WorldWideScience

Sample records for adaptive immune systems

  1. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  2. Organization of an optimal adaptive immune system

    Science.gov (United States)

    Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.

  3. Integration of the immune system: a complex adaptive supersystem

    Science.gov (United States)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  4. The immune system, adaptation, and machine learning

    Science.gov (United States)

    Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.

    1986-10-01

    The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.

  5. Functional aspects of the adaptive immune system in arthritis

    NARCIS (Netherlands)

    Jansen, D.T.S.L.

    2017-01-01

    The adaptive immune system is the part of the immune system that is highly specific and generates memory resulting in a fast and specific immune response upon a second infection with the same pathogen. However, when this response is specific for a part of the body itself instead of a pathogen,

  6. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.

    Science.gov (United States)

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-04-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  7. The Adaptive Immune System of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  8. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  9. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  10. An Immune-inspired Adaptive Automated Intrusion Response System Model

    Directory of Open Access Journals (Sweden)

    Ling-xi Peng

    2012-09-01

    Full Text Available An immune-inspired adaptive automated intrusion response system model, named as , is proposed. The descriptions of self, non-self, immunocyte, memory detector, mature detector and immature detector of the network transactions, and the realtime network danger evaluation equations are given. Then, the automated response polices are adaptively performed or adjusted according to the realtime network danger. Thus, not only accurately evaluates the network attacks, but also greatly reduces the response times and response costs.

  11. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  12. A role of the adaptive immune system in glucose homeostasis.

    Science.gov (United States)

    Bronsart, Laura L; Contag, Christopher H

    2016-01-01

    The immune system, including the adaptive immune response, has recently been recognized as having a significant role in diet-induced insulin resistance. In this study, we aimed to determine if the adaptive immune system also functions in maintaining physiological glucose homeostasis in the absence of diet-induced disease. SCID mice and immunocompetent control animals were phenotypically assessed for variations in metabolic parameters and cytokine profiles. Additionally, the glucose tolerance of SCID and immunocompetent control animals was assessed following introduction of a high-fat diet. SCID mice on a normal chow diet were significantly insulin resistant relative to control animals despite having less fat mass. This was associated with a significant increase in the innate immunity-stimulating cytokines granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP1), and MCP3. Additionally, the SCID mouse phenotype was exacerbated in response to a high-fat diet as evidenced by the further significant progression of glucose intolerance. These results support the notion that the adaptive immune system plays a fundamental biological role in glucose homeostasis, and that the absence of functional B and T cells results in disruption in the concentrations of various cytokines associated with macrophage proliferation and recruitment. Additionally, the absence of functional B and T cells is not protective against diet-induced pathology.

  13. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Linking autoimmunity to the origin of the adaptive immune system.

    Science.gov (United States)

    Bayersdorf, Robert; Fruscalzo, Arrigo; Catania, Francesco

    2018-01-01

    In jawed vertebrates, the adaptive immune system (AIS) cooperates with the innate immune system (IIS) to protect hosts from infections. Although targeting non-self-components, the AIS also generates self-reactive antibodies which, when inadequately counter-selected, can give rise to autoimmune diseases (ADs). ADs are on the rise in western countries. Why haven't ADs been eliminated during the evolution of a ∼500 million-year old system? And why have they become more frequent in recent decades? Self-recognition is an attribute of the phylogenetically more ancient IIS and empirical data compellingly show that some self-reactive antibodies, which are classifiable as elements of the IIS rather then the AIS, may protect from (rather than cause) ADs. Here, we propose that the IIS's self-recognition system originally fathered the AIS and, as a consequence of this relationship, its activity is dampened in hygienic environments. Rather than a mere breakdown or failure of the mechanisms of self-tolerance, ADs might thus arise from architectural constraints.

  15. The role of the adaptive immune system in regulation of gut microbiota.

    Science.gov (United States)

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-07-01

    The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia

    Directory of Open Access Journals (Sweden)

    Céline Pomié

    2016-06-01

    Full Text Available Objective: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. Methods: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Results: Subcutaneous injection (immunization procedure of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Conclusions: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet. Keywords: Gut microbiota and metabolic diseases, Immunity, Insulin resistance

  17. Senescence of the adaptive immune system in health and aging-associated autoimmune disease

    NARCIS (Netherlands)

    van der Geest, Kornelis Stephan Mario

    2015-01-01

    Aging of the immune system may contribute to the development of aging-associated autoimmune diseases, such as giant cell arteritis, polymyalgia rheumatica and rheumatoid arthritis. The aim of this thesis was to identify aging-dependent changes of the adaptive immune system that promote autoimmunity

  18. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  19. CRISPR-Cas adaptive immune systems of the sulfolobales

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  20. Evolution of Alternative Adaptive Immune Systems in Vertebrates.

    Science.gov (United States)

    Boehm, Thomas; Hirano, Masayuki; Holland, Stephen J; Das, Sabyasachi; Schorpp, Michael; Cooper, Max D

    2018-04-26

    Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.

  1. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    Directory of Open Access Journals (Sweden)

    Barbara Lukasch

    2017-08-01

    Full Text Available Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  2. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    Science.gov (United States)

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  3. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  4. Chronic grouped social restriction triggers long-lasting immune system adaptations.

    Science.gov (United States)

    Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei

    2017-05-16

    Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.

  5. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    Science.gov (United States)

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  6. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  7. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Pu; Niestemski, Liang Ren; Deem, Michael W [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Barrick, Jeffrey E, E-mail: mwdeem@rice.edu [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712 (United States)

    2013-04-15

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called 'spacers' into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  8. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Science.gov (United States)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  9. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    International Nuclear Information System (INIS)

    Han, Pu; Niestemski, Liang Ren; Deem, Michael W; Barrick, Jeffrey E

    2013-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  10. Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shieh

    2014-04-01

    Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.

  11. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  13. Alternative Immune Systems

    Directory of Open Access Journals (Sweden)

    Luis Fernando Cadavid Gutierrez

    2011-09-01

    Full Text Available The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of a horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless vertebrates and invertebrates of alternative adaptive immune mechanisms, suggests during evolution different animal groups have found alternative solutions to the problem of immune recognition.

  14. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  15. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    Science.gov (United States)

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    Science.gov (United States)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B-B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  17. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  18. The Immune System Out of Shape? : Shaping of adaptive immunity by persistent viral infections in young children

    NARCIS (Netherlands)

    D. van den Heuvel (Diana)

    2015-01-01

    markdownabstractDuring pregnancy, a fetus is protected from a large part of the pathogens of the environment. As a result, a newborn’s immune system is immature and unexperienced, and mainly composed of innate leukocytes and naive lymphocytes. Immunological memory, and concomitant functional

  19. Immune System

    Science.gov (United States)

    ... of the Immune System Print en español El sistema inmunitario Whether you're stomping through the showers ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on TeensHealth® is for ...

  20. Genome complexity in the coelacanth is reflected in its adaptive immune system

    Science.gov (United States)

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  1. ImmuneDB: a system for the analysis and exploration of high-throughput adaptive immune receptor sequencing data.

    Science.gov (United States)

    Rosenfeld, Aaron M; Meng, Wenzhao; Luning Prak, Eline T; Hershberg, Uri

    2017-01-15

    As high-throughput sequencing of B cells becomes more common, the need for tools to analyze the large quantity of data also increases. This article introduces ImmuneDB, a system for analyzing vast amounts of heavy chain variable region sequences and exploring the resulting data. It can take as input raw FASTA/FASTQ data, identify genes, determine clones, construct lineages, as well as provide information such as selection pressure and mutation analysis. It uses an industry leading database, MySQL, to provide fast analysis and avoid the complexities of using error prone flat-files. ImmuneDB is freely available at http://immunedb.comA demo of the ImmuneDB web interface is available at: http://immunedb.com/demo CONTACT: Uh25@drexel.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Alternative adaptive immunity in invertebrates

    DEFF Research Database (Denmark)

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticity...

  3. Adaptive Immunity to Cryptococcus neoformans Infections

    Directory of Open Access Journals (Sweden)

    Liliane Mukaremera

    2017-11-01

    Full Text Available The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease.

  4. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  5. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis

    Science.gov (United States)

    Köhler, Paulina; von Rauchhaupt, Ekaterina

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN. PMID:29854836

  6. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis.

    Science.gov (United States)

    Honarpisheh, Mohsen; Köhler, Paulina; von Rauchhaupt, Ekaterina; Lech, Maciej

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.

  7. Weakened Immune Systems

    Science.gov (United States)

    ... Issues Health Issues Health Issues Conditions Injuries & Emergencies Vaccine Preventable Diseases ... Children > Safety & Prevention > Immunizations > Weakened Immune Systems Safety & Prevention ...

  8. Necroptotic signaling in adaptive and innate immunity.

    Science.gov (United States)

    Lu, Jennifer V; Chen, Helen C; Walsh, Craig M

    2014-11-01

    The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Innate and Adaptive Immunity to Mucorales.

    Science.gov (United States)

    Ghuman, Harlene; Voelz, Kerstin

    2017-09-05

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

  10. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

    Science.gov (United States)

    Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A

    2017-04-06

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.

  11. Sildenafil Can Affect Innate and Adaptive Immune System in Both Experimental Animals and Patients.

    Science.gov (United States)

    Kniotek, Monika; Boguska, Agnieszka

    2017-01-01

    Sildenafil, a type 5 phosphodiesterase inhibitor (PDE5-I), is primarily used for treating erectile dysfunction. Sildenafil inhibits the degradation of cyclic guanosine monophosphate (cGMP) by competing with cGMP for binding site of PDE5. cGMP is a secondary messenger activating protein kinases and a common regulator of ion channel conductance, glycogenolysis, and cellular apoptosis. PDE5 inhibitors (PDE-Is) found application in cardiology, nephrology, urology, dermatology, oncology, and gynecology. Positive result of sildenafil treatment is closely connected with its immunomodulatory effects. Sildenafil influences angiogenesis, platelet activation, proliferation of regulatory T cells, and production of proinflammatory cytokines and autoantibodies. Sildenafil action in humans and animals appears to be different. Surprisingly, it also acts differently in males and females organisms. Although the immunomodulatory effects of PDE5 inhibitors appear to be promising, none of them reached the point of being tested in clinical trials. Data on the influence of selective PDE5-Is on the human immune system are limited. The main objective of this review is to discuss the immunomodulatory effects of sildenafil in both patients and experimental animals. This is the first review of the current state of knowledge about the effects of sildenafil on the immune system.

  12. Maternal immune system adaptation to pregnancy - a potential influence on the course of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Pavan Josip

    2010-10-01

    Full Text Available Abstract Background Progression of diabetic retinopathy occurs at least temporarily during pregnancy. Although the cause of this progression is not entirely understood, the immune phenomenon and chronic inflammation may play a significant role. During pregnancy in order to avoid fetus rejection, certain components of the immune system that are knowingly implicated in the pathogenesis of diabetic retinopathy are activated including generalized leukocyte activation and an increase in certain cytokine plasma levels. Activated leukocytes with up regulated adhesion molecules have an increased potential to bind to the endothelium cells of blood vessels. Leukocyte-endothelial interaction and the consequent leukostasis with capillary occlusion, ischemia and vascular leakage have a substantial role in the development of diabetic retinopathy. Furthermore, certain increased cytokines are known to cause blood-retinal-barrier breakdown whilst others promote angiogenic and fibrovascular proliferation and thereby can also be implicated in the pathogenesis of this diabetic complication. Presentation of the hypothesis We hypothesized that the activation of the immune system during gestation may have an influence on the course of retinopathy in pregnant diabetic women. Testing the hypothesis We suggest two prospective follow up studies conducted on women with type 1 diabetes mellitus. The first study would include a group of non-pregnant women and a group of diabetic women undergoing normal pregnancy matched for age and duration of diabetes. In the second study pregnant women would be divided into two groups: one with normal pregnancy and the other with preeclampsia. The procedure and data collection in both studies will be identical: a complete ophthalmological examination, glycaemic control, blood pressure measurement and venous blood samples for the determination of plasma levels of cytokines (TNF-alpha, IL-1beta, IL-6, IL-8 and adhesion molecules (ICAM-1

  13. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    Directory of Open Access Journals (Sweden)

    Roger A. Garrett

    2015-03-01

    Full Text Available The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.

  14. Immune System Quiz

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...

  15. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].

    Science.gov (United States)

    Sun, Dongchang; Qiu, Juanping

    2016-01-04

    To better adapt to the environment, prokaryocyte can take up exogenous genes (from bacteriophages, plasmids or genomes of other species) through horizontal gene transfer. Accompanied by the acquisition of exogenous genes, prokaryocyte is challenged by the invasion of 'selfish genes'. Therefore, to protect against the risk of gene transfer, prokaryocyte needs to establish mechanisms for selectively taking up or degrading exogenous DNA. In recent years, researchers discovered an adaptive immunity, which is mediated by the small RNA guided DNA degradation, prevents the invasion of exogenous genes in prokaryocyte. During the immune process, partial DNA fragments are firstly integrated.to the clustered regularly interspaced short palindromic repeats (CRISPR) located within the genome DNA, and then the mature CRISPR RNA transcript and the CRISPR associated proteins (Cas) form a complex CRISPR/Cas for degrading exogenous DNA. In this review, we will first briefly describe the CRISPR/Cas systems and then mainly focus on the recent advances of the function mechanism and the regulation mechanism of the type I-E CRISPR/Cas system in Escherichia coli.

  16. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  17. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?

    Science.gov (United States)

    Doty, Kevin R; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2015-08-18

    Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

    Science.gov (United States)

    Graham, Deborah S Cunninghame; Pinder, Christopher L; Tombleson, Philip; Behrens, Timothy W; Martín, Javier; Fairfax, Benjamin P; Knight, Julian C; Chen, Lingyan; Replogle, Joseph; Syvänen, Ann-Christine; Rönnblom, Lars; Graham, Robert R; Wither, Joan E; Rioux, John D; Alarcón-Riquelme, Marta E; Vyse, Timothy J

    2015-01-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE. PMID:26502338

  19. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  20. The role of the adaptive immune system in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation.

    Science.gov (United States)

    Ranganathan, Kavitha; Agarwal, Shailesh; Cholok, David; Loder, Shawn; Li, Jonathan; Sung Hsieh, Hsiao Hsin; Wang, Stewart C; Buchman, Steven R; Levi, Benjamin

    2016-11-01

    Heterotopic ossification (HO) is the pathologic process of extraskeletal bone formation. Although the exact etiology remains unknown, inflammation appears to catalyze disease progression. The goal of this study is to determine the impact of the adaptive immune system on HO. HO was induced in 8-wk-old control C57BL/6 and immunocompromised Rag1tm1Mom (Rag1 KO) male mice deficient in B- and T-lymphocytes via combined Achilles tenotomy and burn injury. Microcomputed tomography quantified the extent of HO formation at the tenotomy site. Adipose-derived mesenchymal stem cells were harvested to evaluate osteogenic differentiation potential. Areas of developing HO demonstrated substantial enrichment of CD45 + leukocytes at 3 wk after injury. HO from Rag1 KO mice was substantially less mature with foci of cartilage and disorganized trabecular bone present 12 wk after injury. Rag1 KO mice formed 60% less bone compared to immunocompetent controls (4.67 ± 1.5 mm versus 7.76 ± 0.65 mm; P = 0.001). Tartrate-resistant acid phosphatase staining and immunofluorescent analysis of osteoprotegerin and nuclear factor kappa-light-chain-enhancer of activated B cells demonstrated no appreciable difference in osteoclast number or activation. Alizarin red staining in vitro demonstrated a significant decrease in osteogenic potential in immunocompromised mice compared to controls (29.1 ± 0.54 mm versus 12.1 ± 0.14 mm; P role for the adaptive immune system in the development of HO. In the absence of mature B- and T-lymphocytes, HO growth and development are attenuated. Furthermore, we demonstrate that mesenchymal populations from B- and T-cell deficient mice are inherently less osteogenic. This study identifies a potential therapeutic role for modulation of the adaptive immune system in the treatment of HO. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems

    Directory of Open Access Journals (Sweden)

    Arico Maurizo

    2011-06-01

    Full Text Available Abstract Background Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs, this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK and invariant NKT (iNKT cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. Results NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked' with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. Conclusions These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system direct secretory lysosomes to

  2. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems.

    Science.gov (United States)

    Stinchcombe, Jane C; Salio, Mariolina; Cerundolo, Vincenzo; Pende, Daniela; Arico, Maurizo; Griffiths, Gillian M

    2011-06-28

    Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs), this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK) and invariant NKT (iNKT) cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked') with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system) direct secretory lysosomes to the immunological synapse. Morphologically, the

  3. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-01-01

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45 high CD11b + ) and CD8 + T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8 + T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  4. Our Immune System

    Science.gov (United States)

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note ... who are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  5. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  6. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems.

    Science.gov (United States)

    Russano, A M; Agea, E; Casciari, C; de Benedictis, F M; Spinozzi, F

    2008-11-01

    Recent advances in allergy research mostly focussed on two major headings: improving protein allergen purification, which is aimed towards a better characterization of IgE- and T-cell reactive epitopes, and the potential new role for unconventional innate and regulatory T cells in controlling airway inflammation. These advancements could appear to be in conflict each other, as innate T cells have a poorly-defined antigen specificity that is often directed toward nonprotein substances, such as lipids. To reconcile these contrasting findings, the model of cypress pollinosis as paradigmatic for studying allergic diseases in adults is suggested. The biochemical characterization of major native protein allergens from undenatured pollen grain demonstrated that the most relevant substance with IgE-binding activity is a glycohydrolase enzyme, which easily denaturizes in stored grains. Moreover, lipids from the pollen membrane are implicated in early pollen grain capture and recognition by CD1(+) dendritic cells (DC) and CD1-restricted T lymphocytes. These T cells display Th0/Th2 functional activity and are also able to produce regulatory cytokines, such as IL-10 and TGF-beta. CD1(+) immature DCs expand in the respiratory mucosa of allergic subjects and are able to process both proteins and lipids. A final scenario may suggest that expansion and functional activation of CD1(+) DCs is a key step for mounting a Th0/Th2-deviated immune response, and that such innate response does not confer long-lasting protective immunity.

  7. Dynamics of immune system vulnerabilities

    Science.gov (United States)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  8. Immune System (For Parents)

    Science.gov (United States)

    ... of the Immune System Print en español El sistema inmunitario The immune system, which is made up ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on KidsHealth® is for ...

  9. Immune System and Disorders

    Science.gov (United States)

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  10. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  11. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    Science.gov (United States)

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  12. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Immune System Dysfunction in the Elderly.

    Science.gov (United States)

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  14. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno...

  15. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape

    DEFF Research Database (Denmark)

    Agace, William Winston; McCoy, Kathy D.

    2017-01-01

    The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface...... and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we...... review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life....

  16. The Immune System Game

    Science.gov (United States)

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  17. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  18. Adaptive immunity in autoimmune hepatitis.

    Science.gov (United States)

    Longhi, Maria Serena; Ma, Yun; Mieli-Vergani, Giorgina; Vergani, Diego

    2010-01-01

    The histological lesion of interface hepatitis, with its dense portal cell infiltrate consisting of lymphocytes, monocytes/macrophages and plasma cells, was the first to suggest an autoaggressive cellular immune attack in the pathogenesis of autoimmune hepatitis (AIH). Immunohistochemical studies, focused on the phenotype of inflammatory cells infiltrating the liver parenchyma, have shown a predominance of alphabeta-T cells. Amongst these cells, the majority have been CD4 helper/inducers, while a sizeable minority have consisted of CD8 cytotoxic/suppressors. Lymphocytes on non-T cell lineage included natural killer cells, monocytes/macrophages and B lymphocytes. For autoimmunity to arise, the self-antigenic peptide, embraced by an human leukocyte antigen (HLA) class II molecule, must be presented to an uncommitted T helper (T(H)0) lymphocyte by professional antigen-presenting cells. Once activated and according to the presence in the milieu of interleukin 12 (IL-12) or IL-4, T(H)0 lymphocytes can differentiate into T(H)1 cells, which are pivotal to macrophage activation; enhance HLA class I expression, rendering liver cells vulnerable to CD8 T-cell attack; and induce HLA class II expression on hepatocytes; or they can differentiate into T(H)2 cells, which produce IL-4, IL-10 and IL-13, cytokines favouring autoantibody production by B lymphocytes. Autoantigen recognition is tightly controlled by regulatory mechanisms, such as those exerted by CD4+CD25(high) regulatory T cells. Numerical and functional regulatory T cell impairment characterises AIH and permits the perpetuation of effector immune responses with ensuing persistent liver destruction. Advances in the study of autoreactive T cells stem mostly from AIH type 2, where the main autoantigen, cytochrome P450IID6 (CYP2D6), is known to enable characterisation of antigen-specific immune responses. Copyright 2010 S. Karger AG, Basel.

  19. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    Directory of Open Access Journals (Sweden)

    Laurindo Ferreira da Rocha Junior

    2013-01-01

    Full Text Available Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.

  20. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. On Modelling an Immune System

    OpenAIRE

    Monroy, Raúl; Saab, Rosa; Godínez, Fernando

    2004-01-01

    Immune systems of live forms have been an abundant source of inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to challenging problems of modern computing. However, research in artificial immune systems has overlooked establishing a coherent model of known immune system behaviour. This paper aims reports on an preliminary computer model of an immune system, where each immune system component...

  2. Deficiency of adaptive immunity does not interfere with Wallerian degeneration.

    Directory of Open Access Journals (Sweden)

    Christopher R Cashman

    Full Text Available Following injury, distal axons undergo the process of Wallerian degeneration, and then cell debris is cleared to create a permissive environment for axon regeneration. The innate and adaptive immune systems are believed to be critical for facilitating the clearance of myelin and axonal debris during this process. However, immunodeficient animal models are regularly used in transplantation studies investigating cell therapies to modulate the degenerative/regenerative response. Given the importance of the immune system in preparing a permissive environment for regeneration by clearing debris, animals lacking, in part or in full, a functional immune system may have an impaired ability to regenerate due to poor myelin clearance, and may, thus, be poor hosts to study modulators of regeneration and degeneration. To study this hypothesis, three different mouse models with impaired adaptive immunity were compared to wild type animals in their ability to degenerate axons and clear myelin debris one week following sciatic nerve transection. Immunofluorescent staining for axons and quantitation of axon density with nerve histomorphometry of the distal stump showed no consistent discrepancy between immunodeficient and wild type animals, suggesting axons tended to degenerate equally between the two groups. Debris clearance was assessed by macrophage density and relative myelin basic protein expression within the denervated nerve stump, and no consistent impairment of debris clearance was found. These data suggested deficiency of the adaptive immune system does not have a substantial effect on axon degeneration one week following axonal injury.

  3. Mansonella perstans microfilaremic individuals are characterized by enhanced type 2 helper T and regulatory T and B cell subsets and dampened systemic innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Manuel Ritter

    2018-01-01

    Full Text Available The filarial nematode Mansonella perstans is endemic throughout Africa, northern South America and the Caribbean. Interestingly, M. perstans-infected individuals present no distinct clinical picture associated with certain pathology. Due to its relatively silent nature, research on this tropical disease has been neglected, especially M. perstans-driven immune responses. A hindrance in obtaining data on M. perstans-specific responses has been the inability to obtain adult worms since their habitats in serous cavities are difficult to access. Thus, in this study, for the first time, we used Mansonella perstans worm antigen extract as stimulant to obtain filarial-specific recall and immunoglobulin responses from M. perstans microfilaremic individuals (Mp MF+ from Cameroon. Moreover, systemic immune profiles in sera and immune cell composition in peripheral blood from Mp MF+ and amicrofilaremic individuals (Mp MF- were obtained. Our data reveal that Mp MF+ individuals showed significantly reduced cytokine (IL-4, IL-6 and IL-12p70 and chemokine levels (IL-8 and RANTES, but significantly higher MIP-1β as well as increased M. perstans-specific IgG4 levels compared to Mp MF- individuals. In contrast, upon re-stimulation with worm antigen extract, IFN-γ, IL-13, IL-10 and IL-17A secretion was enhanced in cell cultures from Mp MF+ individuals when compared to those from cultures of healthy European individuals. Moreover, analysis of immune cell composition in peripheral blood from Mp MF+ individuals revealed increased type 2 helper T (Th2, natural killer (NK, regulatory B and T cell (Breg and Treg subsets but decreased type 1 regulatory T (Tr1 cells. In summary, this study deciphers for the first time, M. perstans-specific immune responses using worm antigen extract and shows that patent M. perstans infections have distinct Th2, Breg and Treg subsets accompanied with reduced systemic innate and adaptive immune responses and dominant filarial-specific Ig

  4. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  5. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  6. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  7. Physical Activities, Exercises, and Their Effects to the Immune System

    OpenAIRE

    Nurmasitoh, Titis

    2015-01-01

    Every systems in human body correlate to maintain homeostasis. One of those systems which contribute to maintain homeostasis is the immune system. The immune system defends physiological functions against foreign substances and cancer cells through a complex and multilayered mechanism. The ability to defend against foreign substances and abnormal cells is done by two types of immune system, which are Innate immune system and adaptive/acquired immune system. There are also certain factors that...

  8. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model.

    Directory of Open Access Journals (Sweden)

    Martin Köberle

    2009-08-01

    Full Text Available Yersinia enterocolitica (Ye evades the immune system of the host by injection of Yersinia outer proteins (Yops via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-beta-lactamase hybrid protein and a fluorescent staining sensitive to beta-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-beta1A, and HeLa cells demonstrated that beta1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80(+, 11% of CD11c(+, 7% of CD49b(+, 5% of Gr1(+ cells, 2.3% of CD19(+, and 2.6% of CD3(+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19(+CD21(+CD23(+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-gammaR (receptor- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-beta-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.

  9. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico Adaptative mechanisms of the immune system in response to physical training

    Directory of Open Access Journals (Sweden)

    Carol Góis Leandro

    2007-10-01

    Full Text Available O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.Moderate physical training enhances the defense mechanisms, while intense physical training induces to immune suppression. The underlying mechanisms are associated with the link between nervous, endocrine, and immune systems. It suggests autonomic patterns and modulation of immune response. Immune cells, when exposed to regular bouts of stress, develop a mechanism of tolerance. In many tissues, it has been demonstrated that the response to aggressive conditions is attenuated by moderate physical training. Thus, training can induce tolerance to aggressive/stressful situations. In this review, studies suggesting the adaptation mechanisms of the immune system in response to physical training will be reported.

  10. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  11. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  12. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  13. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  14. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  15. Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Lucille Rankin

    2011-01-01

    Full Text Available The helix-loop-helix (HLH transcription factor inhibitor of DNA binding 2 (Id2 has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK cells, lymphoid tissue-inducer (LTi cells, and the recently identified interleukin (IL-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.

  16. Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo

    Directory of Open Access Journals (Sweden)

    Oei Gezina TML

    2012-09-01

    Full Text Available Abstract Background Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific “conditioning” protocols. Before widespread use of this “conditioning” agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Methods Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O2 or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline, T1 (25 min inhalation and T2-T5 (1, 2, 6, 24 h after inhalation and incubated with lipopolysaccharide (LPS, lipoteichoic acid (LTA, T-cell stimuli anti-CD3/ anti-CD28 (TCS or RPMI (as control for 2, 4 and 24 hours or not incubated (0 h. An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, interleukin-8 (IL-8, interferon-γ (IFN-γ and interleukin-2 (IL-2 was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Results Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. Conclusions We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Trial registration Dutch Trial Register: http://www.trialregister.nl/ NTR2152

  17. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    Science.gov (United States)

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  18. Transport modeling: An artificial immune system approach

    Directory of Open Access Journals (Sweden)

    Teodorović Dušan

    2006-01-01

    Full Text Available This paper describes an artificial immune system approach (AIS to modeling time-dependent (dynamic, real time transportation phenomenon characterized by uncertainty. The basic idea behind this research is to develop the Artificial Immune System, which generates a set of antibodies (decisions, control actions that altogether can successfully cover a wide range of potential situations. The proposed artificial immune system develops antibodies (the best control strategies for different antigens (different traffic "scenarios". This task is performed using some of the optimization or heuristics techniques. Then a set of antibodies is combined to create Artificial Immune System. The developed Artificial Immune transportation systems are able to generalize, adapt, and learn based on new knowledge and new information. Applications of the systems are considered for airline yield management, the stochastic vehicle routing, and real-time traffic control at the isolated intersection. The preliminary research results are very promising.

  19. The Basic Immune Simulator: An agent-based model to study the interactions between innate and adaptive immunity

    Directory of Open Access Journals (Sweden)

    Orosz Charles G

    2007-09-01

    Full Text Available Abstract Background We introduce the Basic Immune Simulator (BIS, an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI to facilitate its use as an educational and research tool. Results The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection. Conclusion The behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma, autoimmunity and cancer. We believe that the BIS can be a useful addition to

  20. Technique Selectively Represses Immune System

    Science.gov (United States)

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  1. A pox on thee! Manipulation of the host immune system by myxoma virus and implications for viral-host co-adaptation.

    Science.gov (United States)

    Zúñiga, Martha C

    2002-09-01

    The poxviruses have evolved a diverse array of proteins which serve to subvert innate and adaptive host responses that abort or at least limit viral infections. Myxoma virus and its rabbit host are considered to represent an ideal poxvirus-host system in which to study the effects of these immunomodulatory proteins. Studies of laboratory rabbits (Oryctolagus cuniculus) infected with gene knockout variants of myxoma virus have provided compelling evidence that several myxoma virus gene products contribute to the pathogenic condition known as myxomatosis. However, myxomatosis, which is characterized by skin lesions, systemic immunosuppression, and a high mortality rate, does not occur in the virus' natural South American host, Sylvilogus brasiliensis. Moreover, in Australia where myxoma virus was willfully introduced to control populations of O. cuniculus, myxomatosis-resistant rabbits emerged within a year of myxoma virus introduction into the field. In this review I discuss the characterized immunomodulatory proteins of myxoma virus, their biochemical properties, their pathogenic effects in laboratory rabbits, the role of the host immune system in the susceptibility or resistance to myxomatosis, and the evidence that immunomodulatory genes may have been attenuated during the co-adaptation of myxoma virus and O. cuniculus in Australia.

  2. Immune System and Kidney Transplantation.

    Science.gov (United States)

    Shrestha, Badri Man

    2017-01-01

    The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.

  3. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  4. The ontogeny of the porcine immune system

    Czech Academy of Sciences Publication Activity Database

    Šinkora, Marek; Butler, J. E.

    2009-01-01

    Roč. 33, č. 3 (2009), s. 273-283 ISSN 0145-305X R&D Projects: GA ČR GA524/07/0087; GA ČR GA523/07/0088 Institutional research plan: CEZ:AV0Z50200510 Keywords : ontogeny of the porcine immune system * swine adaptive immunity * development of alpha beta and gamma delta T cells Subject RIV: EC - Immunology Impact factor: 3.290, year: 2009

  5. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires

    Directory of Open Access Journals (Sweden)

    Enkelejda Miho

    2018-02-01

    Full Text Available The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV. Adaptive immune receptor repertoire sequencing (AIRR-seq has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i diversity, (ii clustering and network, (iii phylogenetic, and (iv machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.

  7. Regional specialization within the intestinal immune system

    DEFF Research Database (Denmark)

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...... implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout...... the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease...

  8. Hibernation : the immune system at rest?

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Carey, Hannah V.; Kroese, Frans G. M.

    2010-01-01

    Mammalian hibernation consists of torpor phases when metabolism is severely depressed, and T can reach as low as approximately -2 degrees C, interrupted by euthermic arousal phases. Hibernation affects the function of the innate and the adaptive immune systems. Torpor drastically reduces numbers of

  9. Engineering Plant Immunity via CRISPR/Cas13a System

    KAUST Repository

    Aljedaani, Fatimah R.

    2018-01-01

    systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA

  10. The twilight of immunity: emerging concepts in aging of the immune system.

    Science.gov (United States)

    Nikolich-Žugich, Janko

    2018-01-01

    Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.

  11. Frequent adaptive immune responses against arginase-1

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Mortensen, Rasmus Erik Johansson; Hansen, Morten

    2018-01-01

    The enzyme arginase-1 reduces the availability of arginine to tumor-infiltrating immune cells, thus reducing T-cell functionality in the tumor milieu. Arginase-1 is expressed by some cancer cells and by immune inhibitory cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated...

  12. Alterations in adaptive immunity persist during long-duration spaceflight

    Science.gov (United States)

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  13. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  14. Immune regulation by pericytes: modulating innate and adaptive immunity

    DEFF Research Database (Denmark)

    Navarro, Rocio; Compte, Marta; Álvarez-Vallina, Luis

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells (EC) in small blood vessels. PC have traditionally been endowed with structural functions, being essential for vessel maturation and stabilization. However, accumulating evidence suggest that PC also display immune properties. They ca...

  15. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  16. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    Science.gov (United States)

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-07-01

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.

  17. The influence of pregnancy on systemic immunity.

    Science.gov (United States)

    Pazos, Michael; Sperling, Rhoda S; Moran, Thomas M; Kraus, Thomas A

    2012-12-01

    Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.

  18. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    NARCIS (Netherlands)

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  19. The Mucosal Immune System of Teleost Fish

    Directory of Open Access Journals (Sweden)

    Irene Salinas

    2015-08-01

    Full Text Available Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT of teleosts are the gut-associated lymphoid tissue (GALT, skin-associated lymphoid tissue (SALT, the gill-associated lymphoid tissue (GIALT and the recently discovered nasopharynx-associated lymphoid tissue (NALT. Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture.

  20. Phylogeny, longevity and evolution of adaptive immunity

    Czech Academy of Sciences Publication Activity Database

    Vinkler, Michal; Albrecht, Tomáš

    2011-01-01

    Roč. 60, č. 3 (2011), s. 277-282 ISSN 0139-7893 R&D Projects: GA ČR GA206/08/0640; GA ČR GA206/08/1281; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : acquired immunity * evolutionary immunology * immunological priming * innate immunity * invertebrates Subject RIV: EG - Zoology Impact factor: 0.554, year: 2011

  1. The Hayflick Limit and Age-Related Adaptive Immune Deficiency.

    Science.gov (United States)

    Gill, Zoe; Nieuwoudt, Martin; Ndifon, Wilfred

    2018-01-01

    The adaptive immune system (AIS) acquires significant deficiency during chronological ageing, making older individuals more susceptible to infections and less responsive to vaccines compared to younger individuals. At the cellular level, one of the most striking features of this ageing-related immune deficiency is the dramatic loss of T-cell diversity that occurs in elderly humans. After the age of 70 years, there is a sharp decline in the diversity of naïve T cells, including a >10-fold decrease in the CD4+ compartment and a >100-fold decrease in the CD8+ compartment. Such changes are detrimental because the AIS relies on a diverse naïve T-cell pool to respond to novel pathogens. Recent work suggests that this collapse of naïve T-cell diversity results from T cells reaching the Hayflick limit and being eliminated through both antigen-dependent and -independent pathways. The progressive attrition of telomeres is the molecular mechanism that underlies this Hayflick limit. Therefore, we propose that by measuring the telomere lengths of T cells with high resolution, it is possible to develop a unique biomarker of immune deficiency, potentially much better correlated with individual susceptibility to diseases compared to chronological age alone. © 2017 S. Karger AG, Basel.

  2. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Itoh A

    2017-05-01

    Full Text Available Arata Itoh, William M Ridgway Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA Abstract: Type 1 diabetes (T1D is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs. Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase, the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody have shown partial successes (e.g., prolonged C peptide preservation but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR 4-stimulating lipopolysaccharide [LPS] dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic

  3. Adaptation in Living Systems

    Science.gov (United States)

    Tu, Yuhai; Rappel, Wouter-Jan

    2018-03-01

    Adaptation refers to the biological phenomenon where living systems change their internal states in response to changes in their environments in order to maintain certain key functions critical for their survival and fitness. Adaptation is one of the most ubiquitous and arguably one of the most fundamental properties of living systems. It occurs throughout all biological scales, from adaptation of populations of species over evolutionary time to adaptation of a single cell to different environmental stresses during its life span. In this article, we review some of the recent progress made in understanding molecular mechanisms of cellular-level adaptation. We take the minimalist (or the physicist) approach and study the simplest systems that exhibit generic adaptive behaviors, namely chemotaxis in bacterium cells (Escherichia coli) and eukaryotic cells (Dictyostelium). We focus on understanding the basic biochemical interaction networks that are responsible for adaptation dynamics. By combining theoretical modeling with quantitative experimentation, we demonstrate universal features in adaptation as well as important differences in different cellular systems. Future work in extending the modeling framework to study adaptation in more complex systems such as sensory neurons is also discussed.

  4. Genome-to-genome analysis highlights the impact of the human innate and adaptive immune systems on the hepatitis C virus

    Science.gov (United States)

    Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C. A.

    2018-01-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control. PMID:28394351

  5. Ebola and Immune System

    OpenAIRE

    KOMENAN, Alexis

    2016-01-01

    Ebola hemorrhagic fever is a formidable disease whose surges always result in a high number of victims in sub-Saharan Africa. There is no official treatment against the virus, which makes the task of containment extremely delicate. However, the existence of survivors to the virus demonstrates curable nature of the disease and suggests the existence of favorable factors of immunity. The author examines these factors and their challenges and perspectives in the cure of the disease.

  6. Melatonin: Buffering the Immune System

    Directory of Open Access Journals (Sweden)

    Juan M. Guerrero

    2013-04-01

    Full Text Available Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.

  7. Melatonin: Buffering the Immune System

    Science.gov (United States)

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  8. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases.

    Science.gov (United States)

    Hirano, Masayuki

    2015-08-01

    All surviving jawed vertebrate representatives achieve diversity in immunoglobulin-based B and T cell receptors for antigen recognition through recombinatorial rearrangement of V(D)J segments. However, the extant jawless vertebrates, lampreys and hagfish, instead generate three types of variable lymphocyte receptors (VLRs) through a template-mediated combinatorial assembly of different leucine-rich repeat (LRR) sequences. The clonally diverse VLRB receptors are expressed by B-like lymphocytes, while the VLRA and VLRC receptors are expressed by lymphocyte lineages that resemble αβ and γδ T lymphocytes, respectively. These findings suggest that three basic types of lymphocytes, one B-like and two T-like, are an essential feature of vertebrate adaptive immunity. Around 500 million years ago, a common ancestor of jawed and jawless vertebrates evolved a genetic program for the development of prototypic lymphoid cells as a foundation for an adaptive immune system. This acquisition preceded the convergent evolution of alternative types of clonally diverse receptors for antigens in all vertebrates, as reviewed in this article. © 2015 WILEY Periodicals, Inc.

  9. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  10. Let's Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse.

    Science.gov (United States)

    Bennett, Kaila M; Rooijakkers, Suzan H M; Gorham, Ronald D

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement.

  11. Let’s Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse

    Science.gov (United States)

    Bennett, Kaila M.; Rooijakkers, Suzan H. M.; Gorham, Ronald D.

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement. PMID:28197139

  12. Play the Immune System Defender Game

    Science.gov (United States)

    ... Questionnaire The Immune System Play the Immune System Game About the game Granulocytes, macrophages and dendritic cells are immune cells ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...

  13. Turbine system and adapter

    Science.gov (United States)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  14. Role of the Immune System in Hypertension.

    Science.gov (United States)

    Rodriguez-Iturbe, Bernardo; Pons, Hector; Johnson, Richard J

    2017-07-01

    High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease. Copyright © 2017 the American Physiological Society.

  15. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    Science.gov (United States)

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  16. Adaptation in CRISPR-Cas Systems.

    Science.gov (United States)

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus.

    Science.gov (United States)

    Ansari, M Azim; Pedergnana, Vincent; L C Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C A

    2017-05-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control.

  18. Adaptive immunity to rhinoviruses: sex and age matter

    Directory of Open Access Journals (Sweden)

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  19. Focusing on Ciona intestinalis (Tunicata) innate immune system. Evolutionary implications

    OpenAIRE

    N Parrinello

    2009-01-01

    Phylogenetic analyses based on molecular data provide compelling evidence that ascidians are of critical importance for studying chordate immune system evolution. The Ciona intestinalis draft genome sequence allows searches for phylogenetic relationships, gene cloning and expression of immunorelevant molecules. Acidians lack of the pivotal components of the vertebrate recombinatory adaptive immunity, i.e., MHC, TCRs and dimeric immunoglobulins. However, bioinformatic sequence analyses recogni...

  20. The Immune System in Hypertension

    Science.gov (United States)

    Trott, Daniel W.; Harrison, David G.

    2014-01-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely…

  1. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    Science.gov (United States)

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  2. Microbial-immune cross-talk and regulation of the immune system.

    Science.gov (United States)

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  3. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  4. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  5. The role of intestinal microbiota and the immune system.

    Science.gov (United States)

    Purchiaroni, F; Tortora, A; Gabrielli, M; Bertucci, F; Gigante, G; Ianiro, G; Ojetti, V; Scarpellini, E; Gasbarrini, A

    2013-02-01

    The human gut is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the intestinal innate and adaptive immune system, affecting different aspects of its development and function. To review the immunological functions of gut microbiota and improve knowledge of its therapeutic implications for several intestinal and extra-intestinal diseases associated to dysregulation of the immune system. Significant articles were identified by literature search and selected based on content, including atopic diseases, inflammatory bowel diseases and treatment of these conditions with probiotics. Accumulating evidence indicates that intestinal microflora has protective, metabolic, trophic and immunological functions and is able to establish a "cross-talk" with the immune component of mucosal immunity, comprising cellular and soluble elements. When one or more steps in this fine interaction fail, autoimmune or auto-inflammatory diseases may occur. Furthermore, it results from the data that probiotics, used for the treatment of the diseases caused by the dysregulation of the immune system, can have a beneficial effect by different mechanisms. Gut microbiota interacts with both innate and adaptive immune system, playing a pivotal role in maintenance and disruption of gut immune quiescence. A cross talk between the mucosal immune system and endogenous microflora favours a mutual growth, survival and inflammatory control of the intestinal ecosystem. Based on these evidences, probiotics can be used as an ecological therapy in the treatment of immune diseases.  

  6. Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee

    2017-09-01

    Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [The liver and the immune system].

    Science.gov (United States)

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes

  8. Glatiramer Acetate in Treatment of Multiple Sclerosis: A Toolbox of Random Co-Polymers for Targeting Inflammatory Mechanisms of both the Innate and Adaptive Immune System?

    Directory of Open Access Journals (Sweden)

    Thomas Vorup-Jensen

    2012-11-01

    Full Text Available Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin αMβ2 (also called Mac-1, complement receptor 3, or CD11b/CD18 and perspectives on the GA co-polymers as an influence on the function of the innate immune system.

  9. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    Science.gov (United States)

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Regulation of TGFβ in the immune system: An emerging role for integrins and dendritic cells

    OpenAIRE

    Worthington, John J.; Fenton, Thomas M.; Czajkowska, Beata I.; Klementowicz, Joanna E.; Travis, Mark A.

    2012-01-01

    Regulation of an immune response requires complex crosstalk between cells of the innate and adaptive immune systems, via both cell?cell contact and secretion of cytokines. An important cytokine with a broad regulatory role in the immune system is transforming growth factor-? (TGF-?). TGF-? is produced by and has effects on many different cells of the immune system, and plays fundamental roles in the regulation of immune responses during homeostasis, infection and disease. Although many cells ...

  11. Weakened Immune System and Adult Vaccination

    Science.gov (United States)

    ... Basics Adult Vaccination Resources for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... people with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...

  12. Immune Evasion, Immunopathology and the Regulation of the Immune System

    Directory of Open Access Journals (Sweden)

    Bruno Faivre

    2013-02-01

    Full Text Available Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  13. Immune System Toxicity and Immunotoxicity Hazard Identification

    Science.gov (United States)

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  14. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  15. Innate immune system and preeclampsia

    Directory of Open Access Journals (Sweden)

    Alejandra ePerez-Sepulveda

    2014-05-01

    Full Text Available Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. PE has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1⁄Th2⁄Th17 and regulatory T (Treg cells paradigm and where dendritic cells could have a crucial role. Recently, some evidence has emerged supporting the idea that mesenchymal stem cells might be part of the feto-maternal tolerance environment. This review will discuss the involvement of the innate immune system in the establishment of a physiological environment that favors pregnancy and possible alterations related to the development of preeclampsia.

  16. Obesity, Fat Mass and Immune System: Role for Leptin

    Directory of Open Access Journals (Sweden)

    Vera Francisco

    2018-06-01

    Full Text Available Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.

  17. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. Copyright © 2017 American Society for Microbiology.

  18. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Lydia M. Roberts

    2018-04-01

    Full Text Available Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.

  19. Natural evolution, disease, and localization in the immune system

    Science.gov (United States)

    Deem, Michael

    2004-03-01

    Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101

  20. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    Science.gov (United States)

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  2. Recognition of extracellular bacteria by NLRs and its role in the development of adaptive immunity

    Directory of Open Access Journals (Sweden)

    Jonathan eFerrand

    2013-10-01

    Full Text Available Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs, whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.

  3. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  4. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  5. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  6. A cascade reaction network mimicking the basic functional steps of adaptive immune response.

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex 'information-processing cores' composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  7. Immune algorithm based active PID control for structure systems

    International Nuclear Information System (INIS)

    Lee, Young Jin; Cho, Hyun Cheol; Lee, Kwon Soon

    2006-01-01

    An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I P ID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect

  8. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and preeclampsia

    Directory of Open Access Journals (Sweden)

    Peter eHsu

    2014-03-01

    Full Text Available Maternal immune tolerance of the fetus is indispensible for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface – the decidua, the site of implantation and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, preeclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3+ regulatory T (Treg cells are crucial for ensuring immune tolerance towards the semi-allogeneic fetus. Additionally, another population of CD4+HLA-G+ suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy.

  9. Unique aspects of the perinatal immune system.

    Science.gov (United States)

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  10. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas

    2010-01-01

    Ilya Metchnikoff and Paul Ehrlich were awarded the Nobel price in 1908. Since then, numerous studies have unraveled a multitude of mechanistically different immune responses to intruding microorganisms. However, in the vast majority of these studies, the underlying infectious agents have appeared...... in the planktonic state. Accordingly, much less is known about the immune responses to the presence of biofilm-based infections (which is probably also due to the relatively short period of time in which the immune response to biofilms has been studied). Nevertheless, more recent in vivo and in vitro studies have...... revealed both innate as well as adaptive immune responses to biofilms. On the other hand, measures launched by biofilm bacteria to achieve protection against the various immune responses have also been demonstrated. Whether particular immune responses to biofilm infections exist remains to be firmly...

  11. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  12. The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths.

    Science.gov (United States)

    Agrawal, Madhur; Kern, Philip A; Nikolajczyk, Barbara S

    2017-08-15

    Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.

  13. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D.

    Science.gov (United States)

    Wei, Ran; Christakos, Sylvia

    2015-09-24

    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases.

  14. Co-ordinating innate and adaptive immunity to viral infection: mobility is the key

    DEFF Research Database (Denmark)

    Wern, Jeanette Erbo; Thomsen, Allan Randrup

    2009-01-01

    The host counters a viral infection through a complex response made up of components belonging to both the innate and the adaptive immune system. In this report, we review the mechanisms underlying this response, how it is induced and how it is co-ordinated. As cell-cell communication represents...... the very essence of immune system physiology, a key to a rapid, efficient and optimally regulated immune response is the ability of the involved cells to rapidly shift between a stationary and a mobile state, combined with stringent regulation of cell migration during the mobile state. Through the co......-ordinated recruitment of different cell types intended to work in concert, cellular co-operation is optimized particularly under conditions that may involve rare cells. Consequently, a major focus is placed on presenting an overview of the co-operative events and the associated cell migration, which is essential...

  15. Inside the mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Jerry R McGhee

    Full Text Available An intricate network of innate and immune cells and their derived mediators function in unison to protect us from toxic elements and infectious microbial diseases that are encountered in our environment. This vast network operates efficiently by use of a single cell epithelium in, for example, the gastrointestinal (GI and upper respiratory (UR tracts, fortified by adjoining cells and lymphoid tissues that protect its integrity. Perturbations certainly occur, sometimes resulting in inflammatory diseases or infections that can be debilitating and life threatening. For example, allergies in the eyes, skin, nose, and the UR or digestive tracts are common. Likewise, genetic background and environmental microbial encounters can lead to inflammatory bowel diseases (IBDs. This mucosal immune system (MIS in both health and disease is currently under intense investigation worldwide by scientists with diverse expertise and interests. Despite this activity, there are numerous questions remaining that will require detailed answers in order to use the MIS to our advantage. In this issue of PLOS Biology, a research article describes a multi-scale in vivo systems approach to determine precisely how the gut epithelium responds to an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α, given by the intravenous route. This article reveals a previously unknown pathway in which several cell types and their secreted mediators work in unison to prevent epithelial cell death in the mouse small intestine. The results of this interesting study illustrate how in vivo systems biology approaches can be used to unravel the complex mechanisms used to protect the host from its environment.

  16. Learning and Memory... and the Immune System

    Science.gov (United States)

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  17. Immunization Information System and Informatics to Promote Immunizations: Perspective From Minnesota Immunization Information Connection.

    Science.gov (United States)

    Muscoplat, Miriam Halstead; Rajamani, Sripriya

    2017-01-01

    The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.

  18. CMV immune evasion and manipulation of the immune system with aging.

    Science.gov (United States)

    Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R

    2017-06-01

    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to

  19. Roles of Zinc Signaling in the Immune System.

    Science.gov (United States)

    Hojyo, Shintaro; Fukada, Toshiyuki

    2016-01-01

    Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.

  20. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  1. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  2. Adaptivity in Professional Printing Systems

    NARCIS (Netherlands)

    Verriet, J.H.; Basten, T; Hamberg, R.; Reckers, F.J.; Somers, L.

    2013-01-01

    There is a constant pressure on developers of embedded systems to simultaneously increase system functionality and to decrease development costs. Aviable way to obtain a better system performance with the same physical hardware is adaptivity: a system should be able to adapt itself to dynamically

  3. Local and systemic tumor immune dynamics

    Science.gov (United States)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  4. Ageing and the immune system: focus on macrophages.

    Science.gov (United States)

    Linehan, E; Fitzgerald, D C

    2015-03-01

    A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.

  5. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    International Nuclear Information System (INIS)

    Robert, Jacques; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-01-01

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8 + T cells or by sub-lethal γ-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8 + T cells and larval susceptibility to FV3 are consistent with an inefficient CD8 + T cell effector function during this developmental period

  6. Conceptual Spaces of the Immune System.

    Science.gov (United States)

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  7. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  8. Nutritional support for the infant's immune system

    NARCIS (Netherlands)

    Niers, L.; Stasse-Wolthuis, M.; Rombouts, F.M.; Rijkers, G.T.

    2007-01-01

    Newborn babies possess a functional but immature immune system as a defense against a world teeming with microorganisms. Breast milk contains a number of biological, active compounds that support the infant's immune system. These include secretory immunoglobulin A (IgA), which confers specific

  9. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. The Immune System and Bodily Defence How Do Parasites and the Immune System Choose their Dances? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 2 February 1997 pp 17-24 ...

  10. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. The Immune System and Bodily Defence How Does the Immune System Organize Itself so as to Connect Target Recognition to Expected Functions? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 6 June 1997 pp 25-38 ...

  11. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. The Immune System and Bodily Defence How Does the Immune System Recognize Everything Under the Sun? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 9 September 1997 pp 6-10 ...

  12. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Stephen W. Tuffs

    2018-05-01

    Full Text Available Staphylococcal superantigens (SAgs constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC class II molecules with T cell receptors (TCRs to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.

  13. Review of the systems biology of the immune system using agent-based models.

    Science.gov (United States)

    Shinde, Snehal B; Kurhekar, Manish P

    2018-06-01

    The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.

  14. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    Science.gov (United States)

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  15. No evidence of local adaptation of immune responses to Gyrodactylus in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C

    2017-01-01

    Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Feeding Our Immune System: Impact on Metabolism

    Directory of Open Access Journals (Sweden)

    Isabelle Wolowczuk

    2008-01-01

    Full Text Available Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy.

  17. The Mucosal Immune System and Its Regulation by Autophagy.

    Science.gov (United States)

    Kabat, Agnieszka M; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a "self-eating" survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.

  18. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  19. Recent Advances in Aptamers Targeting Immune System.

    Science.gov (United States)

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  20. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  1. Regulation of innate and adaptive immunity by the commensal microbiota

    OpenAIRE

    Jarchum, Irene; Pamer, Eric G.

    2011-01-01

    The microbial communities that inhabit the intestinal tract are essential for mammalian health. Communication between the microbiota and the host establishes and maintains immune homeostasis, enabling protective immune responses against pathogens while preventing adverse inflammatory responses to harmless commensal microbes. Specific bacteria, such as segmented filamentous bacteria, Clostridium species, and Bacteroides fragilis, are key contributors to immune homeostasis in the gut. The cellu...

  2. The Immune System of HIV-Exposed Uninfected Infants.

    Science.gov (United States)

    Abu-Raya, Bahaa; Kollmann, Tobias R; Marchant, Arnaud; MacGillivray, Duncan M

    2016-01-01

    Infants born to human immunodeficiency virus (HIV) infected women are HIV-exposed but the majority remains uninfected [i.e., HIV-exposed uninfected (HEU)]. HEU infants suffer greater morbidity and mortality from infections compared to HIV-unexposed (HU) peers. The reason(s) for these worse outcomes are uncertain, but could be related to an altered immune system state. This review comprehensively summarizes the current literature investigating the adaptive and innate immune system of HEU infants. HEU infants have altered cell-mediated immunity, including impaired T-cell maturation with documented hypo- as well as hyper-responsiveness to T-cell activation. And although prevaccination vaccine-specific antibody levels are often lower in HEU than HU, most HEU infants mount adequate humoral immune response following primary vaccination with diphtheria toxoid, haemophilus influenzae type b, whole cell pertussis, measles, hepatitis B, tetanus toxoid, and pneumococcal conjugate vaccines. However, HEU infants are often found to have lower absolute neutrophil counts as compared to HU infants. On the other hand, an increase of innate immune cytokine production and expression of co-stimulatory markers has been noted in HEU infants, but this increase appears to be restricted to the first few weeks of life. The immune system of HEU children beyond infancy remains largely unexplored.

  3. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows.

    Science.gov (United States)

    Silva, P R B; Machado, K S; Da Silva, D N Lobão; Moraes, J G N; Keisler, D H; Chebel, R C

    2015-07-01

    The aim of this experiment was to determine effects of treating peripartum dairy cows with body condition score ≥3.75 with recombinant bovine somatotropin (rbST) on immune, inflammatory, and metabolic responses. Holstein cows (253±1d of gestation) were assigned randomly to 1 of 3 treatments: untreated control (n=53), rbST87.5 (n=56; 87.5mg of rbST), and rbST125 (n=57; 125mg of rbST). Cows in the rbST87.5 and rbST125 treatments received rbST weekly from -21 to 28d relative to calving. Growth hormone, insulin-like growth factor 1, haptoglobin, tumor necrosis factor α, nonesterified fatty acids, β-hydroxybutyrate, glucose, and cortisol concentrations were determined weekly from -21 to 21d relative to calving. Blood sampled weekly from -14 to 21d relative to calving was used for hemogram and polymorphonuclear leukocyte (PMNL) expression of adhesion molecules, phagocytosis, and oxidative burst. Cows were vaccinated with ovalbumin at -21, -7, and 7d relative to calving, and blood was collected weekly from -21 to 21d relative to calving to determine IgG anti-ovalbumin concentrations. A subsample of cows had liver biopsied -21, -7, and 7d relative to calving to determine total lipids, triglycerides, and glycogen content. Growth hormone concentrations prepartum (control=11.0±1.2, rbST87.5=14.1±1.2, rbST125=15.1±1.3ng/mL) and postpartum (control=14.4±1.1, rbST87.5=17.8±1.2, rbST125=21.8±1.1ng/mL) were highest for rbST125 cows. Cows treated with rbST had higher insulin-like growth factor 1 concentrations than control cows (control=110.5±4.5, rbST87.5=126.2±4.5, rbST125=127.2±4.5ng/mL) only prepartum. Intensity of L-selectin expression was higher for rbST125 than for control and rbST87.5 cows [control=3,590±270, rbST87.5=3,279±271, rbST125=4,371±279 geometric mean fluorescence intensity (GMFI)] in the prepartum period. The PMNL intensities of phagocytosis (control=3,131±130, rbST87.5=3,391±133, rbST125=3,673±137 GMFI) and oxidative burst (control=9,588±746

  4. The immune self: a selectionist theory of recognition, learning, and remembering within the immune system.

    Science.gov (United States)

    Kradin, R L

    1995-01-01

    memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Adaptive protection algorithm and system

    Science.gov (United States)

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  6. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-11-01

    Full Text Available Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD. Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10 chemokine ligands [ITAC (CXCL11 and Mig (CXCL9] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1, and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of

  7. Why the Immune System Should Be Concerned by Nanomaterials?

    Directory of Open Access Journals (Sweden)

    Marc J. Pallardy

    2017-05-01

    Full Text Available Particles possess huge specific surface area and therefore nanomaterials exhibit unique characteristics, such as special physical properties and chemical hyper-reactivity, which make them particularly attractive but also raise numerous questions concerning their safety. Interactions of nanomaterials with the immune system can potentially lead to immunosuppression, hypersensitivity (allergy, immunogenicity and autoimmunity, involving both innate and adaptive immune responses. Inherent physical and chemical NP characteristics may influence their immunotoxicity, i.e., the adverse effects that can result from exposure. This review will focus on the possible interaction of nanomaterials including protein aggregates with the innate immune system with specific emphasis on antigen-presenting cells, i.e., dendritic cells, macrophages and monocytes.

  8. Adaptive security systems -- Combining expert systems with adaptive technologies

    International Nuclear Information System (INIS)

    Argo, P.; Loveland, R.; Anderson, K.

    1997-01-01

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting

  9. Modulating the immune system through nanotechnology.

    Science.gov (United States)

    Dacoba, Tamara G; Olivera, Ana; Torres, Dolores; Crecente-Campo, José; Alonso, María José

    2017-12-01

    Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. STSV2 as a Model Crenarchaeal Virus for Studying Virus-Host Interactions and CRISPR-Cas Adaptive Immunity

    DEFF Research Database (Denmark)

    León Sobrino, Carlos

    , the archaea harbour their own viruses, which constitute an extraordinarily diverse group with exotic morphologies and unique features. Prokaryotes possess a variety of defence mechanisms. The CRISPR-Cas adaptive immune system is of great importance for archaea –84% of them possess it, compared to 45...... generate immune memory by inserting in its own genome short invader-derived DNA fragments forming a database –the CRISPR locus. Little was known about this system until recent years, and the generation of immune memory has been the most elusive step. In this work, the interactions of the spindle......-shaped monocaudavirus STSV2 and its host Sulfolobus islandicus REY15A were studied. This interaction produced, after several days, de novo CRISPR adaptation – that is, without any previous memory that can act as a trigger. We employed transcriptome sequencing to characterise the long-term progression...

  11. Viral subversion of the immune system

    International Nuclear Information System (INIS)

    Gillet, L.; Vanderplasschen, A.

    2005-01-01

    The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines. (author)

  12. Immune regulation in gut and cord : opportunities for directing the immune system

    NARCIS (Netherlands)

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the

  13. Dermatology in the Darwin anniversary. Part 2: Evolution of the skin-associated immune system.

    Science.gov (United States)

    Wölfle, Ute; Martin, Stefan; Emde, Matthias; Schempp, Christoph

    2009-10-01

    The present review highlights the evolution of the skin-associated immune system from the invertebrates to the vertebrates and man. In the invertebrates a non-specific humoral immune response dominates. It includes antimicrobial peptides, oxidases, lysozyme, agglutinins, coagulins and melanin. The cellular immune system initially consists of undifferentiated mesenchymal stem cells. Later migrating phagocytes and natural killer cells occur. From the fishes on, dendritic cells are present, linking innate and adaptive immune responses. In addition to this unspecific but highly effective immune system, the specific immune response, based on genetic recombination, is present in the vertebrates starting with the chondral fishes. The adaptive immune system possesses unlimited numbers of highly specific antibodies and T-cell receptors, increasingly tissue specific MHC restriction, and cellular memory. Elements of the skin-associated adaptive immune system are first detectable in the teleost fishes in the form of intraepithelial IgM positive lymphocytes and dendritic cells. Moving up to mammals and man, the skin-associated immune system became more and more complex and effective.

  14. Recommendation System for Adaptive Learning.

    Science.gov (United States)

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-01-01

    An adaptive learning system aims at providing instruction tailored to the current status of a learner, differing from the traditional classroom experience. The latest advances in technology make adaptive learning possible, which has the potential to provide students with high-quality learning benefit at a low cost. A key component of an adaptive learning system is a recommendation system, which recommends the next material (video lectures, practices, and so on, on different skills) to the learner, based on the psychometric assessment results and possibly other individual characteristics. An important question then follows: How should recommendations be made? To answer this question, a mathematical framework is proposed that characterizes the recommendation process as a Markov decision problem, for which decisions are made based on the current knowledge of the learner and that of the learning materials. In particular, two plain vanilla systems are introduced, for which the optimal recommendation at each stage can be obtained analytically.

  15. Increased innate and adaptive immune responses in induced sputum of young smokers

    Directory of Open Access Journals (Sweden)

    Agnese Kislina

    2015-01-01

    Conclusions: This study demonstrates that young smokers have early inflammatory changes in their airways that not only initiate nonspecific mechanisms recruiting neutrophils, but also involve specific immune mechanisms with recruitment of T regulatory lymphocytes. The lymphocyte response is probably adaptive.

  16. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry

    OpenAIRE

    Segerstrom, Suzanne C.; Miller, Gregory E.

    2004-01-01

    The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of specific immunity. Brief naturalistic stressors (such as exams) tended to suppress cellular immunity while preserving humoral immunity. Chronic stres...

  17. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  18. The Immune System in Irritable Bowel Syndrome

    Science.gov (United States)

    Cremon, Cesare; Carini, Giovanni; Bellacosa, Lara; Zecchi, Lisa; De Giorgio, Roberto; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2011-01-01

    The potential relevance of systemic and gastrointestinal immune activation in the pathophysiology and symptom generation in the irritable bowel syndrome (IBS) is supported by a number of observations. Infectious gastroenteritis is the strongest risk factor for the development of IBS and increased rates of IBS-like symptoms have been detected in patients with inflammatory bowel disease in remission or in celiac disease patients on a gluten free diet. The number of T cells and mast cells in the small and large intestine of patients with IBS is increased in a large proportion of patients with IBS over healthy controls. Mediators released by immune cells and likely from other non-immune competent cells impact on the function of enteric and sensory afferent nerves as well as on epithelial tight junctions controlling mucosal barrier of recipient animals, isolated human gut tissues or cell culture systems. Antibodies against microbiota antigens (bacterial flagellin), and increased levels of cytokines have been detected systemically in the peripheral blood advocating the existence of abnormal host-microbial interactions and systemic immune responses. Nonetheless, there is wide overlap of data obtained in healthy controls; in addition, the subsets of patients showing immune activation have yet to be clearly identified. Gender, age, geographic differences, genetic predisposition, diet and differences in the intestinal microbiota likely play a role and further research has to be done to clarify their relevance as potential mechanisms in the described immune system dysregulation. Immune activation has stimulated interest for the potential identification of biomarkers useful for clinical and research purposes and the development of novel therapeutic approaches. PMID:22148103

  19. Adaptive maternal immune deviations as a ground for autism spectrum disorders development in children.

    Science.gov (United States)

    Poletaev, Alexander B; Poletaeva, Alina A; Pukhalenko, Alexander I; Zamaleeva, Roza S; Cherepanova, Natalia A; Frizin, Dmitry V

    2014-01-01

    Autism is a vexed problem today. Overall, there is a high frequency of birth children (1:80 - 1:150) with late diagnosed autism spectrum disorders (ASD) and this trend is getting progressively stronger. The causes for the currently increased frequency of ASD and the pathogenesis of ASD are not fully understood yet. One of the most likely mechanisms inducing ASD may be a maternal immune imprinting. This phenomenon is based on transplacental translocation of maternal antibodies of IgG class and, as a consequence, on the epigenetic "tuning" of immune system of the fetus and child. This mechanism provides development of child's anti-infection resistance before meeting with microorganisms, but it can be also a cause of inborn pathology including the ASD appearance. The quantitative changes in maternal blood serum autoantibodies depend on a specific microbial population, or are induced by environmental chemical pollutants in association with some individual features of the maternal metabolism. These immune changes are adaptive in most cases for the maternal organism, but can be pathogenic for the fetus in some cases. We discuss in the present paper the possibilities to predict the risk from abnormal development of nervous system in fetus and early diagnosis of ASD in high-risk group of children.

  20. Immune system alterations in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple...... cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other...... and contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might...

  1. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  2. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  3. Artificial immune system applications in computer security

    CERN Document Server

    Tan, Ying

    2016-01-01

    This book provides state-of-the-art information on the use, design, and development of the Artificial Immune System (AIS) and AIS-based solutions to computer security issues. Artificial Immune System: Applications in Computer Security focuses on the technologies and applications of AIS in malware detection proposed in recent years by the Computational Intelligence Laboratory of Peking University (CIL@PKU). It offers a theoretical perspective as well as practical solutions for readers interested in AIS, machine learning, pattern recognition and computer security. The book begins by introducing the basic concepts, typical algorithms, important features, and some applications of AIS. The second chapter introduces malware and its detection methods, especially for immune-based malware detection approaches. Successive chapters present a variety of advanced detection approaches for malware, including Virus Detection System, K-Nearest Neighbour (KNN), RBF networ s, and Support Vector Machines (SVM), Danger theory, ...

  4. Rate Adaptive OFDMA Communication Systems

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.M.

    2009-01-01

    Due to the varying nature of the wireless channels, adapting the transmission parameters, such as code rate, modulation order and power, in response to the channel variations provides a significant improvement in the system performance. In the OFDM systems, Per-Frame adaptation (PFA) can be employed where the transmission variables are fixed over a given frame and may change from one frame to the other. Subband (tile) loading offers more degrees of adaptation such that each group of carriers (subband) uses the same transmission parameters and different subbands may use different parameters. Changing the code rate for each tile in the same frame, results in transmitting multiple codewords (MCWs) for a single frame. In this thesis a scheme is proposed for adaptively changing the code rate of coded OFDMA systems via changing the puncturing rate within a single codeword (SCW). In the proposed structure, the data is encoded with the lowest available code rate then it is divided among the different tiles where it is punctured adaptively based on some measure of the channel quality for each tile. The proposed scheme is compared against using multiple codewords (MCWs) where the different code rates for the tiles are obtained using separate encoding processes. For bit interleaved coded modulation architecture two novel interleaving methods are proposed, namely the puncturing dependant interleaver (PDI) and interleaved puncturing (IntP), which provide larger interleaving depth. In the PDI method the coded bits with the same rate over different tiles are grouped for interleaving. In IntP structure the interleaving is performed prior to puncturing. The performance of the adaptive puncturing technique is investigated under constant bit rate constraint and variable bit rate. Two different adaptive modulation and coding (AMC) selection methods are examined for variable bit rate adaptive system. The first is a recursive scheme that operates directly on the SNR whereas the second

  5. Nutritional components regulate the gut immune system and its association with intestinal immune disease development.

    Science.gov (United States)

    Lamichhane, Aayam; Kiyono, Hiroshi; Kunisawa, Jun

    2013-12-01

    The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  6. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  7. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    Science.gov (United States)

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  8. Role of Osmolytes in Regulating Immune System.

    Science.gov (United States)

    Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar

    2016-01-01

    The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.

  9. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dustin Cooper

    2017-05-01

    Full Text Available The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a “loitering” innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  10. Generic adaptation framework for unifying adaptive web-based systems

    NARCIS (Netherlands)

    Knutov, E.

    2012-01-01

    The Generic Adaptation Framework (GAF) research project first and foremost creates a common formal framework for describing current and future adaptive hypermedia (AHS) and adaptive webbased systems in general. It provides a commonly agreed upon taxonomy and a reference model that encompasses the

  11. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  12. Stromal cell contributions to the homeostasis and functionality of the immune system.

    Science.gov (United States)

    Mueller, Scott N; Germain, Ronald N

    2009-09-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance and the effective development of adaptive immune responses take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in many aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immune responses, and highlight how targeting of these elements by some pathogens can influence the host immune response.

  13. Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.

    Science.gov (United States)

    Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L

    2016-07-01

    Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. © 2016. Published by The Company of Biologists Ltd.

  14. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  15. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several s...

  16. Standard of hygiene and immune adaptation in newborn infants

    NARCIS (Netherlands)

    Kallionpaa, Henna; Laajala, Essi; Oling, Viveka; Harkonen, Taina; Tillmann, Vallo; Dorshakova, Natalya V.; Ilonen, Jorma; Landesmaki, Harri; Knip, Mikael; Lahesmaa, Riitta; Koski, Katriina; Koski, Matti; Ryhanen, Samppa; Siljander, Heli; Hamalainen, Anu-Maaria; Ormisson, Anne; Peet, Aleksandr; Ulich, Valentina; Kuzmicheva, Elena; Mokurov, Sergei; Markova, Svettana; Pylova, Svetlana; Isakova, Marina; Shakurova, Elena; Petrov, Vladimir; Karapetyan, Tatyana; Varlamova, Tatyana; Ilonen, Jorma; Kiviniemi, Minna; Alnek, Kristi; Janson, Helis; Uibo, Raivo; Salum, Tiit; von Mutius, Erika; Weber, Juliane; Ahlfors, Helena; Moulder, Robert; Nieminen, Janne; Ruohtula, Terhi; Vaarala, Outi; Honkanen, Hanna; Hyoty, Heikki; Kondrashova, Anita; Oikarinen, Sami; Harmsen, Hermie J. M.; De Goffau, Marcus C.; Welling, Gjalt; Alahuhta, Kirsi; Korhonen, Tuuli; Virtanen, Suvi M.

    2014-01-01

    The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood

  17. Adaptive, dynamic, and resilient systems

    CERN Document Server

    Suri, Niranjan

    2015-01-01

    As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r

  18. Innate and adaptive immune traits are differentially affected by genetic and environmental factors

    Science.gov (United States)

    Mangino, Massimo; Roederer, Mario; Beddall, Margaret H.; Nestle, Frank O.; Spector, Tim D.

    2017-01-01

    The diversity and activity of leukocytes is controlled by genetic and environmental influences to maintain balanced immune responses. However, the relative contribution of environmental compared with genetic factors that affect variations in immune traits is unknown. Here we analyse 23,394 immune phenotypes in 497 adult female twins. 76% of these traits show a predominantly heritable influence, whereas 24% are mostly influenced by environment. These data highlight the importance of shared childhood environmental influences such as diet, infections or microbes in shaping immune homeostasis for monocytes, B1 cells, γδ T cells and NKT cells, whereas dendritic cells, B2 cells, CD4+ T and CD8+ T cells are more influenced by genetics. Although leukocyte subsets are influenced by genetics and environment, adaptive immune traits are more affected by genetics, whereas innate immune traits are more affected by environment. PMID:28054551

  19. Engineering Plant Immunity via CRISPR/Cas13a System

    KAUST Repository

    Aljedaani, Fatimah R.

    2018-05-01

    Viral diseases constitute a major threat to the agricultural production and food security throughout the world. Plants cope with the invading viruses by triggering immune responses and small RNA interference (RNAi) systems. In prokaryotes, CRISPR/Cas systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA viruses. The majority of the plant viruses have RNA genomes. The aim of this study is to test the ability of the newly discovered CRISPR/Cas13a immune system, that targets and cleaves single stranded RNA (ssRNA) in prokaryotes, to provide resistance against RNA viruses in plants. Here, I employ the CRISPR/Cas13a system for molecular interference against Turnip Mosaic Virus (TuMV), a plant RNA virus. The results of this study established the CRISPR/Cas13a as a molecular interference machinery against RNA viruses in plants. Specifically, my data show that the CRISPR/Cas13a machinery is able to interfere with and degrade the TuMV (TuMV-GFP) RNA genome. In conclusion, these data indicate that the CRISPR/Cas13 systems can be employed for engineering interference and durable resistance against RNA viruses in diverse plant species.

  20. High-Density Lipoproteins and the Immune System

    Directory of Open Access Journals (Sweden)

    Hidesuke Kaji

    2013-01-01

    Full Text Available High-density lipoprotein (HDL plays a major role in vasodilation and in the reduction of low-density lipoprotein (LDL oxidation, inflammation, apoptosis, thrombosis, and infection; however, HDL is now less functional in these roles under certain conditions. This paper focuses on HDL, its anti-inflammation behavior, and the mechanisms by which HDL interacts with components of the innate and adaptive immune systems. Genome-wide association studies (GWAS and proteomic studies have elucidated important molecules involved in the interaction between HDL and the immune system. An understanding of these mechanisms is expected to be useful for the prevention and treatment of chronic inflammation due to metabolic syndrome, atherosclerosis, or various autoimmune diseases.

  1. Impacts of Low Temperature on the Teleost Immune System

    Directory of Open Access Journals (Sweden)

    Quinn H. Abram

    2017-11-01

    Full Text Available As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an individual fish species can have negative impacts on the physiology of the animal, including the immune system. As a result, acute or chronic exposure to suboptimal temperatures can impair an organisms’ ability to defend against pathogens and thus compromise the overall health of the animal. This review focuses on the advances made towards understanding the impacts of suboptimal temperature on the soluble and cellular mediators of the innate and adaptive immune systems of fishes. Although cold stress can result in varying effects in different fish species, acute and chronic suboptimal temperature exposure generally yield suppressive effects, particularly on adaptive immunity. Knowledge of the effects of environmental temperature on fish species is critical for both the optimal management of wild species and the best management practices for aquaculture species.

  2. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    Science.gov (United States)

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  4. Immune system investigations for radiation workers

    International Nuclear Information System (INIS)

    Obreja, Doina; Tulbure, Rodica; Marinescu, Irina

    2001-01-01

    During the last decade a great deal of attention has been paid to the research in the field of the immune system. Some important steps forward have been achieved in understanding the mechanisms of action and control of the immunologic responses. At the same time the concern for the possible health effects of exposure to ionizing radiation has considerably increased. On the purpose of the evaluation of the modifications induced by the ionizing radiation for radiation workers, we have applied the method of lymphocytic subpopulations, a method that evinces the proportions for the various subtypes of lymphocytes having different roles within the immune system. A number of 62 persons, employees of the Institute of Physics and Nuclear Engineering at Bucharest - Magurele were involved in this study. All radiation workers from 2 departments characterized by a high exposure to ionizing radiation were included, as follows: Group no. 1, consisting of 20 persons working at RWTS (Radioactive Waste Treating Station), thus presenting both external and internal irradiation; Group no. 2, consisting of 18 persons working at RPC (Radioactive Isotopes Preparing Center), a place where besides the radioactive contamination, the chemical risk was also present. The control group (consisting of 24 persons) was formed of employees from the same institute, with the difference that they were not radiation workers. For the statistical processing of the results the programs EPI INFO 6 and CIA were used. Significantly, when analyzing globally the lymphocytic modifications for TT and/or B lymphocytes (either increments or decrements when compared to the normal values), a noticeable statistical difference among the groups in terms of the frequency of the immune system modifications (Hi square test p=0.001) occurs. The results are in accordance to those in special literature mentioning age as a factor having a role in the appearance of the immune modifications. The obtained results indicate a

  5. Regulation of vitamin D homeostasis: implications for the immune system.

    Science.gov (United States)

    van Etten, Evelyne; Stoffels, Katinka; Gysemans, Conny; Mathieu, Chantal; Overbergh, Lut

    2008-10-01

    Vitamin D homeostasis in the immune system is the focus of this review. The production of both the activating (25- and 1alpha-hydroxylase) and the metabolizing (24-hydroxylase) enzymes by cells of the immune system itself, indicates that 1,25(OH)(2)D(3) can be produced locally in immune reaction sites. Moreover, the strict regulation of these enzymes by immune signals is highly suggestive for an autocrine/paracrine role in the immune system, and opens new treatment possibilities.

  6. The conservative physiology of the immune system

    Directory of Open Access Journals (Sweden)

    N.M. Vaz

    2003-01-01

    Full Text Available Current immunological opinion disdains the necessity to define global interconnections between lymphocytes and regards natural autoantibodies and autoreactive T cells as intrinsically pathogenic. Immunological theories address the recognition of foreignness by independent clones of lymphocytes, not the relations among lymphocytes or between lymphocytes and the organism. However, although extremely variable in cellular/molecular composition, the immune system preserves as invariant a set of essential relations among its components and constantly enacts contacts with the organism of which it is a component. These invariant relations are reflected, for example, in the life-long stability of profiles of reactivity of immunoglobulins formed by normal organisms (natural antibodies. Oral contacts with dietary proteins and the intestinal microbiota also result in steady states that lack the progressive quality of secondary-type reactivity. Autoreactivity (natural autoantibody and autoreactive T cell formation is also stable and lacks the progressive quality of clonal expansion. Specific immune responses, currently regarded as the fundament of the operation of the immune system, may actually result from transient interruptions in this stable connectivity among lymphocytes. More permanent deficits in interconnectivity result in oligoclonal expansions of T lymphocytes, as seen in Omenn's syndrome and in the experimental transplantation of a suboptimal diversity of syngeneic T cells to immunodeficient hosts, which also have pathogenic consequences. Contrary to theories that forbid autoreactivity as potentially pathogenic, the physiology of the immune system is conservative and autoreactive. Pathology derives from failures of these conservative mechanisms.

  7. Role of immune system in tumor progression and carcinogenesis.

    Science.gov (United States)

    Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha

    2018-01-12

    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.

  8. Financial markets as adaptive systems

    Science.gov (United States)

    Potters, M.; Cont, R.; Bouchaud, J.-P.

    1998-02-01

    We show, by studying in detail the market prices of options on liquid markets, that the market has empirically corrected the simple, but inadequate Black-Scholes formula to account for two important statistical features of asset fluctuations: "fat tails" and correlations in the scale of fluctuations. These aspects, although not included in the pricing models, are very precisely reflected in the price fixed by the market as a whole. Financial markets thus behave as rather efficient adaptive systems.

  9. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0031 TITLE: Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0031 5c...adaptive (T and B cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach

  10. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  11. Sympathetic neural modulation of the immune system

    International Nuclear Information System (INIS)

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125 iododeoxyuridine ( 125 IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125 IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51 Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  12. Factors of Innate and Adaptive Local Immunity in Children with Primary Deficiencies of Antibody Formation

    Directory of Open Access Journals (Sweden)

    L.I. Chernyshova

    2013-10-01

    Full Text Available In 40 children with various types of primary immunodeficiencies (PID of antibody formation we examined factors of local immunity in saliva. It is found that in the saliva of children with PID of antibody formation in comparison with immunocompetent children the concentration of factors of adaptive immunity is significantly reduced. Lack of adaptive immunity in the PID of antibody formation to some extent is compensated by increased concentrations of innate immune factors on the mucous membranes — the free Sc, as well as lactoferrin in selective immunodeficiency of IgA. At PID of antibody formation we observed increased TNF-α level in the saliva, which may indicate the persistence of local inflammation on the membranes of the respiratory tract.

  13. Computerized adaptive testing item selection in computerized adaptive learning systems

    NARCIS (Netherlands)

    Eggen, Theodorus Johannes Hendrikus Maria; Eggen, T.J.H.M.; Veldkamp, B.P.

    2012-01-01

    Item selection methods traditionally developed for computerized adaptive testing (CAT) are explored for their usefulness in item-based computerized adaptive learning (CAL) systems. While in CAT Fisher information-based selection is optimal, for recovering learning populations in CAL systems item

  14. Adaptive Intrusion Data System (AIDS)

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  15. Certification Considerations for Adaptive Systems

    Science.gov (United States)

    Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric

    2015-01-01

    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.

  16. Archaeal CRISPR-based immune systems

    DEFF Research Database (Denmark)

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage...... of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence...... of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  17. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    P.J. (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect. Immun. 57: 2006-2013. Stoop, J.N., van der Molen ...antibiotics. Clin. Microbiol. Rev. 3: 171-196. Knapp, S., Wieland, C.W., van ’t Veer, C., Takeuchi, O., Akira, S., Florquin, S., and van der Poll...R.G., Baan, C.C., van der Laan, L.J., Kuipers, E.J., Kusters, J.G., and Janssen, H.L. (2005) Regulatory T cells contribute to the impaired immune

  18. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  19. Materials to Engineer the Immune System

    Science.gov (United States)

    2011-04-01

    alone (Lysate), or with GM-CSF and lysate (GM+Lys), and 14 days later 200,000 NT1 cells were injected into the mammary pad. Mice survival was...followed over time. Fig. 2. Therapeutic vaccination against NT1 transplantable tumors. NT1 cells (200,000) were injected into the mammary...Engineer the Immune System David Mooney Harvard College Cambridge, MA 02136 Dendritic cells , GM-CSF, CpG, poly(lactide-co-glycolide) The

  20. Immune system handling time may alter the outcome of competition between pathogens and the immune system.

    Science.gov (United States)

    Greenspoon, Philip B; Banton, Sydney; Mideo, Nicole

    2018-06-14

    Predators may be limited in their ability to kill prey (i.e., have type II or III functional responses), an insight that has had far-reaching consequences in the ecological literature. With few exceptions, however, this possibility has not been extended to the behaviour of immune cells, which kill pathogens much as predators kill their prey. Rather, models of the within-host environment have tended to tacitly assume that immune cells have an unlimited ability to target and kill pathogens (i.e., a type I functional response). Here we explore the effects of changing this assumption on infection outcomes (i.e., pathogen loads). We incorporate immune cell handling time into an ecological model of the within-host environment that considers both the predatory nature of the pathogen-immune cell interaction as well as competition between immune cells and pathogens for host resources. Unless pathogens can preempt immune cells for host resources, adding an immune cell handling time increases equilibrium pathogen load. We find that the shape of the relationship between energy intake and pathogen load can change: with a type I functional response, pathogen load is maximised at intermediate inputs, while for a type II or III functional response, pathogen load is solely increasing. With a type II functional response, pathogen load can fluctuate rather than settling to an equilibrium, a phenomenon unobserved with type I or III functional responses. Our work adds to a growing literature highlighting the role of resource availability in host-parasite interactions. Implications of our results for adaptive anorexia are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Influence of phthalates on in vitro innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Juliana Frohnert Hansen

    Full Text Available Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.

  2. Recovery of the immune system after exercise.

    Science.gov (United States)

    Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J

    2017-05-01

    The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.

  3. Procedure for Selection of Suitable Resources in Interactions in Complex Dynamic Systems Using Artificial Immunity

    Directory of Open Access Journals (Sweden)

    Naors Y. anadalsaleem

    2017-03-01

    Full Text Available The dynamic optimization procedure for -dimensional vector function of a system, the state of which is interpreted as adaptable immune cell, is considered Using the results of the theory of artificial immune systems. The procedures for estimate of monitoring results are discussed. The procedure for assessing the entropy is recommended as a general recursive estimation algorithm. The results are focused on solving the optimization problems of cognitive selection of suitable physical resources, what expands the scope of Electromagnetic compatibility.

  4. Physiological and pathophysiological bone turnover - role of the immune system.

    Science.gov (United States)

    Weitzmann, M Neale; Ofotokun, Ighovwerha

    2016-09-01

    Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno-skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures.

  5. Exploring the Homeostatic and Sensory Roles of the Immune System.

    Science.gov (United States)

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.

  6. Towards Adaptive Spoken Dialog Systems

    CERN Document Server

    Schmitt, Alexander

    2013-01-01

    In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and  accurate use.  Beginning with the foundations of machine learning and pattern recognition, this monograph examines how frequently users show negative emotions in spoken dialog systems and develop novel approaches to speech-based emotion recognition using hybrid approach to model emotions. The authors make use of statistical methods based on acoustic, linguistic and contextual features to examine the relationship between the interaction flow and the occurrence of emotions using non-acted  recordings several thousand real users from commercial and non-commercial SDS. Additionally, the authors present novel statistical methods that spot problems within a dialog based on interaction patterns. The approaches enable future SDS to offer m...

  7. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    Science.gov (United States)

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    Science.gov (United States)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  9. The deconvolution of complex spectra by artificial immune system

    Science.gov (United States)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  10. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity

    DEFF Research Database (Denmark)

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter

    2015-01-01

    were less strong than those induced by live BCG. γBCG vaccination in volunteers had only minimal effects on innate immunity, whereas a significant increase in heterologous Th1/Th17 immunity was observed. Our results indicate that γBCG induces long-term training of innate immunity in vitro. In vivo, γ......BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity...

  11. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  12. Immune system and melanoma biology: a balance between immunosurveillance and immune escape.

    Science.gov (United States)

    Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco

    2017-12-01

    Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.

  13. Strengthening health system to improve immunization for migrants in China.

    Science.gov (United States)

    Fang, Hai; Yang, Li; Zhang, Huyang; Li, Chenyang; Wen, Liankui; Sun, Li; Hanson, Kara; Meng, Qingyue

    2017-07-01

    Immunization is the most cost-effective method to prevent and control vaccine-preventable diseases. Migrant population in China has been rising rapidly, and their immunization status is poor. China has tried various strategies to strengthen its health system, which has significantly improved immunization for migrants. This study applied a qualitative retrospective review method aiming to collect, analyze and synthesize health system strengthening experiences and practices about improving immunizations for migrants in China. A conceptual framework of Theory of Change was used to extract the searched literatures. 11 searched literatures and 4 national laws and policies related to immunizations for migrant children were carefully studied. China mainly employed 3 health system strengthening strategies to significantly improve immunization for migrant population: stop charging immunization fees or immunization insurance, manage immunization certificates well, and pay extra attentions on immunization for special children including migrant children. These health system strengthening strategies were very effective, and searched literatures show that up-to-date and age-appropriate immunization rates were significantly improved for migrant children. Economic development led to higher migrant population in China, but immunization for migrants, particularly migrant children, were poor. Fortunately various health system strengthening strategies were employed to improve immunization for migrants in China and they were rather successful. The experiences and lessons of immunization for migrant population in China might be helpful for other developing countries with a large number of migrant population.

  14. Prenatal Alcohol Exposure and the Developing Immune System

    OpenAIRE

    Gauthier, Theresa W.

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensiv...

  15. Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells

    OpenAIRE

    Manlove, Luke S.; Berquam-Vrieze, Katherine E.; Pauken, Kristen E.; Williams, Richard T.; Jenkins, Marc K.; Farrar, Michael A.

    2015-01-01

    BCR-ABL+ acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific antigen that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL+ leukemia progression although ultimately this immune response fails. To address how BCR-ABL+ leukemia escapes immune surveillance, we developed a peptide: MHC-II tetramer that labels endogenous BCR-ABL-specific CD4+ T cell...

  16. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    OpenAIRE

    Ciss?, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to eit...

  17. Effects of chromium on the immune system.

    Science.gov (United States)

    Shrivastava, Richa; Upreti, R K; Seth, P K; Chaturvedi, U C

    2002-09-06

    Chromium is a naturally occurring heavy metal found commonly in the environment in trivalent, Cr(III), and hexavalent, Cr(VI), forms. Cr(VI) compounds have been declared as a potent occupational carcinogen among workers in chrome plating, stainless steel, and pigment industries. The reduction of Cr(VI) to Cr(III) results in the formation of reactive intermediates that together with oxidative stress oxidative tissue damage and a cascade of cellular events including modulation of apoptosis regulatory gene p53, contribute to the cytotoxicity, genotoxicity and carcinogenicity of Cr(VI)-containing compounds. On the other hand, chromium is an essential nutrient required to promote the action of insulin in body tissues so that the body can use sugars, proteins and fats. Chromium is of significant importance in altering the immune response by immunostimulatory or immunosuppressive processes as shown by its effects on T and B lymphocytes, macrophages, cytokine production and the immune response that may induce hypersensitivity reactions. This review gives an overview of the effects of chromium on the immune system of the body. Copyright 2002 Federation of European Microbiological Societies

  18. Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis.

    Science.gov (United States)

    Wippler, Juliane; Kleiner, Manuel; Lott, Christian; Gruhl, Alexander; Abraham, Paul E; Giannone, Richard J; Young, Jacque C; Hettich, Robert L; Dubilier, Nicole

    2016-11-21

    The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.

  19. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth

    Science.gov (United States)

    Vora, Bianca; Wang, Aolin; Kosti, Idit; Huang, Hongtai; Paranjpe, Ishan; Woodruff, Tracey J.; MacKenzie, Tippi; Sirota, Marina

    2018-01-01

    Preterm birth (PTB) is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.

  20. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth

    Directory of Open Access Journals (Sweden)

    Bianca Vora

    2018-05-01

    Full Text Available Preterm birth (PTB is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.

  1. Adaptive control of port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for

  2. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    Directory of Open Access Journals (Sweden)

    Jami L. Dixon

    2014-02-01

    Full Text Available Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1 similar trends in farming system evolution have had differential impacts on the diversity of farming systems; (2 trends have contributed to the erosion of informal social and cultural institutions and an increasing dependence on formal institutions; and (3 trade-offs between components of adaptive capacity are made at the farm-scale, thus influencing farming system adaptive capacity. To identify the actual impacts of future climate change and variability, it is important to recognize the dynamic nature of adaptation. In practice, areas identified for further adaptation support include: shift away from one-size-fits-all approach the identification and integration of appropriate modern farming method; a greater focus on building inclusive formal and informal institutions; and a more nuanced understanding regarding the roles and decision-making processes of influential, but external, actors. More research is needed to understand farm-scale trade-offs and the resulting impacts across spatial and temporal scales.

  3. IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE

    Science.gov (United States)

    It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...

  4. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  5. Role of microRNAs in the immune system, inflammation and cancer.

    Science.gov (United States)

    Raisch, Jennifer; Darfeuille-Michaud, Arlette; Nguyen, Hang Thi Thu

    2013-05-28

    MicroRNAs, a key class of gene expression regulators, have emerged as crucial players in various biological processes such as cellular proliferation and differentiation, development and apoptosis. In addition, microRNAs are coming to light as crucial regulators of innate and adaptive immune responses, and their abnormal expression and/or function in the immune system have been linked to multiple human diseases including inflammatory disorders, such as inflammatory bowel disease, and cancers. In this review, we discuss our current understanding of microRNAs with a focus on their role and mode of action in regulating the immune system during inflammation and carcinogenesis.

  6. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    Science.gov (United States)

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  7. The role of the immune system in central nervous system plasticity after acute injury.

    Science.gov (United States)

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    Science.gov (United States)

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  9. State of immune system lesions eymeriozo turkey-invasions histomonoznoyu

    OpenAIRE

    CHARIV I.

    2011-01-01

    The immune system of animals and birds provides resistance against bacterial and viral infections. In the intestinal mucosa and eymeriyi histomonady produce metabolic products that are toxic to different systems and tissues of turkeys. They parasitizing in the intestine, suppress specific phase of immunity provided by antibodies (humoral type), reduce activity sensitized cells (cell type), slow phase of nonspecific immunity, which is represented by various immune cells.

  10. Prenatal Alcohol Exposure and the Developing Immune System.

    Science.gov (United States)

    Gauthier, Theresa W

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensive knowledge of the mechanisms underlying alcohol's effects on the developing immune system only will become clear once researchers establish improved methods for identifying newborns exposed to alcohol in utero.

  11. The role of the immune system in kidney disease.

    Science.gov (United States)

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  12. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  13. Organ system view of the hepatic innate immunity in HCV infection.

    Science.gov (United States)

    Bang, Bo-Ram; Elmasry, Sandra; Saito, Takeshi

    2016-12-01

    An orchestration of innate and adaptive immunity determines the infection outcome and whether the host achieves clearance or allows the pathogen to establish persistent infection. The robust activation of the innate immune response plays the most critical role in both limiting viral replication and halting the spread of the pathogen immediately after infection. The magnitude of innate immune activation is coupled with the efficient mounting of the adaptive immunity. Although immunity against HCV infection is known to be inadequate as most cases transitions to chronicity, approximately 25% of acute infection cases result in spontaneous clearance. The exact immune mechanisms that govern the infection outcome remain largely unknown; recent discoveries suggest that the innate immune system facilitates this event. Both infected hepatocytes and local innate immune cells trigger the front line defense program of the liver as well as the recruitment of diverse adaptive immune cells to the site of infection. Although hepatocyte is the target of HCV infection, nearly all cell types that exist in the liver are involved in the innate defense and contribute to the pathophysiology of hepatic inflammation. The main focus of this comprehensive review is to discuss the current knowledge on how each hepatic cell type contributes to the organ system level innate immunity against HCV infection as well as interplays with the viral evasion program. Furthermore, this review article also aims to synchronize the observations from both molecular biological studies and clinical studies with the ultimate goal of improving our understanding of HCV mediated hepatitis. J. Med. Virol. 88:2025-2037, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  15. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin; Plaisier, Christopher; Min, Deborah; Mai, Dat; Gilchrist, Mark; Peschon, Jacques; Larson, Ryan P; Bergthaler, Andreas; Baliga, Nitin S; Urdahl, Kevin B; Aderem, Alan

    2016-10-11

    The regulation of host-pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155-induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment.

  16. Asymmetric T lymphocyte division in the initiation of adaptive immune responses.

    Science.gov (United States)

    Chang, John T; Palanivel, Vikram R; Kinjyo, Ichiko; Schambach, Felix; Intlekofer, Andrew M; Banerjee, Arnob; Longworth, Sarah A; Vinup, Kristine E; Mrass, Paul; Oliaro, Jane; Killeen, Nigel; Orange, Jordan S; Russell, Sarah M; Weninger, Wolfgang; Reiner, Steven L

    2007-03-23

    A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.

  17. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems.

    Science.gov (United States)

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2015-03-13

    Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.

  18. Is immune system-related hypertension associated with ovarian hormone deficiency?

    Science.gov (United States)

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2016-03-01

    What is the topic of this review? This review summarizes recent data on the role of ovarian hormones and sex in inflammation-related hypertension. What advances does it highlight? The adaptive immune system has recently been implicated in the development of hypertension in males but not in females. The role of the immune system in the development of hypertension in women and its relationship to ovarian hormone production are highlighted. The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  19. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries

    Directory of Open Access Journals (Sweden)

    Conglei Li

    2012-01-01

    Full Text Available Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc., which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs, such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1. Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions.

  20. A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis

    NARCIS (Netherlands)

    van Dijk, R. A.; Duinisveld, A. J. F.; Schaapherder, A. F.; Mulder-Stapel, A.; Hamming, J. F.; Kuiper, J.; de Boer, O. J.; van der Wal, A. C.; Kolodgie, F. D.; Virmani, R.; Lindeman, J. H. N.

    2015-01-01

    Experimental studies characterize adaptive immune response as a critical factor in the progression and complications of atherosclerosis. Yet, it is unclear whether these observations translate to the human situation. This study systematically evaluates cellular components of the adaptive immune

  1. FEATURES OF LOGISTIC SYSTEM ADAPTIVE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Natalya VOZNENKO

    2015-08-01

    Full Text Available The study presents literature survey on enterprise logistic system adaptive management place and structure in the general enterprise management system. The theoretical basics of logistic system functioning, levels of its management and its effectiveness had been investigated. The role of adaptive management and its types had been scrutinized. The necessity of creating company’s adaptive regulator such as its economic mechanism had been proved.

  2. Simple biophysical model of tumor evasion from immune system control

    Science.gov (United States)

    D'Onofrio, Alberto; Ciancio, Armando

    2011-09-01

    The competitive nonlinear interplay between a tumor and the host's immune system is not only very complex but is also time-changing. A fundamental aspect of this issue is the ability of the tumor to slowly carry out processes that gradually allow it to become less harmed and less susceptible to recognition by the immune system effectors. Here we propose a simple epigenetic escape mechanism that adaptively depends on the interactions per time unit between cells of the two systems. From a biological point of view, our model is based on the concept that a tumor cell that has survived an encounter with a cytotoxic T-lymphocyte (CTL) has an information gain that it transmits to the other cells of the neoplasm. The consequence of this information increase is a decrease in both the probabilities of being killed and of being recognized by a CTL. We show that the mathematical model of this mechanism is formally equal to an evolutionary imitation game dynamics. Numerical simulations of transitory phases complement the theoretical analysis. Implications of the interplay between the above mechanisms and the delivery of immunotherapies are also illustrated.

  3. The effects of cocoa on the immune system

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez-Cano

    2013-06-01

    Full Text Available Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.

  4. The effects of cocoa on the immune system.

    Science.gov (United States)

    Pérez-Cano, Francisco J; Massot-Cladera, Malen; Franch, Angels; Castellote, Cristina; Castell, Margarida

    2013-01-01

    Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of T helper type 2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.

  5. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry

    Science.gov (United States)

    Segerstrom, Suzanne C.; Miller, Gregory E.

    2004-01-01

    The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of…

  6. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  7. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  8. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells

    Directory of Open Access Journals (Sweden)

    Isabella Quinti

    2017-06-01

    Full Text Available Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.

  9. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  10. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Matthew Darby

    2015-01-01

    Full Text Available Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.

  11. FORMATION OF INNATE AND ADAPTIVE IMMUNE RESPONSE UNDER THE INFLUENCE OF DIFFERENT FLAVIVIRUS VACCINES

    Directory of Open Access Journals (Sweden)

    N. V. Krylova

    2015-01-01

    Full Text Available The review examines in a comparative perspective the key moments of formation of innate and adaptive immune responses to different types of current flavivirus vaccines: live attenuated against yellow fever virus and inactivated whole virus against tick-borne encephalitis virus. Particular attention is paid to the ability of these different vaccines, containing exogenous pathogen-associated molecular structures, to stimulate innate immunity. Live attenuated vaccine by infecting several subtypes of dendritic cells activates them through various pattern-recognition receptors, such as Tolland RIG-I-like receptors, which leads to significant production of proinflammatory cytokines, including interferon-α primary mediator of innate antiviral immunity. By simulating natural viral infection, this vaccine quickly spreads over the vascular network, and the dendritic cells, activated by it, migrate to the draining lymph nodes and trigger multiple foci of Tand B-cell activation. Inactivated vaccine stimulates the innate immunity predominantly at the injection site, and for the sufficient activation requires the presence in its composition of an adjuvant (aluminum hydroxide, which effects the formation and activation of inflammasomes, ensuring the formation and secretion of IL-1β and IL-18 that, in turn, trigger a cascade of cellular and humoral innate immune responses. We demonstrated the possibility of involvement in the induction of innate immunity, mediated by the inactivated vaccine, endogenous pathogenassociated molecular patterns (uric acid and host cell DNA, forming at the vaccine injection site. We discuss the triggering of Band T-cell responses by flavivirus vaccines that determine various duration of protection against various pathogens. A single injection of the live vaccine against yellow fever virus induces polyvalent adaptive immune response, including the production of cytotoxic T-lymphocytes, Th1and Th2-cells and neutralizing antibodies

  12. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    Science.gov (United States)

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.

    Science.gov (United States)

    Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  14. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  15. Can the Immune System Perform a t-Test?

    Science.gov (United States)

    Faria, Bruno Filipe; Mostardinha, Patricia

    2017-01-01

    The self-nonself discrimination hypothesis remains a landmark concept in immunology. It proposes that tolerance breaks down in the presence of nonself antigens. In strike contrast, in statistics, occurrence of nonself elements in a sample (i.e., outliers) is not obligatory to violate the null hypothesis. Very often, what is crucial is the combination of (self) elements in a sample. The two views on how to detect a change seem challengingly different and it could seem difficult to conceive how immunological cellular interactions could trigger responses with a precision comparable to some statistical tests. Here it is shown that frustrated cellular interactions reconcile the two views within a plausible immunological setting. It is proposed that the adaptive immune system can be promptly activated either when nonself ligands are detected or self-ligands occur in abnormal combinations. In particular we show that cellular populations behaving in this way could perform location statistical tests, with performances comparable to t or KS tests, or even more general data mining tests such as support vector machines or random forests. In more general terms, this work claims that plausible immunological models should provide accurate detection mechanisms for host protection and, furthermore, that investigation on mechanisms leading to improved detection in “in silico” models can help unveil how the real immune system works. PMID:28046042

  16. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Wenting He

    2018-02-01

    Full Text Available The mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5 can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with Mycobacterium tuberculosis (MTB strain H37Rv and the therapeutic potential of VB5 in vivo with tuberculosis. We investigated the activation of inflammatory signal molecules (NF-κB, AKT, JNK, ERK, and p38, the expression of two primary inflammatory cytokines (tumor necrosis factor and interleukin-6 and the bacterial burdens in H37Rv-infected macrophages stimulated with VB5 to explore the effect of VB5 on the inflammatory and antibacterial responses of macrophages. We further treated the H37Rv-infected mice with VB5 to explore VB5’s promotion of the clearance of H37Rv in the lungs and the effect of VB5 on regulating the percentage of inflammatory cells. Our data showed that VB5 enhanced the phagocytosis and inflammatory response in macrophages infected with H37Rv. Oral administration of VB5 decreased the number of colony-forming units of H37Rv in lungs of mice at 1, 2, and 4 weeks after infection. In addition, VB5 regulated the percentage of macrophages and promoted CD4+ T cells to express interferon-γ and interleukin-17; however, it had no effect on the percentage of polymorphonuclear neutrophils, CD4+ and CD8+ T cells. In conclusion, VB5 significantly inhibits the growth of MTB by regulating innate immunity and adaptive immunity.

  17. Role of the immune system in the peritoneal tumor spread of high grade serous ovarian cancer.

    Science.gov (United States)

    Auer, Katharina; Bachmayr-Heyda, Anna; Sukhbaatar, Nyamdelger; Aust, Stefanie; Schmetterer, Klaus G; Meier, Samuel M; Gerner, Christopher; Grimm, Christoph; Horvat, Reinhard; Pils, Dietmar

    2016-09-20

    The immune system plays a critical role in cancer progression and overall survival. Still, it is unclear if differences in the immune response are associated with different patterns of tumor spread apparent in high grade serous ovarian cancer patients and previously described by us. In this study we aimed to assess the role of the immune system in miliary (widespread, millet-sized lesions) and non-miliary (bigger, exophytically growing implants) tumor spread. To achieve this we comprehensively analyzed tumor tissues, blood, and ascites from 41 patients using immunofluorescence, flow cytometry, RNA sequencing, multiplexed immunoassays, and immunohistochemistry. Results showed that inflammation markers were systemically higher in miliary. In contrast, in non-miliary lymphocyte and monocyte/macrophage infiltration into the ascites was higher as well as the levels of PD-1 expression in tumor associated cytotoxic T-lymphocytes and PD-L1 expression in tumor cells. Furthermore, in ascites of miliary patients more epithelial tumor cells were present compared to non-miliary, possibly due to the active down-regulation of anti-tumor responses by B-cells and regulatory T-cells. Summarizing, adaptive immune responses prevailed in patients with non-miliary spread, whereas in patients with miliary spread a higher involvement of the innate immune system was apparent while adaptive responses were counteracted by immune suppressive cells and factors.

  18. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    Science.gov (United States)

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Trauma equals danger—damage control by the immune system

    Science.gov (United States)

    Stoecklein, Veit M.; Osuka, Akinori; Lederer, James A.

    2012-01-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis. PMID:22654121

  20. Distributed Computations Environment Protection Using Artificial Immune Systems

    Directory of Open Access Journals (Sweden)

    A. V. Moiseev

    2011-12-01

    Full Text Available In this article the authors describe possibility of artificial immune systems applying for distributed computations environment protection from definite types of malicious impacts.

  1. Trauma-induced heterotopic bone formation and the role of the immune system: A review.

    Science.gov (United States)

    Kraft, Casey T; Agarwal, Shailesh; Ranganathan, Kavitha; Wong, Victor W; Loder, Shawn; Li, John; Delano, Matthew J; Levi, Benjamin

    2016-01-01

    Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.

  2. Modulation of the immune system for the treatment of glaucoma.

    Science.gov (United States)

    Bell, Katharina; Und Hohenstein-Blaul, Nadine von Thun; Teister, Julia; Grus, Franz H

    2017-07-19

    At present intraocular pressure (IOP) lowering therapies are the only approach to treat glaucoma. Neuroprotective strategies to protect the retinal ganglion cells (RGC) from apoptosis are lacking to date. Results from clinical studies revealed altered immunoreactivities against retinal and optic nerve antigens in sera and aqueous humor of glaucoma patients and point toward an autoimmune involvement in glaucomatous neurodegeneration and RGC death. IgG accumulations along with plasma cells were found localised in human glaucomatous retinae in a pro-inflammatory environment possibly maintained by microglia. Animal studies show that antibodies (e.g. anti- heat shock protein 60 and anti-myelin basic protein) elevated in glaucoma patients provoke autoaggressive RGC loss and are associated with IgG depositions and increased microglial cells. We demonstrate that intermittent IOP elevation in a rat model is sufficient to provoke glaucoma-like neurodegeneration and elicits correlating changes of IgG autoantibody reactivities. On the other hand, antibodies (e.g. anti-glial fibrillary acidic protein and anti-gamma-Synuclein) found decreased in glaucoma patients hold neuroprotective potential on immortalised neuroretinal cells and RGC in an adolescent porcine retina organ culture. We believe that our work not only demonstrates an autoimmune component in glaucoma, but also opens up new options for glaucoma diagnostics and treatment. Nevertheless the immune system also consists of other cells involved not only in the adaptive, but also innate immune system. Studies addressing changes in T lymphocytes, macrophages but also local immune responses in the retina have been performed and also hold promising results. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ramona Hurdayal

    2017-11-01

    Full Text Available The interleukin (IL-4 receptor alpha (IL-4Rα, ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs. The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L

  4. Cold stress and immunity: Do chickens adapt to cold by trading-off immunity for thermoregulation?

    NARCIS (Netherlands)

    Hangalapura, B.N.

    2006-01-01

    Future animal husbandry aims at enhanced animal welfare, with minimal use of preventive medical treatments. These husbandry conditions will resemble more natural or ecological conditions. Under such farming systems, animals will experience various kinds of stressors such as environmental (e.g. cold,

  5. Visual Cues for an Adaptive Expert System.

    Science.gov (United States)

    Miller, Helen B.

    NCR (National Cash Register) Corporation is pursuing opportunities to make their point of sale (POS) terminals easy to use and easy to learn. To approach the goal of making the technology invisible to the user, NCR has developed an adaptive expert prototype system for a department store POS operation. The structure for the adaptive system, the…

  6. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    Science.gov (United States)

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Ejercicio y sistema inmune Exercise and the immune system

    Directory of Open Access Journals (Sweden)

    Pablo Javier Patiño Grajales

    2006-01-01

    Full Text Available Se ha demostrado que el ejercicio hecho a diferentes intensidades cumple una función moduladora sobre diversos sistemas, y que su acción sobre la respuesta inmune es de gran importancia. Por lo tanto, es necesario esclarecer si estos cambios constituyen efectos benéficos o perjudiciales en cuanto a las adaptaciones del hospedero frente a diversos agentes patógenos. El estudio de estos cambios inducidos por el estrés físico puede tener un impacto grande en la comprensión y prevención de algunas enfermedades que involucran la respuesta del sistema inmune como las alergias, las infecciones, las inmunodeficiencias y el cáncer. En este artículo se presenta una revisión actualizada de la información existente al respecto, con el propósito de aportar elementos que ayuden a comprender este fenómeno biológico, así como sus implicaciones para la salud humana. Se han estudiado varios parámetros de la respuesta inmune durante el ejercicio físico, entre ellos su relación con la respuesta hormonal al estrés y el comportamiento de las diferentes hormonas de acuerdo con la intensidad de aquél. También se han evaluado los cambios en las poblaciones de células sanguíneas (linfocitos, monocitos y neutrófilos así como el comportamiento de las citoquinas y la síntesis de inmunoglobulinas específicas. Todo esto ha permitido establecer una relación entre los sistemas inmune y neuroendocrino, la cual explicaría en It has been demonstrated that physical exercise, carried out at diverse intensities, modulates the function of different human body systems, and that it plays a major role in the immune response. Therefore, it is necessary to find out if these changes have benefic or harmful effects on the host adaptation against several pathogenic agents. The study of these physical-stress-induced changes might have a great impact on the comprehension and prevention of some diseases that involve activation of the immune system such as allergies

  8. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  10. The effects of early life adversity on the immune system.

    Science.gov (United States)

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  12. Operator adaptation to changes in system reliability under adaptable automation.

    Science.gov (United States)

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  13. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. how to evade the immune system?

    Indian Academy of Sciences (India)

    HCV usually induces robust immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, several viral proteins interfere with cellular functions, in particular, ...

  15. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    perhaps, with others, but together, these characteristics make the immune ..... 1 year. 2 days. 0. 0. 0. 0. 0. 0. 0. 0. • •. •. 0. 0. 0. vV\\NVv. RESONANCE I January 1997 ... can maintain immune memory and make vaccines possible. Of course, the ...

  16. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.

    Science.gov (United States)

    Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T

    2018-04-01

    Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Self-Adaptive Systems for Machine Intelligence

    CERN Document Server

    He, Haibo

    2011-01-01

    This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide application

  18. PERINATAL MALNUTRITION AND THE PROTECTIVE ROLE OF THE PHYSICAL TRAINING ON THE IMMUNE SYSTEM.

    Science.gov (United States)

    Moreno Senna, Sueli; Ferraz, José Cândido; Leandro, Carol Góis

    2015-09-01

    Developing organisms have the ability to cope with environmental demands through physiologic and morphologic adaptations. Early life malnutrition has been recognized as an environmental stimulus that is related with down-regulation of immune responses. Some of these effects are explained by the epigenetics and the programming of hormones and cytokines impairing the modulation of the immune cells in response to environmental stimuli. Recently, it has been demonstrated that these effects are not deterministic and current environment, such as physical activity, can positively influence the immune system. Here, we discuss the effects of perinatal malnutrition on the immune system and how it can be modulated by physical training. The mechanism includes the normalization of some hormones concentrations related to growth and metabolism such as leptin, IGF-1 and glucocorticoids. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Aberrant Pregnancy Adaptations in the Peripheral Immune Response in Type 1 Diabetes: A Rat Model.

    Directory of Open Access Journals (Sweden)

    Bart Groen

    Full Text Available Despite tight glycemic control, pregnancy complication rate in type 1 diabetes patients is higher than in normal pregnancy. Other etiological factors may be responsible for the development of adverse pregnancy outcome. Acceptance of the semi-allogeneic fetus is accompanied by adaptations in the maternal immune-response. Maladaptations of the immune-response has been shown to contribute to pregnancy complications. We hypothesized that type 1 diabetes, as an autoimmune disease, may be associated with maladaptations of the immune-response to pregnancy, possibly resulting in pregnancy complications.We studied pregnancy outcome and pregnancy-induced immunological adaptations in a normoglycemic rat-model of type 1 diabetes, i.e. biobreeding diabetes-prone rats (BBDP; 5 non-pregnant rats, 7 pregnant day 10 rats and 6 pregnant day 18 rats , versus non-diabetic control rats (i.e. congenic non-diabetic biobreeding diabetes-resistant (BBDR; 6 non-pregnant rats, 6 pregnant day 10 rats and 6 pregnant day 18 rats and Wistar-rats (6 non-pregnant, 6 pregnant day 10 rats and 5 pregnant day 18 rats.We observed reduced litter size, lower fetal weight of viable fetuses and increased numbers of resorptions versus control rats. These complications are accompanied by various differences in the immune-response between BBDP and control rats in both pregnant and non-pregnant animals. The immune-response in non-pregnant BBDP-rats was characterized by decreased percentages of lymphocytes, increased percentages of effector T-cells, regulatory T-cells and natural killer cells, an increased Th1/Th2-ratio and activated monocytes versus Wistar and BBDR-rats. Furthermore, pregnancy-induced adaptations in BBDP-rats coincided with an increased Th1/Th2-ratio, a decreased mean fluorescence intensity CD161a/NKR-P1b ratio and no further activation of monocytes versus non-diabetic control rats.This study suggests that even in the face of strict normoglycemia, pregnancy complications

  20. Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors.

    Science.gov (United States)

    Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal

    2018-01-01

    Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Pyrethroids (specifically type 2) such as fenvalerate (-5.534 kcal/mol: CD8), fluvalinate (-4.644 and - 4.431 kcal/mol: CD4 and CD45), and cypermethrin (-3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1.

  1. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development.

    Directory of Open Access Journals (Sweden)

    Clifford Liongue

    Full Text Available BACKGROUND: Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK-Signal transducer and activator of transcription (STAT pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP, Protein inhibitors against Stats (PIAS, and Suppressor of cytokine signaling (SOCS proteins across a diverse range of organisms. RESULTS: Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION: Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

  2. Endocrine and Local IGF-I in the Bony Fish Immune System.

    Science.gov (United States)

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  3. Endocrine and Local IGF-I in the Bony Fish Immune System

    Directory of Open Access Journals (Sweden)

    Anne-Constance Franz

    2016-01-01

    Full Text Available A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived, which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  4. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  5. The University Immune System: Overcoming Resistance to Change

    Science.gov (United States)

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  6. The reaction of the immune system of fish to vaccination

    NARCIS (Netherlands)

    Lamers, C.H.J.

    1985-01-01

    The studies presented in this thesis deal with the effect of bacterial antigens of Yersinia ruckeri and Aeromonashydrophila on the immune system of carp. The antigens were administered by injection or by bath treatment. The effect on the immune system was studied by

  7. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults.

    Science.gov (United States)

    Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng

    2016-05-01

    Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.

  8. The eye: A window to the soul of the immune system.

    Science.gov (United States)

    Perez, V L; Saeed, A M; Tan, Y; Urbieta, M; Cruz-Guilloty, F

    2013-09-01

    The eye is considered as an immune privileged site, and with good reason. It has evolved a variety of molecular and cellular mechanisms that limit immune responses to preserve vision. For example, the cornea is mainly protected from autoimmunity by the lack of blood and lymphatic vessels, whereas the retina-blood barrier is maintained in an immunosuppressive state by the retinal pigment epithelium. However, there are several scenarios in which immune privilege is altered and the eye becomes susceptible to immune attack. In this review, we highlight the role of the immune system in two clinical conditions that affect the anterior and posterior segments of the eye: corneal transplantation and age-related macular degeneration. Interestingly, crosstalk between the innate and adaptive immune systems is critical in both acute and chronic inflammatory responses in the eye, with T cells playing a central role in combination with neutrophils and macrophages. In addition, we emphasize the advantage of using the eye as a model for in vivo longitudinal imaging of the immune system in action. Through this technique, it has been possible to identify functionally distinct intra-graft motility patterns of responding T cells, as well as the importance of chemokine signaling in situ for T cell activation. The detailed study of ocular autoimmunity could provide novel therapeutic strategies for blinding diseases while also providing more general information on acute versus chronic inflammation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Role of Cortistatin in the Stressed Immune System.

    Science.gov (United States)

    Delgado, Mario; Gonzalez-Rey, Elena

    2017-01-01

    The immune system is faced with the daunting job of defending the organism against invading pathogens, while at the same time preserving the body integrity and maintaining tolerance to its own tissues. Loss of self-tolerance compromises immune homeostasis and leads to the onset of autoimmune disorders. The identification of endogenous factors that control immune tolerance and inflammation is a key goal for immunologists. Evidences from the last decade indicate that the neuropeptide cortistatin is one of the endogenous factors. Cortistatin is produced by immune cells and through its binding to various receptors, it exerts potent anti-inflammatory actions and participates in the maintenance of immune tolerance at multiple levels, especially in immunological disorders. Cortistatin emerges as a key element in the bidirectional communication between the neuroendocrine and immune systems aimed at regulating body homeostasis. © 2017 S. Karger AG, Basel.

  10. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  11. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  12. Adaptive Hypermedia Systems for E-Learning

    Directory of Open Access Journals (Sweden)

    Aammou Souhaib

    2010-11-01

    Full Text Available The domain of traditional hypermedia is revolutionized by the arrival of the concept of adaptation. Currently the domain of Adaptive Hypermedia Systems (AHS is constantly growing. A major goal of current research is to provide a personalized educational experience that meets the needs specific to each learner (knowledge level, goals, motivation etc.... In this article we have studied the possibility of implementing traditional features of adaptive hypermedia in an open environment, and discussed the standards for describing learning objects and architectural models based on the use of ontologies as a prerequisite for such an adaptation.

  13. Evidence for a common mucosal immune system in the pig.

    Science.gov (United States)

    Wilson, Heather L; Obradovic, Milan R

    2015-07-01

    The majority of lymphocytes activated at mucosal sites receive instructions to home back to the local mucosa, but a portion also seed distal mucosa sites. By seeding distal sites with antigen-specific effector or memory lymphocytes, the foundation is laid for the animal's mucosal immune system to respond with a secondary response should to this antigen be encountered at this site in the future. The common mucosal immune system has been studied quite extensively in rodent models but less so in large animal models such as the pig. Reasons for this paucity of reported induction of the common mucosal immune system in this species may be that distal mucosal sites were examined but no induction was observed and therefore it was not reported. However, we suspect that the majority of investigators simply did not sample distal mucosal sites and therefore there is little evidence of immune response induction in the literature. It is our hope that more pig immunologists and infectious disease experts who perform mucosal immunizations or inoculations on pigs will sample distal mucosal sites and report their findings, whether results are positive or negative. In this review, we highlight papers that show that immunization/inoculation using one route triggers mucosal immune system induction locally, systemically, and within at least one distal mucosal site. Only by understanding whether immunizations at one site triggers immunity throughout the common mucosal immune system can we rationally develop vaccines for the pig, and through these works we can gather evidence about the mucosal immune system that may be extrapolated to other livestock species or humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    Science.gov (United States)

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  15. Effects of microbes on the immune system

    National Research Council Canada - National Science Library

    Fujinami, Robert S; Cunningham, Madeleine W

    2000-01-01

    .... The book synthesizes recent discoveries on the various mechanisms by which microbes subvert the immune response and on the role of these immunologic mechanisms in the pathogenesis of infectious diseases...

  16. Molecular Interactions of Autophagy with the Immune System and Cancer

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2017-08-01

    Full Text Available Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B are modulated by autophagy, which represent innate and adaptive immune responses, respectively. Numerous studies have demonstrated beneficial roles for autophagy induction as well as its suppression of cancer cells. Autophagy may induce either survival or death depending on the cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating programmed cell death. In this review, we summarize the current understanding of autophagy and its regulation in cancer.

  17. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  18. Autopolyreactivity Confers a Holistic Role in the Immune System.

    Science.gov (United States)

    Avrameas, S

    2016-04-01

    In this review, we summarize and discuss some key findings from the study of naturally occurring autoantibodies. The B-cell compartment of the immune system appears to recognize almost all endogenous and environmental antigens. This ability is accomplished principally through autopolyreactive humoral and cellular immune receptors. This extended autopolyreactivity (1) along immunoglobulin gene recombination contributes to the immune system's ability to recognize a very large number of self and non-self constituents; and (2) generates a vast immune network that creates communication channels between the organism's interior and exterior. Thus, the immune system continuously evolves depending on the internal and external stimuli it encounters. Furthermore, this far-reaching network's existence implies activities resembling those of classical biological factors or activities that modulate the function of other classical biological factors. A few such antibodies have already been found. Another important concept is that natural autoantibodies are highly dependent on the presence or absence of commensal microbes in the organism. These results are in line with past and recent findings showing the fundamental influence of the microbiota on proper immune system development, and necessitate the existence of a host-microbe homeostasis. This homeostasis requires that the participating humoral and cellular receptors are able to recognize self-antigens and commensal microbes without damaging them. Autopolyreactive immune receptors expressing low affinity for both types of antigens fulfil this role. The immune system appears to play a holistic role similar to that of the nervous system. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  19. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas; implications for dive physiology and health

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    2016-09-01

    Full Text Available Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression and Concanavalin A induced lymphocyte proliferation (BrdU incorporation in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE and capture/release conditions. Beluga blood samples (n=4 were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n=9. Human blood samples (n=4 (Biological Specialty Corporation were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α=0.05. Cortisol was significantly higher in wild belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and wild belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals

  20. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis.

    Science.gov (United States)

    Bellavia, Daniele; Costa, Viviana; De Luca, Angela; Maglio, Melania; Pagani, Stefania; Fini, Milena; Giavaresi, Gianluca

    2016-10-13

    Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

  1. Immune System and Its Link to Rheumatic Diseases

    Science.gov (United States)

    ... system, which contributes to the illness. So therapy targeting our own immune system can help alleviate the ... by the American College of Rheumatology Communications and Marketing Committee. This information is provided for general education ...

  2. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  3. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  4. Between Scylla and Charybdis: the role of the human immune system in the pathogenesis of hepatitis C.

    Science.gov (United States)

    Spengler, Ulrich; Nischalke, Hans Dieter; Nattermann, Jacob; Strassburg, Christian P

    2013-11-28

    Hepatitis C virus (HCV) frequently elicits only mild immune responses so that it can often establish chronic infection. In this case HCV antigens persist and continue to stimulate the immune system. Antigen persistence then leads to profound changes in the infected host's immune responsiveness, and eventually contributes to the pathology of chronic hepatitis. This topic highlight summarizes changes associated with chronic hepatitis C concerning innate immunity (interferons, natural killer cells), adaptive immune responses (immunoglobulins, T cells, and mechanisms of immune regulation (regulatory T cells). Our overview clarifies that a strong anti-HCV immune response is frequently associated with acute severe tissue damage. In chronic hepatitis C, however, the effector arms of the immune system either become refractory to activation or take over regulatory functions. Taken together these changes in immunity may lead to persistent liver damage and cirrhosis. Consequently, effector arms of the immune system will not only be considered with respect to antiviral defence but also as pivotal mechanisms of inflammation, necrosis and progression to cirrhosis. Thus, avoiding Scylla - a strong, sustained antiviral immune response with inital tissue damage - takes the infected host to virus-triggered immunopathology, which ultimately leads to cirrhosis and liver cancer - the realm of Charybdis.

  5. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  6. Nociception and role of immune system in pain.

    Science.gov (United States)

    Verma, Vivek; Sheikh, Zeeshan; Ahmed, Ahad S

    2015-09-01

    Both pain and inflammation are protective responses. However, these self-limiting conditions (with well-established negative feedback loops) become pathological if left uncontrolled. Both pain and inflammation can interact with each other in a multi-dimensional manner. These interactions are known to create an array of 'difficult to manage' pathologies. This review explains in detail the role of immune system and the related cells in peripheral sensitization and neurogenic inflammation. Various neuro-immune interactions are analyzed at peripheral, sensory and central nervous system levels. Innate immunity plays a critical role in central sensitization and in establishing acute pain as chronic condition. Moreover, inflammatory mediators also exhibit psychological effects, thus contributing towards the emotional elements associated with pain. However, there is also a considerable anti-inflammatory and analgesic role of immune system. This review also attempts to enlist various novel pharmacological approaches that exhibit their actions through modification of neuro-immune interface.

  7. Impact of aging immune system on neurodegeneration and potential immunotherapies.

    Science.gov (United States)

    Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong

    2017-10-01

    The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  9. Adaptive Dialogue Systems for Assistive Living Environments

    Science.gov (United States)

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  10. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  11. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Yi-Fen Lu

    2016-12-01

    Full Text Available Hematopoietic stem cell (HSC transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.

  12. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy.

    Science.gov (United States)

    Fonseca, Adriana Barbosa de Lima; Simon, Marise do Vale; Cazzaniga, Rodrigo Anselmo; de Moura, Tatiana Rodrigues; de Almeida, Roque Pacheco; Duthie, Malcolm S; Reed, Steven G; de Jesus, Amelia Ribeiro

    2017-02-06

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy (TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This review discusses the innate and adaptive immune responses, and their interactions, that are known to affect pathogenesis and influence the clinical outcome of leprosy.

  13. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  14. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    Science.gov (United States)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  15. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    We have argued earlier that the c10nally diverse model of immune target recognition ... not guarantee that nothing new will be met in the future. So the sky is the limit ... Such random DNA change is a very risky business for the cell to indulge in ...

  16. Modeling evolution and immune system by cellular automata

    International Nuclear Information System (INIS)

    Bezzi, M.

    2001-01-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section

  17. The S(c)ensory Immune System Theory.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Freitas, António A

    2017-10-01

    Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  19. Crosstalk between cancer and the neuro-immune system.

    Science.gov (United States)

    Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira

    2018-02-15

    In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regulation of TGFβ in the immune system: an emerging role for integrins and dendritic cells.

    Science.gov (United States)

    Worthington, John J; Fenton, Thomas M; Czajkowska, Beata I; Klementowicz, Joanna E; Travis, Mark A

    2012-12-01

    Regulation of an immune response requires complex crosstalk between cells of the innate and adaptive immune systems, via both cell-cell contact and secretion of cytokines. An important cytokine with a broad regulatory role in the immune system is transforming growth factor-β (TGF-β). TGF-β is produced by and has effects on many different cells of the immune system, and plays fundamental roles in the regulation of immune responses during homeostasis, infection and disease. Although many cells can produce TGFβ, it is always produced as an inactive complex that must be activated to bind to the TGFβ receptor complex and promote downstream signalling. Thus, regulation of TGFβ activation is a crucial step in controlling TGFβ function. This review will discuss how TGFβ controls diverse immune responses and how TGFβ function is regulated, with a focus on recent work highlighting a critical role for the integrin αvβ8 expressed by dendritic cells in activating TGFβ. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. The Role of the Immune System in Metabolic Health and Disease.

    Science.gov (United States)

    Zmora, Niv; Bashiardes, Stavros; Levy, Maayan; Elinav, Eran

    2017-03-07

    In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system].

    Science.gov (United States)

    Stier, Heike; Bischoff, Stephan C

    2017-06-01

    The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults. This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system. S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens' potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced. The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.

  3. Country Immunization Information System Assessments - Kenya, 2015 and Ghana, 2016.

    Science.gov (United States)

    Scott, Colleen; Clarke, Kristie E N; Grevendonk, Jan; Dolan, Samantha B; Ahmed, Hussein Osman; Kamau, Peter; Ademba, Peter Aswani; Osadebe, Lynda; Bonsu, George; Opare, Joseph; Diamenu, Stanley; Amenuvegbe, Gregory; Quaye, Pamela; Osei-Sarpong, Fred; Abotsi, Francis; Ankrah, Joseph Dwomor; MacNeil, Adam

    2017-11-10

    The collection, analysis, and use of data to measure and improve immunization program performance are priorities for the World Health Organization (WHO), global partners, and national immunization programs (NIPs). High quality data are essential for evidence-based decision-making to support successful NIPs. Consistent recording and reporting practices, optimal access to and use of health information systems, and rigorous interpretation and use of data for decision-making are characteristics of high-quality immunization information systems. In 2015 and 2016, immunization information system assessments (IISAs) were conducted in Kenya and Ghana using a new WHO and CDC assessment methodology designed to identify root causes of immunization data quality problems and facilitate development of plans for improvement. Data quality challenges common to both countries included low confidence in facility-level target population data (Kenya = 50%, Ghana = 53%) and poor data concordance between child registers and facility tally sheets (Kenya = 0%, Ghana = 3%). In Kenya, systemic challenges included limited supportive supervision and lack of resources to access electronic reporting systems; in Ghana, challenges included a poorly defined subdistrict administrative level. Data quality improvement plans (DQIPs) based on assessment findings are being implemented in both countries. IISAs can help countries identify and address root causes of poor immunization data to provide a stronger evidence base for future investments in immunization programs.

  4. Role of leptin as a link between metabolism and the immune system.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Vilariño-García, Teresa; Fernández-Riejos, Patricia; Martín-González, Jenifer; Segura-Egea, Juan José; Sánchez-Margalet, Víctor

    2017-06-01

    Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  6. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  7. Adaptive processes in economic systems

    CERN Document Server

    Murphy, Roy E

    1965-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;. methods for low-rank m

  8. As we age: Does slippage of quality control in the immune system lead to collateral damage?

    Science.gov (United States)

    Müller, Ludmila; Pawelec, Graham

    2015-09-01

    The vertebrate adaptive immune system is remarkable for its possession of a very broad range of antigen receptors imbuing the system with exquisite specificity, in addition to the phagocytic and inflammatory cells of the innate system shared with invertebrates. This system requires strict control both at the level of the generation the cells carrying these receptors and at the level of their activation and effector function mediation in order to avoid autoimmunity and mitigate immune pathology. Thus, quality control checkpoints are built into the system at multiple nodes in the response, relying on clonal selection and regulatory networks to maximize pathogen-directed effects and minimize collateral tissue damage. However, these checkpoints are compromised with age, resulting in poorer immune control manifesting as tissue-damaging autoimmune and inflammatory phenomena which can cause widespread systemic disease, paradoxically compounding the problems associated with increased susceptibility to infectious disease and possibly cancer in the elderly. Better understanding the reasons for slippage of immune control will pave the way for developing rational strategies for interventions to maintain appropriate immunity while reducing immunopathology. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance.

    Science.gov (United States)

    Martin, A M; Nirschl, T R; Nirschl, C J; Francica, B J; Kochel, C M; van Bokhoven, A; Meeker, A K; Lucia, M S; Anders, R A; DeMarzo, A M; Drake, C G

    2015-12-01

    Primary prostate cancers are infiltrated with programmed death-1 (PD-1) expressing CD8+ T-cells. However, in early clinical trials, men with metastatic castrate-resistant prostate cancer did not respond to PD-1 blockade as a monotherapy. One explanation for this unresponsiveness could be that prostate tumors generally do not express programmed death ligand-1 (PD-L1), the primary ligand for PD-1. However, lack of PD-L1 expression in prostate cancer would be surprising, given that phosphatase and tensin homolog (PTEN) loss is relatively common in prostate cancer and several studies have shown that PTEN loss correlates with PD-L1 upregulation--constituting a mechanism of innate immune resistance. This study tested whether prostate cancer cells were capable of expressing PD-L1, and whether the rare PD-L1 expression that occurs in human specimens correlates with PTEN loss. Human prostate cancer cell lines were evaluated for PD-L1 expression and loss of PTEN by flow cytometry and western blotting, respectively. Immunohistochemical (IHC) staining for PTEN was correlated with PD-L1 IHC using a series of resected human prostate cancer samples. In vitro, many prostate cancer cell lines upregulated PD-L1 expression in response to inflammatory cytokines, consistent with adaptive immune resistance. In these cell lines, no association between PTEN loss and PD-L1 expression was apparent. In primary prostate tumors, PD-L1 expression was rare, and was not associated with PTEN loss. These studies show that some prostate cancer cell lines are capable of expressing PD-L1. However, in human prostate cancer, PTEN loss is not associated with PD-L1 expression, arguing against innate immune resistance as a mechanism that mitigates antitumor immune responses in this disease.

  10. Effects of ultraviolet radiation on the immune system in humans

    International Nuclear Information System (INIS)

    Morison, W.L.

    1989-01-01

    In experimental animals, exposure to UV-B radiation produces selective alterations of immune function which are mainly in the form of suppression of normal immune responses. This immune suppression is important in the development of nonmelanoma skin cancer, may influence the development and course of infectious disease and possibly protects against autoimmune reactions. The evidence that this form of immune suppression occurs in humans is less compelling and very incomplete. The wavelengths of radiation most affected by a depletion of the stratospheric ozone layer are those known to be most immunosuppressive in animals and it is likely that such depletion will increase any suppressive effect of sunlight on immunity in humans. In addition to establishing whether or not UV-B radiation can cause suppression of immune function in humans, studies are required to determine if melanin can provide protection against such suppression, the role of this suppression in the pathogenesis of skin cancer, the development of infectious disease and vaccine effectiveness, and the capacity for humans to develop adaptive, protective mechanisms which may limit damage from continued exposure to UV-B radiation. (author)

  11. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder

    Institute of Scientific and Technical Information of China (English)

    Anne Masi; Nicholas Glozier; Russell Dale; Adam J.Guastella

    2017-01-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors.Heterogeneity of presentation is a hallmark.Investigations of immune system problems in ASD,including aberrations in cytokine profiles and signaling,have been increasing in recent times and are the subject of ongoing interest.With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD,or function as an objective measure of response to treatment,this review summarizes the role of the immune system,discusses the relationship between the immune system,the brain,and behavior,and presents previouslyidentified immune system abnormalities in ASD,specifically addressing the role of cytokines in these aberrations.The roles and identification of biomarkers are also addressed,particularly with respect to cytokine profiles in ASD.

  13. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  14. ALLERGIC ASTHMA AND THE DEVELOPING IMMUNE SYSTEM: A PILOT STUDY

    Science.gov (United States)

    Rationale: The predisposition towards atopic disease begins early in life, and that the risk of developing asthma is heightened following prenatal exposure to some compounds. Nonetheless, the effect of gestational aeroallergen exposure on the developing immune system is unclear....

  15. Rearing environment affects development of the immune system in neonates

    NARCIS (Netherlands)

    Inman, C.F.; Haverson, K.; Konstantinov, S.R.; Jones, P.H.; Harris, C.; Smidt, H.; Miller, B.; Bailey, M.; Stokes, C.

    2010-01-01

    P>Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect

  16. How (and why) the immune system makes us sleep.

    Science.gov (United States)

    Imeri, Luca; Opp, Mark R

    2009-03-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.

  17. A mathematical model of radiation effect on the immunity system

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1984-01-01

    A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals

  18. [The role of protein glycosylation in immune system].

    Science.gov (United States)

    Ząbczyńska, Marta; Pocheć, Ewa

    2015-01-01

    Glycosylation is one of the most frequent post-translational modifications of proteins. The majority of cell surface and secreted proteins involved in immune response is glycosylated. The structural diversity of glycans depends on monosaccharide composition, type of glycosidic linkage and branching. These structural modifications determine a great variability of glycoproteins. The oligosaccharide components of proteins are regulated mostly by expression of glycosyltransferases and glycosidases and many environmental factors. Glycosylation influences the function of all immune cells. Glycans play a crucial role in intercellular contacts and leukocytes migration. These interactions are important in activation and proliferation of leukocytes and during immune response. The key immune proteins, such as TCR, MHC, TLR and antibodies are glycosylated. Sugars on the surface of pathogens and self-surface glycoproteins are recognized by special carbohydrate binding proteins called lectins. Changes of glycan structure are common in many pathological processes occurring in immune system, therefore they are used as molecular markers of different diseases.

  19. Adaptive networks as second order governance systems

    NARCIS (Netherlands)

    S.G. Nooteboom (Sibout); P.K. Marks (Peter)

    2010-01-01

    textabstractWe connect the idea of 'levers for change' with 'governance capacity' and propose 'adaptive networks' as an ideal type embedded in, and leveraging change in, governance systems. Discourses connect practices of citizens and companies with that governance system. Aware of

  20. Analytical tools for the study of cellular glycosylation in the immune system

    Directory of Open Access Journals (Sweden)

    Yvette eVan Kooyk

    2013-12-01

    Full Text Available It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This Mini-Review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in Immunology.

  1. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    International Nuclear Information System (INIS)

    Ragab, M.H.; Abbas, M.O.; El-Asady, R.S.; Amer, H.A.; El-Khouly, W.A.; Shabon, M.H.

    2015-01-01

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  2. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  3. Direct and Electronic Health Record Access to the Clinical Decision Support for Immunizations in the Minnesota Immunization Information System.

    Science.gov (United States)

    Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead

    2016-01-01

    Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

  4. Metabolites: messengers between the microbiota and the immune system.

    Science.gov (United States)

    Levy, Maayan; Thaiss, Christoph A; Elinav, Eran

    2016-07-15

    The mammalian intestine harbors one of the largest microbial densities on Earth, necessitating the implementation of control mechanisms by which the host evaluates the state of microbial colonization and reacts to deviations from homeostasis. While microbial recognition by the innate immune system has been firmly established as an efficient means by which the host evaluates microbial presence, recent work has uncovered a central role for bacterial metabolites in the orchestration of the host immune response. In this review, we highlight examples of how microbiota-modulated metabolites control the development, differentiation, and activity of the immune system and classify them into functional categories that illustrate the spectrum of ways by which microbial metabolites influence host physiology. A comprehensive understanding of how microbiota-derived metabolites shape the human immune system is critical for the rational design of therapies for microbiota-driven diseases. © 2016 Levy et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Managing adaptively for multifunctionality in agricultural systems

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  7. Managing adaptively for multifunctionality in agricultural systems.

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  8. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  9. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Institute of Scientific and Technical Information of China (English)

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper, the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu- lar constitutes in the skin immune system, involving both innate and adaptive immune responses; the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  10. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer.

    Science.gov (United States)

    Song, Dan; Li, Hong; Li, Haibo; Dai, Jianrong

    2015-08-01

    Human papillomavirus (HPV) is widely known as a cause of cervical intraepithelial neoplasia (CIN) and cervical cancer. The mechanisms involved have been studied by numerous studies. The integration of the virus genome into the host cells results in the abnormal regulation of cell cycle control. HPV can also induce immune evasion of the infected cells, which enable the virus to be undetectable for long periods of time. The induction of immunotolerance of the host's immune system by the persistent infection of HPV is one of the most important mechanisms for cervical lesions. The present review elaborates on the roles of several types of immune cells, such as macrophages and natural killer cells, which are classified as innate immune cells, and dendritic cells (DCs), cluster of differentiation (CD)4 + /CD8 + T cells and regulatory T cells, which are classified as adaptive immune cells. HPV infection could effect the differentiation of these immune cells in a unique way, resulting in the host's immune tolerance to the infection. The immune system modifications induced by HPV infection include tumor-associated macrophage differentiation, a compromised cellular immune response, an abnormal imbalance between type 1 T-helper cells (Th1) and Th2 cells, regulatory T cell infiltration, and downregulated DC activation and maturation. To date, numerous types of preventative vaccines have been created to slow down carcinogenesis. Immune response activation-based therapeutic vaccine is becoming more and more attractive for the treatment of HPV-associated diseases.

  11. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  12. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    International Nuclear Information System (INIS)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  13. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany); Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Leipzig (Germany); Paape, Daniel; Hildebrandt, Guido, E-mail: guido.hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany)

    2012-08-24

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  14. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    Science.gov (United States)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  15. What the shark immune system can and cannot provide for the expanding design landscape of immunotherapy.

    Science.gov (United States)

    Criscitiello, Michael F

    2014-07-01

    Sharks have successfully lived in marine ecosystems, often atop food chains as apex predators, for nearly one and a half billion years. Throughout this period they have benefitted from an immune system with the same fundamental components found in terrestrial vertebrates like man. Additionally, sharks have some rather extraordinary immune mechanisms which mammals lack. In this review the author briefly orients the reader to sharks, their adaptive immunity, and their important phylogenetic position in comparative immunology. The author also differentiates some of the myths from facts concerning these animals, their cartilage, and cancer. From thereon, the author explores some of the more remarkable capabilities and products of shark lymphocytes. Sharks have an isotype of light chain-less antibodies that are useful tools in molecular biology and are moving towards translational use in the clinic. These special antibodies are just one of the several tricks of shark lymphocyte antigen receptor systems. While shark cartilage has not helped oncology patients, shark immunoglobulins and T cell receptors do offer exciting novel possibilities for immunotherapeutics. Much of the clinical immunology developmental pipeline has turned from traditional vaccines to passively delivered monoclonal antibody-based drugs for targeted depletion, activation, blocking and immunomodulation. The immunogenetic tools of shark lymphocytes, battle-tested since the dawn of our adaptive immune system, are well poised to expand the design landscape for the next generation of immunotherapy products.

  16. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  17. Early Microbes Modify Immune System Development and Metabolic Homeostasis-The "Restaurant" Hypothesis Revisited.

    Science.gov (United States)

    Nash, Michael J; Frank, Daniel N; Friedman, Jacob E

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the "Restaurant" hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate's gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research.

  18. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    Directory of Open Access Journals (Sweden)

    Michael J. Nash

    2017-12-01

    Full Text Available The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD. This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research.

  19. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    Science.gov (United States)

    Nash, Michael J.; Frank, Daniel N.; Friedman, Jacob E.

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research. PMID:29326657

  20. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  1. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  2. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N; Oefverholm, E [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  3. Behavioural conditioning of immune functions: how the central nervous system controls peripheral immune responses by evoking associative learning processes.

    Science.gov (United States)

    Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred

    2008-01-01

    During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.

  4. A Holistic and Immune System inspired Security Framework

    OpenAIRE

    Mwakalinga, G. Jeffy; Yngström, Louise; Kowalski, Stewart

    2009-01-01

    This paper presents a Framework for adaptive information security systems for securing information systems. Information systems today are vulnerable and not adaptive to the dynamic environments because initial development of these systems focused on computer technology and communications protocol only. Most research in information security does not consider culture of users, system environments and does not pay enough attention to the enemies of information systems. As a result, users serve t...

  5. Introduction to the role of the immune system in melanoma.

    Science.gov (United States)

    Margolin, Kim

    2014-06-01

    The concept of immunosurveillance of cancer has been widely accepted for many years, but only recently have the precise mechanisms of tumor-host immune interactions been revealed. Inflammatory and immune reactions play a role in melanomagenesis, and may contribute to the eradication of tumor as well as potentiating its growth and proliferation. Studies of the role of tumor-immune system interactions are providing insights into the pathogenesis and opportunities for highly effective therapeutic strategies. Some patients, even with advanced disease, are now cured with immunotherapy, and increasing numbers of such cures are likely in future. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Perinatal Environmental Effects on the Neonatal Immune System

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich

    2014-01-01

    are thought to be programmed in utero supporting a role of the early environment. The aim of the present PhD thesis was to study if known risk factors are imprinted in the immune system of newborns. The hypotheses were that cesarean section and season of birth would influence the immune signature in early...... life. Both are known to be associated with disease. We analyzed the distribution of circulating immune cells from cord blood in the children part of the ongoing unselected COPSAC2010 birth cohort by multi-color flow cytometry. Moreover, airway mucosal cytokines and chemokines of 1-month-old children...

  7. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    Science.gov (United States)

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-03

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Children after Chernobyl: immune cells adaptive changes and stable alterations under low-dose irradiation

    International Nuclear Information System (INIS)

    Bazyka, D.A.; Chumak, A.A.; Bebeshko, V.G.; Beliaeva, N.V.

    1997-01-01

    Early changes of immune parameters in children evacuated from 30-km zone were characterized by E-rossette forming cells decrease and E-receptor non-stability in theophylline assay, surface Ig changes. Immunological follow-up of children inhabitants of territories contaminated with radionuclides after Chernobyl accident revealed TCR/CD3, CD4 and MHC CD3+, CD4+, CD57+ subsets, RIL-2, TrT expression and calcium channel activity. PMNC percentage with cortical thymocyte phenotype (CD1+, CD4+8+) was elevated during the first years after the accident and seemed to be of a compensatory origin. Combination of heterogenic activation and suppression subset reactions and changes in fine subset (Th1/Th2) organization were suggested. Adaptive and compensatory reactions were supposed and delayed hypersensitivity reactions increase as well. (author)

  9. Adaptive polymeric system for Hebbian type learning

    OpenAIRE

    2011-01-01

    Abstract We present the experimental realization of an adaptive polymeric system displaying a ?learning behaviour?. The system consists on a statistically organized networks of memristive elements (memory-resitors) based on polyaniline. In a such network the path followed by the current increments its conductivity, a property which makes the system able to mimic Hebbian type learning and have application in hardware neural networks. After discussing the working principle of ...

  10. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  11. CHECKPOINT INHIBITOR IMMUNE THERAPY: Systemic Indications and Ophthalmic Side Effects.

    Science.gov (United States)

    Dalvin, Lauren A; Shields, Carol L; Orloff, Marlana; Sato, Takami; Shields, Jerry A

    2018-06-01

    To review immune checkpoint inhibitor indications and ophthalmic side effects. A literature review was performed using a PubMed search for publications between 1990 and 2017. Immune checkpoint inhibitors are designed to treat system malignancies by targeting one of three ligands, leading to T-cell activation for attack against malignant cells. These ligands (and targeted drug) include cytotoxic T-lymphocyte antigen-4 (CTLA-4, ipilimumab), programmed death protein 1 (PD-1, pembrolizumab, nivolumab), and programmed death ligand-1 (PD-L1, atezolizumab, avelumab, durvalumab). These medications upregulate the immune system and cause autoimmune-like side effects. Ophthalmic side effects most frequently manifest as uveitis (1%) and dry eye (1-24%). Other side effects include myasthenia gravis (n = 19 reports), inflammatory orbitopathy (n = 11), keratitis (n = 3), cranial nerve palsy (n = 3), optic neuropathy (n = 2), serous retinal detachment (n = 2), extraocular muscle myopathy (n = 1), atypical chorioretinal lesions (n = 1), immune retinopathy (n = 1), and neuroretinitis (n = 1). Most inflammatory side effects are managed with topical or periocular corticosteroids, but advanced cases require systemic corticosteroids and cessation of checkpoint inhibitor therapy. Checkpoint inhibitors enhance the immune system by releasing inhibition on T cells, with risk of autoimmune-like side effects. Ophthalmologists should include immune-related adverse events in their differential when examining cancer patients with new ocular symptoms.

  12. Small and long regulatory RNAs in the immune system and immune diseases

    NARCIS (Netherlands)

    Stachurska, Anna; Zorro, Maria M.; van der Sijde, Marijke R.; Withoff, Sebo

    2014-01-01

    Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation

  13. Role of neuropilin-2 in the immune system.

    Science.gov (United States)

    Schellenburg, S; Schulz, A; Poitz, D M; Muders, M H

    2017-10-01

    Neuropilins (NRPs) are single transmembrane receptors with short cytoplasmic tails and are dependent on receptors like VEGF receptors or Plexins for signal transduction. NRPs are known to be important in angiogenesis, lymphangiogenesis, and axon guidance. The Neuropilin-family consists of two members, Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2). They are up to 44 % homologous and conserved in all vertebrates. High levels of NRP2 are found on immune cells. Current research is very limited regarding the functions of NRP2 on these cells. Recent evidence suggests that NRP2 is important for migration, antigen presentation, phagocytosis and cell-cell contact within the immune system. Additionally, posttranslational NRP2 modifications like polysialylation are crucial for the function of some immune cells. This review is an overview about expression and functions of NRP2 in the immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  15. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-01-01

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM 10 ) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM 2.5 ) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  16. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  17. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer

    Science.gov (United States)

    Boissière-Michot, Florence; Lazennec, Gwendal; Frugier, Hélène; Jarlier, Marta; Roca, Lise; Duffour, Jacqueline; Du Paty, Emilie; Laune, Daniel; Blanchard, France; Le Pessot, Florence; Sabourin, Jean-Christophe; Bibeau, Frédéric

    2014-01-01

    Sporadic or hereditary colorectal cancer (CRC) with microsatellite instability (MSI) is frequently characterized by inflammatory lymphocytic infiltration and tends to be associated with a better outcome than microsatellite stable (MSS) CRC, probably reflecting a more effective immune response. We investigated inflammatory mechanisms in 48 MSI CRCs and 62 MSS CRCs by analyzing: (1) the expression of 48 cytokines using Bio-Plex multiplex cytokine assays, and (2) the in situ immune response by immunohistochemical analysis with antibodies against CD3 (T lymphocytes), CD8 (cytotoxic T lymphocytes), CD45RO (memory T lymphocytes), T-bet (Th1 CD4 cells), and FoxP3 (regulatory T cells). MSI CRC exhibited significantly higher expression of CCL5 (RANTES), CXCL8 (IL-8), CXCL9 (MIG), IL-1β, CXCL10 (IP-10), IL-16, CXCL1 (GROα), and IL-1ra, and lower expression of MIF, compared with MSS CRC. Immunohistochemistry combined with image analysis indicated that the density of CD3+, CD8+, CD45RO+, and T-bet+ T lymphocytes was higher in MSI CRC than in MSS CRC, whereas the number of regulatory T cells (FoxP3+) was not statistically different between the groups. These results indicate that MSI CRC is associated with a specific cytokine expression profile that includes CCL5, CXCL10, and CXCL9, which are involved in the T helper type 1 (Th1) response and in the recruitment of memory CD45RO+ T cells. Our findings highlight the major role of adaptive immunity in MSI CRC and provide a possible explanation for the more favorable prognosis of this CRC subtype. PMID:25101223

  18. Recommendation system for immunization coverage and monitoring.

    Science.gov (United States)

    Bhatti, Uzair Aslam; Huang, Mengxing; Wang, Hao; Zhang, Yu; Mehmood, Anum; Di, Wu

    2018-01-02

    Immunization averts an expected 2 to 3 million deaths every year from diphtheria, tetanus, pertussis (whooping cough), and measles; however, an additional 1.5 million deaths could be avoided if vaccination coverage was improved worldwide. 1 1 Data source for immunization records of 1.5 M: http://www.who.int/mediacentre/factsheets/fs378/en/ New vaccination technologies provide earlier diagnoses, personalized treatments and a wide range of other benefits for both patients and health care professionals. Childhood diseases that were commonplace less than a generation ago have become rare because of vaccines. However, 100% vaccination coverage is still the target to avoid further mortality. Governments have launched special campaigns to create an awareness of vaccination. In this paper, we have focused on data mining algorithms for big data using a collaborative approach for vaccination datasets to resolve problems with planning vaccinations in children, stocking vaccines, and tracking and monitoring non-vaccinated children appropriately. Geographical mapping of vaccination records helps to tackle red zone areas, where vaccination rates are poor, while green zone areas, where vaccination rates are good, can be monitored to enable health care staff to plan the administration of vaccines. Our recommendation algorithm assists in these processes by using deep data mining and by accessing records of other hospitals to highlight locations with lower rates of vaccination. The overall performance of the model is good. The model has been implemented in hospitals to control vaccination across the coverage area.

  19. Maintenance of systemic immune functions prevents accelerated presbycusis.

    Science.gov (United States)

    Iwai, Hiroshi; Baba, Susumu; Omae, Mariko; Lee, Shinryu; Yamashita, Toshio; Ikehara, Susumu

    2008-05-07

    There is no effective therapy for progressive hearing loss such as presbycusis, the causes of which remain poorly understood because of the difficulty of separating genetic and environmental contributions. In the present study, we show that the age-related dysfunctions of the systemic immune system in an animal model of accelerated presbycusis (SAMP1, senescence-accelerated mouse P1) can be corrected by allogeneic bone marrow transplantation (BMT). We also demonstrate that this presbycusis can be prevented; BMT protects the recipients from age-related hearing impairment and the degeneration of spiral ganglion cells (SGCs) as well as the dysfunctions of T lymphocytes, which have a close relation to immune senescence. No donor cells are infiltrated to the spiral ganglia, confirming that this experimental system using BMT is connected to the systemic immune system and does not contribute to transdifferentiation or fusion by donor hematopoietic stem cells (HSCs), or to the direct maintenance of ganglion cells by locally infiltrated donor immunocompetent cells. Therefore, another procedure which attempts to prevent the age-related dysfunctions of the recipient immune system is the inoculation of syngeneic splenocytes from young donors. These mice show no development of hearing loss, compared with the recipient mice with inoculation of saline or splenocytes from old donors. Our studies on the relationship between age-related systemic immune dysfunctions and neurodegeneration mechanisms open up new avenues of treatment for presbycusis, for which there is no effective therapy.

  20. Retroviruses as tools to study the immune system.

    Science.gov (United States)

    Lois, C; Refaeli, Y; Qin, X F; Van Parijs, L

    2001-08-01

    Retrovirus-based vectors provide an efficient means to introduce and express genes in cells of the immune system and have become a popular tool to study immune function. They are easy to manipulate and provide stable, long-term gene expression because they integrate into the genome. Current retroviral vectors do have limitations that affect their usefulness in certain applications. However, recent advances suggest a number of ways in which these vectors might be improved to extend their utility in immunological research.

  1. Immunity to transplantable nitrosourea-induced neurogenic tumors. III. Systemic adoptive transfer of immunity

    International Nuclear Information System (INIS)

    Shibuya, N.; Hochgeschwender, U.; Kida, Y.; Hochwald, G.M.; Thorbecke, G.J.; Cravioto, H.

    1984-01-01

    The effect of intravenously injected tumor immune spleen cells on growth of 3 X 10 5 gliosarcoma T 9 cells injected intradermally (ID) or intracerebrally (IC) into sublethally irradiated CDF rats was evaluated. Spleen cells from donor rats with sufficient immunity to reject 5 X 10 5 T 9 cells inhibited the growth of T 9 cells mixed with spleen cells in a ratio of 1:25 and injected ID, but could not act after intravenous transfer. However, donor rats which had rejected increasing T 9 challenge doses up to 1 X 10 7 cells produced immune spleen cells which, upon IV transfer, could inhibit growth of ID T 9 challenge but not of EB-679, an unrelated glioma, in recipient rats. Rejection of IC T 9 challenge was also obtained after IV transfer, in recipients of such ''hyperimmune'' spleen cells, but was less (60% maximum) than that noted after ID T 9 challenge (100% maximum). The removal of B cells from the transferred spleen cells did not affect the results, suggesting that the specific immunity was mediated by T cells. The authors conclude that the special immunological circumstances of tumors growing in the brain renders them less accessible to rejection by systemically transferred immune cells, but it is nevertheless possible to effect a significant incidence of rejection of syngeneic tumor growth in the brain by the intravenous transfer of hyperimmune spleen cells

  2. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Directory of Open Access Journals (Sweden)

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  3. Cyclic Dinucleotides in the Scope of the Mammalian Immune System.

    Science.gov (United States)

    Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit

    2017-01-01

    First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.

  4. Role of the Immune System in Diabetic Kidney Disease.

    Science.gov (United States)

    Hickey, Fionnuala B; Martin, Finian

    2018-03-12

    The purpose of this review is to examine the proposed role of immune modulation in the development and progression of diabetic kidney disease (DKD). Diabetic kidney disease has not historically been considered an immune-mediated disease; however, increasing evidence is emerging in support of an immune role in its pathophysiology. Both systemic and local renal inflammation have been associated with DKD. Infiltration of immune cells, predominantly macrophages, into the kidney has been reported in a number of both experimental and clinical studies. In addition, increased levels of circulating pro-inflammatory cytokines have been linked to disease progression. Consequently, a variety of therapeutic strategies involving modulation of the immune response are currently being investigated in diabetic kidney disease. Although no current therapies for DKD are directly based on immune modulation many of the therapies in clinical use have anti-inflammatory effects along with their primary actions. Macrophages emerge as the most likely beneficial immune cell target and compounds which reduce macrophage infiltration to the kidney have shown potential in both animal models and clinical trials.

  5. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  6. On complex adaptive systems and terrorism

    International Nuclear Information System (INIS)

    Ahmed, E.; Elgazzar, A.S.; Hegazi, A.S.

    2005-01-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly 'wise' decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed

  7. Adaptive radiotherapy using helical tomotherapy system

    International Nuclear Information System (INIS)

    Jeswani, Sam; Ruchala, Kenneth; Olivera, Gustavo; Mackie, T.R.

    2008-01-01

    As commonly known in the field, adaptive radiation therapy (ART) is the use of feedback to modify a radiotherapy treatment. There are numerous ways in which this feedback can be received and used, and this presentation will discuss some of the implementations of ART being investigated with a helical TomoTherapy system

  8. Cross-bandwidth adaptation for ASR systems

    CSIR Research Space (South Africa)

    Kleynhans, N

    2013-12-01

    Full Text Available not be feasible for resource-scarce environments. Utilising limited amounts of in-domain data and a combination of feature normalisation and acoustic model adaptation techniques has therefore found wide use in ASR systems. Various approaches have been proposed...

  9. Two Perspectives on Information System Adaptation

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind; Kjærgaard, Annemette; Svejvig, Per

    Institutional theory has proven to be a central analytical perspective for investigating the role of larger social and historical structures of Information System (IS) adaptation. However, it does not explicitly account for how organizational actors make sense of and enact IS in their local context...

  10. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats

    Directory of Open Access Journals (Sweden)

    Loganathan Sundareswaran

    2017-01-01

    Conclusion: S. dulcis (SD has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant.

  11. Adaptive Integration of Nonsmooth Dynamical Systems

    Science.gov (United States)

    2017-10-11

    2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see

  12. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-07-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  13. Changing Paradigms: From Schooling to Schools as Adaptive Recommendation Systems

    DEFF Research Database (Denmark)

    Christiansen, René Boyer; Gynther, Karsten; Petersen, Anne Kristine

    2017-01-01

    The paper explores a shift in education from educational systems requiring student adaptation to educational recommendation systems adapting to students’ individual needs. The paper discusses the concept of adaptation as addressed in educational research and draws on the system theory of Heinz von...... Foerster to shed light on how the educational system has used and understood adaptation. In this context, we point out two different approaches to educational adaptation: 1) students adapting to the educational system and 2) the attempt of the educational system to adapt to students through automatized...... system adaptation and recommendation systems. These different understandings constitute a design framework that is used to analyze two current trends: Adaptive learning systems and learning analytics. Finally, the paper discusses the potential of looking at adaptation as recommendation systems...

  14. Changing Paradigms: From Schooling to Schools as Adaptive Recommendation Systems

    DEFF Research Database (Denmark)

    Christiansen, René Boyer; Gynther, Karsten; Petersen, Anne Kristine

    2017-01-01

    The paper explores a shift in education from educational systems requiring student adaptation to educational recommendation systems adapting to students’ individual needs. The paper discusses the concept of adaptation as addressed in educational research and draws on the system theory of Heinz von...... system adaptation and recommendation systems. These different understandings constitute a design framework that is used to analyze two current trends: Adaptive learning systems and learning analytics. Finally, the paper discusses the potential of looking at adaptation as recommendation systems...... Foerster to shed light on how the educational system has used and understood adaptation. In this context, we point out two different approaches to educational adaptation: 1) students adapting to the educational system and 2) the attempt of the educational system to adapt to students through automatized...

  15. Processing and Linguistics Properties of Adaptable Systems

    Directory of Open Access Journals (Sweden)

    Dumitru TODOROI

    2006-01-01

    Full Text Available Continuation and development of the research in Adaptable Programming Initialization [Tod-05.1,2,3] is presented. As continuation of [Tod-05.2,3] in this paper metalinguistic tools used in the process of introduction of new constructions (data, operations, instructions and controls are developed. The generalization schemes of evaluation of adaptable languages and systems are discussed. These results analogically with [Tod-05.2,3] are obtained by the team, composed from the researchers D. Todoroi [Tod-05.4], Z. Todoroi [ZTod-05], and D. Micusa [Mic-03]. Presented results will be included in the book [Tod-06].

  16. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  17. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  18. The interplay between the gut microbiota and the immune system.

    Science.gov (United States)

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

  19. Thermodynamics as the driving principle behind the immune system

    Directory of Open Access Journals (Sweden)

    Eduardo Finger

    2012-09-01

    Full Text Available Over the last 120 years, few things contributed more to ourunderstanding of immune system than the study of its behavior inthe host/parasite relationship. Despite the advances though, a fewquestions remain, such as what drives the immune system? Whatare its guiding principles? If we ask these questions randomly, mostwill immediately answer “defend the body from external threats,” butwhat exactly do we defend ourselves from? How do these threatsharm us? What criteria define what constitutes a threat? On theother hand, if the immune system evolved to defend us againstexternal threats, how does its action against “internal” processes,such as neoplasms, qualify? Why do we die from cancer? Or frominfection? Or even, why do we die at all? These apparently obviousquestions are nor simple neither trivial, and the difficulty answeringthem reveals the complex reality that the immune system handles.The objective of this article is to articulate for the reader something that he instinctively already knows: that the decisions of the immune system are thermodynamically driven. Additionally, we will discuss how this apparent change in paradigm alters concepts such as health, disease, and therapeutics.

  20. Effects of prebiotics on immune system and cytokine expression.

    Science.gov (United States)

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  1. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  2. New insights into innate immune control of systemic candidiasis

    Science.gov (United States)

    Lionakis, Michail S.

    2014-01-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted. PMID:25023483

  3. The Role of the Immune System in Autism Spectrum Disorder.

    Science.gov (United States)

    Meltzer, Amory; Van de Water, Judy

    2017-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.

  4. Graphene and the immune system: Challenges and potentiality.

    Science.gov (United States)

    Orecchioni, Marco; Ménard-Moyon, Cécilia; Delogu, Lucia Gemma; Bianco, Alberto

    2016-10-01

    In the growing area of nanomedicine, graphene-based materials (GBMs) are some of the most recent explored nanomaterials. For the majority of GBM applications in nanomedicine, the immune system plays a fundamental role. It is necessary to well understand the complexity of the interactions between GBMs, the immune cells, and the immune components and how they could be of advantage for novel effective diagnostic and therapeutic approaches. In this review, we aimed at painting the current picture of GBMs in the background of the immune system. The picture we have drawn looks like a cubist image, a sort of Picasso-like portrait looking at the topic from all perspectives: the challenges (due to the potential toxicity) and the potentiality like the conjugation of GBMs to biomolecules to develop advanced nanomedicine tools. In this context, we have described and discussed i) the impact of graphene on immune cells, ii) graphene as immunobiosensor, and iii) antibodies conjugated to graphene for tumor targeting. Thanks to the huge advances on graphene research, it seems realistic to hypothesize in the near future that some graphene immunoconjugates, endowed of defined immune properties, can go through preclinical test and be successfully used in nanomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Vladimir López

    2016-03-01

    Full Text Available Mycobacteria of the Mycobacterium tuberculosis complex (MTBC greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB. In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB- and M. bovis-infected young (TB+ and adult animals with different infection status [TB lesions localized in the head (TB+ or affecting multiple organs (TB++]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to

  6. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  7. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor

    NARCIS (Netherlands)

    Pols, Thijs W. H.; Puchner, Teresa; Korkmaz, H. Inci; Vos, Mariska; Soeters, Maarten R.; de Vries, Carlie J. M.

    2017-01-01

    Bile acids are established signaling molecules next to their role in the intestinal emulsification and uptake of lipids. We here aimed to identify a potential interaction between bile acids and CD4+ Th cells, which are central in adaptive immune responses. We screened distinct bile acid species for

  8. Differences in innate and adaptive immune response traits of Pahari (Indian non-descript indigenous breed) and Jersey crossbred cattle.

    Science.gov (United States)

    Verma, Subhash; Thakur, Aneesh; Katoch, Shailja; Shekhar, Chander; Wani, Aasim Habib; Kumar, Sandeep; Dohroo, Shweta; Singh, Geetanjali; Sharma, Mandeep

    2017-10-01

    Cattle are an integral part of the largely agrarian economy of India. Indigenous breeds of cattle comprise about 80% of total cattle population of the country and contribute significantly to the overall milk production. There are 40 recognized indigenous breeds of cattle and a number of uncharacterized non-descript cattle. Pahari cattle of Himachal Pradesh in Northern India are one such non-descript indigenous breed. Here we describe a comprehensive evaluation of haematobiochemical parameters and innate and adaptive immune response traits of Pahari cattle and a comparison with Jersey crossbred cattle. The study shows demonstrable differences in the two breeds with respect to some innate and adaptive immunological traits. This is a first attempt to characterize immune response traits of Pahari cattle and the results of the study provide an understanding of breed differences in immune status of cattle which could be useful for their breeding and conservations programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  10. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  11. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  12. Physical activity influences the immune system of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2017-01-01

    Full Text Available It has been suggested that physical activity in breast cancer patients can not only improve quality of life. Influences on physical and psychological levels have been evaluated, but effects on the immune system of breast cancer patients are hardly known. A PubMed search identified relevant trials and meta-analyses from 1970 to 2013. This review summarizes the results of international studies and the current discussion of effects of physical activity on the immune system of breast cancer patients. Highlighted are effects of physical activity on the immune system. Seven original articles and 14 reviews included in this review. Two original and the review articles includes other tumor entities besides breast cancer.Evaluated methods such as dose-response relationships for exercise in oncology, hardly exist. Increased immunological anti-cancer activity due to physical activity is probably mediated via an increase in number and cytotoxicity of monocytes and natural killer cells and cytokines.

  13. Keeping the immune system in check: a role for mitophagy.

    Science.gov (United States)

    Lazarou, Michael

    2015-01-01

    Mitochondria play a central role in many facets of cellular function including energy production, control of cell death and immune signaling. Breakdown of any of these pathways because of mitochondrial deficits or excessive reactive oxygen species production has detrimental consequences for immune system function and cell viability. Maintaining the functional integrity of mitochondria is therefore a critical challenge for the cell. Surveillance systems that monitor mitochondrial status enable the cell to identify and either repair or eliminate dysfunctional mitochondria. Mitophagy is a selective form of autophagy that eliminates dysfunctional mitochondria from the population to maintain overall mitochondrial health. This review covers the major players involved in mitophagy and explores the role mitophagy plays to support the immune system.

  14. Intelligent Adaptation Process for Case Based Systems

    International Nuclear Information System (INIS)

    Nassar, A.M.; Mohamed, A.H.; Mohamed, A.H.

    2014-01-01

    Case Based Reasoning (CBR) Systems is one of the important decision making systems applied in many fields all over the world. The effectiveness of any CBR system based on the quality of the storage cases in the case library. Similar cases can be retrieved and adapted to produce the solution for the new problem. One of the main issues faced the CBR systems is the difficulties of achieving the useful cases. The proposed system introduces a new approach that uses the genetic algorithm (GA) technique to automate constructing the cases into the case library. Also, it can optimize the best one to be stored in the library for the future uses. However, the proposed system can avoid the problems of the uncertain and noisy cases. Besides, it can simply the retrieving and adaptation processes. So, it can improve the performance of the CBR system. The suggested system can be applied for many real-time problems. It has been applied for diagnosis the faults of the wireless network, diagnosis of the cancer diseases, diagnosis of the debugging of a software as cases of study. The proposed system has proved its performance in this field

  15. Schizophrenia and the immune system: pathophysiology, prevention, and treatment.

    Science.gov (United States)

    Richard, Michelle D; Brahm, Nancy C

    2012-05-01

    Published evidence on established and theoretical connections between immune system dysfunction and schizophrenia is reviewed, with a discussion of developments in the search for immunologically-targeted treatments. A growing body of evidence indicates that immunologic influences may play an important role in the etiology and course of schizophrenia. A literature search identified more than 100 articles pertaining to suspected immunologic influences on schizophrenia published over the past 15 years. Schizophrenia researchers have explored a wide range of potential immune system-related causal or contributory factors, including neurobiological and neuroanatomical disorders, genetic abnormalities, and environmental influences such as maternal perinatal infection. Efforts to establish an immunologic basis for schizophrenia and identify reliable immune markers continue to be hindered by sampling challenges and methodological problems. In aggregate, the available evidence indicates that at least some cases of schizophrenia have an immunologic component, suggesting that immune-focused prevention strategies (e.g., counseling of pregnant women to avoid immune stressors) and close monitoring of at-risk children are appropriate. While antipsychotics remain the standard treatments for schizophrenia, a variety of drugs with immunologic effects have been investigated as adjunctive therapies, with variable and sometimes conflicting results; these include the cyclooxygenase-2 inhibitor celecoxib, immune-modulating agents (e.g., azathioprine and various anticytokine agents such as atlizumab, anakinra, and tumor necrosis factor-α blockers), and an investigational anti-interferon-γ agent. The published evidence indicates that immune system dysfunction related to genetic, environmental, and neurobiological influences may play a role in the etiology of schizophrenia in a subset of patients.

  16. The effect of ionizing radiation on immune system

    International Nuclear Information System (INIS)

    Gyuleva, I.

    1999-01-01

    Delayed radiation effects of irradiation at relatively high doses - 0.52- 2 Gy in result of severe accidents are discussed. The immune response of lymphocyte populations manifested in formation of different kind of mutant cells at Hiroshima-A-bombing and Chernobyl accident are presented. It is of great interest the hypothesis presented launched by RERF (Japanese Foundation for Radiation Effect Research, Hiroshima) for radiation induced predominant of T H2 -lymphocytes in comparison to T H1 as delayed immune response at the Hiroshima-A-bomb survivors. The aspect of immune status is quite different at low doses irradiation (0.02 - 0.2 Gy). There is some stimulation in immune response known as hormesis effect. It is suggested that T-cell activation has key role in immune system stimulation at doses under 0.2 Gy. There is also activation of DNA-reparation mechanisms. Suppression of the hypothalamus-hypophysis-suprarenal axis brings to enhancing of immune potential. Chinese people living in a region with three-times higher background radiation, X-ray examined patients as well as occupationally exposed personnel have been investigated. Radioprotective effect of some cytokines and their influence on the individual radiosensitivity are also discussed.The investigations have to be continued because of some inconsistent results

  17. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats.

    Science.gov (United States)

    Sundareswaran, Loganathan; Srinivasan, Sakthivel; Wankhar, Wankupar; Sheeladevi, Rathinasamy

    Noise acts as a stressor and is reported to have impact on individual health depending on nature, type, intensity and perception. Modern medicine has no effective drugs or cure to prevent its consequences. Being an environmental stressor noise cannot be avoided; instead minimizing its exposure or consuming anti-stressor and adaptogens from plants can be considered. The present study was carried out to evaluate the anti-stressor, adaptogen and immunostimulatory activity of Scoparia dulcis against noise-induced stress in Wistar rat models. Noise stress in rats was created by broadband white noise generator, 100 dB A/4 h daily/15 days and S. dulcis (200 mg/kg b.w.) was administered orally. 8 groups of rats were used consisting of 6 animals each; 4 groups for unimmunized and 4 groups for immunized. For immunization, sheep red blood cells (5 × 10 9  cells/ml) were injected intraperitoneally. Sub-acute noise exposed rats showed a significant increase in corticosterone and IL-4 levels in both immunized and unimmunized rats whereas lymphocytes, antibody titration, soluble immune complex, IL-4 showed a marked increase with a significant decrease in IL-2, TNF-α, IFN-γ cytokines only in unimmunized rats. Immunized noise exposed rats presented increased leukocyte migration index and decreased foot pad thickness, IL-2, TNF-α, IFN-γ with no changes in the lymphocytes. S. dulcis (SD) has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  18. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    Science.gov (United States)

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius)

    Science.gov (United States)

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  20. [Environmental pollutants as adjuvant factors of immune system derived diseases].

    Science.gov (United States)

    Lehmann, Irina

    2017-06-01

    The main task of the immune system is to protect the body against invading pathogens. To be able to do so, immune cells must be able to recognize and combat exogenous challenges and at the same time tolerate body-borne structures. A complex regulatory network controls the sensitive balance between defense and tolerance. Perturbation of this network ultimately leads to the development of chronic inflammation, such as allergies, autoimmune reactions, and infections, because the immune system is no longer able to efficiently eliminate invading pathogens. Environmental pollutants can cause such perturbations by affecting the function of immune cells in such a way that they would react hypersensitively against allergens and the body's own structures, respectively, or that they would be no longer able to adequately combat pathogens. This indirect effect is also known as adjuvant effect. For pesticides, heavy metals, wood preservatives, or volatile organic compounds such adjuvant effects are well known. Examples of the mechanism by which environmental toxins contribute to chronic inflammatory diseases are manifold and will be discussed along asthma and allergies.While the immune system of healthy adults is typically well able to distinguish between foreign and endogenous substances even under adverse environmental conditions, that of children would react much more sensible upon comparable environmental challenges. To prevent priming for diseases by environmental cues during that highly sensitive period of early childhood children are to be particularly protected.

  1. Hopf bifurcation for tumor-immune competition systems with delay

    Directory of Open Access Journals (Sweden)

    Ping Bi

    2014-01-01

    Full Text Available In this article, a immune response system with delay is considered, which consists of two-dimensional nonlinear differential equations. The main purpose of this paper is to explore the Hopf bifurcation of a immune response system with delay. The general formula of the direction, the estimation formula of period and stability of bifurcated periodic solution are also given. Especially, the conditions of the global existence of periodic solutions bifurcating from Hopf bifurcations are given. Numerical simulations are carried out to illustrate the the theoretical analysis and the obtained results.

  2. Stochastic responses of tumor–immune system with periodic treatment

    International Nuclear Information System (INIS)

    Li Dong-Xi; Li Ying

    2017-01-01

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment. Firstly, a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation. Then, sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula. Finally, numerical simulations are introduced to illustrate and verify the results. The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells, especially for combining the immunotherapy and the traditional tools. (paper)

  3. Linking the microbiota, chronic disease and the immune system

    Science.gov (United States)

    Hand, Timothy W.; Vujkovic-Cvijin, Ivan; Ridaura, Vanessa K.; Belkaid, Yasmine

    2016-01-01

    Chronic inflammatory diseases are the most important causes of mortality in the world today and are on the rise. We now know that immune-driven inflammation is critical in the etiology of these diseases, though the environmental triggers and cellular mechanisms that lead to their development are still mysterious. Many chronic inflammatory diseases are associated with significant shifts in the microbiota towards inflammatory configurations, which can affect the host both by inducing local and systemic inflammation and by alterations in microbiota-derived metabolites. This review discusses recent findings suggesting that shifts in the microbiota may contribute to chronic disease via effects on the immune system. PMID:27623245

  4. Semantic models for adaptive interactive systems

    CERN Document Server

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  5. Modeling Adaptive Behavior for Systems Design

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1994-01-01

    Field studies in modern work systems and analysis of recent major accidents have pointed to a need for better models of the adaptive behavior of individuals and organizations operating in a dynamic and highly competitive environment. The paper presents a discussion of some key characteristics.......) The basic difference between the models of system functions used in engineering and design and those evolving from basic research within the various academic disciplines and finally 3.) The models and methods required for closed-loop, feedback system design....

  6. Diversity of aging of the immune system classified in the cotton rat (Sigmodon hispidus) model of human infectious diseases.

    NARCIS (Netherlands)

    Guichelaar, Teun; van Erp, Elisabeth A; Hoeboer, Jeroen; Smits, Noortje A M; van Els, Cécile A C M; Pieren, Daan K J; Luytjes, Willem

    2018-01-01

    Susceptibility and declined resistance to human pathogens like respiratory syncytial virus (RSV) at old age is well represented in the cotton rat (Sigmodon hispidus). Despite providing a preferred model of human infectious diseases, little is known about aging of its adaptive immune system. We aimed

  7. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  8. Environment Adaptive Lighting Systems for Smart Homes

    Directory of Open Access Journals (Sweden)

    Cem Mehmet Catalbas

    2017-09-01

    Full Text Available In this work, an application of adaptive lighting system is proposed for smart homes. In this paper, it is suggested that, an intelligent lighting system with outdoor adaptation can be realized via a real fisheye image. During the implementation of the proposed method, the fuzzy c-means method, which is a commonly used data clustering method, has been used. The input image is divided into three different regions according to its brightness levels. Then, the RGB image is converted to CIE 1931 XYZ color space; and the obtained XYZ values are converted to x and y values. The parameters of x and y values are shown in CIE Chromaticity Diagram for different regions in the sky. Thereafter, the coordinate values are converted to Correlated Color Temperature by using two different formulas. Additionally, the conversion results are examined with respect to actual and estimated CCT values.

  9. Next generation intelligent environments ambient adaptive systems

    CERN Document Server

    Nothdurft, Florian; Heinroth, Tobias; Minker, Wolfgang

    2016-01-01

    This book covers key topics in the field of intelligent ambient adaptive systems. It focuses on the results worked out within the framework of the ATRACO (Adaptive and TRusted Ambient eCOlogies) project. The theoretical background, the developed prototypes, and the evaluated results form a fertile ground useful for the broad intelligent environments scientific community as well as for industrial interest groups. The new edition provides: Chapter authors comment on their work on ATRACO with final remarks as viewed in retrospective Each chapter has been updated with follow-up work emerging from ATRACO An extensive introduction to state-of-the-art statistical dialog management for intelligent environments Approaches are introduced on how Trust is reflected during the dialog with the system.

  10. Small and Long Regulatory RNAs in the Immune System and Immune Diseases

    OpenAIRE

    Stachurska, Anna; Zorro, Maria M.; van der Sijde, Marijke R.; Withoff, Sebo

    2014-01-01

    Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors. However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs...

  11. Extensible Adaptive System for STEM Learning

    Science.gov (United States)

    2013-07-16

    Copyright 2013 Raytheon BBN Technologies Corp. All Rights Reserved ONR STEM Grand Challenge Extensible Adaptive System for STEM Learning ...Contract # N00014-12-C-0535 Raytheon BBN Technologies Corp. (BBN) Reference # 14217 In partial fulfillment of contract deliverable item # A001...Quarterly Progress Report #2 April 7, 2013 –July 6, 2013 Submitted July 16, 2013 BBN Technical POC: John Makhoul Raytheon BBN Technologies

  12. Adaptive stimulus optimization for sensory systems neuroscience

    OpenAIRE

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system...

  13. Mapping the Fetomaternal Peripheral Immune System at Term Pregnancy.

    Science.gov (United States)

    Fragiadakis, Gabriela K; Baca, Quentin J; Gherardini, Pier Federico; Ganio, Edward A; Gaudilliere, Dyani K; Tingle, Martha; Lancero, Hope L; McNeil, Leslie S; Spitzer, Matthew H; Wong, Ronald J; Shaw, Gary M; Darmstadt, Gary L; Sylvester, Karl G; Winn, Virginia D; Carvalho, Brendan; Lewis, David B; Stevenson, David K; Nolan, Garry P; Aghaeepour, Nima; Angst, Martin S; Gaudilliere, Brice L

    2016-12-01

    Preterm labor and infections are the leading causes of neonatal deaths worldwide. During pregnancy, immunological cross talk between the mother and her fetus is critical for the maintenance of pregnancy and the delivery of an immunocompetent neonate. A precise understanding of healthy fetomaternal immunity is the important first step to identifying dysregulated immune mechanisms driving adverse maternal or neonatal outcomes. This study combined single-cell mass cytometry of paired peripheral and umbilical cord blood samples from mothers and their neonates with a graphical approach developed for the visualization of high-dimensional data to provide a high-resolution reference map of the cellular composition and functional organization of the healthy fetal and maternal immune systems at birth. The approach enabled mapping of known phenotypical and functional characteristics of fetal immunity (including the functional hyperresponsiveness of CD4 + and CD8 + T cells and the global blunting of innate immune responses). It also allowed discovery of new properties that distinguish the fetal and maternal immune systems. For example, examination of paired samples revealed differences in endogenous signaling tone that are unique to a mother and her offspring, including increased ERK1/2, MAPK-activated protein kinase 2, rpS6, and CREB phosphorylation in fetal Tbet + CD4 + T cells, CD8 + T cells, B cells, and CD56 lo CD16 + NK cells and decreased ERK1/2, MAPK-activated protein kinase 2, and STAT1 phosphorylation in fetal intermediate and nonclassical monocytes. This highly interactive functional map of healthy fetomaternal immunity builds the core reference for a growing data repository that will allow inferring deviations from normal associated with adverse maternal and neonatal outcomes. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    Science.gov (United States)

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  15. Complement: a key system for immune surveillance and homeostasis.

    Science.gov (United States)

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D

    2010-09-01

    Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

  16. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  17. Energy efficient security in MANETs: a comparison of cryptographic and artificial immune systems

    International Nuclear Information System (INIS)

    Mazhar, N.

    2010-01-01

    MANET is characterized by a set of mobile nodes in an inherently insecure environment, having limited battery capacities. Provisioning of energy efficient security in MANETs is, therefore, an open problem for which a number of solutions have been proposed. In this paper, we present an overview and comparison of the MANET security at routing layer by using the cryptographic and Artificial Immune System (AIS) approaches. The BeeAdHoc protocol, which is a Bio-inspired MANET routing protocol based on the foraging principles of honey bee colony, is taken as case study. We carry out an analysis of the three security frameworks that we have proposed earlier for securing BeeAdHoc protocol; one based on asymmetric key encryption, i.e BeeSec, and the other two using the AIS approach, i.e BeeAIS based on self non-self discrimination from adaptive immune system and BeeAIS-DC based on Dendritic Cell (DC) behavior from innate immune system. We extensively evaluate the performance of the three protocols through network simulations in ns-2 and compare with BeeAdHoc, the base protocol, as well as with state-of-the-art MANET routing protocols DSR and AODV. Our results clearly indicate that AIS based systems provide security at much lower cost to energy as compared with the cryptographic systems. Moreover, the use of dendritic cells and danger signals instead of the classical self non-self discrimination allows to detect the non-self antigens with greater accuracy. Based on the results of this investigation, we also propose a composite AIS model for BeeAdHoc security by combining the concepts from both the adaptive and the innate immune systems by modelling the attributes and behavior of the B-cells and DCs. (author)

  18. Investigating immune system aging: system dynamics and agent-based modeling

    OpenAIRE

    Figueredo, Grazziela; Aickelin, Uwe

    2010-01-01

    System dynamics and agent based simulation models can\\ud both be used to model and understand interactions of entities within a population. Our modeling work presented here is concerned with understanding the suitability of the different types of simulation for the immune system aging problems and comparing their results. We are trying to answer questions such as: How fit is the immune system given a certain age? Would an immune boost be of therapeutic value, e.g. to improve the effectiveness...

  19. The contribution of the immune system to parturition

    Directory of Open Access Journals (Sweden)

    R. De Jongh

    1996-01-01

    Full Text Available The immune system plays a central role before and during parturition, including the main physiological processes of parturition: uterine contractions and cervical ripening. The immune system comprises white blood cells and their secretions. Polymorphonuclear cells and macrophages invade the cervical tissue and release compounds, such as oxygen radicals and enzymes, which break down the cervical matrix to allow softening and dilatation. During this inflammatory process, white blood cells undergo chemotaxis, adherence to endothelial cells, diapedesis, migration and activation. Factors that regulate white blood cell invasion and secretion include cytokines such as tumour necrosis factor and interleukins. Glucocorticoids, sex hormones and prostaglandins, affect cytokine synthesis. They also modulate the target cells, resulting in altered responses to cytokines. On the other hand, the immune system has profound effects on the hormonal system and prostaglandin synthesis. In animals, nitric oxide has marked effects on uterine quiescence during gestation. At the same time, it plays an important role in regulating the vascular tone of uterine arteries and has anti-adhesive effects on leukocytes. Cytokines are found in amniotic fluid, and in maternal and foetal serum at term and preterm. Several intrauterine cells have been shown to produce these cytoldnes. Since neither white blood cells, cytokines nor nitric oxide seem to be the ultimate intermediate for human parturition, the immune system is an additional but obligatory and underestimated component in the physiology of delivery. Scientists, obstetricians and anaesthesiologists must thus be aware of these processes.

  20. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.