valuable consideration

  5. Intrusion problematic during water supply systems’ operation

    OpenAIRE

    Jesus Mora-Rodriguez, P. Amparo López-Jimenez, Helena M. Ramos

    2011-01-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuse...

  6. Adaptive x-ray threat detection using sequential hypotheses testing with fan-beam experimental data (Conference Presentation)

    Science.gov (United States)

    Thamvichai, Ratchaneekorn; Huang, Liang-Chih; Ashok, Amit; Gong, Qian; Coccarelli, David; Greenberg, Joel A.; Gehm, Michael E.; Neifeld, Mark A.

    2017-05-01

    We employ an adaptive measurement system, based on sequential hypotheses testing (SHT) framework, for detecting material-based threats using experimental data acquired on an X-ray experimental testbed system. This testbed employs 45-degree fan-beam geometry and 15 views over a 180-degree span to generate energy sensitive X-ray projection data. Using this testbed system, we acquire multiple view projection data for 200 bags. We consider an adaptive measurement design where the X-ray projection measurements are acquired in a sequential manner and the adaptation occurs through the choice of the optimal "next" source/view system parameter. Our analysis of such an adaptive measurement design using the experimental data demonstrates a 3x-7x reduction in the probability of error relative to a static measurement design. Here the static measurement design refers to the operational system baseline that corresponds to a sequential measurement using all the available sources/views. We also show that by using adaptive measurements it is possible to reduce the number of sources/views by nearly 50% compared a system that relies on static measurements.

  7. A spectrally efficient detect-and-forward scheme with two-tier adaptive cooperation

    KAUST Repository

    Benjillali, Mustapha; Szczeciński, Leszek L.; Alouini, Mohamed-Slim

    2011-01-01

    gainsin terms of the achievable information ratescompared to conventional DetF relaying schemes for both orthogonal and non-orthogonal source/relay transmissions. The analysis leads on to a general adaptive cooperation strategy based on the maximization

  8. From sounds to words: a neurocomputational model of adaptation, inhibition and memory processes in auditory change detection.

    Science.gov (United States)

    Garagnani, Max; Pulvermüller, Friedemann

    2011-01-01

    Most animals detect sudden changes in trains of repeated stimuli but only some can learn a wide range of sensory patterns and recognise them later, a skill crucial for the evolutionary success of higher mammals. Here we use a neural model mimicking the cortical anatomy of sensory and motor areas and their connections to explain brain activity indexing auditory change and memory access. Our simulations indicate that while neuronal adaptation and local inhibition of cortical activity can explain aspects of change detection as observed when a repeated unfamiliar sound changes in frequency, the brain dynamics elicited by auditory stimulation with well-known patterns (such as meaningful words) cannot be accounted for on the basis of adaptation and inhibition alone. Specifically, we show that the stronger brain responses observed to familiar stimuli in passive oddball tasks are best explained in terms of activation of memory circuits that emerged in the cortex during the learning of these stimuli. Such memory circuits, and the activation enhancement they entail, are absent for unfamiliar stimuli. The model illustrates how basic neurobiological mechanisms, including neuronal adaptation, lateral inhibition, and Hebbian learning, underlie neuronal assembly formation and dynamics, and differentially contribute to the brain's major change detection response, the mismatch negativity. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. A Nuisance Alarm Data System for evaluation of intrusion detectors

    International Nuclear Information System (INIS)

    Ream, W.K.

    1990-01-01

    A Nuisance Alarm Data System (NADS) was developed to gather long-term background alarm data on exterior intrusion detectors as part of their evaluation. Since nuisance alarms play an important part in the selection of intrusion detectors for use at Department of Energy (DOE) facilities, an economical and reliable way to monitor and record these alarms was needed. NADS consists of an IBM personal computer and printer along with other commercial units to communicate with the detectors, to gather weather data, and to record video for assessment. Each alarm, its assessment, and the weather conditions occurring at alarm time are placed into a data base that is used in the evaluation of the detector. The operating software is written in Turbo Pascal for easy maintenance and modification. A portable system, based on the NADS design, has been built and shipped to other DOE locations to do on-site alarm monitoring. This has been valuable for the comparison of different detectors in the on-site environment and for testing new detectors when the appropriate conditions do not exist or cannot be simulated at the Exterior Intrusion Detection Testbed

  10. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  11. Improvement of Detection of Hypoattenuation in Acute Ischemic Stroke in Unenhanced Computed Tomography Using an Adaptive Smoothing Filter

    International Nuclear Information System (INIS)

    Takahashi, N.; Lee, Y.; Tsai, D. Y.; Ishii, K.; Kinoshita, T.; Tamura, H.; K imura, M.

    2008-01-01

    Background: Much attention has been directed toward identifying early signs of cerebral ischemia on computed tomography (CT) images. Hypoattenuation of ischemic brain parenchyma has been found to be the most frequent early sign. Purpose: To evaluate the effect of a previously proposed adaptive smoothing filter for improving detection of parenchymal hypoattenuation of acute ischemic stroke on unenhanced CT images. Material and Methods: Twenty-six patients with parenchymal hypoattenuation and 49 control subjects without hypoattenuation were retrospectively selected in this study. The adaptive partial median filter (APMF) designed for improving detectability of hypoattenuation areas on unenhanced CT images was applied. Seven radiologists, including four certified radiologists and three radiology residents, indicated their confidence level regarding the presence (or absence) of hypoattenuation on CT images, first without and then with the APMF processed images. Their performances without and with the APMF processed images were evaluated by receiver operating characteristic (ROC) analysis. Results: The mean areas under the ROC curves (AUC) for all observers increased from 0.875 to 0.929 (P=0.002) when the radiologists observed with the APMF processed images. The mean sensitivity in the detection of hypoattenuation significantly improved, from 69% (126 of 182 observations) to 89% (151 of 182 observations), when employing the APMF (P=0.012). The specificity, however, was unaffected by the APMF (P=0.41). Conclusion: The APMF has the potential to improve the detection of parenchymal hypoattenuation of acute ischemic stroke on unenhanced CT images

  12. Count out your intrusions: Effects of verbal encoding on intrusive memories

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.

    2009-01-01

    Peri-traumatic information processing is thought to affect the development of intrusive trauma memories. This study aimed to replicate and improve the study by Holmes, Brewin, and Hennessy (2004, Exp. 3) on the role of peri-traumatic verbal processing in analogue traumatic intrusion development.

  13. Repeated magmatic intrusions at El Hierro Island following the 2011-2012 submarine eruption

    Science.gov (United States)

    Benito-Saz, Maria A.; Parks, Michelle M.; Sigmundsson, Freysteinn; Hooper, Andrew; García-Cañada, Laura

    2017-09-01

    After more than 200 years of quiescence, in July 2011 an intense seismic swarm was detected beneath the center of El Hierro Island (Canary Islands), culminating on 10 October 2011 in a submarine eruption, 2 km off the southern coast. Although the eruption officially ended on 5 March 2012, magmatic activity continued in the area. From June 2012 to March 2014, six earthquake swarms, indicative of magmatic intrusions, were detected underneath the island. We have studied these post-eruption intrusive events using GPS and InSAR techniques to characterize the ground surface deformation produced by each of these intrusions, and to determine the optimal source parameters (geometry, location, depth, volume change). Source inversions provide insight into the depth of the intrusions ( 11-16 km) and the volume change associated with each of them (between 0.02 and 0.13 km3). During this period, > 20 cm of uplift was detected in the central-western part of the island, corresponding to approximately 0.32-0.38 km3 of magma intruded beneath the volcano. We suggest that these intrusions result from deep magma migrating from the mantle, trapped at the mantle/lower crust discontinuity in the form of sill-like bodies. This study, using joint inversion of GPS and InSAR data in a post-eruption period, provides important insight into the characteristics of the magmatic plumbing system of El Hierro, an oceanic intraplate volcanic island.

  14. Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Torsten Bölke

    2014-11-01

    Full Text Available Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanoparticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modalities as well, provided the specific noise characteristics are known and taken into account.

  15. Cross-cultural adaptation of the STRATIFY tool in detecting and predicting risk of falling.

    Science.gov (United States)

    Enríquez de Luna-Rodríguez, Margarita; Aranda-Gallardo, Marta; Canca-Sánchez, José Carlos; Vazquez-Blanco, M José; Moya-Suárez, Ana Belén; Morales-Asencio, José Miguel

    To adapt to Spanish language the STRATIFY tool for clinical use in the Spanish-speaking World. A multicenter, 2 care settings cross-sectional study cultural adaptation study in acute care hospitals and nursing homes was performed in Andalusia during 2014. The adaptation process was divided into 4 stages: translation, back-translation, equivalence between the 2 back-translations and piloting of the Spanish version, thus obtaining the final version. The validity of appearance, content validity and the time required to complete the scale were taken into account. For analysis, the median, central tendency and dispersion of scores, the interquartile range, and the interquartile deviation for the possible variability in responses it was calculated. Content validity measured by content validity index reached a profit of 1. For the validity aspect the clarity and comprehensibility of the questions were taken into account. Of the 5 questions of the instrument, 2 had a small disagreement solved with the introduction of an explanatory phrase to achieve conceptual equivalence. Median both questions were equal or superior to 5. The average time for completion of the scale was less than 3 minutes. The process of adaptation to Spanish of STRATIFY has led to a semantic version and culturally equivalent to the original for easy filling and understanding for use in the Spanish-speaking world. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. Adaptive heart rate-based epileptic seizure detection using real-time user feedback

    DEFF Research Database (Denmark)

    De Cooman, Thomas; Kjær, Troels Wesenberg; Van Huffel, Sabine

    2017-01-01

    Automated seizure detection in a home environment has been of increased interest the last couple of decades. Heart rate-based seizure detection is a way to detect temporal lobe epilepsy seizures at home, but patient-independent algorithms showed to be insufficiently accurate due to the high patient...... with incorrect user feedback, making it ideal for implementation in a home environment for a seizure warning system....

  17. Nuclear-power-plant perimeter-intrusion alarm systems

    International Nuclear Information System (INIS)

    Halsey, D.J.

    1982-04-01

    Timely intercept of an intruder requires the examination of perimeter barriers and sensors in terms of reliable detection, immediate assessment and prompt response provisions. Perimeter security equipment and operations must at the same time meet the requirements of the Code of Federal Regulations, 10 CFR 73.55 with some attention to the performance and testing figures of Nuclear Regulatory Guide 5.44, Revision 2, May 1980. A baseline system is defined which recommends a general approach to implementing perimeter security elements: barriers, lighting, intrusion detection, alarm assessment. The baseline approach emphasizes cost/effectiveness achieved by detector layering and logic processing of alarm signals to produce reliable alarms and low nuisance alarm rates. A cost benefit of layering along with video assessment is reduction in operating expense. The concept of layering is also shown to minimize testing costs where detectability performance as suggested by Regulatory Guide 5.44 is to be performed. Synthesis of the perimeter intrusion alarm system and limited testing of CCTV and Video Motion Detectors (VMD), were performed at E-Systems, Greenville Division, Greenville, Texas during 1981

  18. RASW : a Run-time Adaptive Sliding Window to Improve Viola-Jones object detection.

    NARCIS (Netherlands)

    Comaschi, F.; Stuijk, S.; Basten, T.; Corporaal, H.

    2013-01-01

    Abstract—In recent years accurate algorithms for detecting objects in images have been developed. Among these algorithms, the object detection scheme proposed by Viola and Jones gained great popularity, especially after the release of high-quality face classifiers by the OpenCV group. However, as

  19. Simple Adaptive Single Differential Coherence Detection of BPSK Signals in IEEE 802.15.4 Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Gaoyuan; Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa

    2017-12-26

    In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin - 1 ( x ) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector.

  20. Smart container UWB sensor system for situational awareness of intrusion alarms

    Science.gov (United States)

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  1. Perceived illness intrusion among patients on hemodialysis

    International Nuclear Information System (INIS)

    Bapat, Usha; Kedlaya, Prashanth G; Gokulnath

    2009-01-01

    Dialysis therapy is extremely stressful as it interferes with all spheres of daily activities of the patients. This study is aimed at understanding the perceived illness intrusion among patients on hemodialysis (HD) and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD) stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering sociodemographics and a 13 item illness intrusion checklist covering the various aspects of life was carried out. The study patients were asked to rate the illness intrusion and the extent. The data were analyzed statistically. The mean age of the subjects was 50.28 + - 13.69 years, males were predominant (85%), 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear families. The mean duration on dialysis was 24 + - 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%), work (70%) finance (55%), diet (50%) sexual life (38%) and psychological status (25%). Illness had not intruded in areas of relationship with spouse (67%), friends (76%), family (79%), social (40%) and religious functions (72%). Statistically significant association was noted between illness intrusion and occupation (P= 0.02). (author)

  2. Perceived illness intrusion among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Bapat Usha

    2009-01-01

    Full Text Available Dialysis therapy is extremely stressful as it interferes with all spheres of daily acti-vities of the patients. This study is aimed at understanding the perceived illness intrusion among pa-tients on hemodialysis (HD and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering socio-demographics and a 13 item illness intrusion checklist covering the various aspects of life was ca-rried out. The study patients were asked to rate the illness intrusion and the extent. The data were ana-lyzed statistically. The mean age of the subjects was 50.28 ± 13.69 years, males were predominant (85%, 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear fami-lies. The mean duration on dialysis was 24 ± 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%, work (70% finance (55%, diet (50% sexual life (38% and psychological status (25%. Illness had not intruded in areas of rela-tionship with spouse (67%, friends (76%, family (79%, social (40% and religious functions (72%. Statistically significant association was noted between illness intrusion and occupation (P= 0.02.

  3. Relationship between vapor intrusion and human exposure to trichloroethylene.

    Science.gov (United States)

    Archer, Natalie P; Bradford, Carrie M; Villanacci, John F; Crain, Neil E; Corsi, Richard L; Chambers, David M; Burk, Tonia; Blount, Benjamin C

    2015-01-01

    Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.

  4. A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy

    Directory of Open Access Journals (Sweden)

    Hong Li

    2017-12-01

    Full Text Available By simulating the geomagnetic fields and analyzing thevariation of intensities, this paper presents a model for calculating the objective function ofan Autonomous Underwater Vehicle (AUVgeomagnetic navigation task. By investigating the biologically inspired strategies, the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity. An adapted strategy is then implemented, which is biased on the specific target. The results show thereliabilityandeffectivenessofthe proposed algorithm.

  5. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  6. Experimental Study of Nuclear Security System Components for Achieving the Intrusion Process via Sensor's Network System

    International Nuclear Information System (INIS)

    EL-Kafas, A.A.

    2011-01-01

    Cluster sensors are one of nuclear security system components which are used to detect any intrusion process of the nuclear sites. In this work, an experimental measuring test for sensor performance and procedures are presented. Sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensors test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The glass-breakage (G.B) and open door (O.D) sensors construction, operation and design for the investigated nuclear site are explained. Intrusion tests were carried out inside the field areas of the sensors to evaluate the sensor performance during the intrusion process. Experimental trials were performed for achieving the intrusion process via sensor network system. The performance and intrusion senses of cluster sensors inside the internal zones was recorded and evaluated. The obtained results explained that the tested and experimented G.B sensors have a probability of detection P (D) value 65% founded, and 80% P (D) of Open-door sensor

  7. Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG

    OpenAIRE

    Natarajan, Annamalai; Angarita, Gustavo; Gaiser, Edward; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin M.

    2016-01-01

    Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection...

  8. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    OpenAIRE

    Doo Yong Choi; Seong-Won Kim; Min-Ah Choi; Zong Woo Geem

    2016-01-01

    Rapid detection of bursts and leaks in water distribution systems (WDSs) can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA) systems and the establishment of district meter areas (DMAs). Nonetheless, no consideration has been given to how frequen...

  9. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus E.; Tanderup, Kari

    2014-01-01

    Purpose:This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction ......, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-time in vivo point dosimetry....... of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods:In the event of a measured potential treatment error, the AEDA proposes the most...

  10. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling.

    Directory of Open Access Journals (Sweden)

    Laurissa Tokarchuk

    Full Text Available In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The

  11. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling.

    Science.gov (United States)

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of

  12. A self-adapting system for the automated detection of inter-ictal epileptiform discharges.

    Directory of Open Access Journals (Sweden)

    Shaun S Lodder

    Full Text Available PURPOSE: Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. METHODS: Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form "IED nominations", each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. KEY FINDINGS: Using the described method and fifteen evaluation EEGs (241 IEDs, one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20-30 min recordings 1 took approximately 5 min. SIGNIFICANCE: The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.

  13. Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ho KC

    2005-01-01

    Full Text Available We propose a real-time software system for landmine detection using ground-penetrating radar (GPR. The system includes an efficient and adaptive preprocessing component; a hidden Markov model- (HMM- based detector; a corrective training component; and an incremental update of the background model. The preprocessing is based on frequency-domain processing and performs ground-level alignment and background removal. The HMM detector is an improvement of a previously proposed system (baseline. It includes additional pre- and postprocessing steps to improve the time efficiency and enable real-time application. The corrective training component is used to adjust the initial model parameters to minimize the number of misclassification sequences. This component could be used offline, or online through feedback to adapt an initial model to specific sites and environments. The background update component adjusts the parameters of the background model to adapt it to each lane during testing. The proposed software system is applied to data acquired from three outdoor test sites at different geographic locations, using a state-of-the-art array GPR prototype. The first collection was used as training, and the other two (contain data from more than 1200 m of simulated dirt and gravel roads for testing. Our results indicate that, on average, the corrective training can improve the performance by about 10% for each site. For individual lanes, the performance gain can reach 50%.

  14. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    Science.gov (United States)

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  15. Fault diagnosis of downhole drilling incidents using adaptive observers and statistical change detection

    DEFF Research Database (Denmark)

    Willersrud, Anders; Blanke, Mogens; Imsland, Lars

    2015-01-01

    Downhole abnormal incidents during oil and gas drilling causes costly delays, any may also potentially lead to dangerous scenarios. Dierent incidents willcause changes to dierent parts of the physics of the process. Estimating thechanges in physical parameters, and correlating these with changes ...... expectedfrom various defects, can be used to diagnose faults while in development.This paper shows how estimated friction parameters and ow rates can de-tect and isolate the type of incident, as well as isolating the position of adefect. Estimates are shown to be subjected to non......-Gaussian,t-distributednoise, and a dedicated multivariate statistical change detection approach isused that detects and isolates faults by detecting simultaneous changes inestimated parameters and ow rates. The properties of the multivariate di-agnosis method are analyzed, and it is shown how detection and false alarmprobabilities...... are assessed and optimized using data-based learning to obtainthresholds for hypothesis testing. Data from a 1400 m horizontal ow loop isused to test the method, and successful diagnosis of the incidents drillstringwashout (pipe leakage), lost circulation, gas in ux, and drill bit plugging aredemonstrated....

  16. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    Science.gov (United States)

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  18. Wave Induced Saline Intrusion in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Burrows, Richard

    1989-01-01

    Experimental and numerical studies have shown that the influence of wave increases the tendency of saline intrusion in multi-riser sea outfalls. The flow field in the diffusor under such unsteady and inhomogeneous circumstances is in general very complex, but when sufficient wave energy is dissip...

  19. Work Zone Intrusion Report Interface Design

    Science.gov (United States)

    2018-02-02

    While necessary for roadways, work zones present a safety risk to crew. Half of road workers deaths between 2005 and 2010 were due to collisions with motorists intruding on the work zone. Therefore, addressing intrusions is an important step for ensu...

  20. Root resorption after orthodontic intrusion and extrusion:.

    NARCIS (Netherlands)

    Han, G.; Huang, S.; Hoff, J.W. Von den; Zeng, X.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The aim of this investigation was to compare root resorption in the same individual after application of continuous intrusive and extrusive forces. In nine patients (mean age 15.3 years), the maxillary first premolars were randomly intruded or extruded with a continuous force of 100 cN for eight

  1. Petrology of the Sutherland commanage melilite intrusives

    International Nuclear Information System (INIS)

    Viljoen, K.S.

    1990-01-01

    The petrology of the Sutherland Commonage olivine melilitite intrusives have been investigated using petrographic and chemical methods. The results of the geochemical study suggest that the Commonage melilites were derived by the melting of a recently metasomatised region of the asthenosphere, probably under the influence of an ocean-island-type hotspot situated in the lower mantle

  2. Spectral Analysis on Time-Course Expression Data: Detecting Periodic Genes Using a Real-Valued Iterative Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Kwadwo S. Agyepong

    2013-01-01

    Full Text Available Time-course expression profiles and methods for spectrum analysis have been applied for detecting transcriptional periodicities, which are valuable patterns to unravel genes associated with cell cycle and circadian rhythm regulation. However, most of the proposed methods suffer from restrictions and large false positives to a certain extent. Additionally, in some experiments, arbitrarily irregular sampling times as well as the presence of high noise and small sample sizes make accurate detection a challenging task. A novel scheme for detecting periodicities in time-course expression data is proposed, in which a real-valued iterative adaptive approach (RIAA, originally proposed for signal processing, is applied for periodogram estimation. The inferred spectrum is then analyzed using Fisher’s hypothesis test. With a proper -value threshold, periodic genes can be detected. A periodic signal, two nonperiodic signals, and four sampling strategies were considered in the simulations, including both bursts and drops. In addition, two yeast real datasets were applied for validation. The simulations and real data analysis reveal that RIAA can perform competitively with the existing algorithms. The advantage of RIAA is manifested when the expression data are highly irregularly sampled, and when the number of cycles covered by the sampling time points is very reduced.

  3. Adaptive Framework for Classification and Novel Class Detection over Evolving Data Streams with Limited Labeled Data.

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Ahsanul [Univ. of Texas, Dallas, TX (United States); Khan, Latifur [Univ. of Texas, Dallas, TX (United States); Baron, Michael [Univ. of Texas, Dallas, TX (United States); Ingram, Joey Burton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Most approaches to classifying evolving data streams either divide the stream of data into fixed-size chunks or use gradual forgetting to address the problems of infinite length and concept drift. Finding the fixed size of the chunks or choosing a forgetting rate without prior knowledge about time-scale of change is not a trivial task. As a result, these approaches suffer from a trade-off between performance and sensitivity. To address this problem, we present a framework which uses change detection techniques on the classifier performance to determine chunk boundaries dynamically. Though this framework exhibits good performance, it is heavily dependent on the availability of true labels of data instances. However, labeled data instances are scarce in realistic settings and not readily available. Therefore, we present a second framework which is unsupervised in nature, and exploits change detection on classifier confidence values to determine chunk boundaries dynamically. In this way, it avoids the use of labeled data while still addressing the problems of infinite length and concept drift. Moreover, both of our proposed frameworks address the concept evolution problem by detecting outliers having similar values for the attributes. We provide theoretical proof that our change detection method works better than other state-of-the-art approaches in this particular scenario. Results from experiments on various benchmark and synthetic data sets also show the efficiency of our proposed frameworks.

  4. Adaptive Non-Interventional Heuristics for Covariation Detection in Causal Induction: Model Comparison and Rational Analysis

    Science.gov (United States)

    Hattori, Masasi; Oaksford, Mike

    2007-01-01

    In this article, 41 models of covariation detection from 2 x 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in…

  5. Detection of advance item knowledge using response times in computer adaptive testing

    NARCIS (Netherlands)

    Meijer, R.R.; Sotaridona, Leonardo

    2006-01-01

    We propose a new method for detecting item preknowledge in a CAT based on an estimate of “effective response time” for each item. Effective response time is defined as the time required for an individual examinee to answer an item correctly. An unusually short response time relative to the expected

  6. Fetal beat detection in abdominal ECG recordings: global and time adaptive approaches

    International Nuclear Information System (INIS)

    Rodrigues, Rui

    2014-01-01

    We present a method for location of fetal QRS in maternal abdominal ECG recordings. This method’s initial, global approach was proposed in the context of the 2013 PhysioNet/Computing in Cardiology Challenge where it was tested on the 447 four channel one-minute recordings. The first step is filtering to eliminate baseline wander and high frequency noise. Upon detection, maternal QRS is removed on each channel using a filter applied to the other three channels. Next we locate fetal QRS on each channel and select the channel with the best set of detections. The method was awarded the third-best score in the Challenge event 1 with 278.755 (beats/minute) and the fourth-best score on event 2 with 28.201 ms. The 5 min long recordings of the Abdominal and Direct Fetal ECG Database were used to further test the method. This database contains five recordings obtained from women in labor. Results in these longer recordings were not satisfactory. This appears to be particularly the case in recordings with a more clearly non-stationary nature. In a new approach to our method, some changes are introduced. Two features are updated over time: the filter used to eliminate maternal QRS and the channel used to detect fetal beats. These changes significantly improved the QRS detection performance on longer recordings, but the scores on the 1 minute Challenge recordings were degraded. (paper)

  7. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  8. Automated electronic intruder simulator for evaluation of ultrasonic intrusion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    An automated electronic intruder simulator for testing ultrasonic intrusion detectors is described. This simulator is primarily intended for use in environmental chambers to determine the effects of temperature and humidity on the operation of ultrasonic intrusion detectors

  9. Visual Adaptations for Mate Detection in the Male Carpenter Bee Xylocopa tenuiscapa.

    Directory of Open Access Journals (Sweden)

    Hema Somanathan

    Full Text Available Sexual dimorphism in eye structure is attributed to sexual selection in animals that employ vision for locating mates. In many male insects, large eyes and eye regions of higher acuity are believed to facilitate the location of females. Here, we compare various features of male and female eyes in three sympatric carpenter bee species, which include two diurnal species (Xylocopa tenuiscapa and X. leucothorax as well as a nocturnal species (X. tranquebarica. In X. tenuiscapa, males have larger eyes than females, while in the nocturnal X. tranquebarica, males have slightly smaller eyes and in X. leucothorax, the eyes are of similar size in both sexes. X. tenuiscapa males detect females by perching near nest sites (resource defence or along fly-ways and other open areas with good visibility. Males of the other two species search for females by patrolling. We postulate that the larger eyes of male X. tenuiscapa are beneficial to their mode of mate detection since perching males may benefit from a larger visual area of high resolution detecting moving stimuli across the sky, and which may be germane to the more social and gregarious nesting behaviour of this species, compared to the other solitary bees. We tested the performance of the eyes of male X. tenuiscapa behaviourally and find that a perching male can detect a flying female at a distance of 20 m, which darkens the visual field of a single ommatidium by just 2%. This, together with the bee's high spatial resolution permits detection of moving stimuli at least as well or even better than achieved by honey bee drones.

  10. Detection of Bundle Branch Block using Adaptive Bacterial Foraging Optimization and Neural Network

    Directory of Open Access Journals (Sweden)

    Padmavthi Kora

    2017-03-01

    Full Text Available The medical practitioners analyze the electrical activity of the human heart so as to predict various ailments by studying the data collected from the Electrocardiogram (ECG. A Bundle Branch Block (BBB is a type of heart disease which occurs when there is an obstruction along the pathway of an electrical impulse. This abnormality makes the heart beat irregular as there is an obstruction in the branches of heart, this results in pulses to travel slower than the usual. Our current study involved is to diagnose this heart problem using Adaptive Bacterial Foraging Optimization (ABFO Algorithm. The Data collected from MIT/BIH arrhythmia BBB database applied to an ABFO Algorithm for obtaining best(important feature from each ECG beat. These features later fed to Levenberg Marquardt Neural Network (LMNN based classifier. The results show the proposed classification using ABFO is better than some recent algorithms reported in the literature.

  11. Unsupervised domain adaptation for early detection of drought stress in hyperspectral images

    Science.gov (United States)

    Schmitter, P.; Steinrücken, J.; Römer, C.; Ballvora, A.; Léon, J.; Rascher, U.; Plümer, L.

    2017-09-01

    Hyperspectral images can be used to uncover physiological processes in plants if interpreted properly. Machine Learning methods such as Support Vector Machines (SVM) and Random Forests have been applied to estimate development of biomass and detect and predict plant diseases and drought stress. One basic requirement of machine learning implies, that training and testing is done in the same domain and the same distribution. Different genotypes, environmental conditions, illumination and sensors violate this requirement in most practical circumstances. Here, we present an approach, which enables the detection of physiological processes by transferring the prior knowledge within an existing model into a related target domain, where no label information is available. We propose a two-step transformation of the target features, which enables a direct application of an existing model. The transformation is evaluated by an objective function including additional prior knowledge about classification and physiological processes in plants. We have applied the approach to three sets of hyperspectral images, which were acquired with different plant species in different environments observed with different sensors. It is shown, that a classification model, derived on one of the sets, delivers satisfying classification results on the transformed features of the other data sets. Furthermore, in all cases early non-invasive detection of drought stress was possible.

  12. Non-intrusive measurement of tritium activity in waste drums by modelling a 3He leak quantified by mass spectrometry

    International Nuclear Information System (INIS)

    Demange, D.

    2002-01-01

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, 3 He, and requires a study of its behaviour inside the drum. Our model considers 3 He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the 3 He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the 3 He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible 3 He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the 3 He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a 3 He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  13. Management of multiple intrusive luxative injuries: A case report with 7-year follow-up

    Directory of Open Access Journals (Sweden)

    Seema Thakur

    2014-01-01

    Full Text Available This report presents a case of severe intrusive luxation of multiple anterior teeth in an 11-year-old girl. The teeth were repositioned successfully by endodontic and orthodontic management. The case was monitored for 7 years. Depending on the severity of the injury, different clinical approaches for treatment of intrusive luxation may be used. Despite the variety of treatment modalities, rehabilitation of intruded teeth is always a challenge and a multidisciplinary approach is important to achieve a successful result. In this case, intruded teeth were endodontically treated with multiple calcium hydroxide dressings and repositioned orthodontically. The follow-up of such cases is very important as the repair process after intrusion is complex. After 7 years, no clinical or radiographic pathology was detected.

  14. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2018-03-01

    Full Text Available Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM combined with particle swarm algorithm (PSO was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  15. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  16. Detecting Source Code Plagiarism on .NET Programming Languages using Low-level Representation and Adaptive Local Alignment

    Directory of Open Access Journals (Sweden)

    Oscar Karnalim

    2017-01-01

    Full Text Available Even though there are various source code plagiarism detection approaches, only a few works which are focused on low-level representation for deducting similarity. Most of them are only focused on lexical token sequence extracted from source code. In our point of view, low-level representation is more beneficial than lexical token since its form is more compact than the source code itself. It only considers semantic-preserving instructions and ignores many source code delimiter tokens. This paper proposes a source code plagiarism detection which rely on low-level representation. For a case study, we focus our work on .NET programming languages with Common Intermediate Language as its low-level representation. In addition, we also incorporate Adaptive Local Alignment for detecting similarity. According to Lim et al, this algorithm outperforms code similarity state-of-the-art algorithm (i.e. Greedy String Tiling in term of effectiveness. According to our evaluation which involves various plagiarism attacks, our approach is more effective and efficient when compared with standard lexical-token approach.

  17. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Yin Xiaoming; Li Xiang; Zhao Liping; Fang Zhongping

    2009-01-01

    A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.

  18. Bleeding detection in wireless capsule endoscopy using adaptive colour histogram model and support vector classification

    Science.gov (United States)

    Mackiewicz, Michal W.; Fisher, Mark; Jamieson, Crawford

    2008-03-01

    Wireless Capsule Endoscopy (WCE) is a colour imaging technology that enables detailed examination of the interior of the gastrointestinal tract. A typical WCE examination takes ~ 8 hours and captures ~ 40,000 useful images. After the examination, the images are viewed as a video sequence, which generally takes a clinician over an hour to analyse. The manufacturers of the WCE provide certain automatic image analysis functions e.g. Given Imaging offers in their Rapid Reader software: The Suspected Blood Indicator (SBI), which is designed to report the location in the video of areas of active bleeding. However, this tool has been reported to have insufficient specificity and sensitivity. Therefore it does not free the specialist from reviewing the entire footage and was suggested only to be used as a fast screening tool. In this paper we propose a method of bleeding detection that uses in its first stage Hue-Saturation-Intensity colour histograms to track a moving background and bleeding colour distributions over time. Such an approach addresses the problem caused by drastic changes in blood colour distribution that occur when it is altered by gastrointestinal fluids and allow detection of other red lesions, which although are usually "less red" than fresh bleeding, they can still be detected when the difference between their colour distributions and the background is large enough. In the second stage of our method, we analyse all candidate blood frames, by extracting colour (HSI) and texture (LBP) features from the suspicious image regions (obtained in the first stage) and their neighbourhoods and classifying them using Support Vector Classifier into Bleeding, Lesion and Normal classes. We show that our algorithm compares favourably with the SBI on the test set of 84 full length videos.

  19. Detecting DoS Attack in Web Services by Using an Adaptive Multiagent Solution

    Directory of Open Access Journals (Sweden)

    Nicholas BELIZ

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} One of the most frequent techniques of a DoS attack is to exhaust available resources (memory, CPU cycles, and bandwidth on the host server. A SOAP message can be affected by a DoS attack if the incoming message has been either created or modified maliciously. Resources available in the server (memory and CPU cycles of the provider can be drastically reduced or exhausted while a malicious SOAP message is being parsed. This article presents a solution based on an adaptive solution for dealing with DoS attacks in Web service environments. The solution proposes a multi-agent hierarchical architecture that implements a classification mechanism in two phases. Each phase incorporates a special type of CBR-BDI agent that functions as a classifier. In the first phase, a case-based reasoning (CBR engine utilizes a decision tree to carry out an initial filter, and in the second phase, a CBR engine incorporates a neural network to complete the classification mechanism. A prototype of the architecture was developed and the results obtained are presented in this study. 

  20. Detecting DoS Attack in Web Services by Using an Adaptive Multiagent Solution

    Directory of Open Access Journals (Sweden)

    Chi Shun HONG

    2013-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} One of the most frequent techniques of a DoS attack is to exhaust available resources (memory, CPU cycles, and bandwidth on the host server. A SOAP message can be affected by a DoS attack if the incoming message has been either created or modified maliciously. Resources available in the server (memory and CPU cycles of the provider can be drastically reduced or exhausted while a malicious SOAP message is being parsed. This article presents a solution based on an adaptive solution for dealing with DoS attacks in Web service environments. The solution proposes a multi-agent hierarchical architecture that implements a classification mechanism in two phases. Each phase incorporates a special type of CBR-BDI agent that functions as a classifier. In the first phase, a case-based reasoning (CBR engine utilizes a decision tree to carry out an initial filter, and in the second phase, a CBR engine incorporates a neural network to complete the classification mechanism. A prototype of the architecture was developed and the results obtained are presented in this study.