WorldWideScience

Sample records for adaptive immune system

  1. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  2. Scaling of Adaptive Immune System Repertoires

    Science.gov (United States)

    Sethna, Zachary; Elhanati, Yuval; Callan, Curtis

    The adaptive immune system has evolved a stochastic method called VDJ recombination for the purpose of generating the necessary receptor diversity to identify all foreign pathogens. Recent work characterizing the probability distributions of this VDJ recombination process in mouse and human T-cell repertoires shows a massive difference in the corresponding diversities. The increased diversity of the human repertoire is wholly driven by an increase in the average number of nucleotide insertions in VDJ recombination. In this talk the impact of different insertion profiles is quantified and a model for the scaling of such repertoires with respect to the size of the repertoire is laid out.

  3. Integration of the immune system: a complex adaptive supersystem

    Science.gov (United States)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  4. Functional aspects of the adaptive immune system in arthritis

    NARCIS (Netherlands)

    Jansen, D.T.S.L.

    2017-01-01

    The adaptive immune system is the part of the immune system that is highly specific and generates memory resulting in a fast and specific immune response upon a second infection with the same pathogen. However, when this response is specific for a part of the body itself instead of a pathogen,

  5. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.

    Science.gov (United States)

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-04-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  6. The Adaptive Immune System of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  7. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  8. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  9. Memorizing innate instructions requires a sufficiently specific adaptive immune system.

    Science.gov (United States)

    Borghans, José A M; De Boer, Rob J

    2002-05-01

    During its primary encounter with a pathogen, the immune system has to decide which type of immune response is most appropriate. Based on signals from the innate immune system and the immunological context in which the pathogen is presented, responding lymphocytes will adopt a particular phenotype, e.g. secrete a particular profile of cytokines. Once stimulated, lymphocytes store the appropriate type of response by differentiating from a naive to a memory phenotype. This allows the appropriate type of immune reaction to be regenerated upon re-stimulation of those memory clones. We developed a computer simulation model in which cross-reacting effector/memory clones contribute to the immunological context of pathogens. If a pathogen is recognized by both naive clones and pre-existing effector/memory clones, the naive lymphocytes adopt the effector mechanism of the memory clone. The adaptive immune system thereby stores immunological decisions and somatically learns to induce the right type of immune response to pathogens sharing epitopes. The influence of effector/memory lymphocytes may be detrimental when they cross-react to new pathogens that require a different kind of immune response. Here, we show that the immune system needs to be sufficiently specific to avoid such mistakes and to profit from the information that is stored in effector/memory lymphocytes. Repertoire diversity is required to reconcile this specificity with reactivity against many pathogens.

  10. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  11. A role of the adaptive immune system in glucose homeostasis.

    Science.gov (United States)

    Bronsart, Laura L; Contag, Christopher H

    2016-01-01

    The immune system, including the adaptive immune response, has recently been recognized as having a significant role in diet-induced insulin resistance. In this study, we aimed to determine if the adaptive immune system also functions in maintaining physiological glucose homeostasis in the absence of diet-induced disease. SCID mice and immunocompetent control animals were phenotypically assessed for variations in metabolic parameters and cytokine profiles. Additionally, the glucose tolerance of SCID and immunocompetent control animals was assessed following introduction of a high-fat diet. SCID mice on a normal chow diet were significantly insulin resistant relative to control animals despite having less fat mass. This was associated with a significant increase in the innate immunity-stimulating cytokines granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP1), and MCP3. Additionally, the SCID mouse phenotype was exacerbated in response to a high-fat diet as evidenced by the further significant progression of glucose intolerance. These results support the notion that the adaptive immune system plays a fundamental biological role in glucose homeostasis, and that the absence of functional B and T cells results in disruption in the concentrations of various cytokines associated with macrophage proliferation and recruitment. Additionally, the absence of functional B and T cells is not protective against diet-induced pathology.

  12. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Inference of selection in the adaptive immune system

    Science.gov (United States)

    Elhanati, Yuval; Callan, Curtis; Mora, Thierry; Walczak, Alexandra

    The adaptive immune system can recognize many threats by maintaining a large diversity of immune cells with different membrane receptors. This receptor diversity is based on initial random sequence generation, using a recombination mechanism, followed by functional selection stages via interactions with self and foreign peptides. These selection processes shape the initially random receptor ensemble into a functional repertoire that can bind many foreign pathogens. We analyzed high throughput data of human receptor sequences to infer the selection pressures on particular elements of the receptors using maximum likelihood methods. We can quantify the global and site-specific selection pressures and disentangle selection on amino acids from biases in the generated repertoire. We find correlations between generation and initial selection of receptors, and a significant reduction of diversity during selection, suggesting natural evolution of the generating mechanisms.

  14. Memorizing innate instructions requires a sufficiently specific adaptive immune system

    NARCIS (Netherlands)

    Borghans, J.A.M.; Boer, R.J. de

    2002-01-01

    During its primary encounter with a pathogen, the immune system has to decide which type of immune response is most appropriate. Based on signals from the innate immune system and the immunological context in which the pathogen is presented, responding lymphocytes will adopt a particular phenotype,

  15. Linking autoimmunity to the origin of the adaptive immune system.

    Science.gov (United States)

    Bayersdorf, Robert; Fruscalzo, Arrigo; Catania, Francesco

    2018-01-01

    In jawed vertebrates, the adaptive immune system (AIS) cooperates with the innate immune system (IIS) to protect hosts from infections. Although targeting non-self-components, the AIS also generates self-reactive antibodies which, when inadequately counter-selected, can give rise to autoimmune diseases (ADs). ADs are on the rise in western countries. Why haven't ADs been eliminated during the evolution of a ∼500 million-year old system? And why have they become more frequent in recent decades? Self-recognition is an attribute of the phylogenetically more ancient IIS and empirical data compellingly show that some self-reactive antibodies, which are classifiable as elements of the IIS rather then the AIS, may protect from (rather than cause) ADs. Here, we propose that the IIS's self-recognition system originally fathered the AIS and, as a consequence of this relationship, its activity is dampened in hygienic environments. Rather than a mere breakdown or failure of the mechanisms of self-tolerance, ADs might thus arise from architectural constraints.

  16. The role of the adaptive immune system in regulation of gut microbiota.

    Science.gov (United States)

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-07-01

    The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Diversity Against Adversity: How Adaptive Immune System Evolves Potent Antibodies

    Science.gov (United States)

    Heo, Muyoung; Zeldovich, Konstantin B.; Shakhnovich, Eugene I.

    2011-07-01

    Adaptive immunity is an amazing mechanism, whereby new protein functions—affinity of antibodies (Immunoglobulins) to new antigens—evolve through mutation and selection in a matter of a few days. Despite numerous experimental studies, the fundamental physical principles underlying immune response are still poorly understood. In considerable departure from past approaches, here, we propose a microscopic multiscale model of adaptive immune response, which consists of three essential players: The host cells, viruses, and B-cells in Germinal Centers (GC). Each moiety carries a genome, which encodes proteins whose stability and interactions are determined from their sequences using laws of Statistical Mechanics, providing an exact relationship between genomic sequences and strength of interactions between pathogens and antibodies and antibodies and host proteins (autoimmunity). We find that evolution of potent antibodies (the process known as Affinity Maturation (AM)) is a delicate balancing act, which has to reconcile the conflicting requirements of protein stability, lack of autoimmunity, and high affinity of antibodies to incoming antigens. This becomes possible only when antibody producing B cells elevate their mutation rates (process known as Somatic Hypermutation (SHM)) to fall into a certain range—not too low to find potency increasing mutations but not too high to destroy stable Immunoglobulins and/or already achieved affinity. Potent antibodies develop through clonal expansion of initial B cells expressing marginally potent antibodies followed by their subsequent affinity maturation through mutation and selection. As a result, in each GC the population of mature potent Immunoglobulins is monoclonal being ancestors of a single cell from initial (germline) pool. We developed a simple analytical theory, which provides further rationale to our findings. The model and theory reveal the molecular factors that determine the efficiency of affinity maturation

  18. CRISPR-Cas adaptive immune systems of the sulfolobales

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  19. Senescence of the adaptive immune system in health and aging-associated autoimmune disease

    NARCIS (Netherlands)

    van der Geest, Kornelis Stephan Mario

    2015-01-01

    Aging of the immune system may contribute to the development of aging-associated autoimmune diseases, such as giant cell arteritis, polymyalgia rheumatica and rheumatoid arthritis. The aim of this thesis was to identify aging-dependent changes of the adaptive immune system that promote autoimmunity

  20. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  1. Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context

    OpenAIRE

    Iranzo, Jaime; Lobkovsky, Alexander E.; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRI...

  2. Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System

    OpenAIRE

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2014-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time....

  3. No Compensatory Relationship between the Innate and Adaptive Immune System in Wild-Living European Badgers.

    Directory of Open Access Journals (Sweden)

    Yung Wa Sin

    Full Text Available The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC diversity correlated with a lower leukocyte coping capacity (LCC, compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles, we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual's leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.

  4. Generation of individual diversity: a too neglected fundamental property of adaptive immune system

    Directory of Open Access Journals (Sweden)

    Eric eMuraille

    2014-05-01

    Full Text Available The fitness gains resulting from development of the adaptive immune system (AIS during evolution are still the subject of hot debate. A large random repertoire of antigenic receptors is costly to develop and could be the source of autoimmune reactions. And yet, despite their drawbacks, AIS-like systems seem to have been independently acquired in several phyla of metazoans with very different anatomies, longevities and lifestyles. This article is a speculative attempt to explore the selective pressures which favoured this striking convergent evolution. It is well known that the AIS enables an organism to produce a specific immune response against all natural or artificial antigenic structures. However, it is frequently neglected that this response is highly variable among individuals. In practice, each individual possesses a private adaptive immune repertoire. This individualisation of immune defences implies that invasion and escape immune mechanisms developed by pathogens will certainly not always be successful as the specific targets and organisation of the immune response are somewhat unpredictable. In a population where individuals display heterogeneous immune responses to infection, the probability that a pathogen is able to infect all individuals could be reduced compared to a homogeneous population. This suggests that the individual diversity of the immune repertoire is not a by-product of the AIS but of its fundamental properties and could be in part responsible for repeated selection and conservation of the AIS during metazoan evolution. The capacity of the AIS to improve the management of cooperative or parasitic symbiotic relationships at the individual level could be a secondary development due to its progressive integration into the innate immune system. This hypothesis constitutes a new scenario for AIS emergence and explains the selection of MHC restriction and MHC diversification.

  5. Chronic grouped social restriction triggers long-lasting immune system adaptations.

    Science.gov (United States)

    Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei

    2017-05-16

    Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.

  6. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    Full Text Available Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer for harnessing the adjuvant potential of natural killer T (NKT cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases.

  7. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    Science.gov (United States)

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S; Anthony, Scott M; Sastry, K Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases.

  8. Adaptive Immunity to Fungi

    Science.gov (United States)

    Wüthrich, Marcel; Deepe, George S.; Klein, Bruce

    2013-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780

  9. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  10. Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shieh

    2014-04-01

    Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.

  11. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    International Nuclear Information System (INIS)

    Han, Pu; Niestemski, Liang Ren; Deem, Michael W; Barrick, Jeffrey E

    2013-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  12. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Science.gov (United States)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  13. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  15. No compensatory relationship between the innate and adaptive immune system in wild-living European badgers

    NARCIS (Netherlands)

    Sin, Yung Wa; Newman, Chris; Dugdale, Hannah L.; Buesching, Christina; Mannarelli, Maria Elena; Annavi, Geetha; Burke, Terry; MacDonald, David W.

    2016-01-01

    The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a

  16. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context.

    Science.gov (United States)

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2013-09-01

    A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRISPR-Cas grows due to the increase of the host and, accordingly, the virus population size. Above a threshold value of total viral diversity, which is proportional to the viral mutation rate and population size, the CRISPR-Cas system becomes ineffective and is lost due to the associated fitness cost. Our previous modeling study has suggested that the ubiquity of CRISPR-Cas in hyperthermophiles, which contrasts its comparative low prevalence in mesophiles, is due to lower rates of mutation fixation in thermal habitats. The present findings offer a complementary, simpler perspective on this contrast through the larger population sizes of mesophiles compared to hyperthermophiles, because of which CRISPR-Cas can become ineffective in mesophiles. The efficacy of CRISPR-Cas sharply increases with the number of proto-spacers per viral genome, potentially explaining the low information content of the proto-spacer-associated motif (PAM) that is required for spacer acquisition by CRISPR-Cas because a higher specificity would restrict the number of spacers available to CRISPR-Cas, thus hampering immunity. The very existence of the PAM might reflect the tradeoff between the requirement of diverse spacers for efficient immunity and avoidance of autoimmunity.

  17. Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems.

    Science.gov (United States)

    Patterson, Adrian G; Jackson, Simon A; Taylor, Corinda; Evans, Gary B; Salmond, George P C; Przybilski, Rita; Staals, Raymond H J; Fineran, Peter C

    2016-12-15

    Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in Serratia cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  19. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    Science.gov (United States)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B-B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  20. The placenta in toxicology. Part II : Systemic and local immune adaptations in pregnancy

    NARCIS (Netherlands)

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic

  1. Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity.

    Science.gov (United States)

    Nice, Timothy J; Osborne, Lisa C; Tomov, Vesselin T; Artis, David; Wherry, E John; Virgin, Herbert W

    2016-06-01

    In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs) play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV) replicates in dendritic cells (DCs) and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance.

  2. Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity.

    Directory of Open Access Journals (Sweden)

    Timothy J Nice

    2016-06-01

    Full Text Available In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV replicates in dendritic cells (DCs and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance.

  3. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  4. The Immune System Out of Shape? : Shaping of adaptive immunity by persistent viral infections in young children

    NARCIS (Netherlands)

    D. van den Heuvel (Diana)

    2015-01-01

    markdownabstractDuring pregnancy, a fetus is protected from a large part of the pathogens of the environment. As a result, a newborn’s immune system is immature and unexperienced, and mainly composed of innate leukocytes and naive lymphocytes. Immunological memory, and concomitant functional

  5. FEATURES OF INNATE AND ADAPTIVE IMMUNITY IN PRETERM INFANTS WITH HYPOXIC-ISCHEMIC LESIONS OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    L. S. Ust’janceva

    2017-01-01

    Full Text Available For abstract to evaluate the clinical adaptation and immunological parameters in infants with severe hypoxic-ischemic lesions of the central nervous system, we examined small premature, extremely low birth weight (ELBW infants with gestational age (GA of 24 to 27,6 and infants with gestational age of 28 to 31 weeks (group 1, n=26 and group 2, n=16. The control group consisted of 15 full-term babies with uncomplicated early period of adaptation, born from apparently healthy women. The immune system of preterm infants at birth, regardless of their gestational age and birth weight, is characterized by decrease of the absolute number of white blood cells, increase of the percentage of lymphocytes and the number of NK-cells, as well as the prevalence of Th1-dependent immune response (increased level of γ-interferon against decrease in levels of interleukine – 1β and interleukine – 4. A specific feature of the immune response of extremely low birth weight infants is abnormal interaction between innate immunity cells and adaptive immunity cells, which is manifested in reduction of the percentage of regulatory CD4+ cells associated with inhibition of the functional activity of T-cells (CD4+CD25+ and monocytes (CD14+HLA-DR+. The decrease in the number of circulating ferritin levels indicates a predisposition of extremely premature infants to viral and bacterial infections. 

  6. ABC transporters in adaptive immunity.

    Science.gov (United States)

    Seyffer, Fabian; Tampé, Robert

    2015-03-01

    ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Maternal immune system adaptation to pregnancy - a potential influence on the course of diabetic retinopathy

    OpenAIRE

    Ka?telan, Snje?ana; Tomi?, Martina; Pavan, Josip; Ore?kovi?, Slavko

    2010-01-01

    Abstract Background Progression of diabetic retinopathy occurs at least temporarily during pregnancy. Although the cause of this progression is not entirely understood, the immune phenomenon and chronic inflammation may play a significant role. During pregnancy in order to avoid fetus rejection, certain components of the immune system that are knowingly implicated in the pathogenesis of diabetic retinopathy are activated including generalized leukocyte activation and an increase in certain cy...

  8. Genome complexity in the coelacanth is reflected in its adaptive immune system

    Science.gov (United States)

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  9. ImmuneDB: a system for the analysis and exploration of high-throughput adaptive immune receptor sequencing data.

    Science.gov (United States)

    Rosenfeld, Aaron M; Meng, Wenzhao; Luning Prak, Eline T; Hershberg, Uri

    2017-01-15

    As high-throughput sequencing of B cells becomes more common, the need for tools to analyze the large quantity of data also increases. This article introduces ImmuneDB, a system for analyzing vast amounts of heavy chain variable region sequences and exploring the resulting data. It can take as input raw FASTA/FASTQ data, identify genes, determine clones, construct lineages, as well as provide information such as selection pressure and mutation analysis. It uses an industry leading database, MySQL, to provide fast analysis and avoid the complexities of using error prone flat-files. ImmuneDB is freely available at http://immunedb.comA demo of the ImmuneDB web interface is available at: http://immunedb.com/demo CONTACT: Uh25@drexel.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Alternative adaptive immunity in invertebrates

    DEFF Research Database (Denmark)

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticity...

  11. Adaptive Immunity to Cryptococcus neoformans Infections

    Directory of Open Access Journals (Sweden)

    Liliane Mukaremera

    2017-11-01

    Full Text Available The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease.

  12. Sublingual Vaccination Induces Mucosal and Systemic Adaptive Immunity for Protection against Lung Tumor Challenge

    OpenAIRE

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S.; Anthony, Scott M.; Sastry, K. Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge...

  13. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  14. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system?

    Science.gov (United States)

    Del Mar Amador, Maria; Vandenberghe, Nadia; Berhoune, Nawel; Camdessanché, Jean-Philippe; Gronier, Sophie; Delmont, Emilien; Desnuelle, Claude; Cintas, Pascal; Pittion, Sophie; Louis, Sarah; Demeret, Sophie; Lenglet, Timothée; Meininger, Vincent; Salachas, François; Pradat, Pierre-François; Bruneteau, Gaëlle

    2016-06-01

    Myasthenia gravis is an autoimmune disorder affecting neuromuscular junctions that has been associated with a small increased risk of amyotrophic lateral sclerosis (ALS). Here, we describe a retrospective series of seven cases with a concomitant diagnosis of ALS and myasthenia gravis, collected among the 18 French reference centers for ALS in a twelve year period. After careful review, only six patients strictly met the diagnostic criteria for both ALS and myasthenia gravis. In these patients, limb onset of ALS was reported in five (83%) cases. Localization of myasthenia gravis initial symptoms was ocular in three (50%) cases, generalized in two (33%) and bulbar in one (17%). Median delay between onset of the two conditions was 19 months (6-319 months). Anti-acetylcholine receptor antibodies testing was positive in all cases. All patients were treated with riluzole and one had an associated immune-mediated disease. In the one last ALS case, the final diagnosis was false-positivity for anti-acetylcholine receptor antibodies. The co-occurrence of ALS and myasthenia gravis is rare and requires strict diagnostic criteria. Its demonstration needs thoughtful interpretation of electrophysiological results and exclusion of false positivity for myasthenia gravis antibody testing in some ALS cases. This association may be triggered by a dysfunction of adaptive immunity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Host adaptive immunity alters gut microbiota.

    Science.gov (United States)

    Zhang, Husen; Sparks, Joshua B; Karyala, Saikumar V; Settlage, Robert; Luo, Xin M

    2015-03-01

    It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity.

  16. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

    Science.gov (United States)

    Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A

    2017-04-06

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.

  17. Maternal immune system adaptation to pregnancy - a potential influence on the course of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Pavan Josip

    2010-10-01

    Full Text Available Abstract Background Progression of diabetic retinopathy occurs at least temporarily during pregnancy. Although the cause of this progression is not entirely understood, the immune phenomenon and chronic inflammation may play a significant role. During pregnancy in order to avoid fetus rejection, certain components of the immune system that are knowingly implicated in the pathogenesis of diabetic retinopathy are activated including generalized leukocyte activation and an increase in certain cytokine plasma levels. Activated leukocytes with up regulated adhesion molecules have an increased potential to bind to the endothelium cells of blood vessels. Leukocyte-endothelial interaction and the consequent leukostasis with capillary occlusion, ischemia and vascular leakage have a substantial role in the development of diabetic retinopathy. Furthermore, certain increased cytokines are known to cause blood-retinal-barrier breakdown whilst others promote angiogenic and fibrovascular proliferation and thereby can also be implicated in the pathogenesis of this diabetic complication. Presentation of the hypothesis We hypothesized that the activation of the immune system during gestation may have an influence on the course of retinopathy in pregnant diabetic women. Testing the hypothesis We suggest two prospective follow up studies conducted on women with type 1 diabetes mellitus. The first study would include a group of non-pregnant women and a group of diabetic women undergoing normal pregnancy matched for age and duration of diabetes. In the second study pregnant women would be divided into two groups: one with normal pregnancy and the other with preeclampsia. The procedure and data collection in both studies will be identical: a complete ophthalmological examination, glycaemic control, blood pressure measurement and venous blood samples for the determination of plasma levels of cytokines (TNF-alpha, IL-1beta, IL-6, IL-8 and adhesion molecules (ICAM-1

  18. Maternal immune system adaptation to pregnancy--a potential influence on the course of diabetic retinopathy.

    Science.gov (United States)

    Kaštelan, Snježana; Tomić, Martina; Pavan, Josip; Orešković, Slavko

    2010-10-21

    Progression of diabetic retinopathy occurs at least temporarily during pregnancy. Although the cause of this progression is not entirely understood, the immune phenomenon and chronic inflammation may play a significant role. During pregnancy in order to avoid fetus rejection, certain components of the immune system that are knowingly implicated in the pathogenesis of diabetic retinopathy are activated including generalized leukocyte activation and an increase in certain cytokine plasma levels. Activated leukocytes with up regulated adhesion molecules have an increased potential to bind to the endothelium cells of blood vessels. Leukocyte-endothelial interaction and the consequent leukostasis with capillary occlusion, ischemia and vascular leakage have a substantial role in the development of diabetic retinopathy. Furthermore, certain increased cytokines are known to cause blood-retinal-barrier breakdown whilst others promote angiogenic and fibrovascular proliferation and thereby can also be implicated in the pathogenesis of this diabetic complication. We hypothesized that the activation of the immune system during gestation may have an influence on the course of retinopathy in pregnant diabetic women. We suggest two prospective follow up studies conducted on women with type 1 diabetes mellitus. The first study would include a group of non-pregnant women and a group of diabetic women undergoing normal pregnancy matched for age and duration of diabetes. In the second study pregnant women would be divided into two groups: one with normal pregnancy and the other with preeclampsia. The procedure and data collection in both studies will be identical: a complete ophthalmological examination, glycaemic control, blood pressure measurement and venous blood samples for the determination of plasma levels of cytokines (TNF-alpha, IL-1beta, IL-6, IL-8) and adhesion molecules (ICAM-1, VCAM-1). Considering the present assumption, the gestational immune activation could be

  19. Maternal immune system adaptation to pregnancy - a potential influence on the course of diabetic retinopathy

    Science.gov (United States)

    2010-01-01

    Background Progression of diabetic retinopathy occurs at least temporarily during pregnancy. Although the cause of this progression is not entirely understood, the immune phenomenon and chronic inflammation may play a significant role. During pregnancy in order to avoid fetus rejection, certain components of the immune system that are knowingly implicated in the pathogenesis of diabetic retinopathy are activated including generalized leukocyte activation and an increase in certain cytokine plasma levels. Activated leukocytes with up regulated adhesion molecules have an increased potential to bind to the endothelium cells of blood vessels. Leukocyte-endothelial interaction and the consequent leukostasis with capillary occlusion, ischemia and vascular leakage have a substantial role in the development of diabetic retinopathy. Furthermore, certain increased cytokines are known to cause blood-retinal-barrier breakdown whilst others promote angiogenic and fibrovascular proliferation and thereby can also be implicated in the pathogenesis of this diabetic complication. Presentation of the hypothesis We hypothesized that the activation of the immune system during gestation may have an influence on the course of retinopathy in pregnant diabetic women. Testing the hypothesis We suggest two prospective follow up studies conducted on women with type 1 diabetes mellitus. The first study would include a group of non-pregnant women and a group of diabetic women undergoing normal pregnancy matched for age and duration of diabetes. In the second study pregnant women would be divided into two groups: one with normal pregnancy and the other with preeclampsia. The procedure and data collection in both studies will be identical: a complete ophthalmological examination, glycaemic control, blood pressure measurement and venous blood samples for the determination of plasma levels of cytokines (TNF-alpha, IL-1beta, IL-6, IL-8) and adhesion molecules (ICAM-1, VCAM-1). Implications of the

  20. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    Directory of Open Access Journals (Sweden)

    Roger A. Garrett

    2015-03-01

    Full Text Available The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.

  1. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].

    Science.gov (United States)

    Sun, Dongchang; Qiu, Juanping

    2016-01-04

    To better adapt to the environment, prokaryocyte can take up exogenous genes (from bacteriophages, plasmids or genomes of other species) through horizontal gene transfer. Accompanied by the acquisition of exogenous genes, prokaryocyte is challenged by the invasion of 'selfish genes'. Therefore, to protect against the risk of gene transfer, prokaryocyte needs to establish mechanisms for selectively taking up or degrading exogenous DNA. In recent years, researchers discovered an adaptive immunity, which is mediated by the small RNA guided DNA degradation, prevents the invasion of exogenous genes in prokaryocyte. During the immune process, partial DNA fragments are firstly integrated.to the clustered regularly interspaced short palindromic repeats (CRISPR) located within the genome DNA, and then the mature CRISPR RNA transcript and the CRISPR associated proteins (Cas) form a complex CRISPR/Cas for degrading exogenous DNA. In this review, we will first briefly describe the CRISPR/Cas systems and then mainly focus on the recent advances of the function mechanism and the regulation mechanism of the type I-E CRISPR/Cas system in Escherichia coli.

  2. Immune System Quiz

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! Partner Message ...

  3. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?

    Science.gov (United States)

    Doty, Kevin R; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2015-08-18

    Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

    Science.gov (United States)

    Graham, Deborah S Cunninghame; Pinder, Christopher L; Tombleson, Philip; Behrens, Timothy W; Martín, Javier; Fairfax, Benjamin P; Knight, Julian C; Chen, Lingyan; Replogle, Joseph; Syvänen, Ann-Christine; Rönnblom, Lars; Graham, Robert R; Wither, Joan E; Rioux, John D; Alarcón-Riquelme, Marta E; Vyse, Timothy J

    2015-01-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE. PMID:26502338

  5. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  6. Role of Hp system in adaptation of specific immunity indices to the influence of moderate physical activity

    Directory of Open Access Journals (Sweden)

    V. L. Sokolenko

    2014-04-01

    Full Text Available The aim of this study is to determine the role of haptoglobin phenotype in realization of adaptive responses of cellular and humoral immunity indices to moderate exercise caused by physical training. The study was implemented in the group of second-year students aged 18–20 who lived in the same climatic and geographical conditions for a long period of time. The students didn’t have any acute or chronic diseases and attended the main group of physical training. 60 persons were investigated. Immune system indices analysis was carried out in September before and after physical training lessons. Leukocyte level was calculated using hemocytometer, lymphocyte level was determined on the base of blood smear (dyeing for Romanowsky–Giemsa. Expression of surface antigene by peripheral blood lymphocyte was determined by immuno-fluorescence method with the use of monoclonal antibodies. The level of immunoglobulin in plasma was determined by radial immunodiffusion or Mancini method. To assess the phenotype of haptoglobin (Hp we used the method of electrophoresis in starch gels. In the course of research we have detected the reduction of the relative and total number of lymphocytes regardless of haptoglobin phenotype in the group of students after physical training; this is a typical feature of the initial stages of stress response. We observed statistically reliable decrease in total number of analyzed subpopulations of T-lymphocyte in the group of students with phenotype Hp2-2 which was obviously the result of changes in the general level of lymphocytes in the peripheral blood. In the group of students with phenotype Hp1-1 absolute number of T-lymphocyte with phenotype CD3+ and CD4+ is reduced. In the group of students with phenotype Hp2-1 we have seen only the tendency to decrease in functional mature T-lymphocyte and their helper subpopulation. In the group of students with phenotype Hp2-2 the relative number of helper T-lymphocyte with the

  7. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  8. The role of the adaptive immune system in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation.

    Science.gov (United States)

    Ranganathan, Kavitha; Agarwal, Shailesh; Cholok, David; Loder, Shawn; Li, Jonathan; Sung Hsieh, Hsiao Hsin; Wang, Stewart C; Buchman, Steven R; Levi, Benjamin

    2016-11-01

    Heterotopic ossification (HO) is the pathologic process of extraskeletal bone formation. Although the exact etiology remains unknown, inflammation appears to catalyze disease progression. The goal of this study is to determine the impact of the adaptive immune system on HO. HO was induced in 8-wk-old control C57BL/6 and immunocompromised Rag1tm1Mom (Rag1 KO) male mice deficient in B- and T-lymphocytes via combined Achilles tenotomy and burn injury. Microcomputed tomography quantified the extent of HO formation at the tenotomy site. Adipose-derived mesenchymal stem cells were harvested to evaluate osteogenic differentiation potential. Areas of developing HO demonstrated substantial enrichment of CD45 + leukocytes at 3 wk after injury. HO from Rag1 KO mice was substantially less mature with foci of cartilage and disorganized trabecular bone present 12 wk after injury. Rag1 KO mice formed 60% less bone compared to immunocompetent controls (4.67 ± 1.5 mm versus 7.76 ± 0.65 mm; P = 0.001). Tartrate-resistant acid phosphatase staining and immunofluorescent analysis of osteoprotegerin and nuclear factor kappa-light-chain-enhancer of activated B cells demonstrated no appreciable difference in osteoclast number or activation. Alizarin red staining in vitro demonstrated a significant decrease in osteogenic potential in immunocompromised mice compared to controls (29.1 ± 0.54 mm versus 12.1 ± 0.14 mm; P role for the adaptive immune system in the development of HO. In the absence of mature B- and T-lymphocytes, HO growth and development are attenuated. Furthermore, we demonstrate that mesenchymal populations from B- and T-cell deficient mice are inherently less osteogenic. This study identifies a potential therapeutic role for modulation of the adaptive immune system in the treatment of HO. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Immune System (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Immune System KidsHealth / For Parents / Immune System What's in this ... can lead to illness and infection. About the Immune System The immune system is the body's defense against ...

  10. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems

    Directory of Open Access Journals (Sweden)

    Arico Maurizo

    2011-06-01

    Full Text Available Abstract Background Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs, this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK and invariant NKT (iNKT cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. Results NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked' with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. Conclusions These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system direct secretory lysosomes to

  11. Immune System

    Science.gov (United States)

    ... jobs to do: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses ... like the soldiers, destroying the invaders that the intelligence system has ... that invades the body is called an antigen (pronounced: AN-tih-jun). ...

  12. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-01-01

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45 high CD11b + ) and CD8 + T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8 + T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  13. Novel adaptive and innate immunity targets in hypertension.

    Science.gov (United States)

    Abais-Battad, Justine M; Dasinger, John Henry; Fehrenbach, Daniel J; Mattson, David L

    2017-06-01

    Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Our Immune System

    Science.gov (United States)

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note ... who are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  15. A dynamical model of the adaptive immune system: effects of cells promiscuity, antigens and B-B interactions

    Science.gov (United States)

    Bartolucci, Silvia; Annibale, Alessia

    2015-08-01

    We analyse a minimal model for the primary response in the adaptive immune system comprising three different players: antigens, T and B cells. We assume B-T interactions to be diluted and sampled locally from heterogeneous degree distributions, which mimic B cells receptors' promiscuity. We derive dynamical equations for the order parameters quantifying the B cells activation and study the nature and stability of the stationary solutions using linear stability analysis and Monte Carlo simulations.The system's behaviour is studied in different scaling regimes of the number of B cells, dilution in the interactions and number of antigens. Our analysis shows that: (i) B cells activation depends on the number of receptors in such a way that cells with an insufficient number of triggered receptors cannot be activated; (ii) idiotypic (i.e. B-B) interactions enhance parallel activation of multiple clones, improving the system's ability to fight different pathogens in parallel; (iii) the higher the fraction of antigens within the host the harder is for the system to sustain parallel signalling to B cells, crucial for the homeostatic control of cell numbers.

  16. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  17. Dynamics of immune system vulnerabilities

    Science.gov (United States)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  18. War and peace: Factor VIII and the adaptive immune response.

    Science.gov (United States)

    Georgescu, Maria T; Lai, Jesse D; Hough, Christine; Lillicrap, David

    2016-03-01

    The development of neutralizing anti-factor VIII (FVIII) antibodies (inhibitors) remains a major challenge for FVIII replacement therapy in hemophilia A patients. The adaptive immune response plays a crucial role in the development and maintenance of inhibitors. In this review, we focus on our current understanding of FVIII interactions with cells of the adaptive immune system and the phenotype of the resultant response. Additionally, we examine both current and novel FVIII tolerance induction methods that function at the level of the adaptive immune response. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Immune System and Disorders

    Science.gov (United States)

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  20. Pneumonia - weakened immune system

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000093.htm Pneumonia - weakened immune system To use the sharing features on this page, ... fighting off infection because of problems with the immune system. This type of disease is called "pneumonia in ...

  1. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    Science.gov (United States)

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  2. The Major Players in Adaptive Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 5. The Major Players in Adaptive Immunity - Humoral Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivprasad Dipankar Nandi. General Article Volume 14 Issue 5 May 2009 pp 455-471 ...

  3. Genetic adaptation of the antibacterial human innate immunity network

    NARCIS (Netherlands)

    Casals, F.; Sikora, M.; Laayouni, H.; Montanucci, L.; Muntasell, A.; Lazarus, R.; Calafell, F.; Awadalla, P.; Netea, M.G.; Bertranpetit, J.

    2011-01-01

    BACKGROUND: Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune

  4. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  5. Immune System Dysfunction in the Elderly.

    Science.gov (United States)

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  6. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno...

  7. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape

    DEFF Research Database (Denmark)

    Agace, William Winston; McCoy, Kathy D.

    2017-01-01

    The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface...... and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we...... review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life....

  8. The Immune System Game

    Science.gov (United States)

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  9. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  10. Adaptive immunity in autoimmune hepatitis.

    Science.gov (United States)

    Longhi, Maria Serena; Ma, Yun; Mieli-Vergani, Giorgina; Vergani, Diego

    2010-01-01

    The histological lesion of interface hepatitis, with its dense portal cell infiltrate consisting of lymphocytes, monocytes/macrophages and plasma cells, was the first to suggest an autoaggressive cellular immune attack in the pathogenesis of autoimmune hepatitis (AIH). Immunohistochemical studies, focused on the phenotype of inflammatory cells infiltrating the liver parenchyma, have shown a predominance of alphabeta-T cells. Amongst these cells, the majority have been CD4 helper/inducers, while a sizeable minority have consisted of CD8 cytotoxic/suppressors. Lymphocytes on non-T cell lineage included natural killer cells, monocytes/macrophages and B lymphocytes. For autoimmunity to arise, the self-antigenic peptide, embraced by an human leukocyte antigen (HLA) class II molecule, must be presented to an uncommitted T helper (T(H)0) lymphocyte by professional antigen-presenting cells. Once activated and according to the presence in the milieu of interleukin 12 (IL-12) or IL-4, T(H)0 lymphocytes can differentiate into T(H)1 cells, which are pivotal to macrophage activation; enhance HLA class I expression, rendering liver cells vulnerable to CD8 T-cell attack; and induce HLA class II expression on hepatocytes; or they can differentiate into T(H)2 cells, which produce IL-4, IL-10 and IL-13, cytokines favouring autoantibody production by B lymphocytes. Autoantigen recognition is tightly controlled by regulatory mechanisms, such as those exerted by CD4+CD25(high) regulatory T cells. Numerical and functional regulatory T cell impairment characterises AIH and permits the perpetuation of effector immune responses with ensuing persistent liver destruction. Advances in the study of autoreactive T cells stem mostly from AIH type 2, where the main autoantigen, cytochrome P450IID6 (CYP2D6), is known to enable characterisation of antigen-specific immune responses. Copyright 2010 S. Karger AG, Basel.

  11. Visual computing model for immune system and medical system.

    Science.gov (United States)

    Gong, Tao; Cao, Xinxue; Xiong, Qin

    2015-01-01

    Natural immune system is an intelligent self-organizing and adaptive system, which has a variety of immune cells with different types of immune mechanisms. The mutual cooperation between the immune cells shows the intelligence of this immune system, and modeling this immune system has an important significance in medical science and engineering. In order to build a comprehensible model of this immune system for better understanding with the visualization method than the traditional mathematic model, a visual computing model of this immune system was proposed and also used to design a medical system with the immune system, in this paper. Some visual simulations of the immune system were made to test the visual effect. The experimental results of the simulations show that the visual modeling approach can provide a more effective way for analyzing this immune system than only the traditional mathematic equations.

  12. Adaptive Immunity to Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Françoise Stoll-Keller

    2009-09-01

    Full Text Available The precise role of adaptive immune responses in the clinical outcome of HCV infection is still only partially defined. Recent studies suggest that viral-host cell interactions during the acute phase of infection are essential for viral clearance or progression into chronic HCV infection. This review focuses on different aspects of the adaptive immune responses as determinants of the different outcomes of HCV infection, clearance or persistent infection, and outlines current concepts of HCV evasion strategies. Unravelling these important mechanisms of virus-host interaction will contribute to the development of novel strategies to prevent and control HCV infection.

  13. Immune engineering: from systems immunology to engineering immunity.

    Science.gov (United States)

    Jiang, Ning

    2017-03-01

    The smallpox vaccine represents the earliest attempt in engineering immunity. The recent success of chimeric antigen receptor T cells (CAR-T cells) in cancer once again demonstrates the clinical potential of immune engineering. Inspired by this success, diverse approaches have been used to boost various aspects of immunity: engineering dendritic cells (DCs), natural killer (NK) cells, T cells, antibodies, cytokines, small peptides, and others. With recent development of various high-throughput technologies (of which engineers, especially biomedical engineers/bioengineers contributed significantly), such as immune repertoire sequencing, and analytical methods, a systems level of understanding immunity (or the lack of it) beyond model animals has provided critical insights into the human immune system. This review focuses on recent progressed made in systems biology and the engineering of adaptive immunity.

  14. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm.

    Science.gov (United States)

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-05-15

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond TCR engagement, costimulation, and priming cytokine production but are critical for the generation of protective T cell immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Innate and adaptive immune responses in neurodegeneration and repair

    Science.gov (United States)

    Amor, Sandra; Woodroofe, M Nicola

    2014-01-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases. PMID:23758741

  16. Viral diversity threshold for adaptive immunity in prokaryotes.

    Science.gov (United States)

    Weinberger, Ariel D; Wolf, Yuri I; Lobkovsky, Alexander E; Gilmore, Michael S; Koonin, Eugene V

    2012-12-04

    Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas-) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors

  17. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    Directory of Open Access Journals (Sweden)

    Laurindo Ferreira da Rocha Junior

    2013-01-01

    Full Text Available Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.

  18. Deficiency of adaptive immunity does not interfere with Wallerian degeneration.

    Directory of Open Access Journals (Sweden)

    Christopher R Cashman

    Full Text Available Following injury, distal axons undergo the process of Wallerian degeneration, and then cell debris is cleared to create a permissive environment for axon regeneration. The innate and adaptive immune systems are believed to be critical for facilitating the clearance of myelin and axonal debris during this process. However, immunodeficient animal models are regularly used in transplantation studies investigating cell therapies to modulate the degenerative/regenerative response. Given the importance of the immune system in preparing a permissive environment for regeneration by clearing debris, animals lacking, in part or in full, a functional immune system may have an impaired ability to regenerate due to poor myelin clearance, and may, thus, be poor hosts to study modulators of regeneration and degeneration. To study this hypothesis, three different mouse models with impaired adaptive immunity were compared to wild type animals in their ability to degenerate axons and clear myelin debris one week following sciatic nerve transection. Immunofluorescent staining for axons and quantitation of axon density with nerve histomorphometry of the distal stump showed no consistent discrepancy between immunodeficient and wild type animals, suggesting axons tended to degenerate equally between the two groups. Debris clearance was assessed by macrophage density and relative myelin basic protein expression within the denervated nerve stump, and no consistent impairment of debris clearance was found. These data suggested deficiency of the adaptive immune system does not have a substantial effect on axon degeneration one week following axonal injury.

  19. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  20. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model.

    Directory of Open Access Journals (Sweden)

    Martin Köberle

    2009-08-01

    Full Text Available Yersinia enterocolitica (Ye evades the immune system of the host by injection of Yersinia outer proteins (Yops via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-beta-lactamase hybrid protein and a fluorescent staining sensitive to beta-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-beta1A, and HeLa cells demonstrated that beta1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80(+, 11% of CD11c(+, 7% of CD49b(+, 5% of Gr1(+ cells, 2.3% of CD19(+, and 2.6% of CD3(+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19(+CD21(+CD23(+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-gammaR (receptor- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-beta-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.

  1. Physical Activities, Exercises, and Their Effects to the Immune System

    OpenAIRE

    Nurmasitoh, Titis

    2015-01-01

    Every systems in human body correlate to maintain homeostasis. One of those systems which contribute to maintain homeostasis is the immune system. The immune system defends physiological functions against foreign substances and cancer cells through a complex and multilayered mechanism. The ability to defend against foreign substances and abnormal cells is done by two types of immune system, which are Innate immune system and adaptive/acquired immune system. There are also certain factors that...

  2. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico Adaptative mechanisms of the immune system in response to physical training

    Directory of Open Access Journals (Sweden)

    Carol Góis Leandro

    2007-10-01

    Full Text Available O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.Moderate physical training enhances the defense mechanisms, while intense physical training induces to immune suppression. The underlying mechanisms are associated with the link between nervous, endocrine, and immune systems. It suggests autonomic patterns and modulation of immune response. Immune cells, when exposed to regular bouts of stress, develop a mechanism of tolerance. In many tissues, it has been demonstrated that the response to aggressive conditions is attenuated by moderate physical training. Thus, training can induce tolerance to aggressive/stressful situations. In this review, studies suggesting the adaptation mechanisms of the immune system in response to physical training will be reported.

  3. Innate immunity in the nervous system

    NARCIS (Netherlands)

    Ramaglia, V.; Baas, F.

    2009-01-01

    The complement (C) system plays a central role in innate immunity and bridges innate and adaptive immune responses. A fine balance of C activation and regulation mediates the elimination of invading pathogens and the protection of the host from excessive C deposition on healthy tissues. If this

  4. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  5. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    OpenAIRE

    Weinberger, Ariel D; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunologi...

  6. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  7. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  8. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  9. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  10. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    Science.gov (United States)

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  11. Immune evasion by cytomegalovirus--survival strategies of a highly adapted opportunist.

    Science.gov (United States)

    Hengel, H; Brune, W; Koszinowski, U H

    1998-05-01

    Slowly replicating, species-specific and complex DNA viruses, such as cytomegaloviruses (CMVs), which code for > 200 antigenic proteins, should be easy prey to the host's immune system. Yet, CMVs are amazingly adapted opportunists that cope with multiple immune responses. Frequently, CMVs exploit immune mechanisms generated by the host. These strategies secure the persistence of CMVs and provide opportunities to spread to naive individuals.

  12. A Restricted Role for FcγR in the Regulation of Adaptive Immunity.

    Science.gov (United States)

    Fransen, Marieke F; Benonisson, Hreinn; van Maren, Wendy W; Sow, Heng Sheng; Breukel, Cor; Linssen, Margot M; Claassens, Jill W C; Brouwers, Conny; van der Kaa, Jos; Camps, Marcel; Kleinovink, Jan Willem; Vonk, Kelly K; van Heiningen, Sandra; Klar, Ngaisah; van Beek, Lianne; van Harmelen, Vanessa; Daxinger, Lucia; Nandakumar, Kutty S; Holmdahl, Rikard; Coward, Chris; Lin, Qingshun; Hirose, Sachiko; Salvatori, Daniela; van Hall, Thorbald; van Kooten, Cees; Mastroeni, Piero; Ossendorp, Ferry; Verbeek, J Sjef

    2018-03-09

    By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV -/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV -/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    OpenAIRE

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2012-01-01

    Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intest...

  14. Immune System and Kidney Transplantation.

    Science.gov (United States)

    Shrestha, Badri Man

    2017-01-01

    The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.

  15. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  16. The ontogeny of the porcine immune system

    Czech Academy of Sciences Publication Activity Database

    Šinkora, Marek; Butler, J. E.

    2009-01-01

    Roč. 33, č. 3 (2009), s. 273-283 ISSN 0145-305X R&D Projects: GA ČR GA524/07/0087; GA ČR GA523/07/0088 Institutional research plan: CEZ:AV0Z50200510 Keywords : ontogeny of the porcine immune system * swine adaptive immunity * development of alpha beta and gamma delta T cells Subject RIV: EC - Immunology Impact factor: 3.290, year: 2009

  17. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    Science.gov (United States)

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  19. Play the Immune System Defender Game

    Science.gov (United States)

    ... the Double Helix Ear Pages ECG/Electrocardiogram Immune System Immune Responses Malaria MRI Nerve Signaling Pavlov's Dog Split ... Alfred Nobel's Life and Work Teachers' Questionnaire The Immune System Play the Immune System Game About the game ...

  20. Global immune disregulation in multiple sclerosis: from the adaptive response to the innate immunity.

    Science.gov (United States)

    Ristori, G; Montesperelli, C; Perna, A; Cannoni, S; Battistini, L; Borsellino, G; Riccio, P; Pesole, G; Chersi, A; Pozzilli, C; Buttinelli, C; Salvetti, M

    2000-07-24

    Increasing evidences show a global immune disregulation in multiple sclerosis (MS). The possible involvement of myelin and non-myelin (auto-)antigens in the autoaggressive process as well as the disregulation of both adaptive and innate immunity challenge the concept of specific immunotherapy. T cells at the boundary between innate and adaptive immunity, whose immunoregulatory role is becoming increasingly clear, have recently been shown to bear relevance for MS pathogenesis. Global immune interventions (and type I interferons may be considered as such) aimed at interfering with both innate and acquired immune responses seem to be a most promising therapeutic option in MS.

  1. Hibernation : the immune system at rest?

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Carey, Hannah V.; Kroese, Frans G. M.

    2010-01-01

    Mammalian hibernation consists of torpor phases when metabolism is severely depressed, and T can reach as low as approximately -2 degrees C, interrupted by euthermic arousal phases. Hibernation affects the function of the innate and the adaptive immune systems. Torpor drastically reduces numbers of

  2. Regional specialization within the intestinal immune system

    DEFF Research Database (Denmark)

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...... implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout...... the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease...

  3. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires

    Directory of Open Access Journals (Sweden)

    Enkelejda Miho

    2018-02-01

    Full Text Available The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV. Adaptive immune receptor repertoire sequencing (AIRR-seq has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i diversity, (ii clustering and network, (iii phylogenetic, and (iv machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.

  4. Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    Science.gov (United States)

    Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  5. The twilight of immunity: emerging concepts in aging of the immune system.

    Science.gov (United States)

    Nikolich-Žugich, Janko

    2018-01-01

    Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.

  6. Periodontitis in Pregnant Baboons: Systemic Inflammation and Adaptive Immune Responses and Pregnancy Outcomes in a Baboon Model

    Science.gov (United States)

    Ebersole, Jeffrey L.; Holt, Stanley C.; Cappelli, David

    2014-01-01

    Chronic periodontal infections have been suggested to contribute to the risk of adverse pregnancy outcomes. This study describes the relationship of patterns of systemic inflammatory mediators and IgG antibody to 20 oral bacteria in pregnant female baboons (Papio anubis) coupled with clinical features of ligature-induced periodontitis, as risk indicators for adverse pregnancy outcomes. Animals showing a preterm delivery and/or low birth weight newborns, as well as those pregnancies resulting in spontaneous abortion, stillbirth, or fetal demise were tabulated as adverse pregnancy outcomes. A significantly greater frequency of the periodontitis group neonates had a low birth weight (18.1%; p=0.008) and decreased gestational age (9.8%). Spontaneous abortion/stillbirth/fetal demise were increased in the periodontitis (8.7%) versus the control group (3.8%) (p=0.054). The baseline oral clinical presentation of the experimental animals did not relate to the adverse pregnancy outcomes. Animals with the greatest extent/severity of periodontitis progression during the initial ½ of gestation (ie. to mid-pregnancy) had the greatest risk for adverse pregnancy outcomes. Baseline biological parameters indicating historical responses of the animals to periodontal challenge demonstrated individual variation in selected mediators, some of which became more differential during ligature-induced periodontitis. The relationship of clinical parameters to systemic inflammatory responses was consistent with a temporal contribution to adverse pregnancy outcomes in a subset of the animals. These results support a link between periodontitis and adverse pregnancy outcomes in the baboons and provide a prospective experimental model for delineating the biologic parameters that contribute to a causal relationship between chronic oral infections and birth events. PMID:23710643

  7. Neural regulation of innate and adaptive immunity in the gut

    NARCIS (Netherlands)

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding

  8. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known

  9. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  10. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    Science.gov (United States)

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-07-01

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.

  11. The influence of pregnancy on systemic immunity.

    Science.gov (United States)

    Pazos, Michael; Sperling, Rhoda S; Moran, Thomas M; Kraus, Thomas A

    2012-12-01

    Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.

  12. Neural regulation of innate and adaptive immunity in the gut

    OpenAIRE

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding of the gut-brain immune axis, also known as the cholinergic anti-inflammatory pathway, coined largely due to the cholinergic nature of the vagus nerve.

  13. Immune regulation by pericytes: modulating innate and adaptive immunity

    DEFF Research Database (Denmark)

    Navarro, Rocio; Compte, Marta; Álvarez-Vallina, Luis

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells (EC) in small blood vessels. PC have traditionally been endowed with structural functions, being essential for vessel maturation and stabilization. However, accumulating evidence suggest that PC also display immune properties. They ca...

  14. The Mucosal Immune System of Teleost Fish

    Directory of Open Access Journals (Sweden)

    Irene Salinas

    2015-08-01

    Full Text Available Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT of teleosts are the gut-associated lymphoid tissue (GALT, skin-associated lymphoid tissue (SALT, the gill-associated lymphoid tissue (GIALT and the recently discovered nasopharynx-associated lymphoid tissue (NALT. Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture.

  15. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    NARCIS (Netherlands)

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  16. Phylogeny, longevity and evolution of adaptive immunity

    Czech Academy of Sciences Publication Activity Database

    Vinkler, Michal; Albrecht, Tomáš

    2011-01-01

    Roč. 60, č. 3 (2011), s. 277-282 ISSN 0139-7893 R&D Projects: GA ČR GA206/08/0640; GA ČR GA206/08/1281; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : acquired immunity * evolutionary immunology * immunological priming * innate immunity * invertebrates Subject RIV: EG - Zoology Impact factor: 0.554, year: 2011

  17. Vitamin D: modulator of the immune system.

    Science.gov (United States)

    Baeke, Femke; Takiishi, Tatiana; Korf, Hannelie; Gysemans, Conny; Mathieu, Chantal

    2010-08-01

    1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, is known to regulate calcium and phosphorus metabolism, thus being a key-player in bone-formation. However 1,25(OH)(2)D(3) also has a physiological role beyond its well-known role in skeletal homeostasis. Here, we describe 1,25(OH)(2)D(3) as an immunomodulator targeting various immune cells, including monocytes, macrophages, dendritic cells (DCs), as well as T-lymphocytes and B-lymphocytes, hence modulating both innate and adaptive immune responses. Besides being targets, immune cells express vitamin D-activating enzymes, allowing local conversion of inactive vitamin D into 1,25(OH)(2)D(3) within the immune system. Taken together, these data indicate that 1,25(OH)(2)D(3) plays a role in maintenance of immune homeostasis. Several epidemiological studies have linked inadequate vitamin D levels to a higher susceptibility of immune-mediated disorders, including chronic infections and autoimmune diseases. This review will discuss the complex immune-regulatory effects of 1,25(OH)(2)D(3) on immune cells as well as its role in infectious and autoimmune diseases, more in particular in tuberculosis and type 1 diabetes (T1D). Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Evasion of innate and adaptive immune responses by influenza A virus

    OpenAIRE

    Schmolke, Mirco; García-Sastre, Adolfo

    2010-01-01

    Host organisms have developed sophisticated antiviral responses in order to defeat emerging influenza A viruses (IAVs). At the same time IAVs have evolved immune evasion strategies. The immune system of mammals provides several lines of defence to neutralize invading pathogens or limit their replication. Here, we summarize the mammalian innate and adaptive immune mechanisms involved in host defence against viral infection and review strategies by which IAVs avoid, circumvent or subvert these ...

  19. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune...

  20. Turbine system and adapter

    Energy Technology Data Exchange (ETDEWEB)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  1. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    Science.gov (United States)

    Mora-Bau, Gabriela; Platt, Andrew M; van Rooijen, Nico; Randolph, Gwendalyn J; Albert, Matthew L; Ingersoll, Molly A

    2015-07-01

    Urinary tract infection (UTI) is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  2. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    Science.gov (United States)

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2010-01-01

    Full Text Available Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.

  4. Diversity in the Immune System

    NARCIS (Netherlands)

    Borghans, J.A.M.; Boer, R.J. de

    2000-01-01

    Diversity is one of the key characteristics of the vertebrate immune system. Lymphocyte repertoires of at least 3x10⁷ different clonotypes protect humans against infections, while avoiding unwanted immune responses against self-peptides and innocuous antigens. It is this lymphocyte diversity

  5. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Itoh A

    2017-05-01

    Full Text Available Arata Itoh, William M Ridgway Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA Abstract: Type 1 diabetes (T1D is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs. Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase, the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody have shown partial successes (e.g., prolonged C peptide preservation but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR 4-stimulating lipopolysaccharide [LPS] dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic

  6. Long noncoding RNAs in Innate and Adaptive Immunity

    Science.gov (United States)

    Fitzgerald, Katherine A.; Caffrey, Daniel R.

    2014-01-01

    The differentiation and activation of both innate and adaptive immune cells is highly dependent on a coordinated set of transcriptional and post-transcriptional events. Chromatin-modifiers and transcription factors regulate the accessibility and transcription of immune genes, respectively. Immune cells also express miRNA and RNA-binding proteins that provide an additional layer of regulation at the mRNA level. However, long noncoding RNA (lncRNA), which have been primarily studied in the context of genomic imprinting, cancer, and cell differentiation, are now emerging as important regulators of immune cell differentiation and activation. In this review, we provide a brief overview of lncRNA, their known functions in immunity, and discuss their potential to be more broadly involved in other aspects of the immune response. PMID:24556411

  7. Genome-to-genome analysis highlights the impact of the human innate and adaptive immune systems on the hepatitis C virus

    Science.gov (United States)

    Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C. A.

    2018-01-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control. PMID:28394351

  8. Adaptation in CRISPR-Cas Systems.

    Science.gov (United States)

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    Science.gov (United States)

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  10. Technique Selectively Represses Immune System

    Science.gov (United States)

    ... balance. It can also lead to paralysis. Current treatments for autoimmune disorders involve the use of immunosuppressant drugs. These work by tamping down immune system activity. However, they can also leave patients susceptible to infections and increase their risk of ...

  11. Overview of the Immune System

    Science.gov (United States)

    ... at NIAID Visitor Information Contact Us Research > NIAID's Role in Research > Immune System Research share with facebook share with twitter share ... such as allergic reactions and autoimmune disease. The ... a unique role, with different ways of recognizing problems, communicating with ...

  12. Overview of fish immune system and infectious diseases

    Science.gov (United States)

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  13. Cystatins in Immune System

    Directory of Open Access Journals (Sweden)

    Špela Magister, Janko Kos

    2013-01-01

    Full Text Available Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins, family II (cystatins and family III (kininogens. Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B and type II cystatins (cystatins C, F and E/M in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.

  14. Cystatins in immune system.

    Science.gov (United States)

    Magister, Spela; Kos, Janko

    2013-01-01

    Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.

  15. Melatonin: Buffering the Immune System

    Directory of Open Access Journals (Sweden)

    Juan M. Guerrero

    2013-04-01

    Full Text Available Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.

  16. Melatonin: Buffering the Immune System

    Science.gov (United States)

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  17. Osteopontin Bridging Innate and Adaptive Immunity in Autoimmune Diseases

    Science.gov (United States)

    Raineri, Davide; Boggio, Elena; Favero, Francesco; Soluri, Maria Felicia

    2016-01-01

    Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases. PMID:28097158

  18. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  19. Let's Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse.

    Science.gov (United States)

    Bennett, Kaila M; Rooijakkers, Suzan H M; Gorham, Ronald D

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement.

  20. Let’s Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse

    Science.gov (United States)

    Bennett, Kaila M.; Rooijakkers, Suzan H. M.; Gorham, Ronald D.

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement. PMID:28197139

  1. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus.

    Science.gov (United States)

    Ansari, M Azim; Pedergnana, Vincent; L C Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C A

    2017-05-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control.

  2. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  3. Frequent adaptive immune responses against arginase-1

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Mortensen, Rasmus Erik Johansson; Hansen, Morten

    2018-01-01

    was examined in PBMCs from cancer patients and healthy individuals. IFNγ ELISPOT revealed frequent immune responses against multiple arginase-1-derived peptides. We further identified a hot-spot region within the arginase-1 protein sequence containing multiple epitopes recognized by T cells. Next, we examined......, and further demonstrated the specificity and reactivity of these T cells. Overall, we showed that arginase-1-specific T cells were capable of recognizing arginase-1-expressing cells. The activation of arginase-1-specific T cells by vaccination is an attractive approach to target arginase-1-expressing...... macrophages (TAMs), and its expression is associated with poor prognosis. In the present study, we divided the arginase-1 protein sequence into overlapping 20-amino-acid-long peptides, generating a library of 31 peptides covering the whole arginase-1 sequence. Reactivity towards this peptide library...

  4. Role of the Immune System in Hypertension.

    Science.gov (United States)

    Rodriguez-Iturbe, Bernardo; Pons, Hector; Johnson, Richard J

    2017-07-01

    High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease. Copyright © 2017 the American Physiological Society.

  5. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies...

  6. Focusing on Ciona intestinalis (Tunicata) innate immune system. Evolutionary implications

    OpenAIRE

    N Parrinello

    2009-01-01

    Phylogenetic analyses based on molecular data provide compelling evidence that ascidians are of critical importance for studying chordate immune system evolution. The Ciona intestinalis draft genome sequence allows searches for phylogenetic relationships, gene cloning and expression of immunorelevant molecules. Acidians lack of the pivotal components of the vertebrate recombinatory adaptive immunity, i.e., MHC, TCRs and dimeric immunoglobulins. However, bioinformatic sequence analyses recogni...

  7. Adaptive immunity to rhinoviruses: sex and age matter

    Directory of Open Access Journals (Sweden)

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  8. The Immune System in Hypertension

    Science.gov (United States)

    Trott, Daniel W.; Harrison, David G.

    2014-01-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely…

  9. Aging and the skin immune system.

    Science.gov (United States)

    Sunderkötter, C; Kalden, H; Luger, T A

    1997-10-01

    To give a brief summary of age-related alterations that occur in the immune system (immunosenescence), with special regard to the skin immune system. MEDLINE and institutional libraries were searched for relevant articles on immunosenescence and corresponding key words. The immune system of aged animals and humans undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. However, some data on the parameters of immunosenescence are controversial. This appears to be caused by variations in study designs or by the many external influences that superimpose on intrinsic alterations of the immune system. Well characterized are age-related changes of T cells and cell-mediated immunity. With advancing age, human and murine T cells undergo a shift from the naive to the memory phenotype, associated with a change in cytokine profile. The cells also reveal reductions in the proliferative response to activation, in diversity of the T-cell receptor antigen repertoire, and in cytolytic activity. B cells of aging individuals show a restricted diversity of their antibody repertoire due to a decline in somatic mutations, resulting in a reduced response to certain viral infections or vaccinations. The number of Langerhans cells appears to decline with age, contributing to a reduced rate of sensitizations. Macrophages and keratinocytes also undergo age-related changes, although these are less well characterized. They entail alterations in cytokine production, which could play a role in increased susceptibility to endotoxins in elderly individuals. With aging, the skin immune system shows a decline in its adaptive capability, one of its outstanding qualities. Manipulations to revert age-related dysfunctions are being tested and may help to extend a healthy life.

  10. Co-ordinating innate and adaptive immunity to viral infection: mobility is the key

    DEFF Research Database (Denmark)

    Wern, Jeanette Erbo; Thomsen, Allan Randrup

    2009-01-01

    the very essence of immune system physiology, a key to a rapid, efficient and optimally regulated immune response is the ability of the involved cells to rapidly shift between a stationary and a mobile state, combined with stringent regulation of cell migration during the mobile state. Through the co-ordinated......The host counters a viral infection through a complex response made up of components belonging to both the innate and the adaptive immune system. In this report, we review the mechanisms underlying this response, how it is induced and how it is co-ordinated. As cell-cell communication represents...... in mounting an efficient host response and co-ordinating innate and adaptive immunity during a primary viral infection....

  11. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection

    OpenAIRE

    Khan, Nargis; Vidyarthi, Aurobind; Javed, Shifa; Agrewala, Javed N.

    2016-01-01

    T cells play a cardinal role in imparting adaptive immunity against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection thr...

  12. Immunity comes first: the effect of parasite genotypes on adaptive immunity and immunization in three-spined sticklebacks.

    Science.gov (United States)

    Haase, David; Rieger, Jennifer K; Witten, Anika; Stoll, Monika; Bornberg-Bauer, Erich; Kalbe, Martin; Reusch, Thorsten B H

    2016-01-01

    Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the temporal transition from innate to adaptive immunity under continual exposure to parasites is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). Observable differences in gene expression were largely attributable to final exposures while there was no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. None of the final exposure treatments was able to erase the distinct expression patterns resulting from a heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    Science.gov (United States)

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  14. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment.

    Science.gov (United States)

    Gjini, Erida; Brito, Patricia H

    2016-04-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.

  15. Microbial-immune cross-talk and regulation of the immune system.

    Science.gov (United States)

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  16. The role of intestinal microbiota and the immune system.

    Science.gov (United States)

    Purchiaroni, F; Tortora, A; Gabrielli, M; Bertucci, F; Gigante, G; Ianiro, G; Ojetti, V; Scarpellini, E; Gasbarrini, A

    2013-02-01

    The human gut is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the intestinal innate and adaptive immune system, affecting different aspects of its development and function. To review the immunological functions of gut microbiota and improve knowledge of its therapeutic implications for several intestinal and extra-intestinal diseases associated to dysregulation of the immune system. Significant articles were identified by literature search and selected based on content, including atopic diseases, inflammatory bowel diseases and treatment of these conditions with probiotics. Accumulating evidence indicates that intestinal microflora has protective, metabolic, trophic and immunological functions and is able to establish a "cross-talk" with the immune component of mucosal immunity, comprising cellular and soluble elements. When one or more steps in this fine interaction fail, autoimmune or auto-inflammatory diseases may occur. Furthermore, it results from the data that probiotics, used for the treatment of the diseases caused by the dysregulation of the immune system, can have a beneficial effect by different mechanisms. Gut microbiota interacts with both innate and adaptive immune system, playing a pivotal role in maintenance and disruption of gut immune quiescence. A cross talk between the mucosal immune system and endogenous microflora favours a mutual growth, survival and inflammatory control of the intestinal ecosystem. Based on these evidences, probiotics can be used as an ecological therapy in the treatment of immune diseases.  

  17. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  18. Priming in Systemic Plant Immunity

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ho Won [University of Chicago; Tschaplinski, Timothy J [ORNL; Wang, Lin [University of Minnesota; Glazebrook, Jane [University of Minnesota; Greenberg, Jean T. [University of Chicago

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  19. Evasion of innate and adaptive immune responses by influenza A virus.

    Science.gov (United States)

    Schmolke, Mirco; García-Sastre, Adolfo

    2010-07-01

    Host organisms have developed sophisticated antiviral responses in order to defeat emerging influenza A viruses (IAVs). At the same time IAVs have evolved immune evasion strategies. The immune system of mammals provides several lines of defence to neutralize invading pathogens or limit their replication. Here, we summarize the mammalian innate and adaptive immune mechanisms involved in host defence against viral infection and review strategies by which IAVs avoid, circumvent or subvert these mechanisms. We highlight well-characterized, as well as recently described features of this intriguing virus-host molecular battle.

  20. The Immune System and Bodily Defence How Does the Immune ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. The Immune System and Bodily Defence How Does the Immune System Generate a Truly Infinite Repertoire Capability? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 11 November 1997 pp 8-13 ...

  1. Molecular Mechanisms Used bySalmonellato Evade the Immune System.

    Science.gov (United States)

    Bernal-Bayard, Joaquín; Ramos-Morales, Francisco

    2018-01-01

    Human and animal pathogens are able to circumvent, at least temporarily, the sophisticated immune defenses of their hosts. Several serovars of the Gram-negative bacterium Salmonella enterica have been used as models for the study of pathogen-host interactions. In this review we discuss the strategies used by Salmonella to evade or manipulate three levels of host immune defenses: physical barriers, innate immunity and adaptive immunity. During its passage through the digestive system, Salmonella has to face the acidic pH of the stomach, bile and antimicrobial peptides in the intestine, as well as the competition with resident microbiota. After host cell invasion, Salmonella manipulates inflammatory pathways and the autophagy process. Finally, Salmonella evades the adaptive immune system by interacting with dendritic cells, and T and B lymphocytes. Mechanisms allowing the establishment of persistent infections are also discussed.

  2. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  3. [The liver and the immune system].

    Science.gov (United States)

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes

  4. Mathematical Model of Innate and Adaptive Immunity of Sepsis: A Modeling and Simulation Study of Infectious Disease

    OpenAIRE

    Shi, Zhenzhen; Wu, Chih-Hang J.; Ben-Arieh, David; Simpson, Steven Q.

    2015-01-01

    Sepsis is a systemic inflammatory response (SIR) to infection. In this work, a system dynamics mathematical model (SDMM) is examined to describe the basic components of SIR and sepsis progression. Both innate and adaptive immunities are included, and simulated results in silico have shown that adaptive immunity has significant impacts on the outcomes of sepsis progression. Further investigation has found that the intervention timing, intensity of anti-inflammatory cytokines, and initial patho...

  5. Regulation of TGFβ in the immune system: An emerging role for integrins and dendritic cells

    OpenAIRE

    Worthington, John J.; Fenton, Thomas M.; Czajkowska, Beata I.; Klementowicz, Joanna E.; Travis, Mark A.

    2012-01-01

    Regulation of an immune response requires complex crosstalk between cells of the innate and adaptive immune systems, via both cell?cell contact and secretion of cytokines. An important cytokine with a broad regulatory role in the immune system is transforming growth factor-? (TGF-?). TGF-? is produced by and has effects on many different cells of the immune system, and plays fundamental roles in the regulation of immune responses during homeostasis, infection and disease. Although many cells ...

  6. [Obesity and the immune system].

    Science.gov (United States)

    Muñoz, M; Mazure, R A; Culebras, J M

    2004-01-01

    With an increased prevalence of obesity in developed countries, associated chronic diseases rise in a parallel way. Morbidity secondary to overweight and obesity include type 2 diabetes, dislipemia, hypertension, heart disease, cerebrovascular disease, cholelithiasis, osteoarthritis, heart insufficiency, sleep apnoea, menstrual changes, sterility and psychological alterations. There is also a greater susceptibility to suffer some types of cancer, infections, greater risk of bacteremia and a prolonged time of wound healing after surgical operations. All these factors indicate that obesity exerts negative effects upon the immune system. Immune changes found in obesity and their possible interrelations are described in this article. Changes produced during obesity affect both humoral and cellular immunity. It is known that adipose tissue, together with its role as energy reserve in form of triglycerides, has important endocrine functions, producing several hormones and other signal molecules. Immune response can be deeply affected by obesity, playing leptin an important role. Properties of leptin, alterations of leptin levels in different situations and its changes with different medical and surgical therapies for obesity are described in this article.

  7. Tachykinins in the immune system.

    Science.gov (United States)

    Zhang, Yu; Berger, Alexandra; Milne, Craig D; Paige, Christopher J

    2006-08-01

    Until recently, the mammalian tachykinins included substance P, neurokinin A and neurokinin B. Following the discovery of the fourth member of this family, hemokinin 1, a diverse group of novel tachykinins and tachykinin gene-related peptides have been identified in mammals. These newly identified members are preferentially expressed in peripheral tissues. Currently, the impact of these new tachykinin peptides on the immune system remains unclear. Some data imply an important role for hemokinin 1 in the generation of lymphocytes. Tachykinins are traditionally viewed as neuropeptides with well-defined functions as neurotransmitters. Many studies however, indicate that they may also be produced by non-neuronal cells, and exert profound influence on inflammatory responses by affecting multiple aspects of immune cell function. It is of great importance to determine whether the new tachykinin peptides have similar effects. A more detailed understanding of the interactions between tachykinins and immune cells may provide the basis for the development of new therapies for inflammatory and immune-mediated diseases.

  8. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    Science.gov (United States)

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Weakened Immune System and Adult Vaccination

    Science.gov (United States)

    ... Basics Adult Vaccination Resources for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... people with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...

  10. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  11. Immune System Toxicity and Immunotoxicity Hazard Identification

    Science.gov (United States)

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  12. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    The Immune System and Bodily Defence. 3. How Does the Immune System Organize Itself so as to Connect. Target Recognition to Expected Functions? Vineeta Bal and Satyajit Rath. How is the immune system designed to choose between making antibodies against some targets, killer cells against viral infections and ...

  13. Immune Evasion, Immunopathology and the Regulation of the Immune System

    Directory of Open Access Journals (Sweden)

    Bruno Faivre

    2013-02-01

    Full Text Available Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  14. Role of Adaptive Immunity in Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Emanuele Albano

    2012-01-01

    Full Text Available Stimulation of innate immunity is increasingly recognized to play an important role in the pathogenesis of alcoholic liver disease (ALD, while the contribution of adaptive immunity has received less attention. Clinical and experimental data show the involvement of Th-1 and Th-17 T-lymphocytes in alcoholic hepatitis. Nonetheless, the mechanisms by which alcohol triggers adaptive immunity are still incompletely characterized. Patients with advanced ALD have circulating IgG and T-lymphocytes recognizing epitopes derived from protein modification by hydroxyethyl free radicals and end products of lipid-peroxidation. High titers of IgG against lipid peroxidation-derived antigens are associated with an increased hepatic production of proinflammatory cytokines/chemokines. Moreover, the same antigens favor the breaking of self-tolerance towards liver constituents. In particular, autoantibodies against cytochrome P4502E1 (CYP2E1 are evident in a subset of ALD patients. Altogether these results suggest that allo- and autoimmune reactions triggered by oxidative stress might contribute to hepatic inflammation during the progression of ALD.

  15. Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage fd Targeted to DEC-205.

    Science.gov (United States)

    D'Apice, Luciana; Costa, Valerio; Sartorius, Rossella; Trovato, Maria; Aprile, Marianna; De Berardinis, Piergiuseppe

    2015-01-01

    The filamentous bacteriophage fd, codisplaying antigenic determinants and a single chain antibody fragment directed against the dendritic cell receptor DEC-205, is a promising vaccine candidate for its safety and its ability to elicit innate and adaptive immune response in absence of adjuvants. By using a system vaccinology approach based on RNA-Sequencing (RNA-Seq) analysis, we describe a relevant gene modulation in dendritic cells pulsed with anti-DEC-205 bacteriophages fd. RNA-Seq data analysis indicates that the bacteriophage fd virions are sensed as a pathogen by dendritic cells; they activate the danger receptors that trigger an innate immune response and thus confer a strong adjuvanticity that is needed to obtain a long-lasting adaptive immune response.

  16. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. Copyright © 2017 American Society for Microbiology.

  17. Adaptivity in Professional Printing Systems

    NARCIS (Netherlands)

    Verriet, J.H.; Basten, T; Hamberg, R.; Reckers, F.J.; Somers, L.

    2013-01-01

    There is a constant pressure on developers of embedded systems to simultaneously increase system functionality and to decrease development costs. Aviable way to obtain a better system performance with the same physical hardware is adaptivity: a system should be able to adapt itself to dynamically

  18. Estrogen-dependent seasonal adaptations in the immune response of fish.

    Science.gov (United States)

    Szwejser, Ewa; Verburg-van Kemenade, B M Lidy; Maciuszek, Magdalena; Chadzinska, Magdalena

    2017-02-01

    Clinical and experimental evidence shows that estrogens affect immunity in mammals. Less is known about this interaction in the evolutionary older, non-mammalian, vertebrates. Fish form an excellent model to identify evolutionary conserved neuroendocrine-immune interactions: i) they are the earliest vertebrates with fully developed innate and adaptive immunity, ii) immune and endocrine parameters vary with season, and iii) physiology is constantly disrupted by increasing contamination of the aquatic environment. Neuro-immuno-endocrine interactions enable adaption to changing internal and external environment and are based on shared signaling molecules and receptors. The presence of specific estrogen receptors on/in fish leukocytes, implies direct estrogen-mediated immunoregulation. Fish leukocytes most probably are also capable to produce estrogens as they express the cyp19a and cyp19b - genes, encoding aromatase cytochrome P450, the enzyme critical for conversion of C19 steroids to estrogens. Immunoregulatory actions of estrogens, vary among animal species, and also with dose, target cell type, or physiological condition (e.g., infected/non-infected, reproductive status). They moreover are multifaceted. Interestingly, season-dependent changes in immune status correlate with changes in the levels of circulating sex hormones. Whereas E2 circulating in the bloodstream is perhaps the most likely candidate to be the physiological mediator of systemic immune-reproductive trade-offs, leukocyte-derived hormones are hypothesized to be mainly involved in local tuning of the immune response. Contamination of the aquatic environment with estrogenic EDCs may violate the delicate and precise allostatic interactions between the endogenous estrogen system and the immune system. This has negative effects on fish health, but will also affect the physiology of its consumers. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Protective and Pathological Immunity during Central Nervous System Infections.

    Science.gov (United States)

    Klein, Robyn S; Hunter, Christopher A

    2017-06-20

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.

  20. Commentary on Special Issue : CNS Diseases and the Immune System

    NARCIS (Netherlands)

    't Hart, Bert A.; den Dunnen, Wilfred F.

    In an increasing number of central nervous system (CNS) diseases a pathogenic contribution of the immune system is proposed. However, the exact underlying mechanisms are often poorly understood. The collection of articles in this special issue presents a state-of-the-art review of adaptive and

  1. Recognition of extracellular bacteria by NLRs and its role in the development of adaptive immunity

    Directory of Open Access Journals (Sweden)

    Jonathan eFerrand

    2013-10-01

    Full Text Available Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs, whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.

  2. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. The immunoreceptor adapter protein DAP12 suppresses B lymphocyte?driven adaptive immune responses

    OpenAIRE

    Nakano-Yokomizo, Takako; Tahara-Hanaoka, Satoko; Nakahashi-Oda, Chigusa; Nabekura, Tsukasa; Tchao, Nadia K.; Kadosaki, Momoko; Totsuka, Naoya; Kurita, Naoki; Nakamagoe, Kiyotaka; Tamaoka, Akira; Takai, Toshiyuki; Yasui, Teruhito; Kikutani, Hitoshi; Honda, Shin-ichiro; Shibuya, Kazuko

    2011-01-01

    DAP12, an immunoreceptor tyrosine-based activation motif?bearing adapter protein, is involved in innate immunity mediated by natural killer cells and myeloid cells. We show that DAP12-deficient mouse B cells and B cells from a patient with Nasu-Hakola disease, a recessive genetic disorder resulting from loss of DAP12, showed enhanced proliferation after stimulation with anti-IgM or CpG. Myeloid-associated immunoglobulin-like receptor (MAIR) II (Cd300d) is a DAP12-associated immune receptor. L...

  4. A cascade reaction network mimicking the basic functional steps of adaptive immune response.

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex 'information-processing cores' composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  5. The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny.

    Science.gov (United States)

    Smith, L C; Davidson, E H

    1994-04-15

    In summary, the characters of the echinoderm immune system that we review here can be considered to illuminate the baseline nonadaptive immune systems that were our original deuterostome heritage. We still retain--and greatly rely upon--similarly functioning, nonadaptive cellular defense systems. It is worth stressing that sea urchins are long lived, normally healthy animals that display remarkable abilities to heal wounds and combat major infections. From an external point of view, their immune systems obviously work very well. Thus, their cellular defense systems are extremely sensitive, and they respond rapidly to minor perturbations, all without any specific adaptive capabilities. These systems probably function through the transduction of signals conveying information on injury and infection, just as do the equivalent systems that underlie and back up our own adaptive immune systems, and that provide the initial series of defenses against pathogenic invasions. Many extremely interesting questions remain regarding the evolution of the deuterostome immune response. Are the echinoderm and tunicate systems the same, or have the protochordates augmented the basic phagocyte system with an as yet unidentified chordate-like character? Do the jawless fishes produce Igs that would make them similar to the sharks, or are they vertebrates without an Ig system that essentially rely on an invertebrate-like, nonspecific, activated phagocyte type of immune system? How do sharks regulate their immune system without T cells and MHC class I? How do they avoid producing autoantibodies? Future research will not only answer these questions, but those answers will also be enlightening with regard to the origins of the mammalian immune system in which ancient functions and subsystems remain.

  6. Immune System and Its Link to Rheumatic Diseases

    Science.gov (United States)

    ... Immune System & Its Link to Rheumatic Disease The Immune System and Its Link to Rheumatic Disease Fast Facts ... of a vessel of the body). What’s the immune system? The immune system allows us to identify and ...

  7. Microbiota activation and regulation of innate and adaptive immunity.

    Science.gov (United States)

    Alexander, Katie L; Targan, Stephan R; Elson, Charles O

    2014-07-01

    The human host has coevolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject to dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Approximately, half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota-specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and preeclampsia

    Directory of Open Access Journals (Sweden)

    Peter eHsu

    2014-03-01

    Full Text Available Maternal immune tolerance of the fetus is indispensible for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface – the decidua, the site of implantation and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, preeclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3+ regulatory T (Treg cells are crucial for ensuring immune tolerance towards the semi-allogeneic fetus. Additionally, another population of CD4+HLA-G+ suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy.

  9. Unique aspects of the perinatal immune system.

    Science.gov (United States)

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  10. Adaptive control for chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hua Changchun E-mail: cch@ysu.edu.cn; Guan Xinping

    2004-10-01

    Control problem of chaotic system is investigated via adaptive method. A fairly simple adaptive controller is constructed, which can control chaotic systems to unstable fixed points. The precise mathematical models of chaotic systems need not be known and only the fixed points and the dimensions of chaotic systems are required to be known. Simulations on controlling different chaotic systems are investigated and the results show the validity and feasibility of the proposed controller.

  11. [Viral interactions with the host's immune system].

    Science.gov (United States)

    Humlová, Z

    2001-01-01

    Viruses are obligatory intracellular parasites, which differ in their structure and strategy of replication. The establishment of an antiviral state in uninfected cells and the elimination of virally infected cells are critical tasks in the host defence. Against the extensive array of immune modalities, viruses have successfully learned how to manipulate host immune control mechanisms. The study of viral strategies of immune evasion can provide insights into host-virus interactions and also illuminates essential functions of the immune system.

  12. The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths.

    Science.gov (United States)

    Agrawal, Madhur; Kern, Philip A; Nikolajczyk, Barbara S

    2017-08-15

    Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.

  13. Inside the mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Jerry R McGhee

    Full Text Available An intricate network of innate and immune cells and their derived mediators function in unison to protect us from toxic elements and infectious microbial diseases that are encountered in our environment. This vast network operates efficiently by use of a single cell epithelium in, for example, the gastrointestinal (GI and upper respiratory (UR tracts, fortified by adjoining cells and lymphoid tissues that protect its integrity. Perturbations certainly occur, sometimes resulting in inflammatory diseases or infections that can be debilitating and life threatening. For example, allergies in the eyes, skin, nose, and the UR or digestive tracts are common. Likewise, genetic background and environmental microbial encounters can lead to inflammatory bowel diseases (IBDs. This mucosal immune system (MIS in both health and disease is currently under intense investigation worldwide by scientists with diverse expertise and interests. Despite this activity, there are numerous questions remaining that will require detailed answers in order to use the MIS to our advantage. In this issue of PLOS Biology, a research article describes a multi-scale in vivo systems approach to determine precisely how the gut epithelium responds to an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α, given by the intravenous route. This article reveals a previously unknown pathway in which several cell types and their secreted mediators work in unison to prevent epithelial cell death in the mouse small intestine. The results of this interesting study illustrate how in vivo systems biology approaches can be used to unravel the complex mechanisms used to protect the host from its environment.

  14. Learning and Memory... and the Immune System

    Science.gov (United States)

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  15. Lack of microbiota reduces innate responses and enhances adaptive immunity against Listeria monocytogenes infection.

    Science.gov (United States)

    Mittrücker, Hans-Willi; Seidel, Daniel; Bland, Paul W; Zarzycka, Agnieszka; Kaufmann, Stefan H E; Visekruna, Alexander; Steinhoff, Ulrich

    2014-06-01

    The intestinal microbiota influences not only metabolic processes, but also the mucosal and systemic immune systems. Here, we compare innate and adaptive immune responses against the intracellular pathogen Listeria monocytogenes in germfree (GF) and conventional mice. We show that animals without endogenous microbiota are highly susceptible to primary infection with impaired activation and accumulation of phagocytes to the site of infection. Unexpectedly, secondary infection with otherwise lethal dose resulted in survival of all GF animals which cleared bacteria more rapidly and developed a stronger antilisterial CD8(+) memory T-cell response compared to conventional mice. In summary, lack of the intestinal microbiota impairs early innate immunity, but enhances activation and expansion of memory T cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D.

    Science.gov (United States)

    Wei, Ran; Christakos, Sylvia

    2015-09-24

    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases.

  17. Roles of Zinc Signaling in the Immune System.

    Science.gov (United States)

    Hojyo, Shintaro; Fukada, Toshiyuki

    2016-01-01

    Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.

  18. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  19. CMV immune evasion and manipulation of the immune system with aging.

    Science.gov (United States)

    Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R

    2017-06-01

    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to

  20. Vitamin D and the Immune System

    OpenAIRE

    Aranow, Cynthia

    2011-01-01

    It is now clear that vitamin D has important roles in addition to its classic effects on calcium and bone homeostasis. As the vitamin D receptor is expressed on immune cells (B cells, T cells and antigen presenting cells) and these immunologic cells are all are capable of synthesizing the active vitamin D metabolite, vitamin D has the capability of acting in an autocrine manner in a local immunologic milieu. Vitamin D can modulate the innate and adaptive immune responses. Deficiency in vitami...

  1. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  2. Artificial immune system approach for air combat maneuvering

    Science.gov (United States)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  3. Ageing and the immune system: focus on macrophages.

    Science.gov (United States)

    Linehan, E; Fitzgerald, D C

    2015-03-01

    A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.

  4. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity.

    Science.gov (United States)

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter; Joosten, Leo A B; de Jong, Dirk; van der Meer, Jos W M; Benn, Christine Stabell; van Crevel, Reinout; Netea, Mihai G

    2015-12-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition receptors and histone methylation markers were assessed. The in vivo effects of γBCG vaccination were studied in a proof-of-principle trial in 15 healthy volunteers. γBCG induced trained immunity in vitro via the NOD2 receptor pathway and up-regulation of H3K4me3 histone methylation. However, these effects were less strong than those induced by live BCG. γBCG vaccination in volunteers had only minimal effects on innate immunity, whereas a significant increase in heterologous Th1/Th17 immunity was observed. Our results indicate that γBCG induces long-term training of innate immunity in vitro. In vivo, γBCG induces mainly heterologous effects on the adaptive-immune system, whereas effects on innate cytokine production are limited. © Society for Leukocyte Biology.

  5. Dynamics of adaptive immunity against phage in bacterial populations

    Science.gov (United States)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  6. Conceptual Spaces of the Immune System.

    Science.gov (United States)

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  7. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. The Immune System and Bodily Defence How Do Parasites and the Immune System Choose their Dances? ... Author Affiliations. Vineeta Bal1 Satyajit Rath1. National Institute of Immunology Aruna Asaf Ali Road New Delhi 110 067, India ...

  8. Nutritional support for the infant's immune system

    NARCIS (Netherlands)

    Niers, L.; Stasse-Wolthuis, M.; Rombouts, F.M.; Rijkers, G.T.

    2007-01-01

    Newborn babies possess a functional but immature immune system as a defense against a world teeming with microorganisms. Breast milk contains a number of biological, active compounds that support the infant's immune system. These include secretory immunoglobulin A (IgA), which confers specific

  9. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. The Immune System and Bodily Defence How Do Parasites and the Immune System Choose their Dances? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 2 February 1997 pp 17-24 ...

  10. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. The Immune System and Bodily Defence How Does the Immune System Organize Itself so as to Connect Target Recognition to Expected Functions? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 6 June 1997 pp 25-38 ...

  11. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. The Immune System and Bodily Defence How Does the Immune System Recognize Everything Under the Sun? Vineeta Bal Satyajit Rath. Series Article Volume 2 Issue 9 September 1997 pp 6-10 ...

  12. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    The Immune System and Bodily Defence. 4.How Does the Immune System Recognize Everything Under the Sun? ... A major exception to this is, of course, the fairly recent innovation in biology called Homo sapiens that ... To do all this, first it is necessary to break the receptor down to its basic functional elements, so that the ...

  13. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  14. [Immune proteasomes in the development of rat immune system].

    Science.gov (United States)

    Karpova, Ia D; Lyupina, Iu V; Astakhova, T M; Stepanova, A A; Erokhov, P A; Abramova, E B; Sharova, N P

    2013-01-01

    their plunge by P5 may be related to the loss of liver function of a primary lymphoid organ of the immune system by this stage and disappearance of B-lymphocytes enriched by immune proteasomes in it. In the spleen and liver, MHC class I molecules were revealed at the periods of the raise of proteasome immune subunits level. On E21 , the liver was enriched by neuronal NO-synthase, its level decreased after birth and enhanced to P18. This fact indicates the possibility of the induction of the immune subunits LMP7 [character: see text] LMP2 expression in hepatocytes in signal way with neuronal NO-synthase participation. The results obtained prove that T-cell immune response with spleen participation as regards rat liver cells is possible starting with P19-P21 stage. First, at this period, white pulp T-area is formed in the spleen. Second, enhanced immune proteasomes and MHC class I molecules levels in hepatocytes can procure antigenic epitopes formation from foreign proteins and their delivery to cell surface for their subsequent presentation for cytotoxic T-lymphocytes.

  15. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    Directory of Open Access Journals (Sweden)

    Pierre Olivier Lang

    2015-03-01

    Full Text Available Vitamin D (VitD, which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.

  16. Feeding Our Immune System: Impact on Metabolism

    Directory of Open Access Journals (Sweden)

    Isabelle Wolowczuk

    2008-01-01

    Full Text Available Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy.

  17. The Mucosal Immune System and Its Regulation by Autophagy.

    Science.gov (United States)

    Kabat, Agnieszka M; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a "self-eating" survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.

  18. Dusting the sugar fingerprint: C-type lectin signaling in adaptive immunity

    NARCIS (Netherlands)

    den Dunnen, Jeroen; Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.

    2010-01-01

    Pathogen recognition by dendritic cells (DCs) is central to the induction of adaptive immunity. Pattern recognition receptors (PRRs) on DCs interact with pathogens, leading to signaling events that dictate adaptive immune responses. It is becoming clear that C-type lectins are important PRRs that

  19. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z..., Mocsai A. Immunol Lett. 2006 Apr 15;104(1-2):29-37. Epub 2005 Nov 28. (.png) (.svg) (.html) (.csml) Show ITAM-based sign...aling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond

  20. Recent Advances in Aptamers Targeting Immune System.

    Science.gov (United States)

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  1. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  2. Adaptive security systems -- Combining expert systems with adaptive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Loveland, R.; Anderson, K. [and others

    1997-09-01

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting.

  3. Adaptive security systems -- Combining expert systems with adaptive technologies

    International Nuclear Information System (INIS)

    Argo, P.; Loveland, R.; Anderson, K.

    1997-01-01

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting

  4. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  5. Peripheral education of the immune system by the colonic microbiota.

    Science.gov (United States)

    Kuhn, Kristine A; Stappenbeck, Thaddeus S

    2013-11-30

    There is growing interest in understanding the effects of host-microbial interactions on host physiologic processes. Much of the work in this arena is logically focused on the interaction at mucosal surfaces as this is a primary site of interaction. However, there is ample evidence to suggest that the effects of the microbiota have a much farther reach including the systemic immune system. While there are some similarities to effects at mucosal surfaces (i.e. reduced numbers of adaptive immune cells, diminished innate responses), there are some important differences that we highlight such as the response to immunogens and bacterial antigens. We propose that understanding the details of how specific components of the microbiota influence the systemic immune system likely will have significant impact on our understanding the pathophysiology of a variety of autoimmune diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows.

    Science.gov (United States)

    Silva, P R B; Machado, K S; Da Silva, D N Lobão; Moraes, J G N; Keisler, D H; Chebel, R C

    2015-07-01

    The aim of this experiment was to determine effects of treating peripartum dairy cows with body condition score ≥3.75 with recombinant bovine somatotropin (rbST) on immune, inflammatory, and metabolic responses. Holstein cows (253±1d of gestation) were assigned randomly to 1 of 3 treatments: untreated control (n=53), rbST87.5 (n=56; 87.5mg of rbST), and rbST125 (n=57; 125mg of rbST). Cows in the rbST87.5 and rbST125 treatments received rbST weekly from -21 to 28d relative to calving. Growth hormone, insulin-like growth factor 1, haptoglobin, tumor necrosis factor α, nonesterified fatty acids, β-hydroxybutyrate, glucose, and cortisol concentrations were determined weekly from -21 to 21d relative to calving. Blood sampled weekly from -14 to 21d relative to calving was used for hemogram and polymorphonuclear leukocyte (PMNL) expression of adhesion molecules, phagocytosis, and oxidative burst. Cows were vaccinated with ovalbumin at -21, -7, and 7d relative to calving, and blood was collected weekly from -21 to 21d relative to calving to determine IgG anti-ovalbumin concentrations. A subsample of cows had liver biopsied -21, -7, and 7d relative to calving to determine total lipids, triglycerides, and glycogen content. Growth hormone concentrations prepartum (control=11.0±1.2, rbST87.5=14.1±1.2, rbST125=15.1±1.3ng/mL) and postpartum (control=14.4±1.1, rbST87.5=17.8±1.2, rbST125=21.8±1.1ng/mL) were highest for rbST125 cows. Cows treated with rbST had higher insulin-like growth factor 1 concentrations than control cows (control=110.5±4.5, rbST87.5=126.2±4.5, rbST125=127.2±4.5ng/mL) only prepartum. Intensity of L-selectin expression was higher for rbST125 than for control and rbST87.5 cows [control=3,590±270, rbST87.5=3,279±271, rbST125=4,371±279 geometric mean fluorescence intensity (GMFI)] in the prepartum period. The PMNL intensities of phagocytosis (control=3,131±130, rbST87.5=3,391±133, rbST125=3,673±137 GMFI) and oxidative burst (control=9,588±746

  7. Physical Theory of the Immune System

    Science.gov (United States)

    Deem, Michael

    2012-10-01

    I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.

  8. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    Immunology, New Delhi, and have been working there on various aspects of cellular and molecular immunology for the past six years or so. ..... can maintain immune memory and make vaccines possible. Of course, the complications of the clonally diverse system of immune target recognition leads to a variety of practical ...

  9. Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system.

    Science.gov (United States)

    Belov, Katherine; Sanderson, Claire E; Deakin, Janine E; Wong, Emily S W; Assange, Daniel; McColl, Kaighin A; Gout, Alex; de Bono, Bernard; Barrow, Alexander D; Speed, Terence P; Trowsdale, John; Papenfuss, Anthony T

    2007-07-01

    The availability of the first marsupial genome sequence has allowed us to characterize the immunome of the gray short-tailed opossum (Monodelphis domestica). Here we report the identification of key immune genes, including the highly divergent chemokines, defensins, cathelicidins, and Natural Killer cell receptors. It appears that the increase in complexity of the mammalian immune system occurred prior to the divergence of the marsupial and eutherian lineages approximately 180 million years ago. Genomes of ancestral mammals most likely contained all of the key mammalian immune gene families, with evolution on different continents, in the presence of different pathogens leading to lineage specific expansions and contractions, resulting in some minor differences in gene number and composition between different mammalian lineages. Gene expansion and extensive heterogeneity in opossum antimicrobial peptide genes may have evolved as a consequence of the newborn young needing to survive without an adaptive immune system in a pathogen laden environment. Given the similarities in the genomic architecture of the marsupial and eutherian immune systems, we propose that marsupials are ideal model organisms for the study of developmental immunology.

  10. Yersinia enterocolitica: subversion of adaptive immunity and implications for vaccine development.

    Science.gov (United States)

    Autenrieth, Stella E; Autenrieth, Ingo B

    2008-01-01

    Enteric Yersinia spp. invade Peyer's patches, disseminate to lymphoid tissues, and induce mucosal and systemic immune responses. Many virulence factors of Yersinia enterocolitica have been investigated in detail and were found to act on host cells involved in innate and adaptive immunity. Recent work explored as to whether attenuated Y. enterocolitica or recombinant components of Y. enterocolitica can be used as tools for vaccination. We and others have tested whether by means of the type three secretion system in attenuated Y. enterocolitica strains antigens might be delivered to antigen-presenting cells in order to induce CD8 and CD4 T cell responses. Alternatively, recombinant components of Y. enterocolitica such as invasin protein which binds to beta1 integrins of host cells have been tested for their ability to target antigen along with microparticles (fused to invasin) to antigen-presenting cells and to act as adjuvant. The work summarized in this article demonstrates that Y. enterocolitica and its components might be useful tools for novel vaccination strategies; in fact, invasin when fused to antigen and coated to microparticles might induce both CD4 and CD8 T cell responses. Likewise, attenuated Y. enterocolitica live carrier strains were reported to induce both CD8 and some CD4 T cell responses. However, we need to know more about how Y. enterocolitica subverts functions of antigen-presenting cells in order to design mutants with optimized antigen delivery features and deletion in those virulence factor that contribute to subversion of innate or adaptive immune responses.

  11. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  12. Regulation of innate and adaptive immunity by the commensal microbiota

    OpenAIRE

    Jarchum, Irene; Pamer, Eric G.

    2011-01-01

    The microbial communities that inhabit the intestinal tract are essential for mammalian health. Communication between the microbiota and the host establishes and maintains immune homeostasis, enabling protective immune responses against pathogens while preventing adverse inflammatory responses to harmless commensal microbes. Specific bacteria, such as segmented filamentous bacteria, Clostridium species, and Bacteroides fragilis, are key contributors to immune homeostasis in the gut. The cellu...

  13. The Lymphatic System: Integral Roles in Immunity.

    Science.gov (United States)

    Randolph, Gwendalyn J; Ivanov, Stoyan; Zinselmeyer, Bernd H; Scallan, Joshua P

    2017-04-26

    The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.

  14. The Immune System of HIV-Exposed Uninfected Infants.

    Science.gov (United States)

    Abu-Raya, Bahaa; Kollmann, Tobias R; Marchant, Arnaud; MacGillivray, Duncan M

    2016-01-01

    Infants born to human immunodeficiency virus (HIV) infected women are HIV-exposed but the majority remains uninfected [i.e., HIV-exposed uninfected (HEU)]. HEU infants suffer greater morbidity and mortality from infections compared to HIV-unexposed (HU) peers. The reason(s) for these worse outcomes are uncertain, but could be related to an altered immune system state. This review comprehensively summarizes the current literature investigating the adaptive and innate immune system of HEU infants. HEU infants have altered cell-mediated immunity, including impaired T-cell maturation with documented hypo- as well as hyper-responsiveness to T-cell activation. And although prevaccination vaccine-specific antibody levels are often lower in HEU than HU, most HEU infants mount adequate humoral immune response following primary vaccination with diphtheria toxoid, haemophilus influenzae type b, whole cell pertussis, measles, hepatitis B, tetanus toxoid, and pneumococcal conjugate vaccines. However, HEU infants are often found to have lower absolute neutrophil counts as compared to HU infants. On the other hand, an increase of innate immune cytokine production and expression of co-stimulatory markers has been noted in HEU infants, but this increase appears to be restricted to the first few weeks of life. The immune system of HEU children beyond infancy remains largely unexplored.

  15. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    , we have simply referred to 'cells of the immune system', as though they were a homogeneous population. But clearly, given the number of functions they are expected to carry out, ..... easily susceptible to such digestion themselves (Figure 3).

  16. Rate Adaptive OFDMA Communication Systems

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.M.

    2009-01-01

    Due to the varying nature of the wireless channels, adapting the transmission parameters, such as code rate, modulation order and power, in response to the channel variations provides a significant improvement in the system performance. In the OFDM systems, Per-Frame adaptation (PFA) can be employed where the transmission variables are fixed over a given frame and may change from one frame to the other. Subband (tile) loading offers more degrees of adaptation such that each group of carriers (subband) uses the same transmission parameters and different subbands may use different parameters. Changing the code rate for each tile in the same frame, results in transmitting multiple codewords (MCWs) for a single frame. In this thesis a scheme is proposed for adaptively changing the code rate of coded OFDMA systems via changing the puncturing rate within a single codeword (SCW). In the proposed structure, the data is encoded with the lowest available code rate then it is divided among the different tiles where it is punctured adaptively based on some measure of the channel quality for each tile. The proposed scheme is compared against using multiple codewords (MCWs) where the different code rates for the tiles are obtained using separate encoding processes. For bit interleaved coded modulation architecture two novel interleaving methods are proposed, namely the puncturing dependant interleaver (PDI) and interleaved puncturing (IntP), which provide larger interleaving depth. In the PDI method the coded bits with the same rate over different tiles are grouped for interleaving. In IntP structure the interleaving is performed prior to puncturing. The performance of the adaptive puncturing technique is investigated under constant bit rate constraint and variable bit rate. Two different adaptive modulation and coding (AMC) selection methods are examined for variable bit rate adaptive system. The first is a recursive scheme that operates directly on the SNR whereas the second

  17. Nanosatellite Launch Adapter System (NLAS)

    Science.gov (United States)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  18. Gene regulation in the immune system by long noncoding RNAs.

    Science.gov (United States)

    Chen, Y Grace; Satpathy, Ansuman T; Chang, Howard Y

    2017-08-22

    Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.

  19. Why the Immune System Should Be Concerned by Nanomaterials?

    Directory of Open Access Journals (Sweden)

    Marc J. Pallardy

    2017-05-01

    Full Text Available Particles possess huge specific surface area and therefore nanomaterials exhibit unique characteristics, such as special physical properties and chemical hyper-reactivity, which make them particularly attractive but also raise numerous questions concerning their safety. Interactions of nanomaterials with the immune system can potentially lead to immunosuppression, hypersensitivity (allergy, immunogenicity and autoimmunity, involving both innate and adaptive immune responses. Inherent physical and chemical NP characteristics may influence their immunotoxicity, i.e., the adverse effects that can result from exposure. This review will focus on the possible interaction of nanomaterials including protein aggregates with the innate immune system with specific emphasis on antigen-presenting cells, i.e., dendritic cells, macrophages and monocytes.

  20. The MHC I loading complex: a multitasking machinery in adaptive immunity.

    Science.gov (United States)

    Hulpke, Sabine; Tampé, Robert

    2013-08-01

    Recognition and elimination of virally or malignantly transformed cells are pivotal tasks of the adaptive immune system. For efficient immune detection, snapshots of the cellular proteome are presented as epitopes on major histocompatibility complex class I (MHC I) molecules for recognition by cytotoxic T cells. Knowledge about the track from the equivocal protein to the presentation of antigenic peptides has greatly expanded, leading to an astonishingly elaborate understanding of the MHC I peptide loading pathway. Here, we summarize the current view on this complex process, which involves ABC transporters, proteases, chaperones, and endoplasmic reticulum (ER) quality control. The contribution of individual proteins and subcomplexes is discussed, with a focus on the architecture and dynamics of the key player in the pathway, the peptide-loading complex (PLC). Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Thunder - adaptive avalanche airbag system

    OpenAIRE

    Chen, Kan

    2017-01-01

    Skiing plays an important role in outdoor activities. It allows us to regain control of our body, makes us feel alive. However, in some cases, skiing comes with great risk. Avalanche is the worth thing a skier would like to encounter. Thunder is an adaptive avalanche airbag system. Usually, an avalanche airbag product can help you float on the snow in an avalanche circumstance. Thunder are more focusing on the human behavior, making this avalanche airbag system not only an effective safety eq...

  2. Modulating the immune system through nanotechnology.

    Science.gov (United States)

    Dacoba, Tamara G; Olivera, Ana; Torres, Dolores; Crecente-Campo, José; Alonso, María José

    2017-12-01

    Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. STSV2 as a Model Crenarchaeal Virus for Studying Virus-Host Interactions and CRISPR-Cas Adaptive Immunity

    DEFF Research Database (Denmark)

    León Sobrino, Carlos

    , the archaea harbour their own viruses, which constitute an extraordinarily diverse group with exotic morphologies and unique features. Prokaryotes possess a variety of defence mechanisms. The CRISPR-Cas adaptive immune system is of great importance for archaea –84% of them possess it, compared to 45...... generate immune memory by inserting in its own genome short invader-derived DNA fragments forming a database –the CRISPR locus. Little was known about this system until recent years, and the generation of immune memory has been the most elusive step. In this work, the interactions of the spindle......-shaped monocaudavirus STSV2 and its host Sulfolobus islandicus REY15A were studied. This interaction produced, after several days, de novo CRISPR adaptation – that is, without any previous memory that can act as a trigger. We employed transcriptome sequencing to characterise the long-term progression...

  4. Adaptive, dynamic, and resilient systems

    CERN Document Server

    Suri, Niranjan

    2015-01-01

    As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r

  5. Viral subversion of the immune system

    International Nuclear Information System (INIS)

    Gillet, L.; Vanderplasschen, A.

    2005-01-01

    The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines. (author)

  6. Fault-Tolerant Trajectory Tracking of Unmanned Aerial Vehicles Using Immunity-Based Model Reference Adaptive Control

    Science.gov (United States)

    Wilburn, Brenton K.

    This dissertation presents the design, development, and simulation testing of an adaptive trajectory tracking algorithm capable of compensating for various aircraft subsystem failures and upset conditions. A comprehensive adaptive control framework, here within referred to as the immune model reference adaptive control (IMRAC) algorithm, is developed by synergistically merging core concepts from the biologically- inspired artificial immune system (AIS) paradigm with more traditional optimal and adaptive control techniques. In particular, a model reference adaptive control (MRAC) algorithm is enhanced with the detection and learning capabilities of a novel, artificial neural network augmented AIS scheme. With the given modifications, the MRAC scheme is capable of detecting and identifying a given failure or upset condition, learning how to adapt to the problem, responding in a manner specific to the given failure condition, and retaining the learning parameters for quicker adaptation to subsequent failures of the same nature. The IMRAC algorithm developed in this dissertation is applicable to a wide range of control problems. However, the proposed methodology is demonstrated in simulation for an unmanned aerial vehicle. The results presented show that the IMRAC algorithm is an effective and valuable extension to traditional optimal and adaptive control techniques. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems.

  7. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection

    Science.gov (United States)

    Eisenreich, Wolfgang; Rudel, Thomas; Heesemann, Jürgen; Goebel, Werner

    2017-01-01

    Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens. PMID:28752080

  8. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas

    2010-01-01

    Ilya Metchnikoff and Paul Ehrlich were awarded the Nobel price in 1908. Since then, numerous studies have unraveled a multitude of mechanistically different immune responses to intruding microorganisms. However, in the vast majority of these studies, the underlying infectious agents have appeared...... the present review on the immune system vs. biofilm bacteria is focused on Pseudomonas aeruginosa (mainly because this is the most thoroughly studied), many of the same mechanisms are also seen with biofilm infections generated by other microorganisms....

  9. Dermatology in the Darwin anniversary. Part 2: Evolution of the skin-associated immune system.

    Science.gov (United States)

    Wölfle, Ute; Martin, Stefan; Emde, Matthias; Schempp, Christoph

    2009-10-01

    The present review highlights the evolution of the skin-associated immune system from the invertebrates to the vertebrates and man. In the invertebrates a non-specific humoral immune response dominates. It includes antimicrobial peptides, oxidases, lysozyme, agglutinins, coagulins and melanin. The cellular immune system initially consists of undifferentiated mesenchymal stem cells. Later migrating phagocytes and natural killer cells occur. From the fishes on, dendritic cells are present, linking innate and adaptive immune responses. In addition to this unspecific but highly effective immune system, the specific immune response, based on genetic recombination, is present in the vertebrates starting with the chondral fishes. The adaptive immune system possesses unlimited numbers of highly specific antibodies and T-cell receptors, increasingly tissue specific MHC restriction, and cellular memory. Elements of the skin-associated adaptive immune system are first detectable in the teleost fishes in the form of intraepithelial IgM positive lymphocytes and dendritic cells. Moving up to mammals and man, the skin-associated immune system became more and more complex and effective.

  10. Increased innate and adaptive immune responses in induced sputum of young smokers

    Directory of Open Access Journals (Sweden)

    Agnese Kislina

    2015-01-01

    Conclusions: This study demonstrates that young smokers have early inflammatory changes in their airways that not only initiate nonspecific mechanisms recruiting neutrophils, but also involve specific immune mechanisms with recruitment of T regulatory lymphocytes. The lymphocyte response is probably adaptive.

  11. Immune regulation in gut and cord : opportunities for directing the immune system

    NARCIS (Netherlands)

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the

  12. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism.

    OpenAIRE

    Slack Emma; Hapfelmeier Siegfried; Stecher Bärbel; Velykoredko Yuliya; Stoel Maaike; Lawson Melissa A E; Geuking Markus B; Beutler Bruce; Tedder Thomas F; Hardt Wolf-Dietrich; Bercik Premysl; Verdu Elena F; McCoy Kathy D; Macpherson Andrew J

    2009-01-01

    Commensal bacteria in the lower intestine of mammals are 10 times as numerous as the body's cells. We investigated the relative importance of different immune mechanisms in limiting the spread of the intestinal microbiota. Here we reveal a flexible continuum between innate and adaptive immune function in containing commensal microbes. Mice deficient in critical innate immune functions such as Toll like receptor signaling or oxidative burst production spontaneously produce high titer serum ant...

  13. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    OpenAIRE

    van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.

    2012-01-01

    textabstractThe influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the curren...

  14. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  15. Evasion of influenza A viruses from innate and adaptive immune responses

    NARCIS (Netherlands)

    C.E. van de Sandt (Carolien); J.H.C.M. Kreijtz (Joost); G.F. Rimmelzwaan (Guus)

    2012-01-01

    textabstractThe influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses

  16. The Immune System in Irritable Bowel Syndrome

    Science.gov (United States)

    Cremon, Cesare; Carini, Giovanni; Bellacosa, Lara; Zecchi, Lisa; De Giorgio, Roberto; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2011-01-01

    The potential relevance of systemic and gastrointestinal immune activation in the pathophysiology and symptom generation in the irritable bowel syndrome (IBS) is supported by a number of observations. Infectious gastroenteritis is the strongest risk factor for the development of IBS and increased rates of IBS-like symptoms have been detected in patients with inflammatory bowel disease in remission or in celiac disease patients on a gluten free diet. The number of T cells and mast cells in the small and large intestine of patients with IBS is increased in a large proportion of patients with IBS over healthy controls. Mediators released by immune cells and likely from other non-immune competent cells impact on the function of enteric and sensory afferent nerves as well as on epithelial tight junctions controlling mucosal barrier of recipient animals, isolated human gut tissues or cell culture systems. Antibodies against microbiota antigens (bacterial flagellin), and increased levels of cytokines have been detected systemically in the peripheral blood advocating the existence of abnormal host-microbial interactions and systemic immune responses. Nonetheless, there is wide overlap of data obtained in healthy controls; in addition, the subsets of patients showing immune activation have yet to be clearly identified. Gender, age, geographic differences, genetic predisposition, diet and differences in the intestinal microbiota likely play a role and further research has to be done to clarify their relevance as potential mechanisms in the described immune system dysregulation. Immune activation has stimulated interest for the potential identification of biomarkers useful for clinical and research purposes and the development of novel therapeutic approaches. PMID:22148103

  17. Adaptive Maternal Immune Deviations as a Ground For Autism Spectrum Disorders Development in Children

    Directory of Open Access Journals (Sweden)

    Poletaev Alexander B.

    2014-08-01

    Full Text Available Autism is a vexed problem today. Overall, there is a high frequency of birth children (1:80 – 1:150 with late diagnosed autism spectrum disorders (ASD and this trend is getting progressively stronger. The causes for the currently increased frequency of ASD and the pathogenesis of ASD are not fully understood yet. One of the most likely mechanisms inducing ASD may be a maternal immune imprinting. This phenomenon is based on transplacental translocation of maternal antibodies of IgG class and, as a consequence, on the epigenetic “tuning” of immune system of the fetus and child. This mechanism provides development of child’s anti-infection resistance before meeting with microorganisms, but it can be also a cause of inborn pathology including the ASD appearance. The quantitative changes in maternal blood serum autoantibodies depend on a specific microbial population, or are induced by environmental chemical pollutants in association with some individual features of the maternal metabolism. These immune changes are adaptive in most cases for the maternal organism, but can be pathogenic for the fetus in some cases. We discuss in the present paper the possibilities to predict the risk from abnormal development of nervous system in fetus and early diagnosis of ASD in high-risk group of children.

  18. [Cells of innate and adaptive immunity in type 2 diabetes and obesity].

    Science.gov (United States)

    Guzmán-Flores, Juan Manuel; López-Briones, Sergio

    2012-01-01

    Both type 2 diabetes mellitus (T2DM) and obesity are a major public health problem in Mexico and around the world for increased incidence. In T2DM, insulin secretion, insulin action or both are altered. Also, in T2DM as well as in obesity a low grade chronic inflammation has been associated. In both conditions there is an important increase of visceral adipose tissue, which induces to an up-regulation of synthesis in proinflammatory molecules. This process involves different subsets of the immune system. The macrophages and monocytes are the best studied, but recently has been reported the involvement of other type of cells; such as neutrophils, mast cells, eosinophils, dendritic cells, NKs, NKT. Also, some T cells subsets, such as Th1, Th2, T regulatory, Th17 and B cells seems to be involved in the low grade chronic inflammation. This review focuses on recent evidences of the role of innate and adaptative immune system cells in the pathology of T2DM and obesity. We concluded with the general proposal of a theoretical model, how the immune cells may participate in inflammation of fat tissue, insulin resistance and T2DM.

  19. Financial markets as adaptive systems

    Science.gov (United States)

    Potters, M.; Cont, R.; Bouchaud, J.-P.

    1998-02-01

    We show, by studying in detail the market prices of options on liquid markets, that the market has empirically corrected the simple, but inadequate Black-Scholes formula to account for two important statistical features of asset fluctuations: "fat tails" and correlations in the scale of fluctuations. These aspects, although not included in the pricing models, are very precisely reflected in the price fixed by the market as a whole. Financial markets thus behave as rather efficient adaptive systems.

  20. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  1. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  2. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  3. Subversion of innate and adaptive immune responses by Toxoplasma gondii.

    Science.gov (United States)

    Lang, Christine; Gross, Uwe; Lüder, Carsten G K

    2007-01-01

    The intracellular apicomplexan parasite Toxoplasma gondii is able to survive and persist in immunocompetent intermediate hosts for the host's life span. This is despite the induction of a vigorous humoral and -- more importantly -- cell-mediated immune response during infection. In order to establish and maintain such chronic infections, however, T. gondii has evolved multiple strategies to avoid or to interfere with potentially efficient anti-parasitic immune responses of the host. Such immune evasion includes (1) indirect mechanisms by altering the expression and secretion of immunomodulatory cytokines or by altering the viability of immune cells and (2) direct mechanisms by establishing a lifestyle within a suitable intracellular niche and by interference with intracellular signaling cascades, thereby abolishing a number of antimicrobial effector mechanisms of the host. Despite the parasite's ability to interfere successfully with the host's efforts to eradicate the infection, the immune response is, however, not completely abrogated but is rather partially diminished after infection. T. gondii thus keeps a delicate balance between induction and suppression of the host's immune response in order to guarantee the survival of the host as a safe harbor for parasite development and to allow its transmission to the definitive host.

  4. Effects of microgravity on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  5. Artificial immune system applications in computer security

    CERN Document Server

    Tan, Ying

    2016-01-01

    This book provides state-of-the-art information on the use, design, and development of the Artificial Immune System (AIS) and AIS-based solutions to computer security issues. Artificial Immune System: Applications in Computer Security focuses on the technologies and applications of AIS in malware detection proposed in recent years by the Computational Intelligence Laboratory of Peking University (CIL@PKU). It offers a theoretical perspective as well as practical solutions for readers interested in AIS, machine learning, pattern recognition and computer security. The book begins by introducing the basic concepts, typical algorithms, important features, and some applications of AIS. The second chapter introduces malware and its detection methods, especially for immune-based malware detection approaches. Successive chapters present a variety of advanced detection approaches for malware, including Virus Detection System, K-Nearest Neighbour (KNN), RBF networ s, and Support Vector Machines (SVM), Danger theory, ...

  6. Computerized adaptive testing item selection in computerized adaptive learning systems

    NARCIS (Netherlands)

    Eggen, Theodorus Johannes Hendrikus Maria; Eggen, T.J.H.M.; Veldkamp, B.P.

    2012-01-01

    Item selection methods traditionally developed for computerized adaptive testing (CAT) are explored for their usefulness in item-based computerized adaptive learning (CAL) systems. While in CAT Fisher information-based selection is optimal, for recovering learning populations in CAL systems item

  7. Adaptive Intrusion Data System (AIDS)

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  8. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  9. Mathematical Model of Innate and Adaptive Immunity of Sepsis: A Modeling and Simulation Study of Infectious Disease.

    Science.gov (United States)

    Shi, Zhenzhen; Wu, Chih-Hang J; Ben-Arieh, David; Simpson, Steven Q

    2015-01-01

    Sepsis is a systemic inflammatory response (SIR) to infection. In this work, a system dynamics mathematical model (SDMM) is examined to describe the basic components of SIR and sepsis progression. Both innate and adaptive immunities are included, and simulated results in silico have shown that adaptive immunity has significant impacts on the outcomes of sepsis progression. Further investigation has found that the intervention timing, intensity of anti-inflammatory cytokines, and initial pathogen load are highly predictive of outcomes of a sepsis episode. Sensitivity and stability analysis were carried out using bifurcation analysis to explore system stability with various initial and boundary conditions. The stability analysis suggested that the system could diverge at an unstable equilibrium after perturbations if r t2max (maximum release rate of Tumor Necrosis Factor- (TNF-) α by neutrophil) falls below a certain level. This finding conforms to clinical findings and existing literature regarding the lack of efficacy of anti-TNF antibody therapy.

  10. Role of Osmolytes in Regulating Immune System.

    Science.gov (United States)

    Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar

    2016-01-01

    The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.

  11. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus?

    Directory of Open Access Journals (Sweden)

    Claire Deligne

    2017-08-01

    Full Text Available Clinical responses to anti-tumor monoclonal antibody (mAb treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.

  12. Role of innate and adaptive immunity in the control of Q fever.

    Science.gov (United States)

    Capo, Christian; Mege, Jean-Louis

    2012-01-01

    Acute Q fever is commonly resolved without an antibiotic regimen, but a primary infection may develop into a chronic infection in a minority of cases. Coxiella burnetii, the causative agent of Q fever, is known to infect macrophages both in vitro and in vivo. It has been observed that the intracellular survival of C. burnetii requires the subversion of the microbicidal properties of macrophages. Adaptive immunity is also essential to cure C. burnetii infection, as demonstrated by clinical studies and animal models. Indeed, the control of infection in patients with primary Q fever involves a systemic cell-mediated immune response and granuloma formation with an essential role for interferon-γ in the protection against C. burnetii. In contrast, chronic Q fever is characterized by defective cell-mediated immunity with the defective formation of granulomas and over-production of interleukin-10, an immunoregulatory cytokine. Finally, epidemiological data demonstrate that age and gender are risk factors for Q fever. The analysis of gene expression programs in mice reveals the importance of sex-related genes in C. burnetii infection because only 14% of the modulated genes are sex-independent, while the remaining 86% are differentially expressed in males and females. These results open a new field to understand how host metabolism controls C. burnetii infection in humans.

  13. Nutritional components regulate the gut immune system and its association with intestinal immune disease development.

    Science.gov (United States)

    Lamichhane, Aayam; Kiyono, Hiroshi; Kunisawa, Jun

    2013-12-01

    The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  14. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    Directory of Open Access Journals (Sweden)

    Guus F. Rimmelzwaan

    2012-09-01

    Full Text Available The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.

  15. Evasion of influenza A viruses from innate and adaptive immune responses.

    Science.gov (United States)

    van de Sandt, Carolien E; Kreijtz, Joost H C M; Rimmelzwaan, Guus F

    2012-09-01

    The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.

  16. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges

    Science.gov (United States)

    Cooper, Dustin; Eleftherianos, Ioannis

    2017-01-01

    The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a “loitering” innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed. PMID:28536580

  17. Stromal cell contributions to the homeostasis and functionality of the immune system.

    Science.gov (United States)

    Mueller, Scott N; Germain, Ronald N

    2009-09-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance and the effective development of adaptive immune responses take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in many aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immune responses, and highlight how targeting of these elements by some pathogens can influence the host immune response.

  18. Towards Adaptive Spoken Dialog Systems

    CERN Document Server

    Schmitt, Alexander

    2013-01-01

    In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and  accurate use.  Beginning with the foundations of machine learning and pattern recognition, this monograph examines how frequently users show negative emotions in spoken dialog systems and develop novel approaches to speech-based emotion recognition using hybrid approach to model emotions. The authors make use of statistical methods based on acoustic, linguistic and contextual features to examine the relationship between the interaction flow and the occurrence of emotions using non-acted  recordings several thousand real users from commercial and non-commercial SDS. Additionally, the authors present novel statistical methods that spot problems within a dialog based on interaction patterns. The approaches enable future SDS to offer m...

  19. Deciphering the Adaptive Immune Response to Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GM, Factor RE, Collins...tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189, 832- 844, doi:10.1164

  20. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  1. Early adaption to the antarctic environment at dome C: consequences on stress-sensitive innate immune functions.

    Science.gov (United States)

    Feuerecker, Matthias; Crucian, Brian; Salam, Alex P; Rybka, Ales; Kaufmann, Ines; Moreels, Marjan; Quintens, Roel; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Sams, Clarence; Choukèr, Alexander

    2014-09-01

    Abstract Feuerecker, Matthias, Brian Crucian, Alex P. Salam, Ales Rybka, Ines Kaufmann, Marjan Moreels, Roel Quintens, Gustav Schelling, Manfred Thiel, Sarah Baatout, Clarence Sams, and Alexander Choukèr. Early adaption in the Antarctic environment at Dome C: Consequences on stress-sensitive innate immune functions. High Alt Med Biol 15:341-348, 2014.-Purpose/Aims: Medical reports of Antarctic expeditions indicate that health is affected under these extreme conditions. The present study at CONCORDIA-Station (Dome C, 3233 m) seeks to investigate the early consequences of confinement and hypobaric hypoxia on the human organism. Nine healthy male participants were included in this study. Data collection occurred before traveling to Antarctica (baseline), and at 1 week and 1 month upon arrival. Investigated parameters included basic physiological variables, psychological stress tests, cell blood count, stress hormones, and markers of innate immune functions in resting and stimulated immune cells. By testing for the hydrogen peroxide (H2O2) production of stimulated polymorphonuclear leukocytes (PMNs), the effects of the hypoxia-adenosine-sensitive immune modulatory pathways were examined. As compared to baseline data, reduced oxygen saturation, hemoconcentration, and an increase of secreted catecholamines was observed, whereas no psychological stress was seen. Upon stimulation, the activity of PMNs and L-selectin shedding was mitigated after 1 week. Endogenous adenosine concentration was elevated during the early phase. In summary, living conditions at high altitude influence the innate immune system's response. After 1 month, some of the early effects on the human organism were restored. As this early adaptation is not related to psychological stress, the changes observed are likely to be induced by environmental stressors, especially hypoxia. As hypoxia is triggering ATP-catabolism, leading to elevated endogenous adenosine concentrations, this and the increased

  2. Immune System Model Calibration by Genetic Algorithm

    NARCIS (Netherlands)

    Presbitero, A.; Krzhizhanovskaya, V.; Mancini, E.; Brands, R.; Sloot, P.

    2016-01-01

    We aim to develop a mathematical model of the human immune system for advanced individualized healthcare where medication plan is fine-tuned to fit a patient's conditions through monitored biochemical processes. One of the challenges is calibrating model parameters to satisfy existing experimental

  3. Immune system alterations in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple...

  4. The Immune System and Bodily Defence

    Indian Academy of Sciences (India)

    receptor, making them potential levers for immunological con- fusion, especially if one of the two receptors recognises some target shape that is normal and intrinsic to the body itself! However, this is a problem that we must think about in the context of the larger issue of how the immune system weeds out such potentially ...

  5. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  6. High-Density Lipoproteins and the Immune System

    Directory of Open Access Journals (Sweden)

    Hidesuke Kaji

    2013-01-01

    Full Text Available High-density lipoprotein (HDL plays a major role in vasodilation and in the reduction of low-density lipoprotein (LDL oxidation, inflammation, apoptosis, thrombosis, and infection; however, HDL is now less functional in these roles under certain conditions. This paper focuses on HDL, its anti-inflammation behavior, and the mechanisms by which HDL interacts with components of the innate and adaptive immune systems. Genome-wide association studies (GWAS and proteomic studies have elucidated important molecules involved in the interaction between HDL and the immune system. An understanding of these mechanisms is expected to be useful for the prevention and treatment of chronic inflammation due to metabolic syndrome, atherosclerosis, or various autoimmune diseases.

  7. APPROACH TO ADAPTIVE LEARNING MANAGEMENT SYSTEM DESIGN

    Directory of Open Access Journals (Sweden)

    Vitaly A. Gaevoy

    2014-01-01

    Full Text Available In this paper, we describe how to increase the learning management systems effi ciency by using an adaptive approach. In our work we try and summarize the existing systems; the adaptability absence problem is discovered, programming and architectural adaptive learning management system designing approach is offered. 

  8. Impacts of Low Temperature on the Teleost Immune System

    Directory of Open Access Journals (Sweden)

    Quinn H. Abram

    2017-11-01

    Full Text Available As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an individual fish species can have negative impacts on the physiology of the animal, including the immune system. As a result, acute or chronic exposure to suboptimal temperatures can impair an organisms’ ability to defend against pathogens and thus compromise the overall health of the animal. This review focuses on the advances made towards understanding the impacts of suboptimal temperature on the soluble and cellular mediators of the innate and adaptive immune systems of fishes. Although cold stress can result in varying effects in different fish species, acute and chronic suboptimal temperature exposure generally yield suppressive effects, particularly on adaptive immunity. Knowledge of the effects of environmental temperature on fish species is critical for both the optimal management of wild species and the best management practices for aquaculture species.

  9. Long-term in vitro and in vivo effects of gamma-irradiated BCG on innate and adaptive immunity

    NARCIS (Netherlands)

    Arts, R.J.W.; Blok, B.A.; Aaby, P.; Joosten, L.A.B.; Jong, D.J. de; Meer, J.W.M. van der; Benn, C.S.; Crevel, R. van; Netea, M.G.

    2015-01-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in

  10. Immune system investigations for radiation workers

    International Nuclear Information System (INIS)

    Obreja, Doina; Tulbure, Rodica; Marinescu, Irina

    2001-01-01

    During the last decade a great deal of attention has been paid to the research in the field of the immune system. Some important steps forward have been achieved in understanding the mechanisms of action and control of the immunologic responses. At the same time the concern for the possible health effects of exposure to ionizing radiation has considerably increased. On the purpose of the evaluation of the modifications induced by the ionizing radiation for radiation workers, we have applied the method of lymphocytic subpopulations, a method that evinces the proportions for the various subtypes of lymphocytes having different roles within the immune system. A number of 62 persons, employees of the Institute of Physics and Nuclear Engineering at Bucharest - Magurele were involved in this study. All radiation workers from 2 departments characterized by a high exposure to ionizing radiation were included, as follows: Group no. 1, consisting of 20 persons working at RWTS (Radioactive Waste Treating Station), thus presenting both external and internal irradiation; Group no. 2, consisting of 18 persons working at RPC (Radioactive Isotopes Preparing Center), a place where besides the radioactive contamination, the chemical risk was also present. The control group (consisting of 24 persons) was formed of employees from the same institute, with the difference that they were not radiation workers. For the statistical processing of the results the programs EPI INFO 6 and CIA were used. Significantly, when analyzing globally the lymphocytic modifications for TT and/or B lymphocytes (either increments or decrements when compared to the normal values), a noticeable statistical difference among the groups in terms of the frequency of the immune system modifications (Hi square test p=0.001) occurs. The results are in accordance to those in special literature mentioning age as a factor having a role in the appearance of the immune modifications. The obtained results indicate a

  11. Effects of triterpenes on the immune system.

    Science.gov (United States)

    Ríos, José-Luis

    2010-03-02

    Triterpenes, which comprise a broad chemical group of active principles, are implicated in the mechanisms of action and pharmacological effects of many medicinal plants used in folk medicine against diseases in which the immune system is implicated. They have been described as anti-inflammatory, antiviral, antimicrobial, and antitumoral agents, as well as being immunomodulator compounds. Several of them are implicated in the resolution of immune diseases, although their effects have not always been clearly correlated. The aim of this review is to compile relevant data on the mechanisms of action of triterpenes isolated from active ethnomedicinal plants and their role in the resolution of diseases in which the immune system is implicated to examine the mechanism by which they are useful as ethnopharmacological medicines. The selection of papers was made using the most relevant databases for the biomedical sciences on the basis of their ethnopharmacological use. We principally chose those studies that examined the resolution of allergic responses in vivo and those that studied the effects of the more relevant mediators implicated in the immune response in vitro. The number of compounds actually studied is limited compared with the high number of principles that have been isolated and identified. Many studies focus on specific pathologies such cancer or inflammation, but in many cases they are clearly correlated with the immune response. Lanostanes, cucurbitanes, and oleananes are probably the most interesting groups; however, other compounds are also of potential importance. Studies of specific mechanisms against mediators or transcription factors could be the objective for future research on ethnomedicinal plants used to combat immune diseases since the results obtained with cucurbitacins or derivatives of oleanolic acid support the use of different medicinal plants, thereby opening up a new frontier for future studies. Copyright (c) 2010 Elsevier Ireland Ltd. All

  12. Hippocampal adult neurogenesis: Does the immune system matter?

    Science.gov (United States)

    de Miranda, Aline Silva; Zhang, Cun-Jin; Katsumoto, Atsuko; Teixeira, Antônio Lúcio

    2017-01-15

    Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Regulation of vitamin D homeostasis: implications for the immune system.

    Science.gov (United States)

    van Etten, Evelyne; Stoffels, Katinka; Gysemans, Conny; Mathieu, Chantal; Overbergh, Lut

    2008-10-01

    Vitamin D homeostasis in the immune system is the focus of this review. The production of both the activating (25- and 1alpha-hydroxylase) and the metabolizing (24-hydroxylase) enzymes by cells of the immune system itself, indicates that 1,25(OH)(2)D(3) can be produced locally in immune reaction sites. Moreover, the strict regulation of these enzymes by immune signals is highly suggestive for an autocrine/paracrine role in the immune system, and opens new treatment possibilities.

  14. Oxazolone-induced contact hypersensitivity reduces lymphatic drainage but enhances the induction of adaptive immunity.

    Directory of Open Access Journals (Sweden)

    David Aebischer

    Full Text Available Contact hypersensitivity (CHS induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC migration to draining lymph nodes (dLNs. On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40 and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function.

  15. Role of immune system in tumor progression and carcinogenesis.

    Science.gov (United States)

    Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha

    2018-01-12

    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.

  16. The Immune System: the ultimate fractionated cyber-physical system

    Directory of Open Access Journals (Sweden)

    Carolyn Talcott

    2013-09-01

    Full Text Available In this little vision paper we analyze the human immune system from a computer science point of view with the aim of understanding the architecture and features that allow robust, effective behavior to emerge from local sensing and actions. We then recall the notion of fractionated cyber-physical systems, and compare and contrast this to the immune system. We conclude with some challenges.

  17. Sport, immune system and respiratory infections.

    Science.gov (United States)

    Gani, F; Passalacqua, G; Senna, G; Mosca Frezet, M

    2003-02-01

    In the recent years, the importance of sports in everyday life has rapidly increased. Asthma and respiratory allergy are among the most common problems to be afforded in those individuals practising sports and therefore, the diagnostic and therapeutic aspects of allergy in athletes have received in recent times a great interest. The experimental studies performed on allergy and sport have lead to take in consideration a more general aspect, that is the effects of exercise on the immune system. In fact, it has been observed that exercise can induce significant and measurable immunological changes, involving a transient immune suppression (changes in number and activity of neutrophils, lymphocytes, macrophages, and secretion of cytokines). This is probably the reason why athletes seem to be more prone to upper respiratory viral infections. These infections usually appear after exercise discontinuation (within 3 days) particularly in those athletes practising sports which require a long term effort and resistance. The problem is further complicated by the effect of nutrition, since nutrition regimen itself and dietary supplementation were demonstrated able to interfere with the immune response. In the present article we will review the present knowledge and experimental data concerning the effects of sport on immune system and some of the most important clinical implications.

  18. Factors of Innate and Adaptive Local Immunity in Children with Primary Deficiencies of Antibody Formation

    Directory of Open Access Journals (Sweden)

    L.I. Chernyshova

    2013-10-01

    Full Text Available In 40 children with various types of primary immunodeficiencies (PID of antibody formation we examined factors of local immunity in saliva. It is found that in the saliva of children with PID of antibody formation in comparison with immunocompetent children the concentration of factors of adaptive immunity is significantly reduced. Lack of adaptive immunity in the PID of antibody formation to some extent is compensated by increased concentrations of innate immune factors on the mucous membranes — the free Sc, as well as lactoferrin in selective immunodeficiency of IgA. At PID of antibody formation we observed increased TNF-α level in the saliva, which may indicate the persistence of local inflammation on the membranes of the respiratory tract.

  19. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    Directory of Open Access Journals (Sweden)

    Jami L. Dixon

    2014-02-01

    Full Text Available Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1 similar trends in farming system evolution have had differential impacts on the diversity of farming systems; (2 trends have contributed to the erosion of informal social and cultural institutions and an increasing dependence on formal institutions; and (3 trade-offs between components of adaptive capacity are made at the farm-scale, thus influencing farming system adaptive capacity. To identify the actual impacts of future climate change and variability, it is important to recognize the dynamic nature of adaptation. In practice, areas identified for further adaptation support include: shift away from one-size-fits-all approach the identification and integration of appropriate modern farming method; a greater focus on building inclusive formal and informal institutions; and a more nuanced understanding regarding the roles and decision-making processes of influential, but external, actors. More research is needed to understand farm-scale trade-offs and the resulting impacts across spatial and temporal scales.

  20. Archaeal CRISPR-based immune systems

    DEFF Research Database (Denmark)

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage...... of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence...... of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  1. [The interface between the immune system and autonomic nervous system].

    Science.gov (United States)

    Nakane, Shunya; Mukaino, Akihiro; Ando, Yukio

    2017-01-01

      The nervous system and the immune system are two major systems in human body. Although it was revealed these two systems correlated, the control of immune cell dynamics by the nervous system has come to draw a lot of attention at the present time. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in several animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex", is dependent upon vagus nerve stimulation that inhibits cytokine production and attenuates the inflammation. And the mechanism for controlling lymphocyte trafficking becomes clear, and molecular basis of immune regulation by the nervous system was reported. On the other hand, the nervous system is protected from the invasion of harmful agents by the barrier. However, there are neuroimmunological disorders, which is associated with autoimmunity, tumor immunity, and infection immunity. Autoimmune autonomic ganglionopathy (AAG) is an acquired immune-mediated disorder that leads to widespread autonomic manifestations, in which autoantibodies to ganglionic nicotinic acetylcholine receptors play a central role. Previously, we elucidated the prevalence of extra-autonomic manifestations in patients with AAG. It is necessary to establish the new systems for the detection of autoantibodies to other subunits of acetylcholine receptor.

  2. Distributed Computation Environment Protection Based on Artificial Immune System Usage

    Directory of Open Access Journals (Sweden)

    Anton Andreevich Krasnopevtsev

    2013-02-01

    Full Text Available This article is devoted to a new approach to Grid-network protection against malware, based on artificial immune system usage. In the article possible Grid-network attacks, immune system coordinator architecture, immune system modules architecture, Grid-network system protection architecture are described.

  3. Adaptive immunity to Anaplasma pathogens and immune dysregulation: implications for bacterial persistence

    Science.gov (United States)

    Brown, Wendy C.

    2012-01-01

    Anaplasma marginale is an obligate intraerythrocytic bacterium that infects ruminants, and notably causes severe economic losses in cattle worldwide. A. phagocytophilum infects neutrophils and causes disease in many mammals, including ruminants, dogs, cats, horses, and humans. Both bacteria cause persistent infection – infected cattle never clear A. marginale and A. phagocytophilum can also cause persistent infection in ruminants and other animals for several years. This review describes correlates of the protective immune response to these two pathogens as well as subversion and dysregulation of the immune response following infection that likely contribute to long-term persistence. I also compare the immune dysfunction observed with intraerythrocytic A. marginale to that observed in other models of chronic infection resulting in high antigen loads, including malaria, a disease caused by another intraerythrocytic pathogen. PMID:22226382

  4. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Dragana Odobasic

    2016-01-01

    Full Text Available Neutrophils are no longer seen as leukocytes with a sole function of being the essential first responders in the removal of pathogens at sites of infection. Being armed with numerous pro- and anti-inflammatory mediators, these phagocytes can also contribute to the development of various autoimmune diseases and can positively or negatively regulate the generation of adaptive immune responses. In this review, we will discuss how myeloperoxidase, the most abundant neutrophil granule protein, plays a key role in the various functions of neutrophils in innate and adaptive immunity.

  5. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  6. Medications that Weaken Your Immune System and Fungal Infections

    Science.gov (United States)

    ... Diseases Mycotic Diseases Branch Medications that Weaken Your Immune System and Fungal Infections Recommend on Facebook Tweet Share ... They are most common among people with weak immune systems. People with certain health conditions may need to ...

  7. [Plasticity of neuroendocrine and immune systems in early development].

    Science.gov (United States)

    Zakharova, L A

    2014-01-01

    This article provides an analysis of our own and published data on the reciprocal morphogenetic influence of the neiuroendocriie and imnimune systems on their formation and function in mammals. It is substantiated that, in early ontogeny, neurohormones regulate the growth and differentiation of various tissues in the body, including the lymphoid tissue. Thymicpeptides, in turn, affect the development of the hypothalamic-pitiitary-adrenal and gonadal-systems. Various adverse factors and changes in the physiological concentrations of hormones in the critical periods of development of these systems change their functions, and the plasticity of physiological systems in early ontogeny allows the body to adapt to new conditions. Disturbances in the interaction of the neuroendocrineand immune systems in the perinatal period induce apredisposition to various diseases in progeny.

  8. Influence of phthalates on in vitro innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Juliana Frohnert Hansen

    Full Text Available Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.

  9. Immune system handling time may alter the outcome of competition between pathogens and the immune system.

    Science.gov (United States)

    Greenspoon, Philip B; Banton, Sydney; Mideo, Nicole

    2018-06-14

    Predators may be limited in their ability to kill prey (i.e., have type II or III functional responses), an insight that has had far-reaching consequences in the ecological literature. With few exceptions, however, this possibility has not been extended to the behaviour of immune cells, which kill pathogens much as predators kill their prey. Rather, models of the within-host environment have tended to tacitly assume that immune cells have an unlimited ability to target and kill pathogens (i.e., a type I functional response). Here we explore the effects of changing this assumption on infection outcomes (i.e., pathogen loads). We incorporate immune cell handling time into an ecological model of the within-host environment that considers both the predatory nature of the pathogen-immune cell interaction as well as competition between immune cells and pathogens for host resources. Unless pathogens can preempt immune cells for host resources, adding an immune cell handling time increases equilibrium pathogen load. We find that the shape of the relationship between energy intake and pathogen load can change: with a type I functional response, pathogen load is maximised at intermediate inputs, while for a type II or III functional response, pathogen load is solely increasing. With a type II functional response, pathogen load can fluctuate rather than settling to an equilibrium, a phenomenon unobserved with type I or III functional responses. Our work adds to a growing literature highlighting the role of resource availability in host-parasite interactions. Implications of our results for adaptive anorexia are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Recovery of the immune system after exercise.

    Science.gov (United States)

    Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J

    2017-05-01

    The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.

  11. Physiological and pathophysiological bone turnover - role of the immune system.

    Science.gov (United States)

    Weitzmann, M Neale; Ofotokun, Ighovwerha

    2016-09-01

    Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno-skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures.

  12. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    expression affect the inflammatory response (Friedland et al., 1995; Wellmer et al., 2002). Heat-inactivation destroys the cytotoxic and cytokine...clearance of Brucella abortus. Infect. Immun. 73: 5137-5143. Wellmer , A., Zysk, G., Gerber, J., Kunst, T., Von Mering, M., Bunkowski, S., Eiffert, H

  13. Exploring the Homeostatic and Sensory Roles of the Immune System.

    Science.gov (United States)

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.

  14. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  15. The deconvolution of complex spectra by artificial immune system

    Science.gov (United States)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  16. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    Science.gov (United States)

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Strategic adaptation to new electoral systems

    OpenAIRE

    Selb, Peter

    2012-01-01

    How quickly, to what extent and under what conditions do voters and elites adapt to new electoral institutions in order to not waste their votes and effort on hopeless competitors? A latent-curve model of strategic adaptation is developed and fitted to district-level election data from Spain. The extent of strategic adaptation is generally found to vary with the strength of the electoral system. However, grave ethnic tensions are demonstrated to seriously retard adaptation even under favourab...

  18. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  19. Defensin carriers for better mucosal immunity in the digestive system.

    Science.gov (United States)

    Froy, Oren; Chapnik, Nava; Nussinovitch, Amos

    2010-06-30

    The innate immunity utilizes a battery of broad-spectrum antibacterial cationic polypeptides named defensins. In humans, defensins are the first line of defense against pathogens, and their expression has been implicated in several diseases. In addition to exerting direct antimicrobial effects, defensins facilitate and amplify innate and adaptive immune responses. HD-5 is a polypeptide that plays a pivotal role in combating bacteria in the digestive system. Our results show that HD-5 can be entrapped within alginate carriers and strengthen their structure without changing their brittleness. In addition, carrier-entrapped HD-5 is released when incubated in buffer and/or stomach-simulating solution and still retains its activity after the release. This incubation also led to a decrease in carrier strength as well as an increase in their brittleness. Nevertheless the carriers did not disintegrate and remained intact throughout the diffusion process. The release of the defensin exhibited a bimodal behavior, suggesting that it was found both in a cross-linked and non-cross-linked form within the carrier. These results indicate that defensins encapsulated within alginate carriers could possibly be used for better mucosal immunity in the digestive system. 2010 Elsevier B.V. All rights reserved.

  20. Adaptive Immunity-Dependent Intestinal Hypermotility Contributes to Host Defense against Giardia spp.

    OpenAIRE

    Andersen, Yolanda S.; Gillin, Frances D.; Eckmann, Lars

    2006-01-01

    Humans infected with Giardia exhibit intestinal hypermotility, but the underlying mechanisms and functional significance are uncertain. Here we show in murine models of giardiasis that small-intestinal hypermotility occurs in a delayed fashion relative to peak parasite burden, is dependent on adaptive immune defenses, and contributes to giardial clearance.

  1. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias

    NARCIS (Netherlands)

    Lyer, A.; Zurolo, E.; Spliet, W.G.M.; van Rijen, P.C.; Baayen, J.C.; Gorter, J.A.; Aronica, E.

    2010-01-01

    Purpose:  Induction of inflammatory pathways has been reported in epileptic patients with focal malformations of cortical development. In the present study we examined the innate and adaptive immune responses in focal cortical dysplasia (FCD) with different histopathologic and pathogenetic features.

  2. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias

    NARCIS (Netherlands)

    Iyer, Anand; Zurolo, Emanuele; Spliet, Wim G. M.; van Rijen, Peter C.; Baayen, Johannes C.; Gorter, Jan A.; Aronica, Eleonora

    2010-01-01

    P>Purpose: Induction of inflammatory pathways has been reported in epileptic patients with focal malformations of cortical development. In the present study we examined the innate and adaptive immune responses in focal cortical dysplasia (FCD) with different histopathologic and pathogenetic

  3. The mucosal immune system: From dentistry to vaccine development

    OpenAIRE

    KIYONO, Hiroshi; AZEGAMI, Tatsuhiko

    2015-01-01

    The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interc...

  4. Immune system and melanoma biology: a balance between immunosurveillance and immune escape.

    Science.gov (United States)

    Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco

    2017-12-01

    Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.

  5. The plasmacytoid dendritic cell as the Swiss army knife of the immune system: molecular regulation of its multifaceted functions

    NARCIS (Netherlands)

    Karrich, Julien J.; Jachimowski, Loes C. M.; Uittenbogaart, Christel H.; Blom, Bianca

    2014-01-01

    Plasmacytoid dendritic cells (pDC) have been regarded as the "professional type I IFN-producing cells" of the immune system following viral recognition that relies on the expression of TLR7 and TLR9. Furthermore, pDC link the innate and adaptive immune systems via cytokine production and Ag

  6. Pregnancy Associated with Systemic Lupus Erythematosus: Immune Tolerance in Pregnancy and Its Deficiency in Systemic Lupus Erythematosus—An Immunological Dilemma

    Science.gov (United States)

    Velciov, Silvia; Gluhovschi, Adrian

    2015-01-01

    Pregnancy is a physiological condition that requires immune tolerance to the product of conception. Systemic lupus erythematosus (SLE) is a disease with well-represented immune mechanisms that disturb immune tolerance. The association of pregnancy with systemic lupus erythematosus creates a particular immune environment in which the immune tolerance specific of pregnancy is required to coexist with alterations of the immune system caused by SLE. The main role is played by T regulatory (Treg) cells, which attempt to regulate and adapt the immune system of the mother to the new conditions of pregnancy. Other components of the immune system also participate to maintain maternal-fetal immune tolerance. If the immune system of pregnant women with SLE is not able to maintain maternal immune tolerance to the fetus, pregnancy complications (miscarriage, fetal hypotrophy, and preterm birth) or maternal complications (preeclampsia or activation of SLE, especially in conditions of lupus nephritis) may occur. In certain situations this can be responsible for neonatal lupus. At the same time, it must be noted that during pregnancy, the immune system is able to achieve immune tolerance while maintaining the anti-infectious immune capacity of the mother. Immunological monitoring of pregnancy during SLE, as well as of the mother's disease, is required. It is important to understand immune tolerance to grafts in transplant pathology. PMID:26090485

  7. Pregnancy Associated with Systemic Lupus Erythematosus: Immune Tolerance in Pregnancy and Its Deficiency in Systemic Lupus Erythematosus--An Immunological Dilemma.

    Science.gov (United States)

    Gluhovschi, Cristina; Gluhovschi, Gheorghe; Petrica, Ligia; Velciov, Silvia; Gluhovschi, Adrian

    2015-01-01

    Pregnancy is a physiological condition that requires immune tolerance to the product of conception. Systemic lupus erythematosus (SLE) is a disease with well-represented immune mechanisms that disturb immune tolerance. The association of pregnancy with systemic lupus erythematosus creates a particular immune environment in which the immune tolerance specific of pregnancy is required to coexist with alterations of the immune system caused by SLE. The main role is played by T regulatory (Treg) cells, which attempt to regulate and adapt the immune system of the mother to the new conditions of pregnancy. Other components of the immune system also participate to maintain maternal-fetal immune tolerance. If the immune system of pregnant women with SLE is not able to maintain maternal immune tolerance to the fetus, pregnancy complications (miscarriage, fetal hypotrophy, and preterm birth) or maternal complications (preeclampsia or activation of SLE, especially in conditions of lupus nephritis) may occur. In certain situations this can be responsible for neonatal lupus. At the same time, it must be noted that during pregnancy, the immune system is able to achieve immune tolerance while maintaining the anti-infectious immune capacity of the mother. Immunological monitoring of pregnancy during SLE, as well as of the mother's disease, is required. It is important to understand immune tolerance to grafts in transplant pathology.

  8. Pregnancy Associated with Systemic Lupus Erythematosus: Immune Tolerance in Pregnancy and Its Deficiency in Systemic Lupus Erythematosus—An Immunological Dilemma

    Directory of Open Access Journals (Sweden)

    Cristina Gluhovschi

    2015-01-01

    Full Text Available Pregnancy is a physiological condition that requires immune tolerance to the product of conception. Systemic lupus erythematosus (SLE is a disease with well-represented immune mechanisms that disturb immune tolerance. The association of pregnancy with systemic lupus erythematosus creates a particular immune environment in which the immune tolerance specific of pregnancy is required to coexist with alterations of the immune system caused by SLE. The main role is played by T regulatory (Treg cells, which attempt to regulate and adapt the immune system of the mother to the new conditions of pregnancy. Other components of the immune system also participate to maintain maternal-fetal immune tolerance. If the immune system of pregnant women with SLE is not able to maintain maternal immune tolerance to the fetus, pregnancy complications (miscarriage, fetal hypotrophy, and preterm birth or maternal complications (preeclampsia or activation of SLE, especially in conditions of lupus nephritis may occur. In certain situations this can be responsible for neonatal lupus. At the same time, it must be noted that during pregnancy, the immune system is able to achieve immune tolerance while maintaining the anti-infectious immune capacity of the mother. Immunological monitoring of pregnancy during SLE, as well as of the mother’s disease, is required. It is important to understand immune tolerance to grafts in transplant pathology.

  9. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    Science.gov (United States)

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  10. Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells

    OpenAIRE

    Manlove, Luke S.; Berquam-Vrieze, Katherine E.; Pauken, Kristen E.; Williams, Richard T.; Jenkins, Marc K.; Farrar, Michael A.

    2015-01-01

    BCR-ABL+ acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific antigen that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL+ leukemia progression although ultimately this immune response fails. To address how BCR-ABL+ leukemia escapes immune surveillance, we developed a peptide: MHC-II tetramer that labels endogenous BCR-ABL-specific CD4+ T cell...

  11. PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig

    Science.gov (United States)

    Islam, Md. Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Aqter Rony, Sharmin; Tesfaye, Dawit; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Neuhoff, Christiane

    2017-01-01

    The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy. PMID:28278192

  12. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    Science.gov (United States)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  13. The role of the immune system in central nervous system plasticity after acute injury.

    Science.gov (United States)

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Role of microRNAs in the immune system, inflammation and cancer.

    Science.gov (United States)

    Raisch, Jennifer; Darfeuille-Michaud, Arlette; Nguyen, Hang Thi Thu

    2013-05-28

    MicroRNAs, a key class of gene expression regulators, have emerged as crucial players in various biological processes such as cellular proliferation and differentiation, development and apoptosis. In addition, microRNAs are coming to light as crucial regulators of innate and adaptive immune responses, and their abnormal expression and/or function in the immune system have been linked to multiple human diseases including inflammatory disorders, such as inflammatory bowel disease, and cancers. In this review, we discuss our current understanding of microRNAs with a focus on their role and mode of action in regulating the immune system during inflammation and carcinogenesis.

  15. IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE

    Science.gov (United States)

    It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...

  16. Microbiota-driven immune cellular maturation is essential for antibody-mediated adaptive immunity to Staphylococcus aureus infection in the eye.

    Science.gov (United States)

    Zaidi, Tanweer; Zaidi, Tauqeer; Cywes-Bentley, Colette; Lu, Roger; Priebe, Gregory P; Pier, Gerald B

    2014-08-01

    As an immune-privileged site, the eye, and particularly the outer corneal surface, lacks resident mature immune effector cells. Physical barriers and innate mediators are the best-described effectors of immunity in the cornea. When the barriers are breached, infection can result in rapid tissue destruction, leading to loss of visual acuity and frank blindness. To determine the cellular and molecular components needed for effective adaptive immunity on the corneal surface, we investigated which immune system effectors were required for protection against Staphylococcus aureus corneal infections in mice, which are a serious cause of human eye infections. Both systemically injected and topically applied antibodies to the conserved cell surface polysaccharide poly-N-acetylglucosamine (PNAG) were effective at mediating reductions in corneal pathology and bacterial levels. Additional host factors impacting protection included intercellular adhesion molecule 1 (ICAM-1)-dependent polymorphonuclear leukocyte (PMN) recruitment, functional CD4(+) T cells, signaling via the interleukin-17 (IL-17) receptor, and IL-22 production. In germfree mice, there was no protective efficacy of antibody to PNAG due to the lack of LY6G(+) inflammatory cell coeffector recruitment to the cornea. Protection was manifest after 3 weeks of exposure to conventional mice and acquisition of a resident microbiota. We conclude that in the anterior eye, ICAM-1-mediated PMN recruitment to the infected cornea along with endogenous microbiota-matured CD4(+) T cells producing both IL-17 and IL-22 is required for antibody to PNAG to protect against S. aureus infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  18. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  19. Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting.

    Science.gov (United States)

    Barbarossa, M V; Röst, G

    2015-12-01

    When the body gets infected by a pathogen the immune system develops pathogen-specific immunity. Induced immunity decays in time and years after recovery the host might become susceptible again. Exposure to the pathogen in the environment boosts the immune system thus prolonging the time in which a recovered individual is immune. Such an interplay of within host processes and population dynamics poses significant challenges in rigorous mathematical modeling of immuno-epidemiology. We propose a framework to model SIRS dynamics, monitoring the immune status of individuals and including both waning immunity and immune system boosting. Our model is formulated as a system of two ordinary differential equations (ODEs) coupled with a PDE. After showing existence and uniqueness of a classical solution, we investigate the local and the global asymptotic stability of the unique disease-free stationary solution. Under particular assumptions on the general model, we can recover known examples such as large systems of ODEs for SIRWS dynamics, as well as SIRS with constant delay.

  20. Visual Cues for an Adaptive Expert System.

    Science.gov (United States)

    Miller, Helen B.

    NCR (National Cash Register) Corporation is pursuing opportunities to make their point of sale (POS) terminals easy to use and easy to learn. To approach the goal of making the technology invisible to the user, NCR has developed an adaptive expert prototype system for a department store POS operation. The structure for the adaptive system, the…

  1. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    Science.gov (United States)

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  2. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  3. The role of the immune system in kidney disease.

    Science.gov (United States)

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  4. Organ system view of the hepatic innate immunity in HCV infection.

    Science.gov (United States)

    Bang, Bo-Ram; Elmasry, Sandra; Saito, Takeshi

    2016-12-01

    An orchestration of innate and adaptive immunity determines the infection outcome and whether the host achieves clearance or allows the pathogen to establish persistent infection. The robust activation of the innate immune response plays the most critical role in both limiting viral replication and halting the spread of the pathogen immediately after infection. The magnitude of innate immune activation is coupled with the efficient mounting of the adaptive immunity. Although immunity against HCV infection is known to be inadequate as most cases transitions to chronicity, approximately 25% of acute infection cases result in spontaneous clearance. The exact immune mechanisms that govern the infection outcome remain largely unknown; recent discoveries suggest that the innate immune system facilitates this event. Both infected hepatocytes and local innate immune cells trigger the front line defense program of the liver as well as the recruitment of diverse adaptive immune cells to the site of infection. Although hepatocyte is the target of HCV infection, nearly all cell types that exist in the liver are involved in the innate defense and contribute to the pathophysiology of hepatic inflammation. The main focus of this comprehensive review is to discuss the current knowledge on how each hepatic cell type contributes to the organ system level innate immunity against HCV infection as well as interplays with the viral evasion program. Furthermore, this review article also aims to synchronize the observations from both molecular biological studies and clinical studies with the ultimate goal of improving our understanding of HCV mediated hepatitis. J. Med. Virol. 88:2025-2037, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Echinoderm immunity and the evolution of the complement system.

    Science.gov (United States)

    Gross, P S; Al-Sharif, W Z; Clow, L A; Smith, L C

    1999-01-01

    Our understanding of inflammatory responses in humans has its roots in the comparative approach to immunology. In the late 1900s, research on echinoderms provided the initial evidence for the importance of phagocytic cells in reactions to foreign material. Studies of allograft rejection kinetics have shown that echinoderms have a non-adaptive, activation type of immune response. Coelomocytes mediate the cellular responses to immune challenges through phagocytosis, encapsulation, cytotoxicity, and the production of antimicrobial agents. In addition, a variety of humoral factors found in the coelomic fluid, including lectins, agglutinins, and lysins, are important in host defense against pathogens and other foreign substances. Recently, a simple complement system has been identified in the purple sea urchin that is homologous to the alternative pathway in vertebrates. The sea urchin [corrected] homologue of C3, is inducible by challenge with lipopolysaccharide, which is known to activate coelomocytes. Complement components have been identified in all vertebrate classes, and now have been characterized in protochordates and echinoderms indicating the primordial nature of the complement system. Because it is thought that the complement system evolved from a few primordial genes by gene duplication and divergence, the origin of this system appears to have occurred within the common ancestor of the deuterostomes.

  6. Intelligent Multimodal Signal Adaptation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micro Analysis and Design (MA&D) is pleased to submit this proposal to design an Intelligent Multimodal Signal Adaptation System. This system will dynamically...

  7. Multithreshold Segmentation Based on Artificial Immune Systems

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2012-01-01

    Full Text Available Bio-inspired computing has lately demonstrated its usefulness with remarkable contributions to shape detection, optimization, and classification in pattern recognition. Similarly, multithreshold selection has become a critical step for image analysis and computer vision sparking considerable efforts to design an optimal multi-threshold estimator. This paper presents an algorithm for multi-threshold segmentation which is based on the artificial immune systems(AIS technique, also known as theclonal selection algorithm (CSA. It follows the clonal selection principle (CSP from the human immune system which basically generates a response according to the relationship between antigens (Ag, that is, patterns to be recognized and antibodies (Ab, that is, possible solutions. In our approach, the 1D histogram of one image is approximated through a Gaussian mixture model whose parameters are calculated through CSA. Each Gaussian function represents a pixel class and therefore a thresholding point. Unlike the expectation-maximization (EM algorithm, the CSA-based method shows a fast convergence and a low sensitivity to initial conditions. Remarkably, it also improves complex time-consuming computations commonly required by gradient-based methods. Experimental evidence demonstrates a successful automatic multi-threshold selection based on CSA, comparing its performance to the aforementioned well-known algorithms.

  8. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin; Plaisier, Christopher; Min, Deborah; Mai, Dat; Gilchrist, Mark; Peschon, Jacques; Larson, Ryan P; Bergthaler, Andreas; Baliga, Nitin S; Urdahl, Kevin B; Aderem, Alan

    2016-10-11

    The regulation of host-pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155-induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment.

  9. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity.

    Science.gov (United States)

    Saunders, Sean P; Moran, Tara; Floudas, Achilleas; Wurlod, Felicity; Kaszlikowska, Agnieszka; Salimi, Maryam; Quinn, Emma M; Oliphant, Christopher J; Núñez, Gabriel; McManus, Ross; Hams, Emily; Irvine, Alan D; McKenzie, Andrew N J; Ogg, Graham S; Fallon, Padraic G

    2016-02-01

    Atopic dermatitis (AD) is an inflammatory skin condition that can occur in early life, predisposing to asthma development in a phenomenon known as the atopic march. Although genetic and environmental factors are known to contribute to AD and asthma, the mechanisms underlying the atopic march remain poorly understood. Filaggrin loss-of-function mutations are a major genetic predisposer for the development of AD and progression to AD-associated asthma. We sought to experimentally address whether filaggrin mutations in mice lead to the development of spontaneous eczematous inflammation and address the aberrant immunologic milieu arising in a mouse model of filaggrin deficiency. Filaggrin mutant mice were generated on the proallergic BALB/c background, creating a novel model for the assessment of spontaneous AD-like inflammation. Independently recruited AD case collections were analyzed to define associations between filaggrin mutations and immunologic phenotypes. Filaggrin-deficient mice on a BALB/c background had profound spontaneous AD-like inflammation with progression to compromised pulmonary function with age, reflecting the atopic march in patients with AD. Strikingly, skin inflammation occurs independently of adaptive immunity and is associated with cutaneous expansion of IL-5-producing type 2 innate lymphoid cells. Furthermore, subjects with filaggrin mutations have an increased frequency of type 2 innate lymphoid cells in the skin in comparison with control subjects. This study provides new insights into our understanding of the atopic march, with innate immunity initiating dermatitis and the adaptive immunity required for subsequent development of compromised lung function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Operator adaptation to changes in system reliability under adaptable automation.

    Science.gov (United States)

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  11. Innate immunity

    African Journals Online (AJOL)

    various types of pathogen recognition receptors on epithelial cells and resident cells of the innate immune system, especially macrophages, initiate a localised inflammatory response characterised by an early influx of blood neutrophils.1,2. A comparison of the major characteristics of innate and adaptive immune responses ...

  12. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  13. Is immune system-related hypertension associated with ovarian hormone deficiency?

    Science.gov (United States)

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2016-03-01

    What is the topic of this review? This review summarizes recent data on the role of ovarian hormones and sex in inflammation-related hypertension. What advances does it highlight? The adaptive immune system has recently been implicated in the development of hypertension in males but not in females. The role of the immune system in the development of hypertension in women and its relationship to ovarian hormone production are highlighted. The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  14. Self-Adaptive Systems for Machine Intelligence

    CERN Document Server

    He, Haibo

    2011-01-01

    This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide application

  15. The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice.

    Directory of Open Access Journals (Sweden)

    Kai D Michel

    Full Text Available Hedgehog (Hh signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.

  16. The Immune System and Bodily Defence-How Does the Immune ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. The Immune System and Bodily Defence - How Does the Immune System Live With a Randomly Generated Repertoire? Vineeta Bal Satyajit Rath. Series Article Volume 3 Issue 1 January 1998 pp 15-20 ...

  17. The effects of cocoa on the immune system

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez-Cano

    2013-06-01

    Full Text Available Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.

  18. Interactions of lactobacilli with the host immune system

    NARCIS (Netherlands)

    Meijerink, M.

    2011-01-01

    The aim of this thesis was to better understand the molecular mechanism of host res-ponses to probiotics. Probiotics can be used to stimulate or regulate immune responses in epithelial and immune cells of the intestinal mucosa and generate beneficial effects on the immune system. Carefully

  19. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  20. Systemic immune dysfunction in pancreatic cancer patients.

    Science.gov (United States)

    Poch, Bertram; Lotspeich, Errki; Ramadani, Marco; Gansauge, Susanne; Beger, Hans G; Gansauge, Frank

    2007-05-01

    We investigated the immune status in 32 pancreatic cancer patients (PC) in comparison with healthy controls (HC). Using flow cytometry, peripheral blood lymphocytes (PBL) were characterized by the expression of surface markers for T helper cells (CD4), T suppressor cells (CD8), B cells (CD19) and NK cells (CD56). The blastogenic response of PBL was analyzed after stimulation with concavalin A (ConA), phytohemagglutinin (PHA), pokeweed mitogen (PWM) and anti-CD3 antibodies. The serum levels of TNF-alpha, IL-1beta, IL-2, IL-10, IL-12, IL-18, IL-1RA, sIL-2R and TGF-beta were determined by ELISA. No differences in the distribution of peripheral immunocytes in PC were found, whereas the blastogenic response of peripheral blood lymphocytes (PBL) after stimulation with PHA or anti-CD3 antibodies was significantly decreased in PC. In PC, we found reduced serum levels of IL-2 and significantly elevated levels of TNF-alpha, TGF-beta1, IL-10, IL-2R, IL-1beta and IL-1RA. These data provide evidence for a systemic immune dysfunction in pancreatic cancer patients characterized by a shift towards a T helper cell type 2 cytokine profile, a significant elevation of substances related to T cell suppression and a reduced blastogenic response to PHA and anti-CD3 antibodies of PBL.

  1. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  2. Dynamics of Immune Checkpoints, Immune System, and BCG in the Treatment of Superficial Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Farouk Tijjani Saad

    2017-01-01

    Full Text Available This paper aims to study the dynamics of immune suppressors/checkpoints, immune system, and BCG in the treatment of superficial bladder cancer. Programmed cell death protein-1 (PD-1, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4, and transforming growth factor-beta (TGF-β are some of the examples of immune suppressors/checkpoints. They are responsible for deactivating the immune system and enhancing immunological tolerance. Moreover, they categorically downregulate and suppress the immune system by preventing and blocking the activation of T-cells, which in turn decreases autoimmunity and enhances self-tolerance. In cancer immunotherapy, the immune checkpoints/suppressors prevent and block the immune cells from attacking, spreading, and killing the cancer cells, which leads to cancer growth and development. We formulate a mathematical model that studies three possible dynamics of the treatment and establish the effects of the immune checkpoints on the immune system and the treatment at large. Although the effect cannot be seen explicitly in the analysis of the model, we show it by numerical simulations.

  3. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells

    Directory of Open Access Journals (Sweden)

    Isabella Quinti

    2017-06-01

    Full Text Available Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.

  4. Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil

    2013-01-01

    the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed...... that intramuscular injection of the DNA vaccine encoding the viral glycoprotein G induced protective immunity to VHS in rainbow trout fry of 0.5g.However, the vaccine is known to induce both innate and adaptive protection. The present work therefore aimed at determination of which type of protection the DNA vaccine...... induced in such early life stages of rainbow trout. Vaccination trials were performed with fry at average sizes of 0.25 g and 0.5 g respectively and included both the homologous VHSV G-gene vaccine and a heterologous DNA vaccine encoding the G-protein of infectious haematopoietic necrosis virus (IHNV...

  5. The Effect of Sound on the Immune System

    Directory of Open Access Journals (Sweden)

    Mojgan Shaygan

    1999-03-01

    Full Text Available The immune system protects body against disturbing factors such as pathogens and tumor cells by means of its special cell and biological structures. It has been divided based on its components and soluble factors into two groups of specific and non-specific immune system. Since sound is considered as a stressor it can affect dramatically on the immune system. Stress caused by noise can reduce the immune system response to chemical stimulators have decreased. In Stead, deep relaxation has consistently been proven to be very effective at increasing T-Cells and strengthening the immune system. In the current article, we want to have a look on the adverse effects of sound on the immune system.

  6. Hepatitis C Virus Evasion of Adaptive Immune Responses- A Model for Viral Persistence

    OpenAIRE

    Burke, Kelly P.; Cox, Andrea L.

    2010-01-01

    Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. Approximately 20% of those acutely infected clear the infection, whereas the remaining 80% progress to chronic infection. Hepatitis C thus provides a model in which successful and unsuccessful responses can be compared to better understand the human response to viral infection. Our laboratory studies the strategies by which HCV evades the adaptive immune response...

  7. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  8. RAGE Expression in Human T Cells: A Link between Environmental Factors and Adaptive Immune Responses

    Science.gov (United States)

    Akirav, Eitan M.; Preston-Hurlburt, Paula; Garyu, Justin; Henegariu, Octavian; Clynes, Raphael; Schmidt, Ann Marie; Herold, Kevan C.

    2012-01-01

    The Receptor for Advanced Glycation Endproducts (RAGE) is a scavenger ligand that binds glycated endproducts as well as molecules released during cell death such as S100b and HMGB1. RAGE is expressed on antigen presenting cells where it may participate in activation of innate immune responses but its role in adaptive human immune responses has not been described. We have found that RAGE is expressed intracellularly in human T cells following TCR activation but constitutively on T cells from patients with diabetes. The levels of RAGE on T cells from patients with diabetes are not related to the level of glucose control. It co-localizes to the endosomes. Its expression increases in activated T cells from healthy control subjects but bystander cells also express RAGE after stimulation of the antigen specific T cells. RAGE ligands enhance RAGE expression. In patients with T1D, the level of RAGE expression decreases with T cell activation. RAGE+ T cells express higher levels of IL-17A, CD107a, and IL-5 than RAGE− cells from the same individual with T1D. Our studies have identified the expression of RAGE on adaptive immune cells and a role for this receptor and its ligands in modulating human immune responses. PMID:22509345

  9. The M3 Muscarinic Receptor Is Required for Optimal Adaptive Immunity to Helminth and Bacterial Infection

    Science.gov (United States)

    Darby, Matthew; Schnoeller, Corinna; Vira, Alykhan; Culley, Fiona; Bobat, Saeeda; Logan, Erin; Kirstein, Frank; Wess, Jürgen; Cunningham, Adam F.; Brombacher, Frank; Selkirk, Murray E.; Horsnell, William G. C.

    2015-01-01

    Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R) plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection. PMID:25629518

  10. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection.

    Science.gov (United States)

    Darby, Matthew; Schnoeller, Corinna; Vira, Alykhan; Culley, Fiona Jane; Culley, Fiona; Bobat, Saeeda; Logan, Erin; Kirstein, Frank; Wess, Jürgen; Cunningham, Adam F; Brombacher, Frank; Selkirk, Murray E; Horsnell, William G C

    2015-01-01

    Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R) plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.

  11. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  12. Can the Immune System Perform a t-Test?

    Science.gov (United States)

    Faria, Bruno Filipe; Mostardinha, Patricia

    2017-01-01

    The self-nonself discrimination hypothesis remains a landmark concept in immunology. It proposes that tolerance breaks down in the presence of nonself antigens. In strike contrast, in statistics, occurrence of nonself elements in a sample (i.e., outliers) is not obligatory to violate the null hypothesis. Very often, what is crucial is the combination of (self) elements in a sample. The two views on how to detect a change seem challengingly different and it could seem difficult to conceive how immunological cellular interactions could trigger responses with a precision comparable to some statistical tests. Here it is shown that frustrated cellular interactions reconcile the two views within a plausible immunological setting. It is proposed that the adaptive immune system can be promptly activated either when nonself ligands are detected or self-ligands occur in abnormal combinations. In particular we show that cellular populations behaving in this way could perform location statistical tests, with performances comparable to t or KS tests, or even more general data mining tests such as support vector machines or random forests. In more general terms, this work claims that plausible immunological models should provide accurate detection mechanisms for host protection and, furthermore, that investigation on mechanisms leading to improved detection in “in silico” models can help unveil how the real immune system works. PMID:28046042

  13. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    Science.gov (United States)

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster

    Science.gov (United States)

    Prescott, Joseph; Safronetz, David; Haddock, Elaine; Robertson, Shelly; Scott, Dana; Feldmann, Heinz

    2013-01-01

    Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4+ and CD8+ T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster. PMID:23600567

  15. Role of the immune system in the peritoneal tumor spread of high grade serous ovarian cancer.

    Science.gov (United States)

    Auer, Katharina; Bachmayr-Heyda, Anna; Sukhbaatar, Nyamdelger; Aust, Stefanie; Schmetterer, Klaus G; Meier, Samuel M; Gerner, Christopher; Grimm, Christoph; Horvat, Reinhard; Pils, Dietmar

    2016-09-20

    The immune system plays a critical role in cancer progression and overall survival. Still, it is unclear if differences in the immune response are associated with different patterns of tumor spread apparent in high grade serous ovarian cancer patients and previously described by us. In this study we aimed to assess the role of the immune system in miliary (widespread, millet-sized lesions) and non-miliary (bigger, exophytically growing implants) tumor spread. To achieve this we comprehensively analyzed tumor tissues, blood, and ascites from 41 patients using immunofluorescence, flow cytometry, RNA sequencing, multiplexed immunoassays, and immunohistochemistry. Results showed that inflammation markers were systemically higher in miliary. In contrast, in non-miliary lymphocyte and monocyte/macrophage infiltration into the ascites was higher as well as the levels of PD-1 expression in tumor associated cytotoxic T-lymphocytes and PD-L1 expression in tumor cells. Furthermore, in ascites of miliary patients more epithelial tumor cells were present compared to non-miliary, possibly due to the active down-regulation of anti-tumor responses by B-cells and regulatory T-cells. Summarizing, adaptive immune responses prevailed in patients with non-miliary spread, whereas in patients with miliary spread a higher involvement of the innate immune system was apparent while adaptive responses were counteracted by immune suppressive cells and factors.

  16. Effects of Probiotics on the Immune System and Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Naoki Shimojo

    2005-01-01

    Full Text Available Intestinal microbiota play a crucial role in the development of mucosal tolerance and adaptation. Perturbations in microbiota composition are strongly associated with allergies and asthma in westernized countries. There has been accumulating evidence that the administration of probiotics, “live microbial supplements that exert a beneficial effect on human health,” may be effective in the treatment and/or prevention of allergic diseases. Although it has been shown that part of the effect of probiotics arises from its interaction with the host immune system, the precise mechanisms remain to be determined. In addition, future studies are necessary to define appropriate species and strains, optimum dose, frequency, and duration for the treatment of allergic diseases.

  17. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    Science.gov (United States)

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Trauma equals danger—damage control by the immune system

    Science.gov (United States)

    Stoecklein, Veit M.; Osuka, Akinori; Lederer, James A.

    2012-01-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis. PMID:22654121

  19. Distributed Computations Environment Protection Using Artificial Immune Systems

    Directory of Open Access Journals (Sweden)

    A. V. Moiseev

    2011-12-01

    Full Text Available In this article the authors describe possibility of artificial immune systems applying for distributed computations environment protection from definite types of malicious impacts.

  20. Trauma-induced heterotopic bone formation and the role of the immune system: A review.

    Science.gov (United States)

    Kraft, Casey T; Agarwal, Shailesh; Ranganathan, Kavitha; Wong, Victor W; Loder, Shawn; Li, John; Delano, Matthew J; Levi, Benjamin

    2016-01-01

    Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.

  1. Modulation of the immune system for the treatment of glaucoma.

    Science.gov (United States)

    Bell, Katharina; Und Hohenstein-Blaul, Nadine von Thun; Teister, Julia; Grus, Franz H

    2017-07-19

    At present intraocular pressure (IOP) lowering therapies are the only approach to treat glaucoma. Neuroprotective strategies to protect the retinal ganglion cells (RGC) from apoptosis are lacking to date. Results from clinical studies revealed altered immunoreactivities against retinal and optic nerve antigens in sera and aqueous humor of glaucoma patients and point toward an autoimmune involvement in glaucomatous neurodegeneration and RGC death. IgG accumulations along with plasma cells were found localised in human glaucomatous retinae in a pro-inflammatory environment possibly maintained by microglia. Animal studies show that antibodies (e.g. anti- heat shock protein 60 and anti-myelin basic protein) elevated in glaucoma patients provoke autoaggressive RGC loss and are associated with IgG depositions and increased microglial cells. We demonstrate that intermittent IOP elevation in a rat model is sufficient to provoke glaucoma-like neurodegeneration and elicits correlating changes of IgG autoantibody reactivities. On the other hand, antibodies (e.g. anti-glial fibrillary acidic protein and anti-gamma-Synuclein) found decreased in glaucoma patients hold neuroprotective potential on immortalised neuroretinal cells and RGC in an adolescent porcine retina organ culture. We believe that our work not only demonstrates an autoimmune component in glaucoma, but also opens up new options for glaucoma diagnostics and treatment. Nevertheless the immune system also consists of other cells involved not only in the adaptive, but also innate immune system. Studies addressing changes in T lymphocytes, macrophages but also local immune responses in the retina have been performed and also hold promising results. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Vitamin B5 Reduces Bacterial GrowthviaRegulating Innate Immunity and Adaptive Immunity in Mice Infected withMycobacterium tuberculosis.

    Science.gov (United States)

    He, Wenting; Hu, Shengfeng; Du, Xialin; Wen, Qian; Zhong, Xiao-Ping; Zhou, Xinying; Zhou, Chaoying; Xiong, Wenjing; Gao, Yuchi; Zhang, Shimeng; Wang, Ruining; Yang, Jiahui; Ma, Li

    2018-01-01

    The mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5) can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with Mycobacterium tuberculosis (MTB) strain H37Rv and the therapeutic potential of VB5 in vivo with tuberculosis. We investigated the activation of inflammatory signal molecules (NF-κB, AKT, JNK, ERK, and p38), the expression of two primary inflammatory cytokines (tumor necrosis factor and interleukin-6) and the bacterial burdens in H37Rv-infected macrophages stimulated with VB5 to explore the effect of VB5 on the inflammatory and antibacterial responses of macrophages. We further treated the H37Rv-infected mice with VB5 to explore VB5's promotion of the clearance of H37Rv in the lungs and the effect of VB5 on regulating the percentage of inflammatory cells. Our data showed that VB5 enhanced the phagocytosis and inflammatory response in macrophages infected with H37Rv. Oral administration of VB5 decreased the number of colony-forming units of H37Rv in lungs of mice at 1, 2, and 4 weeks after infection. In addition, VB5 regulated the percentage of macrophages and promoted CD4 + T cells to express interferon-γ and interleukin-17; however, it had no effect on the percentage of polymorphonuclear neutrophils, CD4 + and CD8 + T cells. In conclusion, VB5 significantly inhibits the growth of MTB by regulating innate immunity and adaptive immunity.

  3. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Wenting He

    2018-02-01

    Full Text Available The mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5 can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with Mycobacterium tuberculosis (MTB strain H37Rv and the therapeutic potential of VB5 in vivo with tuberculosis. We investigated the activation of inflammatory signal molecules (NF-κB, AKT, JNK, ERK, and p38, the expression of two primary inflammatory cytokines (tumor necrosis factor and interleukin-6 and the bacterial burdens in H37Rv-infected macrophages stimulated with VB5 to explore the effect of VB5 on the inflammatory and antibacterial responses of macrophages. We further treated the H37Rv-infected mice with VB5 to explore VB5’s promotion of the clearance of H37Rv in the lungs and the effect of VB5 on regulating the percentage of inflammatory cells. Our data showed that VB5 enhanced the phagocytosis and inflammatory response in macrophages infected with H37Rv. Oral administration of VB5 decreased the number of colony-forming units of H37Rv in lungs of mice at 1, 2, and 4 weeks after infection. In addition, VB5 regulated the percentage of macrophages and promoted CD4+ T cells to express interferon-γ and interleukin-17; however, it had no effect on the percentage of polymorphonuclear neutrophils, CD4+ and CD8+ T cells. In conclusion, VB5 significantly inhibits the growth of MTB by regulating innate immunity and adaptive immunity.

  4. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects.

    Science.gov (United States)

    Adamo, Shelley A

    2017-02-01

    The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Defects in innate and adaptive immunity in patients with sepsis and health care associated infection

    Science.gov (United States)

    Coakley, John D.; Martin-Loeches, Ignacio

    2017-01-01

    Recent advances in sepsis therapy exclusively involve improvements in supportive care, while sepsis mortality rates remain disturbingly high at 30%. These persistently high sepsis mortality rates arise from the absence of sepsis specific therapies. However with improvements in supportive care, patients with septic shock commonly partially recover from the infection that precipitated their initial illness, yet they frequently succumb to subsequent health care associated infections. Remarkably today the pathophysiology of sepsis in humans, a common disease in western society, remains largely a conundrum. Conventionally sepsis was regarded as primarily a disorder of inflammation. More recently the importance of immune compromise in the pathophysiology of sepsis and health care associated infection has now become more widely accepted. Accordingly a review of the human evidence for this novel sepsis paradigm is timely. Septic patients appear to exhibit a complex and long-lasting immune deficiency state, involving lymphocytes of both the innate and adaptive immune responses that have been linked with mortality and the occurrence of health care associated infection. Such is the pervasive nature of immune compromise in sepsis that ultimately immune modulation will play a crucial role in sepsis therapies of the future. PMID:29264364

  6. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus.

    Science.gov (United States)

    Loving, Crystal L; Osorio, Fernando A; Murtaugh, Michael P; Zuckermann, Federico A

    2015-09-15

    Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods

  7. CMV immune evasion and manipulation of the immune system with aging.

    NARCIS (Netherlands)

    Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R

    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent

  8. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ramona Hurdayal

    2017-11-01

    Full Text Available The interleukin (IL-4 receptor alpha (IL-4Rα, ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs. The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L

  9. Exercise and the immune system Ejercicio y sistema inmune

    Directory of Open Access Journals (Sweden)

    Domingo Caraballo Gracia

    2006-01-01

    Full Text Available It has been demonstrated that physical exercise, carried out at diverse intensities, modulates the function of different human body systems, and that it plays a major role in the immune response. Therefore, it is necessary to find out if these changes have benefic or harmful effects on the host adaptation against several pathogenic agents. The study of these physical-stress-induced changes might have a great impact on the comprehension and prevention of some diseases that involve activation of the immune system such as allergies, infections, immunodeficiencies and cancer. This article presents a review of current information concerning this area, with the purpose of providing concepts to help readers understand this biological phenomena and their implications in human health. Several immune response parameters have been studied during physical exercise, including their relationship with the stress-induced hormonal response and the profile of different hormones according to the intensity of physical activity. Also, changes in blood cell populations (lymphocytes, monocytes and neutrophils and the behavior of cytokines and the synthesis of specific immune globulins have been assessed. This knowledge has allowed to establish a relationship between the immune and neuroendocrine systems, which might explain the various changes in the immune response and the adaptation seen in physical activity, as well as the differences found at diverse exercise intensity and frequency levels. Se ha demostrado que el ejercicio hecho a diferentes intensidades cumple una función moduladora sobre diversos sistemas, y que su acción sobre la respuesta inmune es de gran importancia. Por lo tanto, es necesario esclarecer si estos cambios constituyen efectos benéficos o perjudiciales en cuanto a las adaptaciones del hospedero frente a diversos agentes patógenos. El estudio de estos cambios inducidos por el estrés físico puede tener un impacto grande en la comprensi

  10. Cold stress and immunity: Do chickens adapt to cold by trading-off immunity for thermoregulation?

    NARCIS (Netherlands)

    Hangalapura, B.N.

    2006-01-01

    Future animal husbandry aims at enhanced animal welfare, with minimal use of preventive medical treatments. These husbandry conditions will resemble more natural or ecological conditions. Under such farming systems, animals will experience various kinds of stressors such as environmental (e.g. cold,

  11. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    Science.gov (United States)

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity

    DEFF Research Database (Denmark)

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter

    2015-01-01

    but not in immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition...... were less strong than those induced by live BCG. γBCG vaccination in volunteers had only minimal effects on innate immunity, whereas a significant increase in heterologous Th1/Th17 immunity was observed. Our results indicate that γBCG induces long-term training of innate immunity in vitro. In vivo, γ......BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity...

  14. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but also induces local IgA and TH17 responses.

    Science.gov (United States)

    Gallorini, Simona; Taccone, Marianna; Bonci, Alessandra; Nardelli, Filomena; Casini, Daniele; Bonificio, Amanda; Kommareddy, Sushma; Bertholet, Sylvie; O'Hagan, Derek T; Baudner, Barbara C

    2014-04-25

    Influenza is a vaccine-preventable disease that remains a major health problem world-wide. Needle and syringe are still the primary delivery devices, and injection of liquid vaccine into the muscle is still the primary route of immunization. Vaccines could be more convenient and effective if they were delivered by the mucosal route. Elicitation of systemic and mucosal innate and adaptive immune responses, such as pathogen neutralizing antibodies (including mucosal IgA at the site of pathogen entry) and CD4(+) T-helper cells (especially the Th17 subset), have a critical role in vaccine-mediated protection. In the current study, a sublingual subunit influenza vaccine formulated with or without mucosal adjuvant was evaluated for systemic and mucosal immunogenicity and compared to intranasal and intramuscular vaccination. Sublingual administration of adjuvanted influenza vaccine elicited comparable antibody titers to those elicited by intramuscular immunization with conventional influenza vaccine. Furthermore, influenza-specific Th17 cells or neutralizing mucosal IgA were detected exclusively after mucosal immunization. Copyright © 2014. Published by Elsevier Ltd.

  15. Causes, consequences, and reversal of immune system aging.

    Science.gov (United States)

    Montecino-Rodriguez, Encarnacion; Berent-Maoz, Beata; Dorshkind, Kenneth

    2013-03-01

    The effects of aging on the immune system are manifest at multiple levels that include reduced production of B and T cells in bone marrow and thymus and diminished function of mature lymphocytes in secondary lymphoid tissues. As a result, elderly individuals do not respond to immune challenge as robustly as the young. An important goal of aging research is to define the cellular changes that occur in the immune system and the molecular events that underlie them. Considerable progress has been made in this regard, and this information has provided the rationale for clinical trials to rejuvenate the aging immune system.

  16. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  17. The effects of early life adversity on the immune system.

    Science.gov (United States)

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Invited essay: Cognitive influences on the psychological immune system.

    Science.gov (United States)

    Rachman, S J

    2016-12-01

    The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Adaptive Dialogue Systems for Assistive Living Environments

    Science.gov (United States)

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  20. how to evade the immune system?

    Indian Academy of Sciences (India)

    HCV usually induces robust immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, several viral proteins interfere with cellular functions, in particular, ...

  1. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  2. A human tissue-based functional assay platform to evaluate the immune function impact of small molecule inhibitors that target the immune system.

    Science.gov (United States)

    St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A

    2017-01-01

    While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.

  3. A human tissue-based functional assay platform to evaluate the immune function impact of small molecule inhibitors that target the immune system

    Science.gov (United States)

    Engstrom, Laura W.; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J. Michael; Houshyar, Hani; Crackower, Michael A.; Kleinschek, Melanie A.; Jones, Dallas C.; Hicks, Alexandra; Zaller, Dennis M.; Alves, Stephen E.

    2017-01-01

    While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the ‘immune fingerprint’ of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders. PMID:28719615

  4. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Somatostatin receptors in the immune system and immune-mediated disease

    NARCIS (Netherlands)

    A.M. ten Bokum (Annemieke)

    1999-01-01

    textabstractThe veitebrate body has at its disposal three different systems, which together help it to maintain homeostasis and to respond to environmental signals: the nervous system. the endocrine system and the immune system. Traditionally, these systems have been studied as separate entities.

  6. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    Science.gov (United States)

    2010-09-24

    was to develop a combined neural-immune-endocrine system, but after staffing issues in the first year of the project, work was refocussed to focus on...system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...wide variety of differnt types of hormome, focussing on wider power management issues than was tackled with our previous work. For these experiments

  7. PERINATAL MALNUTRITION AND THE PROTECTIVE ROLE OF THE PHYSICAL TRAINING ON THE IMMUNE SYSTEM.

    Science.gov (United States)

    Moreno Senna, Sueli; Ferraz, José Cândido; Leandro, Carol Góis

    2015-09-01

    Developing organisms have the ability to cope with environmental demands through physiologic and morphologic adaptations. Early life malnutrition has been recognized as an environmental stimulus that is related with down-regulation of immune responses. Some of these effects are explained by the epigenetics and the programming of hormones and cytokines impairing the modulation of the immune cells in response to environmental stimuli. Recently, it has been demonstrated that these effects are not deterministic and current environment, such as physical activity, can positively influence the immune system. Here, we discuss the effects of perinatal malnutrition on the immune system and how it can be modulated by physical training. The mechanism includes the normalization of some hormones concentrations related to growth and metabolism such as leptin, IGF-1 and glucocorticoids. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  9. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  10. Adaptive processes in economic systems

    CERN Document Server

    Murphy, Roy E

    1965-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;. methods for low-rank m

  11. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.

    Science.gov (United States)

    Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T

    2018-04-01

    Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection

    NARCIS (Netherlands)

    Richner, Justin M.; Gmyrek, Grzegorz B.; Govero, Jennifer; Tu, Yizheng; van der Windt, Gerritje J. W.; Metcalf, Talibah U.; Haddad, Elias K.; Textor, Johannes; Miller, Mark J.; Diamond, Michael S.

    2015-01-01

    Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein,

  13. Adaptive Filtering and System Identification

    National Research Council Canada - National Science Library

    Gibson, Steve

    2007-01-01

    .... Additional application areas include optical wireless communication systems, blind identification and deconvolution in wireless communications, and active control of noise and vibration. This report discusses recent collaborations with the Air Force Research Laboratory (AFRL) and industry.

  14. The reaction of the immune system of fish to vaccination

    NARCIS (Netherlands)

    Lamers, C.H.J.

    1985-01-01

    The studies presented in this thesis deal with the effect of bacterial antigens of Yersinia ruckeri and Aeromonashydrophila on the immune system of carp. The antigens were administered by injection or by bath treatment. The effect on the immune system was studied by

  15. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  16. The University Immune System: Overcoming Resistance to Change

    Science.gov (United States)

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  17. Endocrine and Local IGF-I in the Bony Fish Immune System.

    Science.gov (United States)

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  18. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  19. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  20. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease.

    Science.gov (United States)

    Rizzetto, Lisa; De Filippo, Carlotta; Cavalieri, Duccio

    2014-11-01

    Human holobiomes are networks of mutualistic interactions between human cells and complex communities of bacteria and fungi that colonize the human body. The immune system must tolerate colonization with commensal bacteria and fungi but defend against invasion by either organism. Molecular ecological surveys of the human prokaryotic microbiota performed to date have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information regarding the eukaryotic composition of the microbiota. In this review, we describe the ecology and the human niches of our fungal "fellow travelers" in both health and disease, discriminating between passengers, colonizers, and pathogens based on the interaction of these fungi with the human immune system. We conclude by highlighting the need to reconsider the etiology of many fungal and immune-related diseases in the context of the crosstalk between the human system and its resident microbial communities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Role of Cortistatin in the Stressed Immune System.

    Science.gov (United States)

    Delgado, Mario; Gonzalez-Rey, Elena

    2017-01-01

    The immune system is faced with the daunting job of defending the organism against invading pathogens, while at the same time preserving the body integrity and maintaining tolerance to its own tissues. Loss of self-tolerance compromises immune homeostasis and leads to the onset of autoimmune disorders. The identification of endogenous factors that control immune tolerance and inflammation is a key goal for immunologists. Evidences from the last decade indicate that the neuropeptide cortistatin is one of the endogenous factors. Cortistatin is produced by immune cells and through its binding to various receptors, it exerts potent anti-inflammatory actions and participates in the maintenance of immune tolerance at multiple levels, especially in immunological disorders. Cortistatin emerges as a key element in the bidirectional communication between the neuroendocrine and immune systems aimed at regulating body homeostasis. © 2017 S. Karger AG, Basel.

  2. Senescent remodeling of the immune system and its contribution to the predisposition of the elderly to infections.

    Science.gov (United States)

    Dewan, Sheilesh Kumar; Zheng, Song-bai; Xia, Shi-jin; Bill, Kalionis

    2012-09-01

    To review the senescent remodeling of the immune system with aging and its relevance to the increased susceptibility of the elderly to infectious diseases, along with an outlook on emerging immunological biomarkers. The data selected were from PubMed with relevant published articles in English or French from 1995 to the present. Searches were made using the terms "immunosenescence" and "aging" paired with the following: "innate immunity", "T-cell", "B-cell", "adaptive immunity" and "biomarkers". Articles were reviewed for additional citations and some information was gathered from web searches. Articles on aging of both the innate and adaptive immunity were reviewed, with special attention to the remodeling effect on the ability of the immune system to fight infectious diseases. Articles related to biomarkers of immunosenescence were selected with the goal of identifying immunological biomarkers predisposing the elderly to infections. Innate immunity is generally thought to be relatively well preserved or enhanced during aging compared with adaptive immunity which manifests more profound alterations. However, evidence, particularly in the last decade, reveals that both limbs of the immune system undergo profound remodeling with aging. Reported data on adaptive immunity is consistent and changes are well established but conflicting results about innate immunity were reported between in vivo and in vitro studies, as well as between murine and human studies. Epidemiological data suggests increased predisposition of the elderly to infections, but no compelling scientific evidence has directly linked senescent immune remodeling to this increased susceptibility. Recently, growing interest in identifying immunological biomarkers and defining "immune risk phenotypes/profiles" (IRP) has been expressed. Identification of biomarkers is in its early days and few potential biomarkers have been identified, with the Swedish having defined one IRP based on the adaptive immune

  3. Effects of microbes on the immune system

    National Research Council Canada - National Science Library

    Fujinami, Robert S; Cunningham, Madeleine W

    2000-01-01

    .... The book synthesizes recent discoveries on the various mechanisms by which microbes subvert the immune response and on the role of these immunologic mechanisms in the pathogenesis of infectious diseases...

  4. The subversion of the immune system by francisella tularensis.

    Science.gov (United States)

    Bosio, Catharine M

    2011-01-01

    Francisella tularensis is a highly virulent bacterial pathogen and the causative agent of tularemia. Perhaps the most impressive feature of this bacterium is its ability to cause lethal disease following inoculation of as few as 15 organisms. This remarkable virulence is, in part, attributed to the ability of this microorganism to evade, disrupt, and modulate host immune responses. The objective of this review is to discuss the mechanisms utilized by F. tularensis to evade and inhibit innate and adaptive immune responses. The capability of F. tularensis to interfere with developing immunity in the host was appreciated decades ago. Early studies in humans were the first to demonstrate the ability of F. tularensis to suppress innate immunity. This work noted that humans suffering from tularemia failed to respond to a secondary challenge of endotoxin isolated from unrelated bacteria. Further, anecdotal observations of individuals becoming repeatedly infected with virulent strains of F. tularensis suggests that this bacterium also interferes with the generation of adequate adaptive immunity. Recent advances utilizing the mouse model for in vivo studies and human cells for in vitro work have identified specific bacterial and host compounds that play a role in mediating ubiquitous suppression of the host immune response. Compilation of this work will undoubtedly aid in enhancing our understanding of the myriad of mechanisms utilized by virulent F. tularensis for successful infection, colonization, and pathogenesis in the mammalian host.

  5. The subversion of the immune system by Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Catharine eBosio

    2011-02-01

    Full Text Available Francisella tularensis is a highly virulent bacterial pathogen and the causative agent of tularemia. Perhaps the most impressive feature of this bacterium is its ability to cause lethal disease following inoculation of as few as 15 organisms. This remarkable virulence is, in part, attributed to the ability of this microorganism to evade, disrupt and modulate host immune responses. The objective of this review is to discuss the mechanisms utilized by F. tularensis to evade and inhibit innate and adaptive immune responses. The capability of F. tularensis to interfere with developing immunity in the host was appreciated decades ago. Early studies in humans were the first to demonstrate the ability of F. tularensis to suppress innate immunity. This work noted that humans suffering from tularemia failed to respond to a secondary challenge of endotoxin isolated from unrelated bacteria. Further, anecdotal observations of individuals becoming repeatedly infected with virulent strains of F. tularensis suggests that this bacterium also interferes with the generation of adequate adaptive immunity. Recent advances utilizing the mouse model for in vivo studies and human cells for in vitro work have identified specific bacterial and host compounds that play a role in mediating ubiquitous suppression of the host immune response. Compilation of this work will undoubtedly aid in enhancing our understanding of the myriad of mechanisms utilized by virulent F. tularensis for successful infection, colonization and pathogenesis in the mammalian host.

  6. Defence mechanisms and immune evasion in the interplay between the humane immune system and Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G

    1992-01-01

    in the liver and the spleen are avoided by sequestration of the mature parasites to the vascular endothelium. The interplay between the human defence system and the malaria parasite governs the symptomatology, the pathology and the development of immunity to the disease. These interactions are extremely......Immunity to P. falciparum malaria is developed as a result of long term exposure to the parasite and depends on immunological memory. The key directors in immune recognition and regulation of the immunological responses are the T-cells. It seems reasonable to propose that immunity is acquired when...... a critical mass of T-cells, recognizing relevant malaria antigens, has been developed. These T-cells mediate immunity by regulating macrophage and B-cell activity, but they may also act directly as cytotoxic cells on infected hepatocytes and through production of parasite-toxic cytokines. The potential...

  7. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults.

    Science.gov (United States)

    Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng

    2016-05-01

    Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.

  8. Molecular Interactions of Autophagy with the Immune System and Cancer

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2017-08-01

    Full Text Available Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B are modulated by autophagy, which represent innate and adaptive immune responses, respectively. Numerous studies have demonstrated beneficial roles for autophagy induction as well as its suppression of cancer cells. Autophagy may induce either survival or death depending on the cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating programmed cell death. In this review, we summarize the current understanding of autophagy and its regulation in cancer.

  9. Fever and the thermal regulation of immunity: the immune system feels the heat

    Science.gov (United States)

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  10. Trained Immunity: An Ancient Way of Remembering

    NARCIS (Netherlands)

    Netea, M.G.; Meer, J.W.M. van der

    2017-01-01

    The innate arm of the immune system has generally been regarded as primitive and non-specific and, in contrast to adaptive immunity, not to possess memory. Here we review the growing body of evidence that innate immunity has an important capacity to adapt, a de facto innate immune memory (also

  11. Preliminary images from an adaptive imaging system

    NARCIS (Netherlands)

    Griffiths, J.A.; Metaxas, M.G.; Pani, S.; Schulerud, H.; Esbrand, C.; Royle, G.J.; Price, B.; Rokvic, T.; Longo, R.; Asimidis, A.; Bletsas, E.; Cavouras, D.; Fant, A.; Gasiorek, P.; Georgiou, H.; Hall, G.; Jones, J.; Leaver, J.; Li, G.; Machin, D.; Manthos, N.; Matheson, J.; Noy, M.; Østby, J.M.; Psomadellis, F.; van der Stelt, P.F.; Theodoridis, S.; Triantis, F.; Turchetta, R.; Venanzi, C.; Speller, R.D.

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and

  12. Simple adaptive control system design trades

    NARCIS (Netherlands)

    Mooij, E.

    2017-01-01

    In the design of a Model Reference Adaptive Control system, a reference model serves as the (well-known) basis through which system and user requirements can find their way into the design. By tuning the design parameters, the response of the actual vehicle should track the response of the

  13. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    Directory of Open Access Journals (Sweden)

    Adriana Secatto

    Full Text Available 5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  14. Hepatitis C virus evasion of adaptive immune responses: a model for viral persistence.

    Science.gov (United States)

    Burke, Kelly P; Cox, Andrea L

    2010-07-01

    Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. Approximately 20% [corrected] of those acutely infected clear the infection, whereas the remaining 80% [corrected] progress to chronic infection. Hepatitis C thus provides a model in which successful and unsuccessful responses can be compared to better understand the human response to viral infection. Our laboratory studies the strategies by which HCV evades the adaptive immune response. This review describes the impact of viral mutation on T cell recognition, the role of cell surface inhibitory receptors in recognition of HCV, and the development of antibodies that neutralize HCV infection. Understanding what constitutes an effective immune response in the control of HCV may enable the development of prophylactic and therapeutic vaccines for HCV and other chronic viral infections.

  15. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis.

    Science.gov (United States)

    Bellavia, Daniele; Costa, Viviana; De Luca, Angela; Maglio, Melania; Pagani, Stefania; Fini, Milena; Giavaresi, Gianluca

    2016-10-13

    Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

  16. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas; implications for dive physiology and health

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    2016-09-01

    Full Text Available Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression and Concanavalin A induced lymphocyte proliferation (BrdU incorporation in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE and capture/release conditions. Beluga blood samples (n=4 were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n=9. Human blood samples (n=4 (Biological Specialty Corporation were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α=0.05. Cortisol was significantly higher in wild belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and wild belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals

  17. Viral Evasion and Subversion Mechanisms of the Host Immune System

    OpenAIRE

    Mehran Ghaemi-Bafghi; Alireza Haghparast

    2013-01-01

    Viruses are the most abundant and versatile pathogens which challenge the immune system and cause major threats to human health. Viruses employ differ¬ent mechanisms to evade host immune responses that we describe them under the following headings: Inhibition of humoral responses, Interference with interferons, Inhibition and modulation of cytokines and chemokines, Inhibitors of apoptosis, Evading CTLs and NKs, and modulating MHC function.Viruses inhibit humoral immunity in different ways whi...

  18. Autopolyreactivity Confers a Holistic Role in the Immune System.

    Science.gov (United States)

    Avrameas, S

    2016-04-01

    In this review, we summarize and discuss some key findings from the study of naturally occurring autoantibodies. The B-cell compartment of the immune system appears to recognize almost all endogenous and environmental antigens. This ability is accomplished principally through autopolyreactive humoral and cellular immune receptors. This extended autopolyreactivity (1) along immunoglobulin gene recombination contributes to the immune system's ability to recognize a very large number of self and non-self constituents; and (2) generates a vast immune network that creates communication channels between the organism's interior and exterior. Thus, the immune system continuously evolves depending on the internal and external stimuli it encounters. Furthermore, this far-reaching network's existence implies activities resembling those of classical biological factors or activities that modulate the function of other classical biological factors. A few such antibodies have already been found. Another important concept is that natural autoantibodies are highly dependent on the presence or absence of commensal microbes in the organism. These results are in line with past and recent findings showing the fundamental influence of the microbiota on proper immune system development, and necessitate the existence of a host-microbe homeostasis. This homeostasis requires that the participating humoral and cellular receptors are able to recognize self-antigens and commensal microbes without damaging them. Autopolyreactive immune receptors expressing low affinity for both types of antigens fulfil this role. The immune system appears to play a holistic role similar to that of the nervous system. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  19. Perinatal Environmental Effects on the Neonatal Immune System

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich

    2014-01-01

    are thought to be programmed in utero supporting a role of the early environment. The aim of the present PhD thesis was to study if known risk factors are imprinted in the immune system of newborns. The hypotheses were that cesarean section and season of birth would influence the immune signature in early...... that the seasonal-related maternal exposome is reflected in the newborn immune system. These data supports the notion that environmental factors imprints immunological variation already in the perinatal life. In conclusion, studies on early immunological priming may be critical in order to understanding early...... disease programming and subsequent to be able to direct future research on disease preventative strategies. We identified mode of delivery and birth season as important risk factors acting on the perinatal immune system. Collectively, our results suggest that the neonatal immune system may be imprinted...

  20. An Immunity-Based Anomaly Detection System with Sensor Agents

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-11-01

    Full Text Available This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user’s command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  1. An immunity-based anomaly detection system with sensor agents.

    Science.gov (United States)

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  2. Innate and adaptive immunity in self-reported nonceliac gluten sensitivity versus celiac disease.

    Science.gov (United States)

    Di Sabatino, Antonio; Giuffrida, Paolo; Fornasa, Giulia; Salvatore, Chiara; Vanoli, Alessandro; Naviglio, Samuele; De Leo, Luigina; Pasini, Alessandra; De Amici, Mara; Alvisi, Costanza; Not, Tarcisio; Rescigno, Maria; Corazza, Gino Roberto

    2016-07-01

    Immune mechanisms have been implicated in nonceliac gluten sensitivity (NCGS), a condition characterized by intestinal and/or extraintestinal symptoms caused by the ingestion of gluten in non-celiac/non-wheat allergic individuals. We investigated innate and adaptive immunity in self-reported NCGS versus celiac disease (CD). In the supernatants of ex vivo-cultured duodenal biopsies from 14 self-reported NCGS patients, 9 untreated and 10 treated CD patients, and 12 controls we detected innate cytokines - interleukin (IL)-15, tumor necrosis factor-α, IL-1β, IL-6, IL-12p70, IL-23, IL-27, IL-32α, thymic stromal lymphopoietin (TSLP), IFN-α-, adaptive cytokines - interferon (IFN)-γ, IL-17A, IL-4, IL-5, IL-10, IL-13-, chemokines - IL-8, CCL1, CCL2, CCL3, CCL4, CCL5, CXCL1, CXCL10-, granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF). Mucosal innate and adaptive cytokines, chemokines and growth factors did not differ between self-reported NCGS, treated CD and controls. On the contrary, IL-6, IL-15, IL-27, IFN-α, IFN-γ, IL-17A, IL-23, G-CSF, GM-CSF, IL-8, CCL1 and CCL4 were significantly higher in untreated CD than in self-reported NCGS, treated CD and controls, while TSLP was significantly lower in untreated CD than in self-reported NCGS, treated CD and controls. In our hands, patients with self-reported NCGS showed no abnormalities of the mucosal immune response. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  4. Managing adaptively for multifunctionality in agricultural systems.

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  5. Managing adaptively for multifunctionality in agricultural systems

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  6. Evolving Systems and Adaptive Key Component Control

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  7. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... the activity of the Type III interference complexes. This dynamic nature of the CRISPR immune systems may be a prerequisite for their continued efficacy against the ever changing threats they protect their hosts from....

  8. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli...... differentially activate multiple signaling pathways within the mast cells required for the generation and/or release of inflammatory mediators. Thus, the composition of the suite of mediators released and the physiologic ramifications of these responses are dependent on the stimuli and the microenvironment...

  9. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  10. Adaptive fuzzy system for 3-D vision

    Science.gov (United States)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  11. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N.; Oefverholm, E. [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H. [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  12. Modeling Adaptive Behavior for Systems Design

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1994-01-01

    Field studies in modern work systems and analysis of recent major accidents have pointed to a need for better models of the adaptive behavior of individuals and organizations operating in a dynamic and highly competitive environment. The paper presents a discussion of some key characteristics...... of the predictive models required for the design of work supports systems, that is,information systems serving as the human-work interface. Three basic issues are in focus: 1.) Some fundamental problems in analysis and modeling modern dynamic work systems caused by the adaptive nature of human behavior; 2.......) The basic difference between the models of system functions used in engineering and design and those evolving from basic research within the various academic disciplines and finally 3.) The models and methods required for closed-loop, feedback system design....

  13. Between Scylla and Charybdis: the role of the human immune system in the pathogenesis of hepatitis C.

    Science.gov (United States)

    Spengler, Ulrich; Nischalke, Hans Dieter; Nattermann, Jacob; Strassburg, Christian P

    2013-11-28

    Hepatitis C virus (HCV) frequently elicits only mild immune responses so that it can often establish chronic infection. In this case HCV antigens persist and continue to stimulate the immune system. Antigen persistence then leads to profound changes in the infected host's immune responsiveness, and eventually contributes to the pathology of chronic hepatitis. This topic highlight summarizes changes associated with chronic hepatitis C concerning innate immunity (interferons, natural killer cells), adaptive immune responses (immunoglobulins, T cells, and mechanisms of immune regulation (regulatory T cells). Our overview clarifies that a strong anti-HCV immune response is frequently associated with acute severe tissue damage. In chronic hepatitis C, however, the effector arms of the immune system either become refractory to activation or take over regulatory functions. Taken together these changes in immunity may lead to persistent liver damage and cirrhosis. Consequently, effector arms of the immune system will not only be considered with respect to antiviral defence but also as pivotal mechanisms of inflammation, necrosis and progression to cirrhosis. Thus, avoiding Scylla - a strong, sustained antiviral immune response with inital tissue damage - takes the infected host to virus-triggered immunopathology, which ultimately leads to cirrhosis and liver cancer - the realm of Charybdis.

  14. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...... and/or demyelinating pathology. This article will review the molecular and cellular dynamics of immune responses in the CNS, with particular emphasis on autoimmune inflammation, as has been studied in the authors' laboratory....

  15. Nociception and role of immune system in pain.

    Science.gov (United States)

    Verma, Vivek; Sheikh, Zeeshan; Ahmed, Ahad S

    2015-09-01

    Both pain and inflammation are protective responses. However, these self-limiting conditions (with well-established negative feedback loops) become pathological if left uncontrolled. Both pain and inflammation can interact with each other in a multi-dimensional manner. These interactions are known to create an array of 'difficult to manage' pathologies. This review explains in detail the role of immune system and the related cells in peripheral sensitization and neurogenic inflammation. Various neuro-immune interactions are analyzed at peripheral, sensory and central nervous system levels. Innate immunity plays a critical role in central sensitization and in establishing acute pain as chronic condition. Moreover, inflammatory mediators also exhibit psychological effects, thus contributing towards the emotional elements associated with pain. However, there is also a considerable anti-inflammatory and analgesic role of immune system. This review also attempts to enlist various novel pharmacological approaches that exhibit their actions through modification of neuro-immune interface.

  16. Early immune adaptation in HIV-1 revealed by population-level approaches.

    Science.gov (United States)

    Martin, Eric; Carlson, Jonathan M; Le, Anh Q; Chopera, Denis R; McGovern, Rachel; Rahman, Manal A; Ng, Carmond; Jessen, Heiko; Kelleher, Anthony D; Markowitz, Martin; Allen, Todd M; Milloy, M-J; Carrington, Mary; Wainberg, Mark A; Brumme, Zabrina L

    2014-08-29

    The reproducible nature of HIV-1 escape from HLA-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms "at the population level" - that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association. However, elucidating their timing of selection traditionally requires detailed longitudinal studies, which are challenging to undertake on a large scale. We investigate whether the extent and relative timecourse of immune-driven HIV adaptation can be inferred via comparative cross-sectional analysis of independent early and chronic infection cohorts. Similarly-powered datasets of linked HLA/HIV-1 genotypes from individuals with early (median  200/dataset), HLA class I and HIV-1 Gag/Pol/Nef diversity, were established. These datasets were first used to define a list of 162 known HLA-associated polymorphisms detectable at the population level in cohorts of the present size and host/viral genetic composition. Of these 162 known HLA-associated polymorphisms, 15% (occurring at 14 Gag, Pol and Nef codons) were already detectable via statistical association in the early infection dataset at p ≤ 0.01 (q adaptations at Gag codons 397, 401 and 403). Escape prevalence in early infection correlated strongly with first-year escape rates (Pearson's R = 0.68, p = 0.0001), supporting cross-sectional parameters as reliable indicators of longitudinally-derived measures. Comparative analysis of early and chronic datasets revealed that, on average, the prevalence of HLA-associated polymorphisms more than doubles between these two infection stages in persons harboring the relevant HLA (p adaptation (via rapid escape and/or frequent polymorphism transmission) as a correlate of progression. Cross-sectional host/viral genotype datasets represent an underutilized resource to identify reproducible early pathways of HIV-1 adaptation and identify correlates of protective immunity.

  17. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  18. Impact of aging immune system on neurodegeneration and potential immunotherapies.

    Science.gov (United States)

    Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong

    2017-10-01

    The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immune system dysregulation in first-onset postpartum psychosis

    NARCIS (Netherlands)

    Bergink, V.; Burgerhout, K.M.; Weigelt, K.; Pop, V.J.M.; de Wit, H.; Drexhage, R.C.; Kushner, S.A.; Drexhage, H.A.

    2013-01-01

    Background Accumulating evidence suggests that dysregulation of the immune system represents an important vulnerability factor for mood disorders. Postpartum psychosis (PP) is a severe mood disorder occurring within 4 weeks after delivery, a period of heightened immune responsiveness and an altered

  20. Effects of Glucocorticoids in the Immune System.

    Science.gov (United States)

    Oppong, Emmanuel; Cato, Andrew C B

    2015-01-01

    Glucocorticoids (GCs) are steroid hormones with widespread effects. They control intermediate metabolism by stimulating gluconeogenesis in the liver, mobilize amino acids from extra hepatic tissues, inhibit glucose uptake in muscle and adipose tissue, and stimulate fat breakdown in adipose tissue. They also mediate stress response. They exert potent immune-suppressive and anti-inflammatory effects particularly when administered pharmacologically. Understanding these diverse effects of glucocorticoids requires a detailed knowledge of their mode of action. Research over the years has uncovered several details on the molecular action of this hormone, especially in immune cells. In this chapter, we have summarized the latest findings on the action of glucocorticoids in immune cells with a view of identifying important control points that may be relevant in glucocorticoid therapy.

  1. Final Report - Regulatory Considerations for Adaptive Systems

    Science.gov (United States)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  2. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    Science.gov (United States)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  3. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  4. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    Directory of Open Access Journals (Sweden)

    Vivekanandhan Aravindhan

    2016-01-01

    Full Text Available Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM and Coronary Artery Disease (CAD are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD, leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs like Toll-like receptors (TLRs, NOD1-like receptors (NLRs, Rig-1-like receptors (RLRs, and C-type lectin like receptors (CLRs and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells in fuelling metainflammation in DM-CAD will also be discussed.

  5. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  6. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity.

    Science.gov (United States)

    Viry, Elodie; Paggetti, Jerome; Baginska, Joanna; Mgrditchian, Takouhie; Berchem, Guy; Moussay, Etienne; Janji, Bassam

    2014-11-01

    Several environmental-associated stress conditions, including hypoxia, starvation, oxidative stress, fast growth and cell death suppression, modulate both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain proliferation and evade therapies. It is now widely accepted that autophagy is essential to support cancer cell growth and metabolism and that metabolic reprogramming in cancer can also favor autophagy induction. Therefore, this complex interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets. As the regulation of the autophagic activity is related to metabolism, it is important to elucidate the exact molecular mechanism which drives it and the functional consequence of its activation in the context of cancer therapy. In this review, we will summarize the role of autophagy in shaping the cellular response to an abnormal tumor microenvironment and discuss some recent results on the molecular mechanism by which autophagy plays such a role in the context of the anti-tumor immune response. We will also describe how autophagy activation can behave as a double-edged sword, by activating the immune response in some circumstances, and impairing the anti-tumor immunity in others. These findings imply that defining the precise context-specific role for autophagy in cancer is critical to guide autophagy-based therapeutics which are becoming key strategies to overcome tumor resistance to therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. CD8+lineage dendritic cells determine adaptive immune responses to inflammasome activation upon sterile skin injury.

    Science.gov (United States)

    Chakraborty, Rituparna; Chandra, Janin; Cui, Shuai; Tolley, Lynn; Cooper, Matthew A; Kendall, Mark; Frazer, Ian H

    2018-01-01

    The molecular links between sterile inflammation and induction of adaptive immunity have not been fully identified. Here, we examine how damage-associated molecular patterns (DAMPs), as opposed to pathogen-associated molecules (PAMPs), regulate the immune response to non-self-antigens presented at the site of a physical injury. Heat applied briefly to the skin invokes sterile inflammation, characterized by local cell death and caspase-1 activation without demonstrably disrupting skin integrity. Co-delivery of ovalbumin (OVA) with heat injury induces OVA-specific CD8 + T-cell responses, and this is dependent on caspase-1 activation and MyD88 signalling. Using Id2flox/flox-CD11cCre+ mice, we demonstrate that CD8 + lineage DCs are required to induce OVA-specific CD8 + T-cell responses following heat injury. Consistent with this observation, intradermal administration of CD8 + lineage DCs but not CD11b + lineage DCs restores priming of CD8 + T-cell responses in Casp-1 -/- mice. Thus, we conclude that a sterile injury induces CD8 + T-cell immune responses to local antigen through caspase-1 activation and requires CD8 + lineage DCs, a finding of significance for immunotherapy and for the pathogenesis of autoimmunity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. On complex adaptive systems and terrorism

    International Nuclear Information System (INIS)

    Ahmed, E.; Elgazzar, A.S.; Hegazi, A.S.

    2005-01-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly 'wise' decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed

  9. Role of leptin as a link between metabolism and the immune system.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Vilariño-García, Teresa; Fernández-Riejos, Patricia; Martín-González, Jenifer; Segura-Egea, Juan José; Sánchez-Margalet, Víctor

    2017-06-01

    Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    Science.gov (United States)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  11. Modeling evolution and immune system by cellular automata

    International Nuclear Information System (INIS)

    Bezzi, M.

    2001-01-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section

  12. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-07-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  13. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  14. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  15. Crosstalk between cancer and the neuro-immune system.

    Science.gov (United States)

    Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira

    2018-02-15

    In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pulmonary contusion primes systemic innate immunity responses.

    Science.gov (United States)

    Hoth, J Jason; Martin, R S; Yoza, Barbara K; Wells, Jonathan D; Meredith, J W; McCall, Charles E

    2009-07-01

    Traumatic injury may result in an exaggerated response to subsequent immune stimuli such as nosocomial infection. This "second hit" phenomenon and molecular mechanism(s) of immune priming by traumatic lung injury, specifically, pulmonary contusion, remain unknown. We used an animal model of pulmonary contusion to determine whether the injury resulted in priming of the innate immune response and to test the hypothesis that resuscitation fluids could attenuate the primed response to a second hit. Male, 8 to 9 weeks, C57/BL6 mice with a pulmonary contusion were challenged by a second hit of intratracheal administration of the Toll-like receptor 4 agonist, lipopolysaccharide (LPS, 50 microg) 24 hours after injury (injury + LPS). Other experimental groups were injury + vehicle or LPS alone. A separate group was injured and resuscitated by 4 cc/kg of hypertonic saline (HTS) or Lactated Ringer's (LR) resuscitation before LPS challenge. Mice were killed 4 hours after LPS challenge and blood, bronchoalveolar lavage, and tissue were isolated and analyzed. Data were analyzed using one-way analysis of variance with Bonferroni multiple comparison posttest for significant differences (*p < or = 0.05). Injury + LPS showed immune priming observed by lung injury histology and increased bronchoalveolar lavage neutrophilia, lung myeloperoxidase and serum IL-6, CXCL1, and MIP-2 levels when compared with injury + vehicle or LPS alone. After injury, resuscitation with HTS, but not Lactated Ringer's was more effective in attenuating the primed response to a second hit. Pulmonary contusion primes innate immunity for an exaggerated response to a second hit with the Toll-like receptor 4 agonist, LPS. We observed synergistic increases in inflammatory mediator expression in the blood and a more severe lung injury in injured animals challenged with LPS. This priming effect was reduced when HTS was used to resuscitate the animal after lung contusion.

  17. Country Immunization Information System Assessments - Kenya, 2015 and Ghana, 2016.

    Science.gov (United States)

    Scott, Colleen; Clarke, Kristie E N; Grevendonk, Jan; Dolan, Samantha B; Ahmed, Hussein Osman; Kamau, Peter; Ademba, Peter Aswani; Osadebe, Lynda; Bonsu, George; Opare, Joseph; Diamenu, Stanley; Amenuvegbe, Gregory; Quaye, Pamela; Osei-Sarpong, Fred; Abotsi, Francis; Ankrah, Joseph Dwomor; MacNeil, Adam

    2017-11-10

    The collection, analysis, and use of data to measure and improve immunization program performance are priorities for the World Health Organization (WHO), global partners, and national immunization programs (NIPs). High quality data are essential for evidence-based decision-making to support successful NIPs. Consistent recording and reporting practices, optimal access to and use of health information systems, and rigorous interpretation and use of data for decision-making are characteristics of high-quality immunization information systems. In 2015 and 2016, immunization information system assessments (IISAs) were conducted in Kenya and Ghana using a new WHO and CDC assessment methodology designed to identify root causes of immunization data quality problems and facilitate development of plans for improvement. Data quality challenges common to both countries included low confidence in facility-level target population data (Kenya = 50%, Ghana = 53%) and poor data concordance between child registers and facility tally sheets (Kenya = 0%, Ghana = 3%). In Kenya, systemic challenges included limited supportive supervision and lack of resources to access electronic reporting systems; in Ghana, challenges included a poorly defined subdistrict administrative level. Data quality improvement plans (DQIPs) based on assessment findings are being implemented in both countries. IISAs can help countries identify and address root causes of poor immunization data to provide a stronger evidence base for future investments in immunization programs.

  18. Regulation of TGFβ in the immune system: an emerging role for integrins and dendritic cells.

    Science.gov (United States)

    Worthington, John J; Fenton, Thomas M; Czajkowska, Beata I; Klementowicz, Joanna E; Travis, Mark A

    2012-12-01

    Regulation of an immune response requires complex crosstalk between cells of the innate and adaptive immune systems, via both cell-cell contact and secretion of cytokines. An important cytokine with a broad regulatory role in the immune system is transforming growth factor-β (TGF-β). TGF-β is produced by and has effects on many different cells of the immune system, and plays fundamental roles in the regulation of immune responses during homeostasis, infection and disease. Although many cells can produce TGFβ, it is always produced as an inactive complex that must be activated to bind to the TGFβ receptor complex and promote downstream signalling. Thus, regulation of TGFβ activation is a crucial step in controlling TGFβ function. This review will discuss how TGFβ controls diverse immune responses and how TGFβ function is regulated, with a focus on recent work highlighting a critical role for the integrin αvβ8 expressed by dendritic cells in activating TGFβ. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. [Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system].

    Science.gov (United States)

    Stier, Heike; Bischoff, Stephan C

    2017-06-01

    The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults. This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system. S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens' potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced. The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.

  20. The Role of the Immune System in Metabolic Health and Disease.

    Science.gov (United States)

    Zmora, Niv; Bashiardes, Stavros; Levy, Maayan; Elinav, Eran

    2017-03-07

    In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.