WorldWideScience

Sample records for adaptive immune system

  1. Intercellular Communication in the Adaptive Immune System

    Science.gov (United States)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  2. The immune system, adaptation, and machine learning

    Science.gov (United States)

    Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.

    1986-10-01

    The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.

  3. CRISPR-Based Adaptive Immune Systems

    OpenAIRE

    Terns, Michael P.; Terns, Rebecca M.

    2011-01-01

    CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediate...

  4. The aging of the adaptive immune system

    OpenAIRE

    Grubeck-Loebenstein, B.; Weinberger, B.; Herndler-Brandstetter, D.; Weiskopf, D.; Pfister, G.

    2011-01-01

    Adaptive immune responses are severely affected by the aging process as reflected by an increased morbidity and mortality from infectious diseases and a low efficacy of vaccination in elderly persons. Age-related changes within the bone marrow and thymus lead to an impaired generation of new T and B cells severely compromising the maintenance of a diverse and balanced T and B cell repertoire in old age. The maintenance of a balanced T cell repertoire is further challenged by latent persistent...

  5. Scale-free dynamics of somatic adaptability in immune system

    CERN Document Server

    Saito, Shiro

    2009-01-01

    The long-time dynamics of somatic adaptability in immune system is simulated by a simple physical model. The immune system described by the model exhibits a scale free behavior as is observed in living systems. The balance between the positive and negative feedbacks of the model leads to a robust immune system where the positive one corresponds to the formation of memory cells and the negative one to immunosuppression. Also the immunosenescence of the system is discussed based on the time-dependence of the epigenetic landscape of the adaptive immune cells in the shape space.

  6. The Adaptive Immune System of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  7. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.

  8. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  9. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  10. Multifaceted interactions between adaptive immunity and the central nervous system.

    Science.gov (United States)

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  11. Activation of the reward system boosts innate and adaptive immunity.

    Science.gov (United States)

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  12. Regulation of the adaptive immune system by innate lymphoid cells

    OpenAIRE

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  13. Adaptive immunity to fungi.

    Science.gov (United States)

    Verma, Akash; Wüthrich, Marcel; Deepe, George; Klein, Bruce

    2014-11-06

    Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.

  14. Stochastic stage-structured modeling of the adaptive immune system

    Energy Technology Data Exchange (ETDEWEB)

    Chao, D. L. (Dennis L.); Davenport, M. P. (Miles P.); Forrest, S. (Stephanie); Perelson, Alan S.,

    2003-01-01

    We have constructed a computer model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. Because immune responses often begin with small numbers of cells and there is great variation among individual immune systems, we have chosen to implement a stochastic model that captures the life cycle of T cells more faithfully than deterministic models. Past models of the immune response have been differential equation based, which do not capture stochastic effects, or agent-based, which are computationally expensive. We use a stochastic stage-structured approach that has many of the advantages of agent-based modeling but is more efficient. Our model can provide insights into the effect infections have on the CTL repertoire and the response to subsequent infections.

  15. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  16. CRISPR-Cas adaptive immune systems of the sulfolobales

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne;

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  17. Senescence of the adaptive immune system in health and aging-associated autoimmune disease

    NARCIS (Netherlands)

    van der Geest, Kornelis Stephan Mario

    2015-01-01

    Aging of the immune system may contribute to the development of aging-associated autoimmune diseases, such as giant cell arteritis, polymyalgia rheumatica and rheumatoid arthritis. The aim of this thesis was to identify aging-dependent changes of the adaptive immune system that promote autoimmunity

  18. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    Science.gov (United States)

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. PMID:25698354

  19. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  20. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy.

    Science.gov (United States)

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    2014-01-01

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages. PMID:23531796

  1. Immune System

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  2. Immune system adaptations during competition period in female cross-country skiers

    OpenAIRE

    Stenholm, Johanna

    2011-01-01

    Stenholm, Johanna. Immune system adaptations during competition period in female cross-country skiers. Master’s Thesis in Exercise Physiology, Department of Biology of Physical Activity. University of Jyväskylä. 95pp. Purpose. This study was undertaken to characterize the extent of immune and endocrine changes in competition period and related to two competition weekends in well trained athletes in different parts of the competition period. An additional purpose was to evaluate if the cha...

  3. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    Science.gov (United States)

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations.

  4. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    Full Text Available Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer for harnessing the adjuvant potential of natural killer T (NKT cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases.

  5. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  6. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Science.gov (United States)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  7. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.

    Science.gov (United States)

    Nishida, Keiji; Arazoe, Takayuki; Yachie, Nozomu; Banno, Satomi; Kakimoto, Mika; Tabata, Mayura; Mochizuki, Masao; Miyabe, Aya; Araki, Michihiro; Hara, Kiyotaka Y; Shimatani, Zenpei; Kondo, Akihiko

    2016-09-16

    The generation of genetic variation (somatic hypermutation) is an essential process for the adaptive immune system in vertebrates. We demonstrate the targeted single-nucleotide substitution of DNA using hybrid vertebrate and bacterial immune systems components. Nuclease-deficient type II CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) and the activation-induced cytidine deaminase (AID) ortholog PmCDA1 were engineered to form a synthetic complex (Target-AID) that performs highly efficient target-specific mutagenesis. Specific point mutation was induced primarily at cytidines within the target range of five bases. The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced. Although combination of nickase Cas9(D10A) and the deaminase was highly effective in yeasts, it also induced insertion and deletion (indel) in mammalian cells. Use of uracil DNA glycosylase inhibitor suppressed the indel formation and improved the efficiency. PMID:27492474

  8. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  9. Blurring Borders: Innate Immunity with Adaptive Features

    Directory of Open Access Journals (Sweden)

    K. Kvell

    2007-01-01

    Full Text Available Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila, have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps.

  10. Within-host co-evolution of chronic viruses and the adaptive immune system

    Science.gov (United States)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  11. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    Science.gov (United States)

    Kirchner, Marion; Schneider, Sabine

    2015-11-01

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight.

  12. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    Science.gov (United States)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  13. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  14. Alternative adaptive immunity in invertebrates

    DEFF Research Database (Denmark)

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticit...... and memory has long been a matter of debate. A recent study on Anopheles gambiae mosquitoes now establishes Down syndrome cell adhesion molecule (Dscam) as a key immune surveillance factor with characteristics analogous to antibodies....

  15. Genome complexity in the coelacanth is reflected in its adaptive immune system.

    Science.gov (United States)

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T

    2014-09-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  16. Genome complexity in the coelacanth is reflected in its adaptive immune system

    Science.gov (United States)

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  17. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    Science.gov (United States)

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.

  18. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  19. Artificial Immune Systems Tutorial

    CERN Document Server

    Aickelin, Uwe

    2008-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  20. Artificial Immune Systems

    CERN Document Server

    Aickelin, Uwe

    2009-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  1. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System.

    Science.gov (United States)

    Corcos, D

    2015-11-01

    Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity. PMID:26286030

  2. Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines

    Science.gov (United States)

    Sadat Hashemipour, Maryam; Soleimani, Seyed Ali

    2016-01-01

    Artificial immune system (AIS) algorithm based on clonal selection method can be defined as a soft computing method inspired by theoretical immune system in order to solve science and engineering problems. Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure along with the feature selection significantly impacts on the classification accuracy rate. In this study, AIS based on Adaptive Clonal Selection (AISACS) algorithm has been used to optimise the SVM parameters and feature subset selection without degrading the SVM classification accuracy. Several public datasets of University of California Irvine machine learning (UCI) repository are employed to calculate the classification accuracy rate in order to evaluate the AISACS approach then it was compared with grid search algorithm and Genetic Algorithm (GA) approach. The experimental results show that the feature reduction rate and running time of the AISACS approach are better than the GA approach.

  3. Inflammatory bowel disease related innate immunity and adaptive immunity

    Science.gov (United States)

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  4. Maternal immune system adaptation to pregnancy - a potential influence on the course of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Pavan Josip

    2010-10-01

    Full Text Available Abstract Background Progression of diabetic retinopathy occurs at least temporarily during pregnancy. Although the cause of this progression is not entirely understood, the immune phenomenon and chronic inflammation may play a significant role. During pregnancy in order to avoid fetus rejection, certain components of the immune system that are knowingly implicated in the pathogenesis of diabetic retinopathy are activated including generalized leukocyte activation and an increase in certain cytokine plasma levels. Activated leukocytes with up regulated adhesion molecules have an increased potential to bind to the endothelium cells of blood vessels. Leukocyte-endothelial interaction and the consequent leukostasis with capillary occlusion, ischemia and vascular leakage have a substantial role in the development of diabetic retinopathy. Furthermore, certain increased cytokines are known to cause blood-retinal-barrier breakdown whilst others promote angiogenic and fibrovascular proliferation and thereby can also be implicated in the pathogenesis of this diabetic complication. Presentation of the hypothesis We hypothesized that the activation of the immune system during gestation may have an influence on the course of retinopathy in pregnant diabetic women. Testing the hypothesis We suggest two prospective follow up studies conducted on women with type 1 diabetes mellitus. The first study would include a group of non-pregnant women and a group of diabetic women undergoing normal pregnancy matched for age and duration of diabetes. In the second study pregnant women would be divided into two groups: one with normal pregnancy and the other with preeclampsia. The procedure and data collection in both studies will be identical: a complete ophthalmological examination, glycaemic control, blood pressure measurement and venous blood samples for the determination of plasma levels of cytokines (TNF-alpha, IL-1beta, IL-6, IL-8 and adhesion molecules (ICAM-1

  5. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].

    Science.gov (United States)

    Sun, Dongchang; Qiu, Juanping

    2016-01-01

    To better adapt to the environment, prokaryocyte can take up exogenous genes (from bacteriophages, plasmids or genomes of other species) through horizontal gene transfer. Accompanied by the acquisition of exogenous genes, prokaryocyte is challenged by the invasion of 'selfish genes'. Therefore, to protect against the risk of gene transfer, prokaryocyte needs to establish mechanisms for selectively taking up or degrading exogenous DNA. In recent years, researchers discovered an adaptive immunity, which is mediated by the small RNA guided DNA degradation, prevents the invasion of exogenous genes in prokaryocyte. During the immune process, partial DNA fragments are firstly integrated.to the clustered regularly interspaced short palindromic repeats (CRISPR) located within the genome DNA, and then the mature CRISPR RNA transcript and the CRISPR associated proteins (Cas) form a complex CRISPR/Cas for degrading exogenous DNA. In this review, we will first briefly describe the CRISPR/Cas systems and then mainly focus on the recent advances of the function mechanism and the regulation mechanism of the type I-E CRISPR/Cas system in Escherichia coli.

  6. Comparative immune systems in animals.

    Science.gov (United States)

    Yuan, Shaochun; Tao, Xin; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong

    2014-02-01

    Animal immune systems can be classified into those of innate immunity and those of adaptive immunity. It is generally thought that the former are universal for all animals and depend on germline-encoded receptors that recognize highly conserved pathogen-associated molecular patterns (PAMPs), whereas the latter are vertebrate specific and are mediated primarily by lymphocytes bearing a unique antigen receptor. However, novel adaptive or adaptive-like immunities have been found in invertebrates and jawless vertebrates, and extraordinarily complex innate immunities, created through huge expansions of many innate gene families, have recently been found in the cephalochordate amphioxus and the echinoderm sea urchin. These studies not only inspire immunologists to seek novel immune mechanisms in invertebrates but also raise questions about the origin and evolution of vertebrate immunities. PMID:25384142

  7. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    OpenAIRE

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can in...

  8. Immune System Involvement

    Science.gov (United States)

    ... to find out more! Email * Zipcode The Immune System and Psoriatic Disease What is an autoimmune disease? ... and painful joints and tendons. Treating the immune system The immune system is not only the key ...

  9. Immune System Quiz

    Science.gov (United States)

    ... Here's Help White House Lunch Recipes Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System Print A A A Text Size How much do you know about your immune system? Find out by taking this quiz! View Survey ...

  10. [The CRISPR case, « ready-made » mutations and Lamarckian evolution of an adaptive immunity system].

    Science.gov (United States)

    Casane, Didier; Laurenti, Patrick

    2016-01-01

    Since genetics has shown that mutation predates selection, biology has developed within the Darwinian paradigm framework. However, a mechanism that produces favorable mutations preferentially in response to adaptive constraints has been recently identified. This mechanism, the CRISPR-Cas adaptive immunity system, is considered as a bona fide example of Lamarckian evolution, even if it only reflects loosely Lamarck's ideas. This unusual evolutionary process is made possible by two prokaryotic properties: i) somatic and germinal cells are not distinct sets of cells; ii) Archae and Bacteria very frequently integrate DNA fragments from the environment, and they therefore have access to a source of "ready-made" useful genetic information. The CRISPR-Cas is a defense system against viruses and plasmids that is based on the integration of genomic fragments of these infectious agents into the host genome, and that protects the host against subsequent infections. Therefore, this mechanism does produce advantageous mutations by integrating DNA from the environment and allowing its transmission to descendants. In conclusion, most of the time evolution relies on purely Darwinian processes, i.e. mutations occurring at random, but in a small minority of cases the occurrence of mutations is more or less biased, and is therefore more or less Lamarckian. Although they are rare, such processes are nevertheless important to our understanding of the plurality of modes of evolution. PMID:27406776

  11. [Adaptive immune response of people living near chemically hazardous object].

    Science.gov (United States)

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  12. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Britta Siegmund; Martin Zeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  13. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    BrittaSiegmund; MartinZeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a crossregulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  14. Epigenetics and the Adaptive Immune Response

    OpenAIRE

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathoge...

  15. Our Immune System

    Science.gov (United States)

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note from ... are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  16. INNATE, ADAPTIVE AND INTRINSIC IMMUNITY IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2012-01-01

    Full Text Available The first line of defence of the innate immune system functions by recognizing highly conserved sets of molecular structures specific to the microbes, termed pathogen-associated molecular patterns, or PAMPs via the germ line-encoded receptors Pattern-Recognition Receptors (PRRs. In addition to the innate immune system, the vertebrates have also evolved a second line of defence termed adaptive immune system, which uses a diverse set of somatically rearranged receptors T-Cell Receptors (TCRs and B Cell Receptors (BCRs, which have the inherent ability to effectively recognise diverse antigens. The innate and adaptive immune systems are functionally tied in with the intrinsic immunity, which comprises of endogenous antiviral factors. Thus, this effective response to diverse microbial infections, including HIV, requires a coordinated interaction at several functional levels between innate, adaptive and intrinsic immune systems. This review provides a snapshot of roles played by the innate, adaptive and the intrinsic immune systems during HIV-infection, along with discussing recent developments highlighting the genomic basis of these responses and their regulation by micro-RNA (miRNAs.

  17. Dynamics of immune system vulnerabilities

    Science.gov (United States)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  18. Immune System and Disorders

    Science.gov (United States)

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  19. Diversity of immune strategies explained by adaptation to pathogen statistics.

    Science.gov (United States)

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  20. Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism

    Institute of Scientific and Technical Information of China (English)

    HE Hong; QIAN Feng

    2007-01-01

    Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIFA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.

  1. Adaptive immune responses to Candida albicans infection.

    Science.gov (United States)

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  2. The Role of the p38 Pathway in Adaptive Immunity

    Institute of Scientific and Technical Information of China (English)

    Ryan Cook; Chia-Cheng Wu; Young Jun Kang; Jiahuai Han

    2007-01-01

    Since its discovery in 1993, the mitogen-activated protein (MAP) kinase p38 has attracted much attention for its role in a wide range of cellular processes, many of which involve the immune system. Although p38 has been heavily implicated in the function of all type immune cells, research has tended focus on its role in innate immunity.In this review we attempt to highlight some of the major discoveries that have been made regarding p38's role in adaptive immunity, and also to discuss the possible future implications of these discoveries.

  3. The Immune System Game

    Science.gov (United States)

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  4. Crosstalk between innate and adaptive immunity inhepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic toinfected hepatocytes; the clinical outcome of infectionresults from complicated interactions between the virusand the host immune system. In acute HBV infection,initiation of a broad, vigorous immune response is responsiblefor viral clearance and self-limited inflammatoryliver disease. Effective and coordinated innate andadaptive immune responses are critical for viral clearanceand the development of long-lasting immunity. Chronichepatitis B patients fail to mount efficient innate andadaptive immune responses to the virus. In particular,HBV-specific cytotoxic T cells, which are crucial for HBVclearance, are hyporesponsiveness to HBV infection.Accumulating experimental evidence obtained fromthe development of animal and cell line models hashighlighted the importance of innate immunity in theearly control of HBV spread. The virus has evolvedimmune escape strategies, with higher HBV loads andHBV protein concentrations associated with increasingimpairment of immune function. Therefore, treatmentof HBV infection requires inhibition of HBV replicationand protein expression to restore the suppressedhost immunity. Complicated interactions exist notonly between innate and adaptive responses, but alsoamong innate immune cells and different components ofadaptive responses. Improved insight into these complexinteractions are important in designing new therapeuticstrategies for the treatment HBV infection. In thisreview, we summarize the current knowledge regardingthe cross-talk between the innate and adaptive immuneresponses and among different immunocytes in HBVinfection.

  5. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    OpenAIRE

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  6. Artificial Immune Systems (2010)

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the m...

  7. Proteasome function shapes innate and adaptive immune responses.

    Science.gov (United States)

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  8. Immune System (For Parents)

    Science.gov (United States)

    ... lock onto them. T cells are like the soldiers, destroying the invaders that the intelligence system has ... can't be prevented, you can help your child's immune system stay stronger and fight illnesses by ...

  9. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  10. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model.

    Directory of Open Access Journals (Sweden)

    Martin Köberle

    2009-08-01

    Full Text Available Yersinia enterocolitica (Ye evades the immune system of the host by injection of Yersinia outer proteins (Yops via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-beta-lactamase hybrid protein and a fluorescent staining sensitive to beta-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-beta1A, and HeLa cells demonstrated that beta1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80(+, 11% of CD11c(+, 7% of CD49b(+, 5% of Gr1(+ cells, 2.3% of CD19(+, and 2.6% of CD3(+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19(+CD21(+CD23(+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-gammaR (receptor- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-beta-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.

  11. Powering the Immune System: Mitochondria in Immune Function and Deficiency

    Directory of Open Access Journals (Sweden)

    Melissa A. Walker

    2014-01-01

    Full Text Available Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings.

  12. Artificial Immune System Approaches for Aerospace Applications

    Science.gov (United States)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  13. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    OpenAIRE

    Ariel D Weinberger; Wolf, Yuri I.; Lobkovsky, Alexander E; Gilmore, Michael S.; Eugene V Koonin

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunologi...

  14. The sea urchin immune system

    Directory of Open Access Journals (Sweden)

    LC Smith

    2006-05-01

    Full Text Available Metchnikoff’s use of sea star larvae to observe encapsulation and phagocytosis, which was followedmuch later by allograft rejection kinetics, revealed that echinoderms had an innate immune system thatwas lacking of adaptive attributes. Larval sea urchins mount defenses in response to contact withmicrobes, which are mediated by phagocytic blastocoelar cells and pigment cells. In the adult, thecoelomocytes mediate immune responses through phagocytosis and encapsulation of foreign particles inaddition to degranulation of antimicrobial molecules. Molecular analysis of immune functions in the seaurchin has demonstrated a complement system that appears to have multiple alternative pathways andseveral activators of the lectin pathway, but may be missing the terminal pathway. Other genes andproteins involved in the sea urchin immunity include expanded sets of lectins, proteins with scavengerreceptor cysteine-rich repeats, Toll-like receptors and associated signalling proteins. A vast array ofproteins belonging to the 185/333 family are expressed in coelomocytes in response to lipopolysaccharideand show a surprising level of diversity. The sea urchin innate immune system has a number of largegene families with unexpected complexities and elevated levels of diversification.

  15. The Microbiome, Systemic Immune Function, and Allotransplantation.

    Science.gov (United States)

    Nellore, Anoma; Fishman, Jay A

    2016-01-01

    Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future. PMID:26656674

  16. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  17. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    International Nuclear Information System (INIS)

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L-1) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  18. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  19. Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Lucille Rankin

    2011-01-01

    Full Text Available The helix-loop-helix (HLH transcription factor inhibitor of DNA binding 2 (Id2 has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK cells, lymphoid tissue-inducer (LTi cells, and the recently identified interleukin (IL-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.

  20. Adaptive resistance: A tumor strategy to evade immune attack

    Science.gov (United States)

    Yao, Sheng; Chen, Lieping

    2014-01-01

    A dilemma in cancer immunology is that, although patients often develop active anti-tumor immune responses, the tumor still outgrows. It has become clear that under the pressure of the host’s immune system, cancer cells have adapted elaborate tactics to reduce their immunogenicity (also known as immunoselection) and/or to actively suppress immune cells and promote immune tolerance (also known as immunosubversion). In this issue of the European Journal of Immunology, Dolen and Esendagli [Eur. J. Immunol. 2013. 43: 747–757] show that acute myeloid leukemia (AML) cells develop an adaptive immune phenotype switching mechanism: In response to attack by activated T cells, the leukemia cells quickly downregulate the T-cell costimulatory ligand B7-H2 and reciprocally upregulate the coinhibitory ligands B7-H1 and B7-DC in order to shut down T-cell activation via the PD-1 pathway. These novel findings and their relevance for cancer immunotherapy, especially potential applications in PD-1 check-point blockade therapy are discussed in this Commentary. PMID:23381914

  1. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno......-informatics methods to allow the simulation of the cardinal events of the antigenic recognition, going from single peptides to whole proteomes. The recognition process accounts for B cell-epitopes prediction through Parker-scale affinity estimation, class I and II HLA peptide prediction and binding through position...... simulation. AVAILABILITY: http://www.cbs.dtu.dk/services/C-ImmSim-10.1/ CONTACT: f.castiglione@iac.cnr.it...

  2. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    Science.gov (United States)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  3. A pox on thee! Manipulation of the host immune system by myxoma virus and implications for viral-host co-adaptation.

    Science.gov (United States)

    Zúñiga, Martha C

    2002-09-01

    The poxviruses have evolved a diverse array of proteins which serve to subvert innate and adaptive host responses that abort or at least limit viral infections. Myxoma virus and its rabbit host are considered to represent an ideal poxvirus-host system in which to study the effects of these immunomodulatory proteins. Studies of laboratory rabbits (Oryctolagus cuniculus) infected with gene knockout variants of myxoma virus have provided compelling evidence that several myxoma virus gene products contribute to the pathogenic condition known as myxomatosis. However, myxomatosis, which is characterized by skin lesions, systemic immunosuppression, and a high mortality rate, does not occur in the virus' natural South American host, Sylvilogus brasiliensis. Moreover, in Australia where myxoma virus was willfully introduced to control populations of O. cuniculus, myxomatosis-resistant rabbits emerged within a year of myxoma virus introduction into the field. In this review I discuss the characterized immunomodulatory proteins of myxoma virus, their biochemical properties, their pathogenic effects in laboratory rabbits, the role of the host immune system in the susceptibility or resistance to myxomatosis, and the evidence that immunomodulatory genes may have been attenuated during the co-adaptation of myxoma virus and O. cuniculus in Australia. PMID:12297325

  4. [Analysis of the relationships between the psychophysiological status and system of adaptive immunity in the conditions of 5-day dry immersion].

    Science.gov (United States)

    Nichiporuk, I A; Vasil'eva, G Iu; Rykova, M P; Antropova, E N; Berendeeva, T A; Ponomarev, S A; Morukov, B V

    2011-01-01

    Relationships of the T- and B-components of adaptive immunity and the psychophysiological status were studied in 14 volunteers for the experiment with 5-d dry immersion (DI) w/o countermeasures. Comparison of frequency of deviations in immunity parameters of psychologically different subjects demonstrated the highest frequency in non-anxious and extravert individuals on day-5 in DI. These differences in immune reactions as a function of psychological type and temperament point to existence of a neuroimmune typology and, therefore, the necessity of concurrent immunologic and psychological investigations in order to develop separate measures of rehabilitation from and prevention of stress in people with polar psychological status.

  5. Systemic Transcriptional Alterations of Innate and Adaptive Immune Signaling Pathways in Atherosclerosis, Ischemia Stroke, and Myocardial Infarction

    OpenAIRE

    Barr, Taura L.; VanGilder, Reynal L.; Seiberg, Ryan; Petrone, Ashely; Chantler, Paul D.; Huang, Chiang-Ching

    2015-01-01

    Background Transcriptional profiles are available for a variety of cardiovascular-related diseases. The goal of this study was to compare blood transcriptional profiles of the Toll-like receptor (TLR), T-cell receptor (TCR), and B-cell receptor (BCR) signaling pathways in asymptomatic atherosclerosis, acute ischemic stroke, and myocardial infarction patients to identify common mechanisms of immune regulation and their association with epigenetic regulation. Methods and results Peripheral bloo...

  6. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Science.gov (United States)

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  7. Adaptive Immunity in Neurodegenerative and Neuropsychological Disorders.

    Science.gov (United States)

    Mosley, R Lee

    2015-12-01

    Neurodegenerative and neuropsychological disorders are becoming a greater proportion of the global disease burden; however the pathogenic mechanisms by which these disorders originate and contribute to disease progression are not well-described. Increasing evidence supports neuroinflammation as a common underlying component associated with the neuropathological processes that effect disease progression. This collection of articles explores the role of adaptive immunity in autoimmunity, neurodegeneration, neurotrauma, and psychological disorders. The section emphasizes the interactions of T cells with innate cellular responses within the CNS and the effects on neurological functions. One recurrent theme is that modified and aggregated self-proteins upregulate innate-mediated inflammation and provide a permissive environment for polarization of T cells to proinflammatory effector cells. Moreover, infiltration and reactivation of those T effector cells exacerbate neuroinflammation and oxidative stress to greater neurotoxic levels. Another recurrent theme in these disorders promotes diminished regulatory functions that reduce control over activated T effector cells and microglia, and ultimately augment proinflammatory conditions. Augmentation of regulatory control is discussed as therapeutic strategies to attenuate neuroinflammation, mitigate neurodegeneration or neuronal dysfunction, and lessen disease progression.

  8. Diversity in the Immune System

    OpenAIRE

    Borghans, J.A.M.; Boer, R.J. de

    2000-01-01

    Diversity is one of the key characteristics of the vertebrate immune system. Lymphocyte repertoires of at least 3x10⁷ different clonotypes protect humans against infections, while avoiding unwanted immune responses against self-peptides and innocuous antigens. It is this lymphocyte diversity that forms the main difference between the immune systems of invertebrate and vertebrate species.

  9. Immune adaptive Gaussian mixture par ticle filter for state estimation

    Institute of Scientific and Technical Information of China (English)

    Wenlong Huang; Xiaodan Wang; Yi Wang; Guohong Li

    2015-01-01

    The particle filter (PF) is a flexible and powerful sequen-tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im-poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser-vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im-prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.

  10. The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages

    OpenAIRE

    Cady, Kyle C.; Bondy-Denomy, Joe; Heussler, Gary E; Davidson, Alan R.; O'Toole, George A.

    2012-01-01

    Here we report the isolation of 6 temperate bacteriophages (phages) that are prevented from replicating within the laboratory strain Pseudomonas aeruginosa PA14 by the endogenous CRISPR/Cas system of this microbe. These phages are only the second identified group of naturally occurring phages demonstrated to be blocked for replication by a nonengineered CRISPR/Cas system, and our results provide the first evidence that the P. aeruginosa type I-F CRISPR/Cas system can function in phage resista...

  11. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  12. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  13. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  14. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    Science.gov (United States)

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.

  15. Immune regulation by pericytes: modulating innate and adaptive immunity

    DEFF Research Database (Denmark)

    Navarro, Rocio; Compte, Marta; Álvarez-Vallina, Luis;

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells (EC) in small blood vessels. PC have traditionally been endowed with structural functions, being essential for vessel maturation and stabilization. However, accumulating evidence suggest that PC also display immune properties. They can...

  16. How the codfish changed its immune system.

    Science.gov (United States)

    Parham, Peter

    2016-09-28

    A common ancestor of the modern codfish acquired a set of mutations that eliminated a major arm of the adaptive immune system-the MHC II pathway of antigen presentation to CD4(+) T cells. Subsequent to this event, there was a radiation of these fish in which the number and diversity of MHC I genes increased in species-specific ways. PMID:27681288

  17. Regional specialization within the intestinal immune system

    DEFF Research Database (Denmark)

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease...... implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout......The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...

  18. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    NARCIS (Netherlands)

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  19. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja;

    studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune...

  20. [Adaptive immune response and associated trigger factors in atopic dermatitis].

    Science.gov (United States)

    Heratizadeh, A; Werfel, T; Rösner, L M

    2015-02-01

    Due to a broad variety of extrinsic trigger factors, patients with atopic dermatitis (AD) are characterized by complex response mechanisms of the adaptive immune system. Notably, skin colonization with Staphylococcus aureus seems to be of particular interest since not only exotoxins, but also other proteins of S. aureus can induce specific humoral and cellular immune responses which partially also correlate with the severity of AD. In a subgroup of AD patients Malassezia species induce specific IgE- and T cell-responses which has been demonstrated by atopy patch tests. Moreover, Mala s 13 is characterized by high cross-reactivity to the human corresponding protein (thioredoxin). Induction of a potential autoallergy due to molecular mimicry seems therefore to be relevant for Malassezia-sensitized AD patients. In addition, sensitization mechanisms to autoallergens aside from cross-reactivity are under current investigation. Regarding inhalant allergens, research projects are in progress with the aim to elucidate allergen-specific immune response mechanisms in more depth. For grass-pollen allergens a flare-up of AD following controlled exposure has been observed while for house dust mite-allergens a polarization towards Th2 and Th2/Th17 T cell phenotypes can be observed. These and further findings might finally contribute to the development of specific and effective treatments for aeroallergen-sensitized AD patients. PMID:25532900

  1. Modelling Immune System: Principles, Models,Analysis and Perspectives

    Institute of Scientific and Technical Information of China (English)

    Xiang-hua Li; Zheng-xuan Wang; Tian-yang Lu; Xiang-jiu Che

    2009-01-01

    The biological immune system is a complex adaptive system. There are lots of benefits for building the model of the immune system. For biological researchers, they can test some hypotheses about the infection process or simulate the responses of some drugs. For computer researchers, they can build distributed, robust and fault tolerant networks inspired by the functions of the immune system. This paper provides a comprehensive survey of the literatures on modelling the immune system. From the methodology perspective, the paper compares and analyzes the existing approaches and models, and also demonstrates the focusing research effort on the future immune models in the next few years.

  2. Adaptation to High Grain Diets Proceeds Through Minimal Immune System Stimulation and Differences in Extracellular Matrix Protein Expression in A Model of Subacute Ruminal Acidosis in Non-lactating Dairy Cows

    Directory of Open Access Journals (Sweden)

    L. Dionissopoulos

    2012-01-01

    Full Text Available Problem statement: Subacute Ruminal Acidosis (SARA is a metabolic disorder affecting approximately 20% of all dairy cattle in North America. Although the presence of SARA has been described for some time, the etiology of the disorder remains uncertain. For example, many animals diagnosed with SARA seem to remodel and adapt their epithelium to accommodate the stresses imposed by SARA, but not before exacting a significant health and economic toll. Specifically, a search is on in which a desire to identify the system and associated pathways that are causative agents in the progression and development of SARA is evident. We hypothesize that adaptation to SARA is facilitated by the immune system. Approach: In order to answer of this question, 4 mature, non-lactating dairy cattle were transitioned from a High Fiber (HF; 0% grain diet to High Grain (HG; 65% grain diet. Having fed the HG diet for three weeks, the cattle were then transitioned back to the HF diet for an additional three weeks to facilitate adaptation. SARA was diagnosed by pH data only during the first week and not during the remaining weeks, indicating that adaptation to the HG diet took place within one week. Results: In this study, significant (pConclusion: These results indicate that the immune system is involved in the adaptation of the rumen epithelium to a HG diet, but to a lesser extent than was previously thought. This is the first time an attempt has been made to link the immune system and wound healing in the adaptation of the bovine rumen to a HG diet."""

  3. Aryl Hydrocarbon Receptor Control of Adaptive Immunity

    OpenAIRE

    Quintana, Francisco J.; David H. Sherr

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental f...

  4. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    Science.gov (United States)

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  5. The Immune System and Developmental Programming of Brain and Behavior

    OpenAIRE

    Bilbo, Staci D; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease i...

  6. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z...TAM-based signaling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond the adaptive

  7. Adaptive social immunity in leaf-cutting ants

    OpenAIRE

    Walker, Tom N.; Hughes, William O. H.

    2009-01-01

    Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them t...

  8. Adaptation in CRISPR-Cas Systems.

    Science.gov (United States)

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.

  9. SISTEMAS INMUNES ALTERNATIVOS Alternative Immune Systems

    Directory of Open Access Journals (Sweden)

    LUIS F. CADAVID

    Full Text Available El sistema inmune en animales es una red compleja de moléculas, células y tejidos que de manera conjunta mantienen la integridad fisiológica y genética de los organismos. Convencionalmente se ha considerado la existencia de dos clases de inmunidad, la innata y la adaptativa. La primera es ancestral, con variabilidad limitada y baja discriminación, mientras que la segunda es altamente variable, específica y restringida a vertebra-dos mandibulados. La inmunidad adaptativa se basa en receptores de antígeno que se rearreglan somáticamente para generar una diversidad casi ilimitada de moléculas. Este mecanismo de recombinación somática muy probablemente emergió como consecuencia de un evento de transferencia horizontal de transposones y transposasas bacterianas en el ancestro de los vertebrados mandibulados. El reciente descubrimiento en vertebrados no mandibulados e invertebrados de mecanismos alternativos de inmunidad adaptativa, sugiere que en el transcurso de la evolución distintos grupos animales han encontrado soluciones alternativas al problema del reconocimiento inmunológico.The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless vertebrates and invertebrates of alternative adaptive immune mechanisms, suggests that during

  10. The Immunobiology of Prostanoid Receptor Signaling in Connecting Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Hedi Harizi

    2013-01-01

    Full Text Available Prostanoids, including prostaglandins (PGs, thromboxanes (TXs, and prostacyclins, are synthesized from arachidonic acid (AA by the action of Cyclooxygenase (COX enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC-natural killer (NK reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.

  11. Adaptable Embedded Systems

    CERN Document Server

    Lisbôa, Carlos; Carro, Luigi

    2013-01-01

    As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together.  This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability.  The discussion also includes how to employ specialized software to improve this new adaptive system, and...

  12. Overview of fish immune system and infectious diseases

    Science.gov (United States)

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  13. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  14. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  15. STUDYING COMPLEX ADAPTIVE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    John H. Holland

    2006-01-01

    Complex adaptive systems (cas) - systems that involve many components that adapt or learn as they interact - are at the heart of important contemporary problems. The study of cas poses unique challenges: Some of our most powerful mathematical tools, particularly methods involving fixed points, attractors, and the like, are of limited help in understanding the development of cas. This paper suggests ways to modify research methods and tools, with an emphasis on the role of computer-based models, to increase our understanding of cas.

  16. Cystatins in immune system.

    Science.gov (United States)

    Magister, Spela; Kos, Janko

    2013-01-01

    Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.

  17. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  18. Melatonin: Buffering the Immune System

    Directory of Open Access Journals (Sweden)

    Juan M. Guerrero

    2013-04-01

    Full Text Available Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.

  19. Adaptive immunity to rhinoviruses: sex and age matter

    Directory of Open Access Journals (Sweden)

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  20. Adaptive Inflow Control System

    CERN Document Server

    Volkov, Vasily Y; Zhuravlev, Oleg N; Nukhaev, Marat T; Shchelushkin, Roman V

    2014-01-01

    This article presents the idea and realization for the unique Adaptive Inflow Control System being a part of well completion, able to adjust to the changing in time production conditions. This system allows to limit the flow rate from each interval at a certain level, which solves the problem of water and gas breakthroughs. We present the results of laboratory tests and numerical calculations obtaining the characteristics of the experimental setup with dual-in-position valves as parts of adaptive inflow control system, depending on the operating conditions. The flow distribution in the system was also studied with the help of three-dimensional computer model. The control ranges dependences are determined, an influence of the individual elements on the entire system is revealed.

  1. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies...

  2. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    OpenAIRE

    Kieslich, Chris A.; Dimitrios Morikis

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor compl...

  3. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    Directory of Open Access Journals (Sweden)

    Arnold Isabelle C

    2011-11-01

    Full Text Available Abstract Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.

  4. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    Science.gov (United States)

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  5. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  6. The Immune System in Hypertension

    Science.gov (United States)

    Trott, Daniel W.; Harrison, David G.

    2014-01-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely…

  7. Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities

    Institute of Scientific and Technical Information of China (English)

    LU Lu; YU Fei; DU Lan-ying; XU Wei; JIANG Shi-bo

    2013-01-01

    Objective To review the mechanisms by which HIV evades different components of the host immune system.Data sources This review is based on data obtained from published articles from 1991 to 2012.To perform the PubMed literature search,the following key words were input:HIV and immune evasion.Study selection Articles containing information related to HIV immune evasion were selected.Results Although HIV is able to induce vigorous antiviral immune responses,viral replication cannot be fully controlled,and neither pre-existing infected cells nor latent HIV infection can be completely eradicated.Like many other enveloped viruses,HIV can escape recognition by the innate and adaptive immune systems.Recent findings have demonstrated that HIV can also successfully evade host restriction factors,the components of intrinsic immune system,such as APOBEC3G (apolipoprotein B mRNA-editing enzyme,catalytic polypeptide-like 3G),TRIM5α (tripartite motif 5-α),tetherin,and SAMHD1 (SAM-domain HD-domain containing protein).Conclusions HIV immune evasion plays an important role in HIV pathcgenesis.Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.

  8. Is there a role for adaptive immunity in nonalcoholicsteatohepatitis?

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The growing diffusion of nonalcoholic fatty liver disease(NAFLD) is a consequence of the worldwide increasein the prevalence of obesity. Oxidative stress is widelyrecognized to play a pivotal role in NAFLD evolution tononalcoholic steatohepatitis (NASH). Here we reviewrecent evidence suggesting that oxidative stress-derivedantigens originating within fatty livers stimulate bothhumoral and cellular adaptive immune responses andthe possible mechanisms involved in sustaining hepaticinflammation in NASH.

  9. Glatiramer Acetate in Treatment of Multiple Sclerosis: A Toolbox of Random Co-Polymers for Targeting Inflammatory Mechanisms of both the Innate and Adaptive Immune System?

    Directory of Open Access Journals (Sweden)

    Thomas Vorup-Jensen

    2012-11-01

    Full Text Available Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin αMβ2 (also called Mac-1, complement receptor 3, or CD11b/CD18 and perspectives on the GA co-polymers as an influence on the function of the innate immune system.

  10. SISTEMAS INMUNES ALTERNATIVOS - Alternative Immune Systems

    Directory of Open Access Journals (Sweden)

    Cadavid Gutierrez Luis Fernando

    2011-12-01

    Full Text Available El sistema inmune en animales es una red compleja de moléculas, células y tejidos que de manera conjunta mantienen la integridad fisiológica y genética de los organismos. Convencionalmente se ha considerado la existencia de dos clases de inmunidad, la innata y la adaptativa. La primera es ancestral, con variabilidad limitada y baja discriminación, mientras que la segunda es altamente variable, específica y restringida a vertebrados mandibulados. La inmunidad adaptativa se basa en receptores de antígeno que se rearreglan somáticamente para generar una diversidad casi ilimitada de moléculas. Este mecanismo de recombinación somática muy probablemente emergió como consecuencia de un evento de transferencia horizontal de transposones y transposasas bacterianas en el ancestro de los vertebrados mandibulados. El reciente descubrimiento en vertebrados no mandibulados e invertebrados de mecanismos alternativos de inmunidad adaptativa, sugiere que en el transcurso de la evolución distintos grupos animales han encontrado soluciones alternativas al problema del reconocimiento inmunológico. Palabras claves: Sistema inmune, evolución, VLR, Dscam, Alorreconocimiento ABSTRACT The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of a horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless

  11. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment.

  12. Immunity Based Worm Detection System

    Institute of Scientific and Technical Information of China (English)

    HONG Zheng; WU Li-fa; WANG Yuan-yuan

    2007-01-01

    Current worm detection methods are unable to detect multi-vector polymorphic worms effectively.Based on negative selection mechanism of the immune system,a local network worm detection system that detects worms was proposed.Normal network service requests were represented by self-strings,and the detection system used self-strings to monitor the network for anomaly.According to the properties of worm propagation,a control center correlated the anomalies detected in the form of binary trees to ensure the accuracy of worm detection.Experiments show the system to be effective in detecting the traditional as well as multi-vector polymorphic worms.

  13. Dynamics of adaptive immunity against phage in bacterial populations

    CERN Document Server

    Bradde, Serena; Tesileanu, Tiberiu; Balasubramanian, Vijay

    2015-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer ...

  14. Durable antitumor responses to CD47 blockade require adaptive immune stimulation.

    Science.gov (United States)

    Sockolosky, Jonathan T; Dougan, Michael; Ingram, Jessica R; Ho, Chia Chi M; Kauke, Monique J; Almo, Steven C; Ploegh, Hidde L; Garcia, K Christopher

    2016-05-10

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47-SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  15. Synthetic immunology: modulating the human immune system.

    Science.gov (United States)

    Geering, Barbara; Fussenegger, Martin

    2015-02-01

    Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts.

  16. The effects of cocoa on the immune system

    OpenAIRE

    Francisco J. Pérez-Cano; Massot-Cladera, Malen; Franch, Àngels; Castellote, Cristina; Castell, Margarida

    2013-01-01

    Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched di...

  17. Editing at the crossroad of innate and adaptive immunity.

    Science.gov (United States)

    Turelli, Priscilla; Trono, Didier

    2005-02-18

    Genetic information can be altered through the enzymatic modification of nucleotide sequences. This process, known as editing, was originally identified in the mitochondrial RNA of trypanosomes and later found to condition events as diverse as neurotransmission and lipid metabolism in mammals. Recent evidence reveals that editing enzymes may fulfill one of their most essential roles in the defense against infectious agents: first, as the mediators of antibody diversification, a step crucial for building adaptive immunity, and second, as potent intracellular poisons for the replication of viruses. Exciting questions are raised, which take us to the depth of the intimate relations between vertebrates and the microbial underworld.

  18. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Artur Summerfield

    2009-11-01

    Full Text Available Dendritic cells (DC are major players in both innate and adaptive immune responses against influenza virus. These immune responses, as well as the important interface between the innate and adaptive systems, are orchestrated by specialized subsets of DC, including conventional steady-state DC, migratory DC and plasmacytoid DC. The characteristics and efficacy of the responses are dependent on the relative activity of these DC subsets, rendering DC crucial for the development of both naïve and memory immune responses. However, due to their critical role, DC also contribute to the immunopathological processes observed during acute influenza, such as that caused by the pathogenic H5N1 viruses. Therein, the role of different DC subsets in the induction of interferon type I, proinflammatory cytokine and chemokine responses is important for the outcome of interaction between the virus and host immune defences. The present review will present current knowledge on this area, relating to the importance of DC activity for the induction of efficacious humoral and cell-mediated immune responses. This will include the main viral elements associated with the triggering or inhibition of DC activation. Finally, the current knowledge on understanding how differences in various vaccines influence the manner of immune defence induction will be presented.

  19. Recognition of extracellular bacteria by NLRs and its role in the development of adaptive immunity

    Directory of Open Access Journals (Sweden)

    Jonathan eFerrand

    2013-10-01

    Full Text Available Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs, whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.

  20. Oscillations in the immune system.

    Science.gov (United States)

    Stark, Jaroslav; Chan, Cliburn; George, Andrew J T

    2007-04-01

    Oscillations are surprisingly common in the immune system, both in its healthy state and in disease. The most famous example is that of periodic fevers caused by the malaria parasite. A number of hereditary disorders, which also cause periodic fevers, have also been known for a long time. Various reports of oscillations in cytokine concentrations following antigen challenge have been published over at least the past three decades. Oscillations can also occur at the intracellular level. Calcium oscillations following T-cell activation are familiar to all immunologists, and metabolic and reactive oxygen species oscillations in neutrophils have been well documented. More recently, oscillations in nuclear factor kappaB activity following stimulation by tumor necrosis factor alpha have received considerable publicity. However, despite all of these examples, oscillations in the immune system still tend to be considered mainly as pathological aberrations, and their causes and significance remained largely unknown. This is partly because of a lack of awareness within the immunological community of the appropriate theoretical frameworks for describing and analyzing such behavior. We provide an introduction to these frameworks and give a survey of the currently known oscillations that occur within the immune system. PMID:17367345

  1. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  2. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  3. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  4. Multiple Limit Cycles in an Immune System

    Institute of Scientific and Technical Information of China (English)

    Xun-cheng Huang; Le-min Zhu; Minaya Villasana

    2008-01-01

    The nonlinear oscillatory phenomenon has been observed in the system of immune response, which corresponds to the limit cycles in the mathematical models. We prove that the system simulating an immune response studied by Huang has at least three limit cycles in the system. The conditions for the multiple limit cycles are useful in analyzing the nonlinear oscillation in immune response.

  5. Immune System Toxicity and Immunotoxicity Hazard Identification

    Science.gov (United States)

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  6. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    Science.gov (United States)

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  7. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  8. The microbiota in adaptive immune homeostasis and disease.

    Science.gov (United States)

    Honda, Kenya; Littman, Dan R

    2016-07-01

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy. PMID:27383982

  9. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    OpenAIRE

    Charpentier, Emmanuelle; Richter, Hagen; van der Oost, John; White, Malcolm F

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-as...

  10. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia.

    Science.gov (United States)

    Hsu, Peter; Nanan, Ralph Kay Heinrich

    2014-01-01

    Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface - the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3(+) regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4(+)HLA-G(+) suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy. PMID:24734032

  11. Research on Key Technologies of Self-adaptive Immune Monitoring of Bio-inspired Manufacturing System%类生物化制造系统自适应免疫监控关键技术研究

    Institute of Scientific and Technical Information of China (English)

    唐敦兵; 郑堃; 顾文斌; 汤定山

    2011-01-01

    利用生物免疫机制及人工免疫系统的相关算法,结合类生物化制造系统模型,建立了一套制造系统免疫监控系统,并运用层次分析模型给出了该免疫监控系统健康评估的策略.对模拟实验的结果进行了分析,结果表明,所设计的免疫监控系统对制造系统的内外环境干扰具有良好的自适应性,对系统的健康状态评估也与系统的实际状况相符,从而证明了该免疫监控系统的有效性.%Combining the control model of bio-inspired manufacturing system (BIMS) with the algorithms of artificial immune system (ALS), this paper established an immune monitoring system (IMS). Besides, this paper proposed the strategies of health assessment of manufacturing system with the help of analytic hierarchy process(AHP) model. Finally,a simulation experiment was carried out based on the IMS proposed herein, and the results show that the system has a good adaptability for the changes of internal and external environments of manufacturing system. It can also give a reasonable evaluation of the manufacturing system which can match the actual state very well.Therefore, the proposed IMS has good effectiveness and reliability.

  12. Shades of grey-the blurring view of innate and adaptive immunity

    OpenAIRE

    Lanier, LL

    2013-01-01

    This special issue of Nature Reviews Immunology focuses on the types of lymphocyte that blur the traditional boundaries between the innate and adaptive immune systems. The development and functional properties of 'innate-like' B and T cells and natural killer (NK) cells are reviewed and the emerging understanding of newly discovered innate lymphoid cells (ILCs) is considered. © 2013 Macmillan Publishers Limited. All rights reserved.

  13. Complement system part II: role in immunity

    Directory of Open Access Journals (Sweden)

    Nicolas S. Merle

    2015-05-01

    Full Text Available The complement system has been considered for a long time as a simple lytic system, aimed to kill bacteria infecting the host organism. Nowadays this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing a direct killing by C5b-9 membrane attack complex by triggering inflammatory responses with the anaphylatoxins C3a and C5a and helps the mounting of an adaptive immune response, involving antigen presenting cells, T- and B- lymphocytes. But it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Also examples will be discussed, where inadequate complement activation becomes a disease cause, including atypical hemolytic uremic syndrome (aHUS, C3 glomerulopathies (C3G and systemic lupus erythematosus (SLE. Age related macular degeneration (AMD and cancer will be described as examples showing that complement contributes to a large variety of diseases, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.

  14. Integrating Innate and Adaptive Immunity for Intrusion Detection

    CERN Document Server

    Tedesco, Gianni; Aickelin, Uwe

    2010-01-01

    Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

  15. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    Science.gov (United States)

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  16. Mast cells in allergy and autoimmunity: implications for adaptive immunity.

    Science.gov (United States)

    Gregory, Gregory D; Brown, Melissa A

    2006-01-01

    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  17. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    in the planktonic state. Accordingly, much less is known about the immune responses to the presence of biofilm-based infections (which is probably also due to the relatively short period of time in which the immune response to biofilms has been studied). Nevertheless, more recent in vivo and in vitro studies have...... revealed both innate as well as adaptive immune responses to biofilms. On the other hand, measures launched by biofilm bacteria to achieve protection against the various immune responses have also been demonstrated. Whether particular immune responses to biofilm infections exist remains to be firmly...... established. However, because biofilm infections are often persistent (or chronic), an odd situation appears with the simultaneous activation of both arms of the host immune response, neither of which can eliminate the biofilm pathogen, but instead, in synergy, causes collateral tissue damage. Although...

  18. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  19. Immune system modifications and feto-maternal immune tolerance

    Institute of Scientific and Technical Information of China (English)

    Song Dan; Shi Yichao

    2014-01-01

    Objective This review aimed at understanding pregnancy-induced changes in the maternal immune response and mechanisms for the establishment of feto-maternal tolerance.Data sources Articles cited in this review were obtained from PubMed in English from 2000 to 2014,and the search string included keywords such as feto-maternal tolerance,dendritic cells,macrophage,T regulatory cells,natural killer cells,cytokines and hormone.Study selection Articles regarding altered maternal immune response,including the proliferation and differentiation of the altered cells,and the production of cytokines and regulation of hormones in the feto-maternal interface were retrieved,reviewed and analyzed.Results The changes in immune cells and cytokines in the local uterine microenvironment and peripheral blood are correlated with the establishment of feto-maternal tolerance.The endocrine system regulates the maternal immune system,promoting modifications during pregnancy.In these regulatory networks,every factor is indispensible for others.Conclusions The integration and balance of these immune factors during pregnancy give rise to an environment that enables the fetus to escape rejection by the maternal immune system.This progress is complicated,and needs more comprehensive exploration and explanation.

  20. Co-ordinating innate and adaptive immunity to viral infection: mobility is the key

    DEFF Research Database (Denmark)

    Wern, Jeanette Erbo; Thomsen, Allan Randrup

    2009-01-01

    The host counters a viral infection through a complex response made up of components belonging to both the innate and the adaptive immune system. In this report, we review the mechanisms underlying this response, how it is induced and how it is co-ordinated. As cell-cell communication represents......-ordinated recruitment of different cell types intended to work in concert, cellular co-operation is optimized particularly under conditions that may involve rare cells. Consequently, a major focus is placed on presenting an overview of the co-operative events and the associated cell migration, which is essential...... in mounting an efficient host response and co-ordinating innate and adaptive immunity during a primary viral infection....

  1. Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity.

    Science.gov (United States)

    Auvynet, Constance; Rosenstein, Yvonne

    2009-11-01

    The term 'antimicrobial peptides' refers to a large number of peptides first characterized on the basis of their antibiotic and antifungal activities. In addition to their role as endogenous antibiotics, antimicrobial peptides, also called host defense peptides, participate in multiple aspects of immunity (inflammation, wound repair, and regulation of the adaptive immune system) as well as in maintaining homeostasis. The possibility of utilizing these multifunctional molecules to effectively combat the ever-growing group of antibiotic-resistant pathogens has intensified research aimed at improving their antibiotic activity and therapeutic potential, without the burden of an exacerbated inflammatory response, but conserving their immunomodulatory potential. In this minireview, we focus on the contribution of small cationic antimicrobial peptides - particularly human cathelicidins and defensins - to the immune response and disease, highlighting recent advances in our understanding of the roles of these multifunctional molecules.

  2. The aging of the immune system

    OpenAIRE

    Grubeck-Loebenstein, B.; Weinberger, B.; Weiskopf, D.

    2009-01-01

    An age-related decline in immune functions, referred to as immunosenescence, is partially responsible for the increased prevalence and severity of infectious diseases, and the low efficacy of vaccination in elderly persons. Immunosenescence is characterized by a decrease in cell-mediated immune function as well as by reduced humoral immune responses. Age-dependent defects in T- and B-cell function coexist with age-related changes within the innate immune system. In this review, we discuss the...

  3. Immune System Inspired Strategies for Distributed Systems

    CERN Document Server

    Banerjee, Soumya

    2010-01-01

    Many components of the IS are constructed as modular units which do not need to communicate with each other such that the number of components increases but the size remains constant. However, a sub-modular IS architecture in which lymph node number and size both increase sublinearly with body size is shown to efficiently balance the requirements of communication and migration, consistent with experimental data. We hypothesize that the IS architecture optimizes the tradeoff between local search for pathogens and global response using antibodies. Similar to natural immune systems, physical space and resource are also important constraints on Artificial Immune Systems (AIS), especially distributed systems applications used to connect low-powered sensors using short-range wireless communication. AIS problems like distributed robot control will also require a sub-modular architecture to efficiently balance the tradeoff between local search for a solution and global response or proliferation of the solution betwee...

  4. Diversity of CRISPR-Cas immune systems and molecular machines

    OpenAIRE

    Barrangou, Rodolphe

    2015-01-01

    Bacterial adaptive immunity hinges on CRISPR-Cas systems that provide DNA-encoded, RNA-mediated targeting of exogenous nucleic acids. A plethora of CRISPR molecular machines occur broadly in prokaryotic genomes, with a diversity of Cas nucleases that can be repurposed for various applications.

  5. Inside the mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Jerry R McGhee

    Full Text Available An intricate network of innate and immune cells and their derived mediators function in unison to protect us from toxic elements and infectious microbial diseases that are encountered in our environment. This vast network operates efficiently by use of a single cell epithelium in, for example, the gastrointestinal (GI and upper respiratory (UR tracts, fortified by adjoining cells and lymphoid tissues that protect its integrity. Perturbations certainly occur, sometimes resulting in inflammatory diseases or infections that can be debilitating and life threatening. For example, allergies in the eyes, skin, nose, and the UR or digestive tracts are common. Likewise, genetic background and environmental microbial encounters can lead to inflammatory bowel diseases (IBDs. This mucosal immune system (MIS in both health and disease is currently under intense investigation worldwide by scientists with diverse expertise and interests. Despite this activity, there are numerous questions remaining that will require detailed answers in order to use the MIS to our advantage. In this issue of PLOS Biology, a research article describes a multi-scale in vivo systems approach to determine precisely how the gut epithelium responds to an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α, given by the intravenous route. This article reveals a previously unknown pathway in which several cell types and their secreted mediators work in unison to prevent epithelial cell death in the mouse small intestine. The results of this interesting study illustrate how in vivo systems biology approaches can be used to unravel the complex mechanisms used to protect the host from its environment.

  6. Learning and Memory... and the Immune System

    Science.gov (United States)

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  7. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  8. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    Science.gov (United States)

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644975

  9. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells.

    Science.gov (United States)

    Tobar, Jaime A; Carreño, Leandro J; Bueno, Susan M; González, Pablo A; Mora, Jorge E; Quezada, Sergio A; Kalergis, Alexis M

    2006-11-01

    Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

  10. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  11. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    Science.gov (United States)

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  12. Complex Adaptive Immunity to enteric fevers in humans: Lessons learned and the path forward

    Directory of Open Access Journals (Sweden)

    Marcelo B. Sztein

    2014-10-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi, the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production and CD8+ cytotoxic T cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host’s gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B and T cells to the gut and other tissues.

  13. Adaptive protection algorithm and system

    Science.gov (United States)

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  14. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    OpenAIRE

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  15. Different arms of the adaptive immune system induced by a combination vaccine work in concert to provide enhanced clearance of influenza.

    Science.gov (United States)

    Cobbin, Joanna C A; Zeng, Weiguang; Jackson, David C; Brown, Lorena E

    2014-01-01

    Current split influenza virus vaccines that induce strain-specific neutralising antibodies provide some degree of protection against influenza infection but there is a clear need to improve their effectiveness. The constant antigenic drift of influenza viruses means that vaccines are often not an exact match to the circulating strain and so levels of relevant antibodies may not be sufficiently high to afford protection. In the situation where the emergent influenza virus is completely novel, as is the case with pandemic strains, existing vaccines may provide no benefit. In this study we tested the concept of a combination vaccine consisting of sub-optimal doses of split influenza virus vaccine mixed with a cross-protective T-cell inducing lipopeptide containing the TLR2 ligand Pam2Cys. Mice immunised with combination vaccines showed superior levels of lung viral clearance after challenge compared to either split virus or lipopeptide alone, mediated through activation of enhanced humoral and/or additional cellular responses. The mechanism of action of these vaccines was dependent on the route of administration, with intranasal administration being superior to subcutaneous and intramuscular routes, potentially through the induction of memory CD8+ T cells in the lungs. This immunisation strategy not only provides a mechanism for minimising the dose of split virus antigen but also, through the induction of cross-protective CD8+ T cells, proves a breadth of immunity to provide potential benefit upon encounter with serologically diverse influenza isolates.

  16. Different arms of the adaptive immune system induced by a combination vaccine work in concert to provide enhanced clearance of influenza.

    Directory of Open Access Journals (Sweden)

    Joanna C A Cobbin

    Full Text Available Current split influenza virus vaccines that induce strain-specific neutralising antibodies provide some degree of protection against influenza infection but there is a clear need to improve their effectiveness. The constant antigenic drift of influenza viruses means that vaccines are often not an exact match to the circulating strain and so levels of relevant antibodies may not be sufficiently high to afford protection. In the situation where the emergent influenza virus is completely novel, as is the case with pandemic strains, existing vaccines may provide no benefit. In this study we tested the concept of a combination vaccine consisting of sub-optimal doses of split influenza virus vaccine mixed with a cross-protective T-cell inducing lipopeptide containing the TLR2 ligand Pam2Cys. Mice immunised with combination vaccines showed superior levels of lung viral clearance after challenge compared to either split virus or lipopeptide alone, mediated through activation of enhanced humoral and/or additional cellular responses. The mechanism of action of these vaccines was dependent on the route of administration, with intranasal administration being superior to subcutaneous and intramuscular routes, potentially through the induction of memory CD8+ T cells in the lungs. This immunisation strategy not only provides a mechanism for minimising the dose of split virus antigen but also, through the induction of cross-protective CD8+ T cells, proves a breadth of immunity to provide potential benefit upon encounter with serologically diverse influenza isolates.

  17. Nutritional support for the infant's immune system

    NARCIS (Netherlands)

    Niers, L.; Stasse-Wolthuis, M.; Rombouts, F.M.; Rijkers, G.T.

    2007-01-01

    Newborn babies possess a functional but immature immune system as a defense against a world teeming with microorganisms. Breast milk contains a number of biological, active compounds that support the infant's immune system. These include secretory immunoglobulin A (IgA), which confers specific prote

  18. The Mucosal Immune System and Its Regulation by Autophagy.

    Science.gov (United States)

    Kabat, Agnieszka M; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a "self-eating" survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders. PMID:27446072

  19. Adaptive security systems -- Combining expert systems with adaptive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Loveland, R.; Anderson, K. [and others

    1997-09-01

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting.

  20. Adaptive security systems -- Combining expert systems with adaptive technologies

    International Nuclear Information System (INIS)

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting

  1. Feeding Our Immune System: Impact on Metabolism

    Directory of Open Access Journals (Sweden)

    Isabelle Wolowczuk

    2008-01-01

    Full Text Available Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy.

  2. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  3. Adaptive ophthalmologic system

    Science.gov (United States)

    Olivier, Scot S.; Thompson, Charles A.; Bauman, Brian J.; Jones, Steve M.; Gavel, Don T.; Awwal, Abdul A.; Eisenbies, Stephen K.; Haney, Steven J.

    2007-03-27

    A system for improving vision that can diagnose monochromatic aberrations within a subject's eyes, apply the wavefront correction, and then enable the patient to view the results of the correction. The system utilizes a laser for producing a beam of light; a corrector; a wavefront sensor; a testing unit; an optic device for directing the beam of light to the corrector, to the retina, from the retina to the wavefront sensor, and to the testing unit; and a computer operatively connected to the wavefront sensor and the corrector.

  4. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    Science.gov (United States)

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.

  5. GALECTIN-1 AND ITS ROLE IN DEVELOPMENT OF INNATE AND ADAPTIVE IMMUNITY

    Directory of Open Access Journals (Sweden)

    V. D. Yakushina

    2012-01-01

    Full Text Available Abstract. Galectins comprise a family of β-galactoside-binding animal proteins, which are defined bycommon homologies of their carbohydrate-recognizing domaine (affinity for poly-N-acetyllactosamine. These lectins bind to cell surface glycans and extracellular matrix, thus influencing various cellular events, including cell cycle, adhesion, migration, proliferation and apoptosis. Moreover, galectins are able to exert intracellular effects, and participate, e.g., in signal transduction, by interacting with other nuclear and cytoplasmic proteins. Galectin-1 is considered to play a special role in functional regulation of immune cell activity. Thus protein is a factor of immunocompetent cell cooperation, thus being able to modulate immune reactions. In this respect, galectin-1 is considered as a potential agent or a target for new methods aimed to correct pathological processes associated with imbalance of immune system. This article provides an overview of works devoted to a possible role of galectin-1 in development of typical features of innate and adaptive immunity.

  6. The Immune System of HIV-Exposed Uninfected Infants

    Science.gov (United States)

    Abu-Raya, Bahaa; Kollmann, Tobias R.; Marchant, Arnaud; MacGillivray, Duncan M.

    2016-01-01

    Infants born to human immunodeficiency virus (HIV) infected women are HIV-exposed but the majority remains uninfected [i.e., HIV-exposed uninfected (HEU)]. HEU infants suffer greater morbidity and mortality from infections compared to HIV-unexposed (HU) peers. The reason(s) for these worse outcomes are uncertain, but could be related to an altered immune system state. This review comprehensively summarizes the current literature investigating the adaptive and innate immune system of HEU infants. HEU infants have altered cell-mediated immunity, including impaired T-cell maturation with documented hypo- as well as hyper-responsiveness to T-cell activation. And although prevaccination vaccine-specific antibody levels are often lower in HEU than HU, most HEU infants mount adequate humoral immune response following primary vaccination with diphtheria toxoid, haemophilus influenzae type b, whole cell pertussis, measles, hepatitis B, tetanus toxoid, and pneumococcal conjugate vaccines. However, HEU infants are often found to have lower absolute neutrophil counts as compared to HU infants. On the other hand, an increase of innate immune cytokine production and expression of co-stimulatory markers has been noted in HEU infants, but this increase appears to be restricted to the first few weeks of life. The immune system of HEU children beyond infancy remains largely unexplored. PMID:27733852

  7. Security framework for networked storage system based on artificial immune system

    Science.gov (United States)

    Huang, Jianzhong; Xie, Changsheng; Zhang, Chengfeng; Zhan, Ling

    2007-11-01

    This paper proposed a theoretical framework for the networked storage system addressing the storage security. The immune system is an adaptive learning system, which can recognize, classify and eliminate 'non-self' such as foreign pathogens. Thus, we introduced the artificial immune technique to the storage security research, and proposed a full theoretical framework for storage security system. Under this framework, it is possible to carry out the quantitative evaluation for the storage security system using modeling language of artificial immune system (AIS), and the evaluation can offer security consideration for the deployment of networked storage system. Meanwhile, it is potential to obtain the active defense technique suitable for networked storage system via exploring the principle of AIS and achieve a highly secure storage system with immune characteristic.

  8. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    Science.gov (United States)

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  9. STSV2 as a Model Crenarchaeal Virus for Studying Virus-Host Interactions and CRISPR-Cas Adaptive Immunity

    DEFF Research Database (Denmark)

    León Sobrino, Carlos

    , the archaea harbour their own viruses, which constitute an extraordinarily diverse group with exotic morphologies and unique features. Prokaryotes possess a variety of defence mechanisms. The CRISPR-Cas adaptive immune system is of great importance for archaea –84% of them possess it, compared to 45...... generate immune memory by inserting in its own genome short invader-derived DNA fragments forming a database –the CRISPR locus. Little was known about this system until recent years, and the generation of immune memory has been the most elusive step. In this work, the interactions of the spindle......-shaped monocaudavirus STSV2 and its host Sulfolobus islandicus REY15A were studied. This interaction produced, after several days, de novo CRISPR adaptation – that is, without any previous memory that can act as a trigger. We employed transcriptome sequencing to characterise the long-term progression...

  10. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    Science.gov (United States)

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-01-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268

  11. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli

    OpenAIRE

    Sapranauskas, Rimantas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-01-01

    The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elem...

  12. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  13. Adaptive, dynamic, and resilient systems

    CERN Document Server

    Suri, Niranjan

    2015-01-01

    As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r

  14. Innate Immune System and Preeclampsia

    OpenAIRE

    Perez-Sepulveda, Alejandra; Torres, Maria Jose; Khoury, Maroun; Illanes, Sebastian E

    2014-01-01

    Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. Preeclampsia (PE) has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1/Th2/Th17 and regulatory T-cells paradigm and where dendritic cells co...

  15. Immune System and Its Link to Rheumatic Diseases

    Science.gov (United States)

    ... Disease The Immune System & Its Link to Rheumatic Disease The Immune System and Its Link to Rheumatic Disease Fast ... cells. This leads to illnesses called autoimmune (self-immune) diseases such as rheumatoid arthritis (inflammation of the joints), ...

  16. Obesity leptin and the immune system

    Directory of Open Access Journals (Sweden)

    Padiotis. K.

    2011-04-01

    Full Text Available The increasing prevalence of obesity in developed and developing countries raises a major health concern due to the fact that obesity and nutrition are associated with impaired immune responses. Overconsumption of nutrients alters several functions of the immune defence mechanisms leading to severe infection and chronic diseases. The hormone leptin, known to regulate energy balance has been proved to activate several components of signalling pathways having thus immunoregulatory activity. The aim of this paper is to present the connections between obesity, immune system mechanisms and the role of the adipocyte hormone leptin

  17. The immune system in space and microgravity

    Science.gov (United States)

    Sonnenfeld, Gerald

    2002-01-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  18. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  19. Immune regulation in gut and cord : opportunities for directing the immune system

    NARCIS (Netherlands)

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the

  20. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    Science.gov (United States)

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  1. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    Science.gov (United States)

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  2. Immunogenomics: towards a digital immune system.

    Science.gov (United States)

    Beck, Stephan

    2003-01-01

    One of the major differences that set apart vertebrates from non-vertebrates is the presence of a complex immune system. Over the past 400-500 million years, many novel immune genes and gene families have emerged and their products form sophisticated pathways providing protection against most pathogens. The Human Genome Project has laid the foundation to study these genes and pathways in unprecedented detail. Members of the immunoglobulin (Ig) superfamily alone were found to make up over 2% of human genes possibly constituting the largest gene family in the human genome. A subgroup of these human immune genes, those (among others) involved in antigen processing and presentation, are encoded in a single region, the major histocompatibility complex (MHC) on the short arm of chromosome 6. My laboratory has a long-standing interest in understanding the molecular organization and evolution of the MHC. To this end, we have been generating a range of MHC genomic resources that we make available in the form of maps and databases. Much of the complex data of the immune system can be reduced to binary (on/off) information that can easily be made available and analysed by bioinformatics approaches, thus contributing to better understand immune function via a 'digital immune system'. PMID:14712940

  3. SANA - Security Analysis in Internet Traffic through Artificial Immune Systems

    CERN Document Server

    Hilker, Michael

    2008-01-01

    The Attacks done by Viruses, Worms, Hackers, etc. are a Network Security-Problem in many Organisations. Current Intrusion Detection Systems have significant Disadvantages, e.g. the need of plenty of Computational Power or the Local Installation. Therefore, we introduce a novel Framework for Network Security which is called SANA. SANA contains an artificial Immune System with artificial Cells which perform certain Tasks in order to to support existing systems to better secure the Network against Intrusions. The Advantages of SANA are that it is efficient, adaptive, autonomous, and massively-distributed. In this Article, we describe the Architecture of the artificial Immune System and the Functionality of the Components. We explain briefly the Implementation and discuss Results.

  4. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  5. The Immune System: the ultimate fractionated cyber-physical system

    OpenAIRE

    Carolyn Talcott

    2013-01-01

    In this little vision paper we analyze the human immune system from a computer science point of view with the aim of understanding the architecture and features that allow robust, effective behavior to emerge from local sensing and actions. We then recall the notion of fractionated cyber-physical systems, and compare and contrast this to the immune system. We conclude with some challenges.

  6. Standard of hygiene and immune adaptation in newborn infants

    NARCIS (Netherlands)

    Kallionpaa, Henna; Laajala, Essi; Oling, Viveka; Harkonen, Taina; Tillmann, Vallo; Dorshakova, Natalya V.; Ilonen, Jorma; Landesmaki, Harri; Knip, Mikael; Lahesmaa, Riitta; Koski, Katriina; Koski, Matti; Ryhanen, Samppa; Siljander, Heli; Hamalainen, Anu-Maaria; Ormisson, Anne; Peet, Aleksandr; Ulich, Valentina; Kuzmicheva, Elena; Mokurov, Sergei; Markova, Svettana; Pylova, Svetlana; Isakova, Marina; Shakurova, Elena; Petrov, Vladimir; Karapetyan, Tatyana; Varlamova, Tatyana; Ilonen, Jorma; Kiviniemi, Minna; Alnek, Kristi; Janson, Helis; Uibo, Raivo; Salum, Tiit; von Mutius, Erika; Weber, Juliane; Ahlfors, Helena; Moulder, Robert; Nieminen, Janne; Ruohtula, Terhi; Vaarala, Outi; Honkanen, Hanna; Hyoty, Heikki; Kondrashova, Anita; Oikarinen, Sami; Harmsen, Hermie J. M.; De Goffau, Marcus C.; Welling, Gjalt; Alahuhta, Kirsi; Korhonen, Tuuli; Virtanen, Suvi M.

    2014-01-01

    The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood

  7. Reciprocity in microbiome and immune system interactions and its implications in disease and health.

    Science.gov (United States)

    Nikoopour, Enayat; Singh, Bhagirath

    2014-01-01

    Adaptation of the whole microbial normal flora residing in a host to its natural habitat over an evolutionary peroid has resulted in peaceful coexistence with mutual benefits for both microbiota and host in steady state. This symbiotic relationship between host and microbiota has a significant impact on shaping the immune response in the host to achieve an immune tolerance to microbiota but retaining the ability to respond to invading pathogens. Perturbation of this balance by manipulation of microbial communities in the host can lead to immune dysregulation and susceptibility to diseases. By studying the host in the absence of microbiota or with alteration of microbiota the complexity of microbial impact on the immune system can be resolved. Conversely, the study of microbiota in the absence of immune system factors can show how the immune system contributes to preservation of the host-microbiota balance. The absence of molecules involved in innate or adaptive immunity in knockout models can perturb the balance between host and microbiota further adding to more immune dysregulation. A better understanding of Microbiome-immune system interaction provides a new opportunity to identify biomarkers and drug targets. This will allow the development of new therapeutic agents for modulating the immune system to improve health with little or no toxicity. The study of interplay between host and microbiota has a promising role in the design of therapeutic interventions for immunopathological diseases arising from imbalanced host and microbiota interactions.

  8. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  9. Artificial immune system applications in computer security

    CERN Document Server

    Tan, Ying

    2016-01-01

    This book provides state-of-the-art information on the use, design, and development of the Artificial Immune System (AIS) and AIS-based solutions to computer security issues. Artificial Immune System: Applications in Computer Security focuses on the technologies and applications of AIS in malware detection proposed in recent years by the Computational Intelligence Laboratory of Peking University (CIL@PKU). It offers a theoretical perspective as well as practical solutions for readers interested in AIS, machine learning, pattern recognition and computer security. The book begins by introducing the basic concepts, typical algorithms, important features, and some applications of AIS. The second chapter introduces malware and its detection methods, especially for immune-based malware detection approaches. Successive chapters present a variety of advanced detection approaches for malware, including Virus Detection System, K-Nearest Neighbour (KNN), RBF networ s, and Support Vector Machines (SVM), Danger theory, ...

  10. Oxazolone-induced contact hypersensitivity reduces lymphatic drainage but enhances the induction of adaptive immunity.

    Directory of Open Access Journals (Sweden)

    David Aebischer

    Full Text Available Contact hypersensitivity (CHS induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC migration to draining lymph nodes (dLNs. On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40 and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function.

  11. Chronic Schistosome Infection Leads to Modulation of Granuloma Formation and Systemic Immune Suppression

    Directory of Open Access Journals (Sweden)

    Steven K. Lundy

    2013-02-01

    Full Text Available Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.

  12. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    Science.gov (United States)

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  13. System design for distributed adaptive observation systems

    NARCIS (Netherlands)

    Ditzel, M.; Kester, L.J.H.M.; Broek, S.P. van den

    2011-01-01

    Currently, there is no clear-cut approach or design methodology available for designing distributed adaptive observation systems, partly due to the necessity to combine elements and approaches from several technological and scientific communities. Recently, an effort was made addressing this issue i

  14. The ERIS adaptive optics system

    Science.gov (United States)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  15. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    Science.gov (United States)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  16. Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.

    Science.gov (United States)

    Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L

    2016-07-01

    Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. PMID:27143751

  17. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2008-03-01

    Full Text Available Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history "balance" between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations.

  18. Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Science.gov (United States)

    Lazzaro, Brian P.; Flores, Heather A.; Lorigan, James G.; Yourth, Christopher P.

    2008-01-01

    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations. PMID:18369474

  19. Towards Adaptive Spoken Dialog Systems

    CERN Document Server

    Schmitt, Alexander

    2013-01-01

    In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and  accurate use.  Beginning with the foundations of machine learning and pattern recognition, this monograph examines how frequently users show negative emotions in spoken dialog systems and develop novel approaches to speech-based emotion recognition using hybrid approach to model emotions. The authors make use of statistical methods based on acoustic, linguistic and contextual features to examine the relationship between the interaction flow and the occurrence of emotions using non-acted  recordings several thousand real users from commercial and non-commercial SDS. Additionally, the authors present novel statistical methods that spot problems within a dialog based on interaction patterns. The approaches enable future SDS to offer m...

  20. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    Science.gov (United States)

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  1. Innate lymphoid cell function in the context of adaptive immunity.

    Science.gov (United States)

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  2. Neuroendocrine–Immune Systems Response to Environmental Stressors in the Cephalopod Octopus vulgaris

    Science.gov (United States)

    Di Cosmo, Anna; Polese, Gianluca

    2016-01-01

    Under a continuous changing environment, animals are challenged with stresses and stimuli which demanding adaptation at behavioral and physiological levels. The adaptation strategies are finely regulated by animal nervous, endocrine, and immune systems. Although it's been established by now the usage of integrative approach to the study the endocrine and nervous systems (neuroendocrine), yet our understanding of how they cooperate with the immune system remains far from complete. The possible role that immune system plays as a component of the network has only been recognized recently. Octopus vulgaris is an important member of cephalopods and is considered as a model species, with considerable information about the neuroendocrine and immune systems. In the current review, we anticipate to shed light on the complexity and cross talk among the three systems and how they cooperate in setting physiological response to stresses-stimuli in O. vulgaris as a target species and primary example. PMID:27733834

  3. The immune system of Cyprinid fish

    NARCIS (Netherlands)

    Rijkers, G.T.

    1980-01-01

    This study deals with several aspects of the immune system of cyprinid fish.Some observations on the development of cellular and humoral responsiveness in rosy barb (Barbus conchonius) are described in appendix I. A humoral anti-sheep red blood cell (SRBC) response was demonstrated in 3-4 months old

  4. Adaptive immune-genetic algorithm for global optimization to multivariable function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An adaptive immune-genetic algorithm(AIGA)is proposed to avoid premature convergence and guarantee the diversity of the population.Rapid immune response (secondary response),adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability,greatly increase the converging speed,and decrease locating the local maxima due to the premature convergence.The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly,guarantees the diversity,stability and good searching ability.

  5. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    Science.gov (United States)

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  6. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity.

    Science.gov (United States)

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  7. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  8. Query Adaptive Image Retrieval System

    Directory of Open Access Journals (Sweden)

    Amruta Dubewar

    2014-03-01

    Full Text Available Images play a crucial role in various fields such as art gallery, medical, journalism and entertainment. Increasing use of image acquisition and data storage technologies have enabled the creation of large database. So, it is necessary to develop appropriate information management system to efficiently manage these collections and needed a system to retrieve required images from these collections. This paper proposed query adaptive image retrieval system (QAIRS to retrieve images similar to the query image specified by user from database. The goal of this system is to support image retrieval based on content properties such as colour and texture, usually encoded into feature vectors. In this system, colour feature extracted by various techniques such as colour moment, colour histogram and autocorrelogram and texture feature extracted by using gabor wavelet. Hashing technique is used to embed high dimensional image features into hamming space, where search can be performed by hamming distance of compact hash codes. Depending upon minimum hamming distance it returns the similar image to query image.

  9. Influence of phthalates on in vitro innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Juliana Frohnert Hansen

    Full Text Available Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.

  10. Influence of phthalates on in vitro innate and adaptive immune responses.

    Science.gov (United States)

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.

  11. Inflammation and Immune System Alterations in Frailty

    OpenAIRE

    Yao, Xu; Li, Huifen; Leng, Sean X.

    2011-01-01

    Frailty is an important geriatric syndrome characterized by multi-system dysregulation. Substantial evidence suggests heightened inflammatory state and significant immune system alterations in frailty. A heightened inflammatory state is marked by increases in levels of inflammatory molecules (IL-6 and CRP) and counts of white blood cell and its subpopulations, which may play an important role in the pathogenesis of frailty, directly or through its detrimental influence to other physiologic sy...

  12. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    OpenAIRE

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activ...

  13. Role of SHIP-1 in the adaptive immune responses to aeroallergen in the airway.

    Directory of Open Access Journals (Sweden)

    Sukit Roongapinun

    Full Text Available BACKGROUND: Th2-dominated inflammatory response in the airway is an integral component in the pathogenesis of allergic asthma. Accumulating evidence supports the notion that the phosphoinositide 3-kinase (PI3K pathway is involved in the process. We previously reported that SHIP-1, a negative regulator of the PI3K pathway, is essential in maintaining lung immunohomeostasis, potentially through regulation of innate immune cells. However, the function of SHIP-1 in adaptive immune response in the lung has not been defined. We sought to determine the role of SHIP-1 in adaptive immunity in response to aeroallergen stimulation in the airway. METHODOLOGY/PRINCIPAL FINDINGS: SHIP-1 knockout (SHIP-1-/- mice on BALB/c background were immunized with ovalbumin (OVA plus aluminum hydroxide, a strong Th2-inducing immunization, and challenged with OVA. Airway and lung inflammation, immunoglobulin response, Th2 cytokine production and lymphocyte response were analyzed and compared with wild type mice. Even though there was mild spontaneous inflammation in the lung at baseline, SHIP-1-/- mice showed altered responses, including less cell infiltration around the airways but more in the parenchyma, less mucus production, decreased Th2 cytokine production, and diminished serum OVA-specific IgE, IgG1, but not IgG2a. Naïve and OVA sensitized SHIP-1-/- T cells produced a lower amount of IL-4. In vitro differentiated SHIP-1-/- Th2 cells produced less IL-4 compared to wild type Th2 cells upon T cell receptor stimulation. CONCLUSIONS/SIGNIFICANCE: These findings indicate that, in contrast to its role as a negative regulator in the innate immune cells, SHIP-1 acts as a positive regulator in Th2 cells in the adaptive immune response to aeroallergen. Thus any potential manipulation of SHIP-1 activity should be adjusted according to the specific immune response.

  14. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis.

    Science.gov (United States)

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G; Muenzer, Jared T; Ferguson, Thomas A; Chang, Katherine; Osborne, Dale F; Clark, Andrew T; Coopersmith, Craig M; McDunn, Jonathan E; Hotchkiss, Richard S

    2010-02-01

    IL-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2 x 2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-gamma, as well as the percentage of NK cells that produced IFN-gamma. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  15. Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System

    Institute of Scientific and Technical Information of China (English)

    Akira Inoue; Ming-Cong Deng

    2006-01-01

    This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.

  16. The Immune System: the ultimate fractionated cyber-physical system

    Directory of Open Access Journals (Sweden)

    Carolyn Talcott

    2013-09-01

    Full Text Available In this little vision paper we analyze the human immune system from a computer science point of view with the aim of understanding the architecture and features that allow robust, effective behavior to emerge from local sensing and actions. We then recall the notion of fractionated cyber-physical systems, and compare and contrast this to the immune system. We conclude with some challenges.

  17. An Immunized Aircraft Maneuver Selection System

    Science.gov (United States)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  18. Immune regulation in gut and cord : opportunities for directing the immune system

    OpenAIRE

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the microbiota has been a challenge for scientist and clinicians for several decades. Especially atopic disorders like asthma and eczema have been subject to prophylactic trials with probiotics, with ...

  19. [Immunogerontology--aging of the immune system and its cause].

    Science.gov (United States)

    Ptak, W; Szczepanik, M

    1998-01-01

    Ageing is characterized by declining ability of the individual to adapt to environmental stress. By most parameters tested either in the laboratory or in vivo, immune function is decreased in elderly compared with young individuals. First age-associated changes in the immune system appear at the time of sexual maturity and result in the thymus atrophy. However, more drastic decrease of circulating T lymphocytes is observed in people over 70. Moreover, T cells respond weaker to mitogens, produce lower level of cytokines and cytokine receptors e.g. IL-2, IL-2R. Observed decrease of CD8+ T cells (T cytotoxic & T suppressor cells) results in an increase of CD4/CD8 ratio. Additionally, ageing also affects humoral response what consists in decrease in antibody producing cell number. Moreover, elderly individuals show increased level of serum IgG and IgA with parallel decrease of IgM. Seniors possess increased level of auto-antibodies and auto-anti-idiotopic antibodies. Innate immune responses are less affected with age. Adherence and phagocytosis of polymorphonuclears and macrophages is unchanged or even increased. However, their chemotaxis and synthesis of reactive oxygen metabolites is decreased. Reduced immunological vigor may result in the high incidence of infectious diseases, autoimmune diseases, immune complex diseases, and cancer.

  20. Archaeal CRISPR-based immune systems

    DEFF Research Database (Denmark)

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage...... of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence...... of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  1. Dysregulation of adaptive immune responses in complement C3-deficient patients

    NARCIS (Netherlands)

    Pekkarinen, Pirkka T.; Heikkila, Nelli; Kisand, Kai; Peterson, Paert; Botto, Marina; Daha, Mohamed R.; Drouet, Christian; Isaac, Lourdes; Helminen, Merja; Haahtela, Tari; Meri, Seppo; Jarva, Hanna; Arstila, T. Petteri

    2015-01-01

    In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humora

  2. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Science.gov (United States)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  3. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Directory of Open Access Journals (Sweden)

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  4. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  5. Lipoxin A₄ modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism.

    Science.gov (United States)

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N; Phipps, Richard P

    2014-02-01

    Specialized proresolving mediators are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. Lipoxins and other specialized proresolving mediators have been identified in important immunological tissues including bone marrow, spleen, and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A₄ (LXA₄) and its receptor ALX/FPR2 on human and mouse B cells. LXA₄ decreased IgM and IgG production on activated human B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA₄ also inhibited human memory B-cell antibody production and proliferation, but not naïve B-cell function. Lastly, LXA₄ decreased antigen-specific antibody production in an OVA immunization mouse model. To our knowledge, this is the first description of the actions of lipoxins on human B cells, demonstrating a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B-cell antibody production can be beneficial to threat inflammatory and autoimmune disorders.

  6. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    OpenAIRE

    Cooper, EL; Overstreet, N

    2014-01-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among ...

  7. Molecular evolution of the vertebrate immune system

    OpenAIRE

    Bartl, S; Baltimore, D; Weissman, I L

    1994-01-01

    An understanding of the evolution of vertebrate immunity is slowly emerging from studies of chordates that share distant ancestors with mammals. In higher vertebrates, such as birds and mammals, we know that two receptor systems are operative. B cells use immunoglobulins to bind foreign agents (the functionally defined antigens). T cells use T-cell receptors (TCRs) to respond to antigen in the form of processed peptides bound to cell surface proteins encoded in the major histocompatibility...

  8. Resolvins as Regulators of the Immune System

    OpenAIRE

    Hiroyuki Seki; Takaharu Sasaki; Tomomi Ueda; Makoto Arita

    2010-01-01

    Inflammation is the first response of the immune system to infection or injury, but excessive or inappropriate inflammatory responses contribute to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of ω-3 polyunsaturated fatty acids (i.e., eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) indicate that they have beneficial impact on these diseases, although the mechanisms are poorly understood at the molecular level. In this decade, it has b...

  9. The Immune System in Irritable Bowel Syndrome

    OpenAIRE

    Barbara, Giovanni; Cremon, Cesare; Carini, Giovanni; Bellacosa, Lara; Zecchi, Lisa; De Giorgio, Roberto; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2011-01-01

    The potential relevance of systemic and gastrointestinal immune activation in the pathophysiology and symptom generation in the irritable bowel syndrome (IBS) is supported by a number of observations. Infectious gastroenteritis is the strongest risk factor for the development of IBS and increased rates of IBS-like symptoms have been detected in patients with inflammatory bowel disease in remission or in celiac disease patients on a gluten free diet. The number of T cells and mast cells in the...

  10. ADAPTIVE CAPACITY OF STUDENTS’ CARDIOVASCULAR SYSTEM

    OpenAIRE

    Arabadzhi Liliya Ivanivna

    2012-01-01

    Data about adaptive capacity of cardiovascular system of 106 students were analyzed. Using the method of R.M. Bayevskiy, current adaptive capacity of students’ organisms was estimated. The number of students with stress adaptation mechanisms significantly increased with their age (from 17 to 23 years). In our opinion, this could be explained by negative impact of urbanization, significant learning overload and lack of physical activity among the students. Dependence of the adaptive capacity...

  11. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    Science.gov (United States)

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  12. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    Science.gov (United States)

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo.

  13. Alarmin(g) the innate immune system to invasive fungal infections.

    Science.gov (United States)

    Caffrey, Alayna K; Obar, Joshua J

    2016-08-01

    Fungi encounter numerous stresses in a mammalian host, including the immune system, which they must adapt to in order to grow and cause disease. The host immune system tunes its response to the threat level posed by the invading pathogen. We discuss recent findings on how interleukin (IL)-1 signaling is central to tuning the immune response to the virulence potential of invasive fungi, as well as other pathogens. Moreover, we discuss fungal factors that may drive tissue invasion and destruction that regulate IL-1 cytokine release. Moving forward understanding the mechanisms of fungal adaption to the host, together with understanding how the host innate immune system recognizes invading fungal pathogens will increase our therapeutic options for treatment of invasive fungal infections. PMID:27351354

  14. FEATURES OF LOGISTIC SYSTEM ADAPTIVE MANAGEMENT

    OpenAIRE

    Natalya VOZNENKO; Teodora ROMAN

    2015-01-01

    The study presents literature survey on enterprise logistic system adaptive management place and structure in the general enterprise management system. The theoretical basics of logistic system functioning, levels of its management and its effectiveness had been investigated. The role of adaptive management and its types had been scrutinized. The necessity of creating company’s adaptive regulator such as its economic mechanism had been proved.

  15. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  16. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  17. Exploring the Homeostatic and Sensory Roles of the Immune System

    Science.gov (United States)

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection. PMID:27065209

  18. The dipeptidylpeptidase-IV inhibitors sitagliptin, vildagliptin and saxagliptin do not impair innate and adaptive immune responses.

    Science.gov (United States)

    Anz, D; Kruger, S; Haubner, S; Rapp, M; Bourquin, C; Endres, S

    2014-06-01

    Inhibitors of dipeptidylpeptidase IV (DPP-IV) represent a novel class of frequently used anti-diabetic drugs. In addition to its function in metabolic regulation, DPP-IV also plays a role in the immune system. Whether the DPP-IV inhibitors sitagliptin, vildagliptin or saxagliptin impair immune responses is, however, currently unknown. Here, we investigated the effect of these agents on both innate and adaptive immunity. We found that the DPP-IV inhibitors did not affect the innate immune response induced by Toll-like receptor (TLR) ligands, as cytokine secretion and induction of co-stimulatory molecules by human blood mononuclear cells was not impaired. Furthermore, proliferation of T cells and suppressive function of regulatory T cells was preserved. Mice treated with vildagliptin showed normal cytokine production, immune cell activation and lymphocyte trafficking upon TLR activation. Thus, crucial immunological parameters remain unaffected upon treatment with DPP-IV inhibitors, a fact that is reassuring with respect to safety of these drugs. PMID:24320733

  19. Resolvins as Regulators of the Immune System

    Directory of Open Access Journals (Sweden)

    Hiroyuki Seki

    2010-01-01

    Full Text Available Inflammation is the first response of the immune system to infection or injury, but excessive or inappropriate inflammatory responses contribute to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of ω-3 polyunsaturated fatty acids (i.e., eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA] indicate that they have beneficial impact on these diseases, although the mechanisms are poorly understood at the molecular level. In this decade, it has been revealed that EPA and DHA are enzymatically converted to bioactive metabolites in the course of acute inflammation and resolution. These metabolites were shown to regulate immune cell functions and to display potent anti-inflammatory actions both in vitro and in vivo. Because of their ability to resolve an acute inflammatory response, they are referred to as proresolving mediators, or resolvins. In this review, we provide an overview of the formation and actions of these lipid mediators.

  20. HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study.

    Science.gov (United States)

    Ovsyannikova, Inna G; Pankratz, V Shane; Salk, Hannah M; Kennedy, Richard B; Poland, Gregory A

    2014-09-01

    We previously reported HLA allelic associations with vaccinia virus (VACV)-induced adaptive immune responses in a cohort of healthy individuals (n = 1,071 subjects) after a single dose of the licensed smallpox (Dryvax) vaccine. This study demonstrated that specific HLA alleles were significantly associated with VACV-induced neutralizing antibody (NA) titers (HLA-B*13:02, *38:02, *44:03, *48:01, and HLA-DQB1*03:02, *06:04) and cytokine (HLA-DRB1*01:03, *03:01, *10:01, *13:01, *15:01) immune responses. We undertook an independent study of 1,053 healthy individuals and examined associations between HLA alleles and measures of adaptive immunity after a single dose of Dryvax-derived ACAM2000 vaccine to evaluate previously discovered HLA allelic associations from the Dryvax study and determine if these associations are replicated with ACAM2000. Females had significantly higher NA titers than male subjects in both study cohorts [median ID50 discovery cohort 159 (93, 256) vs. 125 (75, 186), p smallpox vaccine-induced adaptive immune responses are significantly influenced by HLA gene polymorphisms. These data provide information for functional studies and design of novel candidate smallpox vaccines.

  1. Systems immune monitoring in cancer therapy.

    Science.gov (United States)

    Greenplate, Allison R; Johnson, Douglas B; Ferrell, P Brent; Irish, Jonathan M

    2016-07-01

    Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to

  2. Immune system alterations in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other...... give more insight into the disease. Markers from the classical complement pathway are elevated where its initiator C1q appears to derive primarily from motor neurons. Activated microglia and astrocytes are found in close proximity to dying motor neurons. Their activation status and proliferation...... and present a hypothesis to direct the way for further studies....

  3. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  4. Pregnancy Associated with Systemic Lupus Erythematosus: Immune Tolerance in Pregnancy and Its Deficiency in Systemic Lupus Erythematosus—An Immunological Dilemma

    Directory of Open Access Journals (Sweden)

    Cristina Gluhovschi

    2015-01-01

    Full Text Available Pregnancy is a physiological condition that requires immune tolerance to the product of conception. Systemic lupus erythematosus (SLE is a disease with well-represented immune mechanisms that disturb immune tolerance. The association of pregnancy with systemic lupus erythematosus creates a particular immune environment in which the immune tolerance specific of pregnancy is required to coexist with alterations of the immune system caused by SLE. The main role is played by T regulatory (Treg cells, which attempt to regulate and adapt the immune system of the mother to the new conditions of pregnancy. Other components of the immune system also participate to maintain maternal-fetal immune tolerance. If the immune system of pregnant women with SLE is not able to maintain maternal immune tolerance to the fetus, pregnancy complications (miscarriage, fetal hypotrophy, and preterm birth or maternal complications (preeclampsia or activation of SLE, especially in conditions of lupus nephritis may occur. In certain situations this can be responsible for neonatal lupus. At the same time, it must be noted that during pregnancy, the immune system is able to achieve immune tolerance while maintaining the anti-infectious immune capacity of the mother. Immunological monitoring of pregnancy during SLE, as well as of the mother’s disease, is required. It is important to understand immune tolerance to grafts in transplant pathology.

  5. Prenatal Alcohol Exposure and the Developing Immune System

    OpenAIRE

    Gauthier, Theresa W.

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensiv...

  6. Immune system as a target organ for toxicity.

    OpenAIRE

    Bick, P H

    1982-01-01

    Recently, interest has centered on the immune system as a target organ for toxic effects. This seems a reasonable choice, since it can be argued that alterations induced in this system as a result of a toxic insult could lead to impaired immunity. Such an alteration may be manifest in altered disease susceptibility. Documenting toxic effects upon the immune system is a difficult task due to the multifaceted network of specialized cells that carry out immune functions. Because of this complexi...

  7. The Roles of Orphan Nuclear Receptors in the Development and Function of the Immune System

    Institute of Scientific and Technical Information of China (English)

    IvanDzhagalov; NuZhang; You-WenHe

    2004-01-01

    Hormones and their receptors regulate cell growth, differentiation and apoptosis and also play important roles in immune function. Recent studies on the subfamily of the orphan nuclear receptors known as retinoid-acid related orphan receptors (ROR) have shed important insights on the roles of this group of nuclear proteins in the development and function of the immune system. RORα regulates inflammatory cytokine production in both innate and adaptive immune system while RORγ, regulates the normal development of T lymphocyte repertoire and secondary lymphoid organs. Cellular & Molecular Immunology. 2004;1(6):401-407.

  8. The Roles of Orphan Nuclear Receptors in the Development and Function of the Immune System

    Institute of Scientific and Technical Information of China (English)

    Ivan Dzhagalov; Nu Zhang; You-Wen He

    2004-01-01

    Hormones and their receptors regulate cell growth, differentiation and apoptosis and also play important roles in immune function. Recent studies on the subfamily of the orphan nuclear receptors known as retinoid-acid related orphan receptors (ROR) have shed important insights on the roles of this group of nuclear proteins in the development and function of the immune system. RORα regulates inflammatory cytokine production in both innate and adaptive immune system while RORγ regulates the normal development of T lymphocyte repertoire and secondary lymphoid organs. Cellular & Molecular Immunology. 2004;1(6):401-407.

  9. Adaptive passive equivalence of uncertain Lü system

    Institute of Scientific and Technical Information of China (English)

    Qi Dong-Lian

    2006-01-01

    An adaptive passive strategy for controlling uncertain Lü system is proposed. Since the uncertain Lü system is minimum phase and the uncertain parameters are from a bounded compact set, the essential conditions are studied by which uncertain Lü system could be equivalent to a passive system, and the adaptive control law is given. Using passive theory, the uncertain Lü system could be globally asymptotically stabilized at different equilibria by the smooth state feedback.

  10. The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice.

    Directory of Open Access Journals (Sweden)

    Kai D Michel

    Full Text Available Hedgehog (Hh signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.

  11. Diversity of CRISPR-Cas-Mediated Mechanisms of Adaptive Immunity in Prokaryotes and Their Application in Biotechnology.

    Science.gov (United States)

    Savitskaya, E E; Musharova, O S; Severinov, K V

    2016-07-01

    CRISPR-Cas systems of adaptive immunity in prokaryotes consist of CRISPR arrays (clusters of short repeated genomic DNA fragments separated by unique spacer sequences) and cas (CRISPR-associated) genes that provide cells with resistance against bacteriophages and plasmids containing protospacers, i.e. sequences complementary to CRISPR array spacers. CRISPR-Cas systems are responsible for two different cellular phenomena: CRISPR adaptation and CRISPR interference. CRISPR adaptation is cell genome modification by integration of new spacers that represents a unique case of Lamarckian inheritance. CRISPR interference involves specific recognition of protospacers in foreign DNA followed by introduction of breaks into this DNA and its destruction. According to the mechanisms of action, CRISPR-Cas systems have been subdivided into two classes, five types, and numerous subtypes. The development of techniques based on CRISPR interference mediated by the Type II system Cas9 protein has revolutionized the field of genome editing because it allows selective, efficient, and relatively simple introduction of directed breaks into target DNA loci. However, practical applications of CRISPR-Cas systems are not limited only to genome editing. In this review, we focus on the variety of CRISPR interference and CRISPR adaptation mechanisms and their prospective use in biotechnology. PMID:27449612

  12. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  13. Artificial Immune System for Recognizing Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  14. Intelligent Multimodal Signal Adaptation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micro Analysis and Design (MA&D) is pleased to submit this proposal to design an Intelligent Multimodal Signal Adaptation System. This system will dynamically...

  15. Web-Based Adaptive Testing System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Due to the maturing of Internet technology, the adaptive testing can be utilized in the web-based environment and the examinee can take the test anywhere and any time. The purpose of the research is to apply item response theory (IRT), adaptive testing theory and web-service technique to construct an XML format itembank and a system of web-based adaptive testing (WAT) by the framework of three-tiered client server distance testing.

  16. Self-Adaptive Systems for Machine Intelligence

    CERN Document Server

    He, Haibo

    2011-01-01

    This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide application

  17. FORMATION OF INNATE AND ADAPTIVE IMMUNE RESPONSE UNDER THE INFLUENCE OF DIFFERENT FLAVIVIRUS VACCINES

    Directory of Open Access Journals (Sweden)

    N. V. Krylova

    2015-01-01

    Full Text Available The review examines in a comparative perspective the key moments of formation of innate and adaptive immune responses to different types of current flavivirus vaccines: live attenuated against yellow fever virus and inactivated whole virus against tick-borne encephalitis virus. Particular attention is paid to the ability of these different vaccines, containing exogenous pathogen-associated molecular structures, to stimulate innate immunity. Live attenuated vaccine by infecting several subtypes of dendritic cells activates them through various pattern-recognition receptors, such as Tolland RIG-I-like receptors, which leads to significant production of proinflammatory cytokines, including interferon-α primary mediator of innate antiviral immunity. By simulating natural viral infection, this vaccine quickly spreads over the vascular network, and the dendritic cells, activated by it, migrate to the draining lymph nodes and trigger multiple foci of Tand B-cell activation. Inactivated vaccine stimulates the innate immunity predominantly at the injection site, and for the sufficient activation requires the presence in its composition of an adjuvant (aluminum hydroxide, which effects the formation and activation of inflammasomes, ensuring the formation and secretion of IL-1β and IL-18 that, in turn, trigger a cascade of cellular and humoral innate immune responses. We demonstrated the possibility of involvement in the induction of innate immunity, mediated by the inactivated vaccine, endogenous pathogenassociated molecular patterns (uric acid and host cell DNA, forming at the vaccine injection site. We discuss the triggering of Band T-cell responses by flavivirus vaccines that determine various duration of protection against various pathogens. A single injection of the live vaccine against yellow fever virus induces polyvalent adaptive immune response, including the production of cytotoxic T-lymphocytes, Th1and Th2-cells and neutralizing antibodies

  18. Multithreshold Segmentation Based on Artificial Immune Systems

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2012-01-01

    Full Text Available Bio-inspired computing has lately demonstrated its usefulness with remarkable contributions to shape detection, optimization, and classification in pattern recognition. Similarly, multithreshold selection has become a critical step for image analysis and computer vision sparking considerable efforts to design an optimal multi-threshold estimator. This paper presents an algorithm for multi-threshold segmentation which is based on the artificial immune systems(AIS technique, also known as theclonal selection algorithm (CSA. It follows the clonal selection principle (CSP from the human immune system which basically generates a response according to the relationship between antigens (Ag, that is, patterns to be recognized and antibodies (Ab, that is, possible solutions. In our approach, the 1D histogram of one image is approximated through a Gaussian mixture model whose parameters are calculated through CSA. Each Gaussian function represents a pixel class and therefore a thresholding point. Unlike the expectation-maximization (EM algorithm, the CSA-based method shows a fast convergence and a low sensitivity to initial conditions. Remarkably, it also improves complex time-consuming computations commonly required by gradient-based methods. Experimental evidence demonstrates a successful automatic multi-threshold selection based on CSA, comparing its performance to the aforementioned well-known algorithms.

  19. The Serum Complement System: A Simplified Laboratory Exercise to Measure the Activity of an Important Component of the Immune System

    Science.gov (United States)

    Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.

    2008-01-01

    The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…

  20. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry

    Science.gov (United States)

    Segerstrom, Suzanne C.; Miller, Gregory E.

    2004-01-01

    The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of…

  1. The effects of cocoa on the immune system

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez-Cano

    2013-06-01

    Full Text Available Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.

  2. MODELING THE ADAPTION RULE IN CONTEXTAWARE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Mao Zheng

    2016-08-01

    Full Text Available Context awareness is increasingly gaining applicability in interactive ubiquitous mobile computing systems. Each context-aware application has its own set of behaviors to react to context modifications. This paper is concerned with the context modeling and the development methodology for context-aware systems. We proposed a rule-based approach and use the adaption tree to model the adaption rule of context-aware systems. We illustrate this idea in an arithmetic game application.

  3. ADAPTIVE REGULATION OF HIGH ORDER NONHOLONOMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The problem of adaptive regulation of a class of high-order parametric nonholonomic systems in chained-form was discussed. Using adding a power integrator technique and state scaling with discontinuous projection technique, a discontinuous adaptive dynamic controller was constructed. The controller guarantees the estimated value of unknown parameter is in the prescribed extent.

  4. Prions and the blood and immune systems.

    Science.gov (United States)

    Mabbott, Neil; Turner, Marc

    2005-04-01

    Prion diseases take a number of forms in animals and humans. They are caused by conformational change in widely expressed prion protein leading to the formation of intracellular aggregates. Although the main focus of disease is the central nervous system, it is known that involvement of the immune system occurs in peripherally transmitted disease in particular. Animal experiments suggest that in some prion diseases follicular dendritic cells in the germinal centers are a major site of initial accumulation, and that abnormal prion protein and infectivity are detectable in peripheral lymphoid tissue from the earliest phase of disease. This raises the possibility that in a human peripherally transmitted prion disease like variant Creutzfeldt-Jakob disease, further transmission could occur through blood or tissue products or contamination of surgical instrumentation. Indeed two recent reports confirm that this disease has been transmitted by blood, raising significant public health concerns. PMID:15820951

  5. Cross-talk between probiotic lactobacilli and host immune system.

    Science.gov (United States)

    Kemgang, T S; Kapila, S; Shanmugam, V P; Kapila, R

    2014-08-01

    The mechanism by which probiotic lactobacilli affect the immune system is strain specific. As the immune system is a multicompartmental system, each strain has its way to interact with it and induce a visible and quantifiable effect. This review summarizes the interplay existing between the host immune system and probiotic lactobacilli, that is, with emphasis on lactobacilli as a prototype probiotic genus. Several aspects including the bacterial-host cross-talk with the mucosal and systemic immune system are presented, as well as short sections on the competing effect towards pathogenic bacteria and their uses as delivery vehicle for antigens.

  6. Cold stress and immunity: Do chickens adapt to cold by trading-off immunity for thermoregulation?

    NARCIS (Netherlands)

    Hangalapura, B.N.

    2006-01-01

    Future animal husbandry aims at enhanced animal welfare, with minimal use of preventive medical treatments. These husbandry conditions will resemble more natural or ecological conditions. Under such farming systems, animals will experience various kinds of stressors such as environmental (e.g. cold,

  7. Immunizing digital systems against electromagnetic interference

    Science.gov (United States)

    Ewing, P. D.; Korsah, K.; Antonescu, C.

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

  8. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions

    NARCIS (Netherlands)

    Wiedenheft, Blake; van Duijn, Esther; Bultema, Jelle; Waghmare, Sakharam; Zhou, Kaihong; Barendregt, Arjan; Westphal, Wiebke; Heck, Albert; Boekema, Egbert; Dickman, Mark; Doudna, Jennifer A.

    2011-01-01

    Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequenc

  9. Managing software complexity of adaptive systems

    NARCIS (Netherlands)

    Roo, de Auke Jan

    2012-01-01

    To survive under competitive pressure, embedded system companies build systems that can deal with changing customer needs and operating conditions, and deterioration of the hardware over the lifetime of the embedded system. Engineers face the challenge to design such adaptive systems, while keeping

  10. The Effect of Sound on the Immune System

    Directory of Open Access Journals (Sweden)

    Mojgan Shaygan

    1999-03-01

    Full Text Available The immune system protects body against disturbing factors such as pathogens and tumor cells by means of its special cell and biological structures. It has been divided based on its components and soluble factors into two groups of specific and non-specific immune system. Since sound is considered as a stressor it can affect dramatically on the immune system. Stress caused by noise can reduce the immune system response to chemical stimulators have decreased. In Stead, deep relaxation has consistently been proven to be very effective at increasing T-Cells and strengthening the immune system. In the current article, we want to have a look on the adverse effects of sound on the immune system.

  11. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    OpenAIRE

    Thomas R. Laws; Tinatin Kuchuloria; Nazibriola Chitadze; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K; Salome Saginadze; Nikoloz Tsertsvadze; Mariam Chubinidze; Robert G Rivard; Shota Tsanava; Dyson, Edward H.; Andrew J H Simpson; Hepburn, Matthew J; Nino Trapaidze

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthr...

  12. Sharing Knowledge in Adaptive Learning Systems

    NARCIS (Netherlands)

    Kravcik, Milos; Gasevic, Dragan

    2006-01-01

    Please, cite this publication as: Kravcik, M. & Gasevic, D. (2006). Sharing Knowledge in Adaptive Learning Systems. Proceedings of ICALT2006. July, Kerkrade, The Netherlands: IEEE. Retrieved July 30th, 2006, from http://dspace.learningnetworks.org

  13. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections.

    Science.gov (United States)

    Bishu, Shrinivas; Hernández-Santos, Nydiaris; Simpson-Abelson, Michelle R; Huppler, Anna R; Conti, Heather R; Ghilardi, Nico; Mamo, Anna J; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate "type 17" cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9(-/-) mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9(-/-) mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses. PMID:24379290

  14. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  15. ADAPTIVE GENERALIZED PREDICTIVE CONTROL OF SWITCHED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-jing; WANG Long

    2005-01-01

    The problem of adaptive generalized predictive control which consists of output prediction errors for a class of switched systems is studied. The switching law is determined by the output predictive errors of a finite number of subsystems. For the single subsystem and multiple subsystems cases, it is proved that the given direct algorithm of generalized predictive control guarantees the global convergence of the system. This algorithm overcomes the inherent drawbacks of the slow convergence and large transient errors for the conventional adaptive control.

  16. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  17. The Immune System as a Regulator of Thyroid Hormone Activity

    OpenAIRE

    Klein, John R.

    2006-01-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid stimulating hormone (TSH) can be produced by many types of extra-pituitary cell...

  18. How (and why) the immune system makes us sleep

    OpenAIRE

    Imeri, Luca; Opp, Mark R.

    2009-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified d...

  19. Trauma-induced heterotopic bone formation and the role of the immune system: A review.

    Science.gov (United States)

    Kraft, Casey T; Agarwal, Shailesh; Ranganathan, Kavitha; Wong, Victor W; Loder, Shawn; Li, John; Delano, Matthew J; Levi, Benjamin

    2016-01-01

    Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation. PMID:26491794

  20. Expression of the SLAM family of receptors adapter EAT-2 as a novel strategy for enhancing beneficial immune responses to vaccine antigens.

    Science.gov (United States)

    Aldhamen, Yasser A; Appledorn, Daniel M; Seregin, Sergey S; Liu, Chyong-jy J; Schuldt, Nathaniel J; Godbehere, Sarah; Amalfitano, Andrea

    2011-01-15

    Recent studies have shown that activation of the signaling lymphocytic activation molecule (SLAM) family of receptors plays an important role in several aspects of immune regulation. However, translation of this knowledge into a useful clinical application has not been undertaken. One important area where SLAM-mediated immune regulation may have keen importance is in the field of vaccinology. Because SLAM signaling plays such a critical role in the innate and adaptive immunity, we endeavored to develop a strategy to improve the efficacy of vaccines by incorporation of proteins known to be important in SLAM-mediated signaling. In this study, we hypothesized that coexpression of the SLAM adapter EWS-FLI1-activated transcript 2 (EAT-2) along with a pathogen-derived Ag would facilitate induction of beneficial innate immune responses, resulting in improved induction of Ag-specific adaptive immune responses. To test this hypothesis, we used rAd5 vector-based vaccines expressing murine EAT-2, or the HIV-1-derived Ag Gag. Compared with appropriate controls, rAd5 vectors expressing EAT-2 facilitated bystander activation of NK, NKT, B, and T cells early after their administration into animals. EAT-2 overexpression also augments the expression of APC (macrophages and dendritic cells) surface markers. Indeed, this multitiered activation of the innate immune system by vaccine-mediated EAT-2 expression enhanced the induction of Ag-specific cellular immune responses. Because both mice and humans express highly conserved EAT-2 adapters, our results suggest that human vaccination strategies that specifically facilitate SLAM signaling may improve vaccine potency when targeting HIV Ags specifically, as well as numerous other vaccine targets in general.

  1. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    Science.gov (United States)

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  2. The spleen in local and systemic regulation of immunity.

    Science.gov (United States)

    Bronte, Vincenzo; Pittet, Mikael J

    2013-11-14

    The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. Also, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity.

  3. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  4. APF-guided adaptive immune network algorithm for robot path planning

    Institute of Scientific and Technical Information of China (English)

    Mingxin YUAN; Sunan WANG; Canyang WU; Kunpeng LI

    2009-01-01

    Inspired by the mechanism of Jerne's idiotypic network hypothesis, a new adaptive immune network algorithm (AINA) is presented through the stimulation and suppression between the antigen and antibody by taking the environment and robot behavior as antigen and antibody respectively. A guiding weight is defined based on the artificial potential field (APF) method, and the guiding weight is combined with antibody vitality to construct a new antibody selection operator, which improves the searching efficiency. In addition, an updating operator of antibody vi-tality is provided based on the Baldwin effect, which results in a positive feedback mechanism of search and accelerates the convergence of the immune network. The simulation and experimental results show that the proposed algorithm is characterized by high searching speed, good convergence performance and strong planning ability, which solves the path planning well in complicated environments.

  5. Adaptive Dialogue Systems for Assistive Living Environments

    Science.gov (United States)

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  6. Ebolavirus evolves in human to minimize the detection by immune cells by accumulating adaptive mutations.

    Science.gov (United States)

    Ramaiah, Arunachalam; Arumugaswami, Vaithilingaraja

    2016-06-01

    The current outbreak of Zaire ebolavirus (EBOV) lasted longer than the previous outbreaks and there is as yet no proven treatment or vaccine available. Understanding host immune pressure and associated EBOV immune evasion that drive the evolution of EBOV is vital for diagnosis as well as designing a highly effective vaccine. The aim of this study was to deduce adaptive selection pressure acting on each amino acid sites of EBOV responsible for the recent 2014 outbreak. Multiple statistical methods employed in the study include SLAC, FEL, REL, IFEL, FUBAR and MEME. Results show that a total of 11 amino acid sites from sGP and ssGP, and 14 sites from NP, VP40, VP24 and L proteins were inferred as positively and negatively selected, respectively. Overall, the function of 11 out of 25 amino acid sites under selection pressure exactly found to be involved in T cell and B-cell epitopes. We identified that the EBOV had evolved through purifying selection pressure, which is a predictor that is known to aid the virus to adapt better to the human host and subsequently reduce the efficiency of existing immunity. Furthermore, computational RNA structure prediction showed that the three synonymous nucleotide mutations in NP gene altered the RNA secondary structure and optimal base-pairing energy, implicating a possible effect on genome replication. Here, we have provided evidence that the EBOV strains involved in the recent 2014 outbreak have evolved to minimize the detection by T and B cells by accumulating adaptive mutations to increase the survival fitness. PMID:27366764

  7. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  8. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  9. Nutritionally Mediated Programming of the Developing Immune System12

    OpenAIRE

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” e...

  10. Effect of fatty acids and programming on the immune system

    OpenAIRE

    Fear, Alison Lindsay

    2010-01-01

    Research to date has suggested that fatty acids (FAs) may affect the immune system, through their (and those of their metabolites) effects on membranes, mediators, and gene expression. However, despite the research carried out, there still exist gaps of knowledge where further research is required. In addition, programming by diet in pregnancy may affect the immune system, due to stress and/or structural and functional changes to immune cells, but whether this effect is long-lasting is uncert...

  11. Trauma: the role of the innate immune system

    OpenAIRE

    Rijkers GT; Koenderman L; Hietbrink F; Leenen LPH

    2006-01-01

    Abstract Immune dysfunction can provoke (multiple) organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis). The pathophysiological model outlined in this review encompasses et...

  12. Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Robert Charles,

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  13. Steroid Sulfates from Ophiuroids (Brittle Stars): Action on Some Factors of Innate and Adaptive Immunity.

    Science.gov (United States)

    Gazha, Anna K; Ivanushko, Lyudmila A; Levina, Eleonora V; Fedorov, Sergey N; Zaporozets, Tatyana S; Stonik, Valentin A; Besednova, Nataliya N

    2016-06-01

    The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen. PMID:27534108

  14. Invited essay: Cognitive influences on the psychological immune system.

    Science.gov (United States)

    Rachman, S J

    2016-12-01

    The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training. PMID:27664815

  15. Invited essay: Cognitive influences on the psychological immune system.

    Science.gov (United States)

    Rachman, S J

    2016-12-01

    The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training.

  16. The Effects of Environment and Physiological Cyclicity on the Immune System of Viperinae

    Directory of Open Access Journals (Sweden)

    Lorand Kobolkuti

    2012-01-01

    Full Text Available One of the important aspects of species’ survival is connected with global climate changes, which also conditions the epidemiology of infectious diseases. Poikilotherms are exposed, as other species, to climatic influence, especially due to their physiological peculiarities such as important stages of their life cycle: hibernation, shedding, and active phase. The immune system serves as an accurate indicator of the health status and stress levels in these species. This study aimed to monitor the changes of innate (leukocyte subpopulations and total immune globulins and adaptive immunity (in vitro leukocyte blast transformation of two viper species, V. berus berus and V. ammodytes ammodytes, endemic in Europe and spread in different regions of Romania during their three major life cycles, hibernation, shedding, and active phase. The results indicated that seasonal variance and cycle rather than species and regional distribution influence the functionality of the immune system.

  17. The effects of environment and physiological cyclicity on the immune system of Viperinae.

    Science.gov (United States)

    Kobolkuti, Lorand; Cadar, Daniel; Czirjak, Gabor; Niculae, Mihaela; Kiss, Timea; Sandru, Carmen; Spinu, Marina

    2012-01-01

    One of the important aspects of species' survival is connected with global climate changes, which also conditions the epidemiology of infectious diseases. Poikilotherms are exposed, as other species, to climatic influence, especially due to their physiological peculiarities such as important stages of their life cycle: hibernation, shedding, and active phase. The immune system serves as an accurate indicator of the health status and stress levels in these species. This study aimed to monitor the changes of innate (leukocyte subpopulations and total immune globulins) and adaptive immunity (in vitro leukocyte blast transformation) of two viper species, V. berus berus and V. ammodytes ammodytes, endemic in Europe and spread in different regions of Romania during their three major life cycles, hibernation, shedding, and active phase. The results indicated that seasonal variance and cycle rather than species and regional distribution influence the functionality of the immune system. PMID:22547989

  18. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development.

    Directory of Open Access Journals (Sweden)

    Clifford Liongue

    Full Text Available BACKGROUND: Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK-Signal transducer and activator of transcription (STAT pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP, Protein inhibitors against Stats (PIAS, and Suppressor of cytokine signaling (SOCS proteins across a diverse range of organisms. RESULTS: Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION: Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

  19. Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation

    OpenAIRE

    Kanczkowski, Waldemar; Alexaki, Vasileia-Ismini; Tran, Nguyen; Großklaus, Sylvia; Zacharowski, Kai; Martinez, Antoine; Popovics, Petra; Norman L Block; Chavakis, Triantafyllos; Schally, Andrew V.; Stefan R Bornstein

    2013-01-01

    In several critically ill patients the homeostatic regulation of adrenocortical hormone secretion is impaired. Toll-like receptors (TLR) play a substantial role in HPA axis activation in the course of systemic inflammation. Here, using mice with conditional deletion of a crucial TLR adapter protein, MyD88, we investigated the role of systemic and local adrenal TLR signaling in the activation of adrenal glucocorticoid responses to stress and regulation of immune-adrenal crosstalk during system...

  20. Adaptation in the auditory system: an overview

    OpenAIRE

    David ePérez-González; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the s...

  1. Mapping the effects of drugs on the immune system.

    Science.gov (United States)

    Kidd, Brian A; Wroblewska, Aleksandra; Boland, Mary R; Agudo, Judith; Merad, Miriam; Tatonetti, Nicholas P; Brown, Brian D; Dudley, Joel T

    2016-01-01

    Understanding how drugs affect the immune system has consequences for treating disease and minimizing unwanted side effects. Here we present an integrative computational approach for predicting interactions between drugs and immune cells in a system-wide manner. The approach matches gene sets between transcriptional signatures to determine their similarity. We apply the method to model the interactions between 1,309 drugs and 221 immune cell types and predict 69,995 interactions. The resulting immune-cell pharmacology map is used to predict how five drugs influence four immune cell types in humans and mice. To validate the predictions, we analyzed patient records and examined cell population changes from in vivo experiments. Our method offers a tool for screening thousands of interactions to identify relationships between drugs and the immune system. PMID:26619012

  2. Endocrine and Local IGF-I in the Bony Fish Immune System

    Directory of Open Access Journals (Sweden)

    Anne-Constance Franz

    2016-01-01

    Full Text Available A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived, which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  3. The immune system: a new look at pain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-hua; HUANG Yu-guang

    2006-01-01

    Objective To review the relationship between the immune system and the mechanism of pain.Data sources Related researches published in the period of 1987-2005 were systematically reviewed.Study selection Articles about the immune system and pain were selected.Data extraction Data were mainly extracted from 74 articles which are listed in the reference section of this review.Results Pain was classically viewed as being mediated solely by neurons. However, growing evidence has showed the possible relationships between the immune system and the central nervous system. In this article, we reviewed the role of the immune system in the development of pain, together with the importance of the glia in this process. These findings suggest a novel approach to pain control in the future.Conclusions The immune system plays a potential but important role in the development of pain.

  4. The reaction of the immune system of fish to vaccination

    NARCIS (Netherlands)

    Lamers, C.H.J.

    1985-01-01

    The studies presented in this thesis deal with the effect of bacterial antigens of Yersinia ruckeri and Aeromonashydrophila on the immune system of carp. The antigens were administered by injection or by bath treatment. The effect on the immune system was studied by measuring the numbers of antibody

  5. The University Immune System: Overcoming Resistance to Change

    Science.gov (United States)

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  6. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main compone

  7. Preliminary images from an adaptive imaging system

    NARCIS (Netherlands)

    J.A. Griffiths; M.G. Metaxas; S. Pani; H. Schulerud; C. Esbrand; G.J. Royle; B. Price; T. Rokvic; R. Longo; A. Asimidis; E. Bletsas; D. Cavouras; A. Fant; P. Gasiorek; H. Georgiou; G. Hall; J. Jones; J. Leaver; G. Li; D. Machin; N. Manthos; J. Matheson; M. Noy; J.M. Østby; F. Psomadellis; P.F. van der Stelt; S. Theodoridis; F. Triantis; R. Turchetta; C. Venanzi; R.D. Speller

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephal

  8. Activation of innate immunity during systemic Candida infections

    NARCIS (Netherlands)

    Ifrim, D.C.

    2015-01-01

    Despite the increased knowledge on the mechanisms of Candida recognition and the networks of innate and adaptive host defense activated during infection, much remains to be learned regarding the distinctive modulatory effects of Candida spp on host immune responses. We showed that the chronic exposu

  9. Fuzzy-Immune PID Control for AMB Systems

    Institute of Scientific and Technical Information of China (English)

    SU Yixin; LI Xuan; ZHOU Zude; CHEN Youping; ZHANG Danhong

    2006-01-01

    In order to improve the dynamic performance of active magnetic bearing systems with highly nonlinear and naturally unstable dynamics, a new nonlinear fuzzy-immune proportional-integral-derivative (PID) controller is proposed by combining the immune feedback law with linear PID control. This controller consists of a PID controller and a basic immune proportional controller in cascaded connection, the nonlinear function of the immune proportional controller is realized by using fuzzy reasoning. Simulation results demonstrate that the active magnetic bearing system with the proposed controller has better dynamic performance and disturbance rejection ability than using the linear PID controller.

  10. The subversion of the immune system by Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Catharine eBosio

    2011-02-01

    Full Text Available Francisella tularensis is a highly virulent bacterial pathogen and the causative agent of tularemia. Perhaps the most impressive feature of this bacterium is its ability to cause lethal disease following inoculation of as few as 15 organisms. This remarkable virulence is, in part, attributed to the ability of this microorganism to evade, disrupt and modulate host immune responses. The objective of this review is to discuss the mechanisms utilized by F. tularensis to evade and inhibit innate and adaptive immune responses. The capability of F. tularensis to interfere with developing immunity in the host was appreciated decades ago. Early studies in humans were the first to demonstrate the ability of F. tularensis to suppress innate immunity. This work noted that humans suffering from tularemia failed to respond to a secondary challenge of endotoxin isolated from unrelated bacteria. Further, anecdotal observations of individuals becoming repeatedly infected with virulent strains of F. tularensis suggests that this bacterium also interferes with the generation of adequate adaptive immunity. Recent advances utilizing the mouse model for in vivo studies and human cells for in vitro work have identified specific bacterial and host compounds that play a role in mediating ubiquitous suppression of the host immune response. Compilation of this work will undoubtedly aid in enhancing our understanding of the myriad of mechanisms utilized by virulent F. tularensis for successful infection, colonization and pathogenesis in the mammalian host.

  11. Defence mechanisms and immune evasion in the interplay between the humane immune system and Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G

    1992-01-01

    in the liver and the spleen are avoided by sequestration of the mature parasites to the vascular endothelium. The interplay between the human defence system and the malaria parasite governs the symptomatology, the pathology and the development of immunity to the disease. These interactions are extremely......Immunity to P. falciparum malaria is developed as a result of long term exposure to the parasite and depends on immunological memory. The key directors in immune recognition and regulation of the immunological responses are the T-cells. It seems reasonable to propose that immunity is acquired when...... a critical mass of T-cells, recognizing relevant malaria antigens, has been developed. These T-cells mediate immunity by regulating macrophage and B-cell activity, but they may also act directly as cytotoxic cells on infected hepatocytes and through production of parasite-toxic cytokines. The potential...

  12. The ERIS Adaptive Optics System

    CERN Document Server

    Riccardi, A; Agapito, G; Antichi, J; Biliotti, V; Blain, C; Briguglio, R; Busoni, L; Carbonaro, L; Di Rico, G; Giordano, C; Pinna, E; Puglisi, A; Spanò, P; Xompero, M; Baruffolo, A; Kasper, M; Egner, S; Valles, M Suàrez; Soenke, C; Downing, M; Reyes, J

    2016-01-01

    ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.

  13. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    Science.gov (United States)

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  14. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    Science.gov (United States)

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  15. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    Science.gov (United States)

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  16. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    Science.gov (United States)

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  17. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Falk eWeih

    2012-07-01

    Full Text Available Tertiary lymphoid organs (TLOs emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs and monocyte-derived DCs (mDCs; B cell follicles containing follicular dendritic cells (FDCs within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory cells (nTregs; iTregs as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses towards atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.

  18. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  19. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    Science.gov (United States)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  20. Measuring the immune system of the three-spined stickleback - investigating natural variation by quantifying immune expression in the laboratory and the wild.

    Science.gov (United States)

    Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C

    2016-05-01

    Current understanding of the immune system comes primarily from laboratory-based studies. There has been substantial interest in examining how it functions in the wild, but studies have been limited by a lack of appropriate assays and study species. The three-spined stickleback (Gasterosteus aculeatus L.) provides an ideal system in which to advance the study of wild immunology, but requires the development of suitable immune assays. We demonstrate that meaningful variation in the immune response of stickleback can be measured using real-time PCR to quantify the expression of eight genes, representing the innate response and Th1-, Th2- and Treg-type adaptive responses. Assays are validated by comparing the immune expression profiles of wild and laboratory-raised stickleback, and by examining variation across populations on North Uist, Scotland. We also compare the immune response potential of laboratory-raised individuals from two Icelandic populations by stimulating cells in culture. Immune profiles of wild fish differed from laboratory-raised fish from the same parental population, with immune expression patterns in the wild converging relative to those in the laboratory. Innate measures differed between wild populations, whilst the adaptive response was associated with variation in age, relative size of fish, reproductive status and S. solidus infection levels. Laboratory-raised individuals from different populations showed markedly different innate immune response potential. The ability to combine studies in the laboratory and in the wild underlines the potential of this toolkit to advance our understanding of the ecological and evolutionary relevance of immune system variation in a natural setting. PMID:26646722

  1. Feeding Our Immune System: Impact on Metabolism

    OpenAIRE

    Corinne Grangette; Myriam Delacre; Anne Delanoye; Odile Viltart; Claudie Verwaerde; Isabelle Wolowczuk; Bruno Pot

    2008-01-01

    Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factor...

  2. Exposure - dependent effects of ethanol on the innate immune system

    OpenAIRE

    Goral, Joanna; Karavitis, John; Kovacs, Elizabeth J.

    2008-01-01

    Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose-dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intrac...

  3. Regulation of the Immune System by the Resident Intestinal Bacteria

    OpenAIRE

    Kamada, Nobuhiko; Núñez, Gabriel

    2014-01-01

    The microbiota is an important factor in the development of the immune response. The interaction between the gastrointestinal tract and resident microbiota is well-balanced in healthy individuals, but its breakdown can lead to intestinal and extra-intestinal disease. We review current knowledge about the mechanisms that regulate the interaction between the immune system and the microbiota, focusing on the role of resident intestinal bacteria in the development of immune responses. We also dis...

  4. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    Science.gov (United States)

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  5. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  6. Self-Adaptation in Evolving Systems

    CERN Document Server

    Stephens, C R; Mora, J; Waelbroeck, H

    1997-01-01

    A theoretical and experimental analysis is made of the effects of self-adaptation in a simple evolving system. Specifically, we consider the effects of coding the mutation and crossover probabilities of a genetic algorithm evolving in certain model fitness landscapes. The resultant genotype-phenotype mapping is degenerate, there being no direct selective advantage for one probability versus another. We show that the action of mutation and crossover breaks this degeneracy leading to an induced symmetry breaking among the genotypic synonyms. We demonstrate that this induced symmetry breaking allows the system to self-adapt in a time dependent environment.

  7. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N.; Oefverholm, E. [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H. [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  8. On Capability-Related Adaptation in Networked Service Systems

    OpenAIRE

    Finn Arve Aagesen; Patcharee Thongtra

    2012-01-01

    Adaptability is a property related to engineering as well as to the execution of networked service systems. This publication considers issues of adaptability both within a general and a scoped view. The generalview considers issues of adaptation at two levels: 1) System of entities, functions and adaptability types, and 2) Architectures supporting adaptability. Adaptability types defined are capability-related, functionality-related and context-related adaptation. The scoped view of the publi...

  9. An Adaptive Multimodal Biometrics System using PSO

    Directory of Open Access Journals (Sweden)

    Ola M. Aly

    2013-08-01

    Full Text Available Multimodal biometric systems which fuse information from a number of biometrics, are gaining more attentions lately because they are able to overcome limitations in unimodal biometric systems. These systems are suited for high security applications. Most of the proposed multibiometric systems offer one level of security. In this paper a new approach for adaptive combination of multiple biometrics has been proposed to ensure multiple levels of security. The score level fusion rule is adapted using (PSO Particle Swarm Optimization to ensure the desired system performance corresponding to the desired level of security. The experimental results prove that the proposed multimodal biometric system is appropriate for applications that require different levels of security.

  10. An Immunity-Based Anomaly Detection System with Sensor Agents

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-11-01

    Full Text Available This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user’s command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  11. SATZ An Adaptive Sentence Segmentation System

    CERN Document Server

    Palmer, D D

    1995-01-01

    This paper provides a detailed description of the sentence segmentation system first introduced in cmp-lg/9411022. It provides results of systematic experiments involving sentence boundary determination, including context size, lexicon size, and single-case texts. Also included are the results of successfully adapting the system to German and French. The source code for the system is available as a compressed tar file at ftp://cs-tr.CS.Berkeley.EDU/pub/cstr/satz.tar.Z .

  12. Towards a Conceptual Framework for Innate Immunity

    CERN Document Server

    Twycross, Jamie

    2010-01-01

    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

  13. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice.

    Directory of Open Access Journals (Sweden)

    Rebecca Banerjee

    Full Text Available BACKGROUND: Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS. However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1 transgenic (Tg mice and subsequently in ALS patients. METHODS AND FINDINGS: Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1 immunization to affect longevity. In addition, among CD4(+ T cells in ALS patients, levels of CD45RA(+ (naïve T cells were diminished, while CD45RO(+ (memory T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4(+CD25(+ T regulatory cells (Treg or CD4(+CD25(- T effector cells (Teff from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage. CONCLUSIONS: A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings

  14. DESIGN PATTERNS FOR SELF ADAPTIVE SYSTEMS ENGINEERING

    Directory of Open Access Journals (Sweden)

    Yousef Abuseta

    2015-07-01

    Full Text Available Self adaptation has been proposed to overcome the complexity of today's software systems which results from the uncertainty issue. Aspects of uncertainty include changing systems goals, changing resource availability and dynamic operating conditions. Feedback control loops have been recognized as vital elements for engineering self-adaptive systems. However, despite their importance, there is still a lack of systematic way of the design of the interactions between the different components comprising one particular feedback control loop as well as the interactions between components from different control loops . Most existing approaches are either domain specific or too abstract to be useful. In addition, the issue of multiple control loops is often neglected and consequently self adaptive systems are often designed around a single loop. In this paper we propose a set of design patterns for modeling and designing self adaptive software systems based on MAPE-K. Control loop of IBM architecture blueprint which takes into account the multiple control loops issue. A case study is presented to illustrate the applicability of the proposed design patterns.

  15. New insights into innate immune control of systemic candidiasis.

    Science.gov (United States)

    Lionakis, Michail S

    2014-08-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted.

  16. Perspective is everything: An irreverent discussion of CNS–immune system interactions as viewed from different scientific traditions

    OpenAIRE

    Carson, Monica J.; Lo, David D

    2007-01-01

    The immune system is a host defense system comprised of both innate mechanisms able to rapidly recognize and respond to conserved pathogen associated molecular patterns (PAMPs) as well as adaptive mechanisms able to respond to a wide variety of non-conserved and conserved pathogen associated molecules. In vitro and in vivo studies have demonstrated that the kinetics and type of immune response triggered by pathogenic insults is a function of both the nature of the insult and the subsequent cr...

  17. Innate immune system targets asthma-linked fungus for destruction

    OpenAIRE

    Whyte, Barry James

    2008-01-01

    A new study shows that the innate immune system of humans is capable of killing a fungus linked to airway inflammation, chronic rhinosinusitis, and bronchial asthma. Researchers at Mayo Clinic and the Virginia Bioinformatics Institute at Virginia Tech have revealed that eosinophils, a particular type of white blood cell, exert a strong immune response against the environmental fungus Alternaria alternata.

  18. Immune System Dysregulation in First-Onset Postpartum Psychosis

    NARCIS (Netherlands)

    Bergink, Veerle; Burgerhout, Karin M.; Weigelt, Karin; Pop, Victor J.; de Wit, Harm; Drexhage, Roos C.; Kushner, Steven A.; Drexhage, Hemmo A.

    2013-01-01

    Background: Accumulating evidence suggests that dysregulation of the immune system represents an important vulnerability factor for mood disorders. Postpartum psychosis (PP) is a severe mood disorder occurring within 4 weeks after delivery, a period of heightened immune responsiveness and an altered

  19. The Elements Of Adaptive Neural Expert Systems

    Science.gov (United States)

    Healy, Michael J.

    1989-03-01

    The generalization properties of a class of neural architectures can be modelled mathematically. The model is a parallel predicate calculus based on pattern recognition and self-organization of long-term memory in a neural network. It may provide the basis for adaptive expert systems capable of inductive learning and rapid processing in a highly complex and changing environment.

  20. Fatigue, workload and adaptive driver systems

    NARCIS (Netherlands)

    Hancock, P.A.; Verwey, W.B.

    1997-01-01

    This paper is directed to the further understanding of the problems of fatigue and workload and their role in diminishing driving capability. We present a specific strategy designed to defend against the adverse effects of fatigue and workload extremes through the use of adaptive driver systems. To

  1. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  2. CNS Remyelination and the Innate Immune System

    Science.gov (United States)

    McMurran, Christopher E.; Jones, Clare A.; Fitzgerald, Denise C.; Franklin, Robin J. M.

    2016-01-01

    A misguided inflammatory response is frequently implicated in myelin damage. Particularly prominent among myelin diseases, multiple sclerosis (MS) is an autoimmune condition, with immune–mediated damage central to its etiology. Nevertheless, a robust inflammatory response is also essential for the efficient regeneration of myelin sheaths after such injury. Here, we discuss the functions of inflammation that promote remyelination, and how these have been experimentally disentangled from the pathological facets of the immune response. We focus on the contributions that resident microglia and monocyte-derived macrophages make to remyelination and compare the roles of these two populations of innate immune cells. Finally, the current literature is framed in the context of developing therapies that manipulate the innate immune response to promote remyelination in clinical myelin disease. PMID:27200350

  3. DMPD: Translational mini-review series on Toll-like receptors: networks regulated byToll-like receptors mediate innate and adaptive immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available e receptors: networks regulated byToll-like receptors mediate innate and adaptive...ed byToll-like receptors mediate innate and adaptive immunity. Authors Parker LC, Prince LR, Sabroe I. Publi...d byToll-like receptors mediate innate and adaptive immunity. Parker LC, Prince LR, Sabroe I. Clin Exp Immun...17223959 Translational mini-review series on Toll-like receptors: networks regulate

  4. An adaptive strategy for controlling chaotic system

    Institute of Scientific and Technical Information of China (English)

    曹一家; 张红先

    2003-01-01

    This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems : Duffing oscillator and Rǒssler chaos.

  5. An adaptive strategy for controlling chaotic system

    Institute of Scientific and Technical Information of China (English)

    曹一家; 张红先

    2003-01-01

    This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rossler chaos.

  6. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  7. Senescent remodeling of the immune system and its contribution to the predisposition of the elderly to infections

    Institute of Scientific and Technical Information of China (English)

    DEWAN Sheilesh Kumar; ZHENG Song-bai; XIA Shi-jin; BILL Kalionis

    2012-01-01

    Objective To review the senescent remodeling of the immune system with aging and its relevance to the increased susceptibility of the elderly to infectious diseases,along with an outlook on emerging immunological biomarkers.Data sources The data selected were from PubMed with relevant published articles in English or French from 1995 to the present.Searches were made using the terms “immunosenescence” and “aging” paired with the following:“innate immunity”,“T-cell”,“B-cell”,“adaptive immunity” and “biomarkers“.Articles were reviewed for additional citations and some information was gathered from web searches.Study selection Articles on aging of both the innate and adaptive immunity were reviewed,with special attention to the remodeling effect on the ability of the immune system to fight infectious diseases.Articles related to biomarkers of immunosenescence were selected with the goal of identifying immunological biomarkers predisposing the elderly to infections.Results Innate immunity is generally thought to be relatively well preserved or enhanced during aging compared with adaptive immunity which manifests more profound alterations.However,evidence,particularly in the last decade,reveals that both limbs of the immune system undergo profound remodeling with aging.Reported data on adaptive immunity is consistent and changes are well established but conflicting results about innate immunity were reported between in vivo and in vitro studies,as well as between murine and human studies.Epidemiological data suggests increased predisposition of the elderly to infections,but no compelling scientific evidence has directly linked senescent immune remodeling to this increased susceptibility.Recently,growing interest in identifying immunological biomarkers and defining “immune risk phenotypes/profiles” (IRP) has been expressed.Identification of biomarkers is in its early days and few potential biomarkers have been identified,with the Swedish

  8. Adaptive P300 based control system

    OpenAIRE

    Jin J; Allison B.Z.; Sellers E.W.; Brunner & C.; Horki P.; Wang X; Neuper C.

    2011-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasi...

  9. Processing and Linguistics Properties of Adaptable Systems

    Directory of Open Access Journals (Sweden)

    Dumitru TODOROI

    2006-01-01

    Full Text Available Continuation and development of the research in Adaptable Programming Initialization [Tod-05.1,2,3] is presented. As continuation of [Tod-05.2,3] in this paper metalinguistic tools used in the process of introduction of new constructions (data, operations, instructions and controls are developed. The generalization schemes of evaluation of adaptable languages and systems are discussed. These results analogically with [Tod-05.2,3] are obtained by the team, composed from the researchers D. Todoroi [Tod-05.4], Z. Todoroi [ZTod-05], and D. Micusa [Mic-03]. Presented results will be included in the book [Tod-06].

  10. Two Perspectives on Information System Adaptation

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind; Kjærgaard, Annemette; Svejvig, Per

    Institutional theory has proven to be a central analytical perspective for investigating the role of larger social and historical structures of Information System (IS) adaptation. However, it does not explicitly account for how organizational actors make sense of and enact IS in their local context...... for investigating the phenomenon of IS adaptation. Furthermore, we explore a combination of the two theories with a case study in a health care setting where an Electronic Patient Record (EPR) system was introduced and used by a group of doctors. The empirical case provides evidence of how existing institutional...... structures influenced the doctors' sensemaking of the EPR system. Additionally, it illustrates how the doctors made sense of the EPR system in practice. The paper outlines that: 1) institutional theory has its explanatory power at the organizational field and organizational/group level of analysis focusing...

  11. Micromanagement of the immune system by microRNAs.

    Science.gov (United States)

    Lodish, Harvey F; Zhou, Beiyan; Liu, Gwen; Chen, Chang-Zheng

    2008-02-01

    MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved small non-coding RNAs that are thought to control gene expression by targeting mRNAs for degradation or translational repression. Emerging evidence suggests that miRNA-mediated gene regulation represents a fundamental layer of genetic programmes at the post-transcriptional level and has diverse functional roles in animals. Here, we provide an overview of the mechanisms by which miRNAs regulate gene expression, with specific focus on the role of miRNAs in regulating the development of immune cells and in modulating innate and adaptive immune responses.

  12. Adaptable Transponder for Multiple Telemetry Systems

    Science.gov (United States)

    Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)

    2014-01-01

    The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.

  13. Novel Link Adaptation Schemes for OFDM System

    Institute of Scientific and Technical Information of China (English)

    LEI Ming; CAI Peng; XU Yue-shan; ZHANG Ping

    2003-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) is the most promising technique supporting the high data rate transmission. The combination of the link adaptation and OFDM can further increase the spectral efficiency. In this paper, we put forward two link adaptation schemes for OFDM system which have the advantages of both flexibility and practicability. Both of the two novel link adaptation schemes are based on the iterative mechanism to allocate the bit and power to subcarriers according to their channel gains and noisy levels which are assumed to be already known at the transmitter. The candidate modulation modes are determined freely before the link adaptation schemes are performed. The distinction between the two novel link adaptation schemes is that in the novel scheme A, the modulation mode is upgraded to the neighboring higher-order mode, while in the novel scheme B the modulation is upgraded to the genuine optimal mode. Therefore, the novel scheme A has the advantage of lower complexity and the novel scheme B has the advantage of higher spectral efficiency.

  14. T cells and the humoral immune system

    NARCIS (Netherlands)

    W.B. van Muiswinkel (Willem)

    1975-01-01

    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  15. Modeling evolution and immune system by cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Bezzi, M. [Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Istituto Nazionale di Fisica della Materia, Florence (Italy)

    2001-07-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section.

  16. Modeling evolution and immune system by cellular automata

    International Nuclear Information System (INIS)

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section

  17. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  18. Innate immune and adaptive immune responses in fungal infections%真菌感染中的先天免疫和适应性免疫反应

    Institute of Scientific and Technical Information of China (English)

    宋营改; 任翊

    2013-01-01

    宿主对致病真菌感染的免疫反应基于免疫细胞的功能可塑性,免疫细胞无论是个体还是群体,其表型或功能特征都具有可变性.利用表型分群的方法可以加深对真菌感染后免疫反应的认识,探讨导致细胞表型变化的影响因素,以及变化后的结果.在抗真菌感染中宿主先天免疫和适应性免疫同等重要,最佳的免疫反应结果在于促炎和抗炎反应的平衡,细胞免疫反应和体液免疫反应的平衡.%The functional plasticity of immune cells is the foundation of immunity in the interaction between host and fungal pathogens. The phenotypes or functional character of single cells or cell groups can vary. However, phenotyping can be used to understand a host's immune response after a fungal infection, what factors cause the phenotypes of immune cells to change, and the results of these changes. Innate immunity and adaptive immunity are both believed to be equally important in fungal infections. The best immune response is based on a balance of proinflammatory and anti-inflammatory responses and a balance of cell immunity and humoral immunity.

  19. Adaptive Immunity in Ankylosing Spondylitis: Phenotype and Functional Alterations of T-Cells before and during Infliximab Therapy

    Directory of Open Access Journals (Sweden)

    Balázs Szalay

    2012-01-01

    Flow cytometry was used to determine T-cell subsets in peripheral blood and their intracellular signaling during activation. The prevalence of Th2 and Th17 cells responsible for the regulation of adaptive immunity was higher in AS than in 9 healthy controls. Although IFX therapy improved patients' condition, immune phenotype did not normalize. Cytoplasmic and mitochondrial calcium responses of CD4+ and CD8+ cells to a specific activation were delayed, while NO generation was increased in AS. NO generation normalized sooner upon IFX than calcium response. These results suggest an abnormal immune phenotype with functional disturbances of CD4+ and CD8+ cells in AS.

  20. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    Science.gov (United States)

    Wu, Xia; Wu, Genhua

    2014-08-01

    Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  1. Effects of ultraviolet radiation on the immune system in humans

    International Nuclear Information System (INIS)

    In experimental animals, exposure to UV-B radiation produces selective alterations of immune function which are mainly in the form of suppression of normal immune responses. This immune suppression is important in the development of nonmelanoma skin cancer, may influence the development and course of infectious disease and possibly protects against autoimmune reactions. The evidence that this form of immune suppression occurs in humans is less compelling and very incomplete. The wavelengths of radiation most affected by a depletion of the stratospheric ozone layer are those known to be most immunosuppressive in animals and it is likely that such depletion will increase any suppressive effect of sunlight on immunity in humans. In addition to establishing whether or not UV-B radiation can cause suppression of immune function in humans, studies are required to determine if melanin can provide protection against such suppression, the role of this suppression in the pathogenesis of skin cancer, the development of infectious disease and vaccine effectiveness, and the capacity for humans to develop adaptive, protective mechanisms which may limit damage from continued exposure to UV-B radiation. (author)

  2. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    Science.gov (United States)

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-01

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account.

  3. ADAPTING LINUX AS MOBILE OPERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Kaushik Velusamy

    2013-01-01

    Full Text Available In this fast growing world, people are increasingly mobile; everything is fast, connected and highly secured. All these have put up the requirements on mobile devices and leads to several features being added in the mobile operating systems and its architecture. The development of the next generation software platform based on Linux for mobile phones provides enhanced user experience, power management, cloud support and openness in the design. In spite of many studies on Linux, the investigations on the challenges and benefits of reusing and adapting the Linux kernel to mobile platforms is very less. In this study, a study on architecture of the Linux, its adaptations for a mobile operating system, requirements and analysis for Linux mobile phones, comparison with android and solution technologies to satisfy the requirements for a Linux mobile operating system are analysed and discussed."

  4. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM10) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM2.5) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  5. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  6. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    Institute of Scientific and Technical Information of China (English)

    Yan-Hui Ma; Wei-Zhi Cheng; Fang Gong; An-Lun Ma; Qi-Wen Yu; Ji-Ying Zhang; Chao-Ying Hu; Xue-Hua Chen; Dong-Qing Zhang

    2008-01-01

    AIM:To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance.METHODS:In this study,an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5×105 cells) into BALB/c mice.The experimental treatment was orally administered with ACML-55 or PBS,followed by the inoculation of colon cancer cell line CT26.Intracellular cytokine staining was used to detect IFN-y production by tumor antigen specific CD8+ T cells.FACS analysis was employed to profile composition and activation of CD4+,CD8+,γδ T and NK cells.RESULTS:Our results showed,compared to PBS treated mice,ACML-55 treatment significantly delayed colon cancer development in colon cancer-bearing Balb/c mice in vivo.Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells,and increased the number of tumor Ag specific CD8+ T cells,it was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells.Interestingly,ACML-55 treatment also showed increased cell number of NK,and γδT cells,indicating the role of ACML-55 in activation of innate lymphooltes.CONCLUSION:Our results demonstrate that ACML-55therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses.

  7. Optimizing Mining Association Rules for Artificial Immune System based Classification

    Directory of Open Access Journals (Sweden)

    SAMEER DIXIT

    2011-08-01

    Full Text Available The primary function of a biological immune system is to protect the body from foreign molecules known as antigens. It has great pattern recognition capability that may be used to distinguish between foreigncells entering the body (non-self or antigen and the body cells (self. Immune systems have many characteristics such as uniqueness, autonomous, recognition of foreigners, distributed detection, and noise tolerance . Inspired by biological immune systems, Artificial Immune Systems have emerged during the last decade. They are incited by many researchers to design and build immune-based models for a variety of application domains. Artificial immune systems can be defined as a computational paradigm that is inspired by theoretical immunology, observed immune functions, principles and mechanisms. Association rule mining is one of the most important and well researched techniques of data mining. The goal of association rules is to extract interesting correlations, frequent patterns, associations or casual structures among sets of items in thetransaction databases or other data repositories. Association rules are widely used in various areas such as inventory control, telecommunication networks, intelligent decision making, market analysis and risk management etc. Apriori is the most widely used algorithm for mining the association rules. Other popular association rule mining algorithms are frequent pattern (FP growth, Eclat, dynamic itemset counting (DIC etc. Associative classification uses association rule mining in the rule discovery process to predict the class labels of the data. This technique has shown great promise over many other classification techniques. Associative classification also integrates the process of rule discovery and classification to build the classifier for the purpose of prediction. The main problem with the associative classification approach is the discovery of highquality association rules in a very large space of

  8. Analytical tools for the study of cellular glycosylation in the immune system

    Directory of Open Access Journals (Sweden)

    Yvette eVan Kooyk

    2013-12-01

    Full Text Available It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This Mini-Review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in Immunology.

  9. Dynamic detection for computer virus based on immune system

    Institute of Scientific and Technical Information of China (English)

    LI Tao

    2008-01-01

    Inspired by biological immune system,a new dynamic detection model for computer virus based on immune system is proposed.The quantitative description of the model is given.The problem of dynamic description for self and nonself in a computer virus immune system is solved,which reduces the size of self set.The new concept of dynamic tolerance,as well as the new mechanisms of gene evolution and gene coding for immature detectors is presented,improving the generating efficiency of mature detectors,reducing the false-negative and false-positive rates.Therefore,the difficult problem,in which the detector training cost is exponentially related to the size of self-set in a traditional computer immune system,is thus overcome.The theory analysis and experimental results show that the proposed model has better time efficiency and detecting ability than the classic model ARTIS.

  10. [The role of the immune system in hereditary demyelinating neuropathies].

    Science.gov (United States)

    Mäurer, M; Toyka, K V; Martini, R

    2005-06-01

    Hereditary neuropathies, e.g., Charcot-Marie-Tooth (CMT) disease, are inherited diseases of the peripheral nervous system causing chronic progressive motor and sensory dysfunction. Most neuropathies are due to mutations in myelin genes such as PMP22, P0, and the gap junction protein Cx32. Myelin mutant mice are regarded as suitable animal models for several forms of hereditary neuropathies and are important neurobiological tools for the evaluation of pathogenetic and therapeutic concepts in hereditary neuropathies. Using these animal models we could recently show that the immune system is involved in the pathogenesis of hereditary neuropathies. Due to the phenotypic similarities we also consider the immune system important for human inherited neuropathies, in particular since several case reports demonstrate a beneficial effect of immune therapies in patients with hereditary neuropathies. In this review we compare findings from animal models and human disease to elucidate the role of the immune system in hereditary neuropathies.

  11. Optimizing Dendritic Cell-Based Immunotherapy: Tackling the Complexity of Different Arms of the Immune System

    Directory of Open Access Journals (Sweden)

    Ilse Van Brussel

    2012-01-01

    Full Text Available Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.

  12. Evaluation of specific humoral immune response in pigs vaccinated with cell culture adapted classical swine fever vaccine

    OpenAIRE

    Nath, Mrinal K.; Sarma, D. K.; B. C. DAS; Deka, P.; Kalita, D.; Dutta, J. B.; Mahato, G.; S Sarma; Roychoudhury, P

    2016-01-01

    Aim: To determine an efficient vaccination schedule on the basis of the humoral immune response of cell culture adapted live classical swine fever virus (CSFV) vaccinated pigs and maternally derived antibody (MDA) in piglets of vaccinated sows. Materials and Methods: A cell culture adapted live CSFV vaccine was subjected to different vaccination schedule in the present study. Serum samples were collected before vaccination (day 0) and 7, 14, 28, 42, 56, 180, 194, 208, 270, 284 and 298 days af...

  13. Intelligent Adaptation Process for Case Based Systems

    International Nuclear Information System (INIS)

    Case Based Reasoning (CBR) Systems is one of the important decision making systems applied in many fields all over the world. The effectiveness of any CBR system based on the quality of the storage cases in the case library. Similar cases can be retrieved and adapted to produce the solution for the new problem. One of the main issues faced the CBR systems is the difficulties of achieving the useful cases. The proposed system introduces a new approach that uses the genetic algorithm (GA) technique to automate constructing the cases into the case library. Also, it can optimize the best one to be stored in the library for the future uses. However, the proposed system can avoid the problems of the uncertain and noisy cases. Besides, it can simply the retrieving and adaptation processes. So, it can improve the performance of the CBR system. The suggested system can be applied for many real-time problems. It has been applied for diagnosis the faults of the wireless network, diagnosis of the cancer diseases, diagnosis of the debugging of a software as cases of study. The proposed system has proved its performance in this field

  14. HIV and Malnutrition: Effects on Immune System

    Directory of Open Access Journals (Sweden)

    Shalini Duggal

    2012-01-01

    Full Text Available HIV or human immunodeficiency virus infection has assumed worldwide proportions and importance in just a span of 25 years. Continuous research is being done in many parts of the world regarding its treatment and vaccine development, and a lot of money has flown into this. However, fully understanding the mechanisms of immune depletion has still not been possible. The focus has also been on improving the quality of life of people living with HIV/AIDS through education, counselling, and nutritional support. Malnutrition further reduces the capacity of the body to fight this infection by compromising various immune parameters. Knowledge of essential components of nutrition and incorporating them in the management goes a long way in improving quality of life and better survival in HIV-infected patients.

  15. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    OpenAIRE

    Bohui Zhu; Yongsheng Ding; Kuangrong Hao

    2013-01-01

    This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of ...

  16. The Interplay between the Intestinal Microbiota and the Immune System

    OpenAIRE

    Lei, Yuk Man Kevin; Nair, Lekha; Alegre, Maria-Luisa

    2014-01-01

    The relationship between commensal microbes and their hosts has been studied for many years. Commensal microorganisms are known to have a significant role in regulating the physiology of their hosts and preventing pathogenic infections while the hosts’ immune system is important in determining the composition of the microbiota. More recently, specific effects of the intestinal microbiota on the local and distal immune systems have been uncovered with important consequences for health and dise...

  17. Two-photon Imaging of the Immune System

    OpenAIRE

    Dzhagalov, Ivan L; Melichar, Heather J.; Ross, Jenny O.; Herzmark, Paul; Robey, Ellen A.

    2012-01-01

    Two-photon microscopy is a powerful method for visualizing biological processes as they occur in their native environment in real time. The immune system uniquely benefits from this technology as most of its constituent cells are highly motile and interact extensively with each other and with the environment. Two-photon microscopy has provided many novel insights into the dynamics of the development and function of the immune system that could not have been deduced by other methods and has be...

  18. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Institute of Scientific and Technical Information of China (English)

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper, the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu- lar constitutes in the skin immune system, involving both innate and adaptive immune responses; the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  19. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Institute of Scientific and Technical Information of China (English)

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper,the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu-lar constitutes in the skin immune system,involving both innate and adaptive immune responses;the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  20. Semantic models for adaptive interactive systems

    CERN Document Server

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  1. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  2. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  3. Viral Evasion and Subversion Mechanisms of the Host Immune System

    Directory of Open Access Journals (Sweden)

    Mehran Ghaemi-Bafghi

    2013-10-01

    Full Text Available Viruses are the most abundant and versatile pathogens which challenge the immune system and cause major threats to human health. Viruses employ differ¬ent mechanisms to evade host immune responses that we describe them under the following headings: Inhibition of humoral responses, Interference with interferons, Inhibition and modulation of cytokines and chemokines, Inhibitors of apoptosis, Evading CTLs and NKs, and modulating MHC function.Viruses inhibit humoral immunity in different ways which contains change of viral antigens, production of regulatory proteins of complement system and receptors of the Fc part of antibodies. Viruses block interferon production and function via interruption of cell signaling JAK/STAT pathway, Inhibition of eIF-2α phosphorylation and translational arrest and 2'5'OS/RNAse L system. Also, Poxviruses produce soluble versions of receptors for interferons. One of the most important ways of viral evasion is inhibition and manipulation of cytokines; for example, Herpsviruses and Poxviruses produce viral cytokines (virokines and cytokine receptors (viroceptors. In addition, viruses change maturation and expression of MHC I and MHC II molecules to interrupt viral antigens presentation and hide them from immune system recognition. Also, they inhibit NK cell functions.In this review, we provide an overview of the viral evasion mechanisms of immune system. Since most viruses have developed strategies for evasion of immune system, if we know these mechanisms in detail we can fight them more successfully.

  4. Next generation intelligent environments ambient adaptive systems

    CERN Document Server

    Nothdurft, Florian; Heinroth, Tobias; Minker, Wolfgang

    2016-01-01

    This book covers key topics in the field of intelligent ambient adaptive systems. It focuses on the results worked out within the framework of the ATRACO (Adaptive and TRusted Ambient eCOlogies) project. The theoretical background, the developed prototypes, and the evaluated results form a fertile ground useful for the broad intelligent environments scientific community as well as for industrial interest groups. The new edition provides: Chapter authors comment on their work on ATRACO with final remarks as viewed in retrospective Each chapter has been updated with follow-up work emerging from ATRACO An extensive introduction to state-of-the-art statistical dialog management for intelligent environments Approaches are introduced on how Trust is reflected during the dialog with the system.

  5. Antibody complementarity-determining regions (CDRs: a bridge between adaptive and innate immunity.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available BACKGROUND: It has been documented that, independently from the specificity of the native antibody (Ab for a given antigen (Ag, complementarity determining regions (CDR-related peptides may display differential antimicrobial, antiviral and antitumor activities. METHODOLOGY/PRINCIPAL FINDINGS: In this study we demonstrate that a synthetic peptide with sequence identical to V(HCDR3 of a mouse monoclonal Ab (mAb specific for difucosyl human blood group A is easily taken up by macrophages with subsequent stimulation of: i proinflammatory cytokine production; ii PI3K-Akt pathway and iii TLR-4 expression. Significantly, V(HCDR3 exerts therapeutic effect against systemic candidiasis without possessing direct candidacidal properties. CONCLUSIONS/SIGNIFICANCE: These results open a new scenario about the possibility that, beyond the half life of immunoglobulins, Ab fragments may effectively influence the antiinfective cellular immune response in a way reminiscent of regulatory peptides of innate immunity.

  6. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    Science.gov (United States)

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  7. Inhomogeneous DNA replication kinetics is associated with immune system response

    Science.gov (United States)

    Bechhoefer, John; Gauthier, Michel G.; Norio, Paolo

    2013-03-01

    In eukaryotic organisms, DNA replication is initiated at ``origins,'' launching ``forks'' that spread bidirectionally to replicate the genome. The distribution and firing rate of these origins and the fork progression velocity form the ``replication program.'' Previous models of DNA replication in eukaryotes have assumed firing rates and replication fork velocities to be homogeneous across the genome. But large variations in origin activity and fork velocity do occur. Here, we generalize our replication model to allow for arbitrary spatial variation of initiation rates and fork velocities in a given region of the genome. We derive and solve rate equations for the forks and replication probability, to obtain the mean-field replication program. After testing the model on simulations, we analyze the changes in replication program that occur during B cell development in the mouse. B cells play a major role in the adaptive immune system by producing the antibodies. We show that the process of cell differentiation is associated with a change in replication program, where the zones of high origin initiation rates located in the immunoglobulin heavy-chain locus shift their position as the locus prepares to undergo the recombination events responsible for generating antibody specificity. This work was funded by HSFP and NSERC-Canada (MGG and JB) and by NIH-NIGMS grant R01GM080606 (PN).

  8. An Architecture for Alert Correlation Inspired By a Comprehensive Model of Human Immune System

    Directory of Open Access Journals (Sweden)

    Mehdi Bateni

    2014-11-01

    Full Text Available Alert correlation is the process of analyzing, relating and fusing the alerts generated by one or more Intrusion Detection Systems (IDS in order to provide a high-level and comprehensive view of the security situation of the system or network. Different approaches, such as rule-based, prerequisites consequences-based, learning-based and similarity-based approach are used in correlation process. In this paper, a new AIS-inspired architecture is presented for alert correlation. Different aspects of human immune system (HIS are considered to design iCorrelator. Its three-level structure is inspired by three types of responses in human immune system: the innate immune system's response, the adaptive immune system's primary response, and the adaptive immune system's secondary response. iCorrelator also uses the concepts of Danger theory to decrease the computational complexity of the correlation process without considerable accuracy degradation. By considering the importance of signals in Danger theory, a new alert selection policy is introduced. It is named Enhanced Random Directed Time Window (ERDTW and is used to classify time slots to Relevant (Dangerous and Irrelevant (Safe slots based on the context information gathered during previous correlations. iCorrelator is evaluated using the DARPA 2000 dataset and a netForensics honeynet data. Completeness, soundness, false correlation rate and the execution time are investigated. Results show that iCorrelator generates attack graph with an acceptable accuracy that is comparable to the best known solutions. Moreover, inspiring by the Danger theory and using context information, the computational complexity of the correlation process is decreased considerably and makes it more applicable to online correlation.

  9. Protective immune response of live attenuated thermo-adapted peste des petits ruminants vaccine in goats.

    Science.gov (United States)

    Balamurugan, V; Sen, A; Venkatesan, G; Bhanuprakash, V; Singh, R K

    2014-01-01

    Virulent isolate of peste des petits ruminants virus (PPRV) of Indian origin (PPRV Jhansi 2003) initially adapted in Vero cells was further propagated in thermo-adapted (Ta) Vero cells grown at 40 °C for attaining thermo-adaption and attenuation of virus for development of Ta vaccine against PPR in goats and sheep. The virus was attenuated up to 50 passages in Ta Vero cells, at which, the virus was found sterile, innocuous in mice and guinea pigs and safe in seronegative goats and sheep. The developed vaccine was tested for its immunogenicity in goats and sheep by subcutaneous inoculation of 100 TCID50 (0.1 field dose), 10(3) TCID50 (one field dose) and 10(5) TCID50 (100 field doses) of the attenuated virus along with controls as per OIE described protocols for PPR vaccine testing and were assessed for PPRV-specific antibodies 7-28 days post vaccination (dpv) by PPR competitive ELISA and serum neutralization tests. The PPRV antibodies were detected in all immunized goats and sheep and goats were protective when challenged with virulent PPRV at 28th dpv along with controls for potency testing of the vaccine. The attenuated vaccine did not induce any adverse reaction at high dose (10(5) TCID50) in goats and sheep and provided complete protection even at low dose (10(2) TCID50) in goats when challenged with virulent virus. There was no shedding and horizontal transmission of the attenuated virus to in-contact controls. The results indicate that the developed PPR Ta attenuated virus is innocuous, safe, immunogenic and potent or efficacious vaccine candidate alternative to the existing vaccines for the protection of goats and sheep against PPR in the tropical countries like India. PMID:25674603

  10. NEW EMBO MEMBER’S REVIEW: Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity

    OpenAIRE

    Granucci, Francesca; Zanoni, Ivan; Feau, Sonia; Ricciardi-Castagnoli, Paola

    2003-01-01

    Dendritic cells are professional antigen-presenting cells able to initiate innate and adaptive immune responses against invading pathogens. In response to external stimuli dendritic cells undergo a complete genetic reprogramming that allows them to become, soon after activation, natural killer cell activators and subsequently T cell stimulators. The recent observation that dendritic cells produce interleukin 2 following microbial stimulation opens new possibilities for understanding the effic...

  11. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection.

    Directory of Open Access Journals (Sweden)

    Justin M Richner

    2015-07-01

    Full Text Available Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV, an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN. Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.

  12. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  13. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    DEFF Research Database (Denmark)

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip;

    2014-01-01

    of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most...

  14. Towards an Empathizing and Adaptive Storyteller System

    DEFF Research Database (Denmark)

    Bae, Byung Chull; Brunete, Alberto; Malik, Usman;

    2012-01-01

    This paper describes our ongoing effort to build an empathizing and adaptive storyteller system. The system under development aims to utilize emotional expressions generated from an avatar or a humanoid robot in addition to the listener’s responses which are monitored in real time, in order...... to deliver a story in an effective manner. We conducted a pilot study and the results were analyzed in two ways: first, through a survey questionnaire analysis based on the participant’s subjective ratings; second, through automated video analysis based on the participant’s emotional facial expression...

  15. Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system.

    Science.gov (United States)

    Norouzitallab, Parisa; Baruah, Kartik; Biswas, Priyanka; Vanrompay, Daisy; Bossier, Peter

    2016-01-01

    The invertebrate's innate immune system was reported to show some form of adaptive features, termed trained immunity. However, the memory characteristics of innate immune system and the mechanisms behind such phenomena remain unclear. Using the invertebrate model Artemia, we verified the possibility or impossibility of trained immunity, examining the presence or absence of enduring memory against homologous and heterologous antigens (Vibrio spp.) during a transgenerational study. We also determined the mechanisms behind such phenomenon. Our results showed the occurrence of memory and partial discrimination in Artemia's immune system, as manifested by increased resistance, for three successive generations, of the progenies of Vibrio-exposed ancestors towards a homologous bacterial strain, rather than to a heterologous strain. This increased resistance phenotype was associated with elevated levels of hsp70 and hmgb1 signaling molecules and alteration in the expression of key innate immunity-related genes. Our results also showed stochastic pattern in the acetylation and methylation levels of H4 and H3K4me3 histones, respectively, in the progenies whose ancestors were challenged. Overall results suggest that innate immune responses in invertebrates have the capacity to be trained, and epigenetic reprogramming of (selected) innate immune effectors is likely to have central place in the mechanisms leading to trained immunity. PMID:26876951

  16. A self-adaptive energy harvesting system

    Science.gov (United States)

    Hoffmann, D.; Willmann, A.; Hehn, T.; Folkmer, B.; Manoli, Y.

    2016-03-01

    This paper reports on a self-adaptive energy harvesting system, which is able to adapt its eigenfrequency to the operating conditions of power units. The power required for frequency tuning is delivered by the energy harvester itself. The tuning mechanism is based on a magnetic concept and incorporates a circular tuning magnet and a coupling magnet. In this manner, both coupling modes (attractive and repulsive) can be utilized for tuning the eigenfrequency of the energy harvester. The tuning range and its center frequency can be tailored to the application by careful design of the spring stiffness and the gap between tuning magnet and coupling magnet. Experimental results demonstrate that, in contrast to a conventional non-tunable vibration energy harvester, the net power can be significantly increased if a self-adaptive system is utilized, although additional power is required for regular adjustments of the eigenfrequency. The outcome confirms that active tuning is a real and practical option to extend the operational frequency range and to increase the net power of a conventional vibration energy harvester.

  17. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  18. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2013-01-01

    Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...

  19. Countermeasure for space flight effects on immune system: nutritional nucleotides

    Science.gov (United States)

    Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.

    2005-01-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  20. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  1. Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Parakkal Jovvian George

    Full Text Available Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB. However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity in TB is not known.We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB with co-incidental Strongyloides stercoralis (Ss infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB with or without Ss infection.Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection.Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.

  2. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Directory of Open Access Journals (Sweden)

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  3. Small and long regulatory RNAs in the immune system and immune diseases

    NARCIS (Netherlands)

    Stachurska, Anna; Zorro, Maria M.; van der Sijde, Marijke R.; Withoff, Sebo

    2014-01-01

    Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation

  4. Evolution of the immune system influences speciation rates in teleost fishes.

    Science.gov (United States)

    Malmstrøm, Martin; Matschiner, Michael; Tørresen, Ole K; Star, Bastiaan; Snipen, Lars G; Hansen, Thomas F; Baalsrud, Helle T; Nederbragt, Alexander J; Hanel, Reinhold; Salzburger, Walter; Stenseth, Nils C; Jakobsen, Kjetill S; Jentoft, Sissel

    2016-10-01

    Teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. The genomic basis of a particularly aberrant strategy is exemplified by Atlantic cod, in which a loss of major histocompatibility complex (MHC) II functionality coincides with a marked expansion of MHC I genes. Through low-coverage genome sequencing (9-39×), assembly and comparative analyses for 66 teleost species, we show here that MHC II is missing in the entire Gadiformes lineage and thus was lost once in their common ancestor. In contrast, we find that MHC I gene expansions have occurred multiple times, both inside and outside this clade. Moreover, we identify an association between high MHC I copy number and elevated speciation rates using trait-dependent diversification models. Our results extend current understanding of the plasticity of the adaptive immune system and suggest an important role for immune-related genes in animal diversification.

  5. Changes within the immune system from Birth to Old Age

    OpenAIRE

    Grubeck-Loebenstein, Beatrix; Herndler-Brandstetter, Dietmar

    2008-01-01

    A wide range of age-related alterations in immune system function have been described which contribute to the high prevalence, the more severe disease course and the poorer prognosis of certain infectious diseases in the elderly population and the low efficacy of vaccinations. Moreover, the development and progression of other agerelated diseases, such as certain cancers, atherosclerosis, dementia, osteoporosis and rheumatoid arthritis have been associated with altered immune function in old ...

  6. Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

    OpenAIRE

    Jula, Horatiu; Tralamazza, Daniel; Zamfir, Cristian; Candea, George

    2008-01-01

    Deadlock immunity is a property by which programs, once afflicted by a given deadlock, develop resistance against future occurrences of that and similar deadlocks. We describe a technique that enables programs to automatically gain such immunity without assistance from programmers or users. We implemented the technique for both Java and POSIX threads and evaluated it with several real systems, including MySQL, JBoss, SQLite, Apache ActiveMQ, Limewire, and Java JDK. The results demonstrate eff...

  7. Evasion of the human innate immune system by dengue virus

    OpenAIRE

    Pagni, Sarah; Fernandez-Sesma, Ana

    2012-01-01

    Dengue virus is a worldwide health problem, with billions of people at risk annually. Dengue virus causes a spectrum of diseases, namely dengue fever, dengue hemorrhagic fever and dengue shock syndrome with the latter two being linked to death. Understanding how dengue is able to evade the immune system and cause enhanced severity of disease is the main topics of interest in the Fernandez-Sesma laboratory at Mount Sinai School of Medicine. Using primary human immune cells, our group investiga...

  8. Fat:A matter of disturbance for the immune system

    Institute of Scientific and Technical Information of China (English)

    Alessandro; Federico; Elena; D’Aiuto; Francesco; Borriello; Giusi; Barra; Antonietta; Gerarda; Gravina; Marco; Romano; Raffaele; De; Palma

    2010-01-01

    Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. There is compelling evidence that both overnutrition and undernutrition negatively interfere with the immune system. Overnutrition has been found to increase susceptibility to the development of inflammatory diseases, autoimmune diseases and cancer. In the regulation of immune and in? ammatory ...

  9. Toward a molecular understanding of adaptive immunity:A chronology, Part II

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-11-01

    Full Text Available By 1980 it was obvious that to more fully understand adaptive immunity, one needed to somehow reduce the tremendous complexity of antigen recognition by T cell populations. Thus, there were two developments that resulted in a paradigm shift in immunology, one being the generation of monoclonal antibodies, and the other the development of monoclonal functional antigen-specific T cell lines. For the first time, the cellular reagents became available to ask new questions as to how individual cells comprising the complex cell populations recognize and respond to changes in their molecular environments. The first successful generation of monoclonal T cells depended upon the understanding that antigen renders cells responsive to the antigen non-specific T cell growth factor that came to be termed interleukin-2 (IL-2, which could then be used in propagating large numbers of the progeny of single cells, which in turn could then be used for molecular analyses. Monoclonal functional human T cells were used to immunize mice to generate clone-specific (clonotypic monoclonal antibodies, which then permitted the first biochemical characterizations of the antigen recognition elements of the T cell antigen receptor complex. Moreover, the use of monoclonal cytolytic and helper/inducer human T cell clones essentially proved that the T cell-specific molecules T4 and T8 functioned as accessory molecules in antigen recognition by defining MHC class II or class I restriction respectively. As well, the expression of the T3 molecules, found to be common to all T cells, were shown further to be obligatory for functional antigen-specific T cell signaling. The monoclonal IL-2-dependent T cells were also instrumental in the isolation and purification of the IL-2 molecule to homogeneity, the first interleukin molecule to be identified and characterized. These advances then led to the generation of pure radiolabeled IL-2 molecules that were used to identify the first

  10. Immune System Approaches to Intrusion Detection - A Review

    CERN Document Server

    Kim, Jungwon; Aickelin, Uwe; Greensmith, Julie; Tedesco, Gianni; Twycross, Jamie

    2008-01-01

    The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

  11. ADAPTIVE SYSTEMS THEORY: SOME BASIC CONCEPTS, METHODS AND RESULTS

    Institute of Scientific and Technical Information of China (English)

    GUO Lei

    2003-01-01

    The adaptive systems theory to be presented in this paper consists of two closely related parts: adaptive estimation (or filtering, prediction) and adaptive control of dynamical systems. Both adaptive estimation and control are nonlinear mappings of the on-line observed signals of dynamical systems, where the main features are the uncertainties in both the system's structure and external disturbances, and the non-stationarity and dependency of the system signals. Thus, a key difficulty in establishing a mathematical theory of adaptive systems lies in how to deal with complicated nonlinear stochastic dynamical systems which describe the adaptation processes. In this paper, we will illustrate some of the basic concepts, methods and results through some simple examples. The following fundamental questions will be discussed: How much information is needed for estimation? How to deal with uncertainty by adaptation? How to analyze an adaptive system? What are the convergence or tracking performances of adaptation? How to find the proper rate of adaptation in some sense? We will also explore the following more fundamental questions: How much uncertainty can be dealt with by adaptation ? What are the limitations of adaptation ? How does the performance of adaptation depend on the prior information ? We will partially answer these questions by finding some "critical values" and establishing some "Impossibility Theorems" for the capability of adaptation, for several basic classes of nonlinear dynamical control systems with either parametric or nonparametric uncertainties.

  12. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2015-01-01

    This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...

  13. STRONG SELECTIVE SIGNAL AND HIGH GENETIC VARIABILITY AT AN IMMUNE SYSTEM LOCUS IN CONTAMINATED AND UNCONTAMINATED POPULATIONS OF AN ESTUARINE FISH

    Science.gov (United States)

    The major histocompatibility complex (MHC) is a group of linked genes that mediates the adaptive immune response in vertebrates. Studies using mammals and birds have shown that environmental stressors can produce genetic changes at MHC loci that can affect immune system function....

  14. Adaptable data management for systems biology investigations

    Directory of Open Access Journals (Sweden)

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  15. Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings

    Science.gov (United States)

    Montechiesi, L.; Cocconcelli, M.; Rubini, R.

    2016-08-01

    In recent years new diagnostics methodologies have emerged, with particular interest into machinery operating in non-stationary conditions. In fact continuous speed changes and variable loads make non-trivial the spectrum analysis. A variable speed means a variable characteristic fault frequency related to the damage that is no more recognizable in the spectrum. To overcome this problem the scientific community proposed different approaches listed in two main categories: model-based approaches and expert systems. In this context the paper aims to present a simple expert system derived from the mechanisms of the immune system called Euclidean Distance Minimization, and its application in a real case of bearing faults recognition. The proposed method is a simplification of the original process, adapted by the class of Artificial Immune Systems, which proved to be useful and promising in different application fields. Comparative results are provided, with a complete explanation of the algorithm and its functioning aspects.

  16. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation.

    Science.gov (United States)

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  17. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Vladimir López

    2016-03-01

    Full Text Available Mycobacteria of the Mycobacterium tuberculosis complex (MTBC greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB. In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB- and M. bovis-infected young (TB+ and adult animals with different infection status [TB lesions localized in the head (TB+ or affecting multiple organs (TB++]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to

  18. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  19. Adaptive stimulus optimization for sensory systems neuroscience.

    Science.gov (United States)

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison.

  20. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Science.gov (United States)

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  1. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  2. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Science.gov (United States)

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  3. Complex Adaptive Digital EcoSystems

    CERN Document Server

    Briscoe, Gerard

    2011-01-01

    We investigate an abstract conceptualisation of DigitalEcosystems from a computer science perspective. We then provide a conceptual framework for the cross pollination of ideas, concepts and understanding between different classes of ecosystems through the universally applicable principles of Complex Adaptive Systems (CAS) modelling. A framework to assist the cross-disciplinary collaboration of research into Digital Ecosystems, including Digital BusinessEcosystems (DBEs) and Digital Knowledge Ecosystems (DKEs). So, we have defined the key steps towards a theoretical framework for Digital Ecosystems, that is compatible with the diverse theoretical views prevalent. Therefore, a theoretical edifice that can unify the diverse efforts within Digital Ecosystems research.

  4. Adaptive tracking control of chaotic systems

    Institute of Scientific and Technical Information of China (English)

    卢钊; 卢和

    2004-01-01

    It is important to develop control techniques able to control not only known chaos but also chaotic systems with unknown parameters. This paper proposes a novel adaptive tracking control approach for identifying the unknown parameters and controlling the chaos, which is not closely related to the particular chaotic system to be controlled. The global uniform boundedness of estimated parameters and the asymptotical stability of the tracking errors are proved by Lyapunov stability theory and LaSalle-Yoshizawa theorem. The suggested method enables stabilization of chaotic motion to a steady state ad well as tracking of any desired trajectory to be achieved in a systematic way. Computer simulation on a complex chaotic system illustrtes the effectiveness of the proposed control method.

  5. Adaptive information filtering for dynamic recommender systems

    CERN Document Server

    Jin, Ci-Hang; Zhang, Yi-Cheng; Zhou, Tao

    2009-01-01

    The dynamic environment in the real world calls for the adaptive techniques for information filtering, namely to provide real-time responses to the changes of system data. Where many incremental algorithms are designed for this purpose, they are usually challenged by the worse and worse performance resulted from the cumulative errors over time. In this Letter, we propose two incremental diffusion-based algorithms for the personalized recommendations, which integrate some pieces of local and fast updatings to achieve the approximate results. In addition to the fast responses, the errors of the proposed algorithms do not cumulate over time, that is to say, the global recomputing is unnecessary. This remarkable advantage is demonstrated by several metrics on algorithmic accuracy for two movie recommender systems and a social bookmarking system.

  6. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  7. Immune system changes during simulated planetary exploration on Devon Island, high arctic

    Directory of Open Access Journals (Sweden)

    Effenhauser Rainer

    2007-05-01

    following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions.

  8. Effects of the space flight environment on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  9. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina.

    Science.gov (United States)

    Rapaka, Rekha R; Ricks, David M; Alcorn, John F; Chen, Kong; Khader, Shabaana A; Zheng, Mingquan; Plevy, Scott; Bengtén, Eva; Kolls, Jay K

    2010-12-20

    Host defense against opportunistic fungi requires coordination between innate and adaptive immunity for resolution of infection. Antibodies generated in mice vaccinated with the fungus Pneumocystis prevent growth of Pneumocystis organisms within the lungs, but the mechanisms whereby antibodies enhance antifungal host defense are poorly defined. Nearly all species of fungi contain the conserved carbohydrates β-glucan and chitin within their cell walls, which may be targets of innate and adaptive immunity. In this study, we show that natural IgM antibodies targeting these fungal cell wall carbohydrates are conserved across many species, including fish and mammals. Natural antibodies bind fungal organisms and enhance host defense against Pneumocystis in early stages of infection. IgM antibodies influence recognition of fungal antigen by dendritic cells, increasing their migration to draining pulmonary lymph nodes. IgM antibodies are required for adaptive T helper type 2 (Th2) and Th17 cell differentiation and guide B cell isotype class-switch recombination during host defense against Pneumocystis. These experiments suggest a novel role for the IgM isotype in shaping the earliest steps in recognition and clearance of this fungus. We outline a mechanism whereby serum IgM, containing ancient specificities against conserved fungal antigens, bridges innate and adaptive immunity against fungal organisms.

  10. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius)

    Science.gov (United States)

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  11. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies...

  12. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases.

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Walder, Ken; Maes, Michael

    2016-03-01

    Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways. PMID:25598355

  13. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases.

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Walder, Ken; Maes, Michael

    2016-03-01

    Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.

  14. Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Mathematics, Yunyang Teachers' College, Hubei, Shiyan 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Jian' an, E-mail: jafang@dhu.edu.c [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen, E-mail: sunwen_2201@163.co [School of Mathematics and Information, Yangtze University, Hubei, Jingzhou 434023 (China)

    2010-07-26

    This Letter investigates the problem of adaptive lag synchronization and parameters adaptive lag identification of chaotic systems. In comparison with those of existing parameters identification schemes, the unknown parameters are identified by adaptive lag laws, and the delay time is also identified in this Letter. Numerical simulations are also given to show the effectiveness of the proposed method.

  15. Adaptive cyber-attack modeling system

    Science.gov (United States)

    Gonsalves, Paul G.; Dougherty, Edward T.

    2006-05-01

    The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.

  16. Adaptable formations utilizing heterogeneous unmanned systems

    Science.gov (United States)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  17. Fuzzy Logic Based Multi User Adaptive Test System

    OpenAIRE

    2014-01-01

    The present proliferation of e-learning has been actively underway for the last 10 years. Current research in Adaptive Testing System focuses on the development of psychometric models with items selection strategies applicable to adaptive testing processes. The key aspect of proposed Adaptive Testing System is to develop an increasingly sophisticated latent trait model which can assist users in developing and enhancing their skills. Computerized Adaptive Test (CAT) System requires a lot of in...

  18. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells.

    Science.gov (United States)

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F; Breuer, Johanna; Herold, Martin; Gross, Catharina C; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  19. The Role of CD103+ Dendritic Cells in the Intestinal Mucosal Immune System

    OpenAIRE

    Ruane, Darren Thomas; Ed C Lavelle

    2011-01-01

    While dendritic cells (DC) are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune respo...

  20. Interactions of cnidarian toxins with the immune system.

    Science.gov (United States)

    Suput, Dusan

    2011-10-01

    Cnidarians comprise four classes of toxic marine animals: Anthozoa, Cubozoa, Scyphozoa and Hydrozoa. They are the largest and probably the oldest phylum of toxic marine animals. Any contact with a cnidarian, especially the box jellyfish (Chironex fleckeri), can be fatal, but most cnidarians do not possess sufficiently strong venomous apparatus to penetrate the human skin, whereas others rarely come into contact with human beings. Only a small, almost negligible percentage of the vast wealth of cnidarian toxins has been studied in detail. Many polypeptide cnidarian toxins are immunogenic, and cross-reactivity between several jellyfish venoms has been reported. Cnidarians also possess components of innate immunity, and some of those components have been preserved in evolution. On the other hand, cnidarian toxins have already been used for the design of immunotoxins to treat cancer, whereas other cnidarian toxins can modulate the immune system in mammals, including man. This review will focus on a short overview of cnidarian toxins, on the innate immunity of cnidarians, and on the mode of action of cnidarian toxins which can modulate the immune system in mammals. Emphasis is palced on those toxins which block voltage activated potassium channels in the cells of the immune system. PMID:21824078

  1. An overview of the lagomorph immune system and its genetic diversity.

    Science.gov (United States)

    Pinheiro, Ana; Neves, Fabiana; Lemos de Matos, Ana; Abrantes, Joana; van der Loo, Wessel; Mage, Rose; Esteves, Pedro José

    2016-02-01

    Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution. PMID:26399242

  2. Hopf bifurcation for tumor-immune competition systems with delay

    Directory of Open Access Journals (Sweden)

    Ping Bi

    2014-01-01

    Full Text Available In this article, a immune response system with delay is considered, which consists of two-dimensional nonlinear differential equations. The main purpose of this paper is to explore the Hopf bifurcation of a immune response system with delay. The general formula of the direction, the estimation formula of period and stability of bifurcated periodic solution are also given. Especially, the conditions of the global existence of periodic solutions bifurcating from Hopf bifurcations are given. Numerical simulations are carried out to illustrate the the theoretical analysis and the obtained results.

  3. The evolution of secondary organization in immune system gene libraries

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, R.; Forrest, S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; Perelson, A.S. [Los Alamos National Lab., NM (United States)

    1993-02-01

    A binary model of the immune system is used to study the effects of evolution on the genetic encoding for antibody molecules. We report experiments which show that the evolution of immune system genes, simulated by the genetic algorithm, can induce a high degree of genetic organization even though that organization is not explicitly required by the fitness function. This secondary organization is related to the true fitness of an individual, in contrast to the sampled fitness which is the explicit fitness measure used to drive the process of evolution.

  4. Adaptive Control of the Chaotic System via Singular System Approach

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2014-01-01

    Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.

  5. Candida Immunity

    Directory of Open Access Journals (Sweden)

    Julian R. Naglik

    2014-01-01

    Full Text Available The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.

  6. Perinatal Environmental Effects on the Neonatal Immune System

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich

    2014-01-01

    that the seasonal-related maternal exposome is reflected in the newborn immune system. These data supports the notion that environmental factors imprints immunological variation already in the perinatal life. In conclusion, studies on early immunological priming may be critical in order to understanding early......Asthma, allergies, and autoimmune disease are common chronic diseases of the western world. The disease etiologies remains unknown, but are believed to be a combination of genetic predisposition and environmental exposure. Disease incidence has increased in recent decades and the diseases...... are thought to be programmed in utero supporting a role of the early environment. The aim of the present PhD thesis was to study if known risk factors are imprinted in the immune system of newborns. The hypotheses were that cesarean section and season of birth would influence the immune signature in early...

  7. Vitamin D Signaling in the Bovine Immune System: A Model for Understanding Human Vitamin D Requirements

    Directory of Open Access Journals (Sweden)

    Corwin D. Nelson

    2012-03-01

    Full Text Available The endocrine physiology of vitamin D in cattle has been rigorously investigated and has yielded information on vitamin D requirements, endocrine function in health and disease, general metabolism, and maintenance of calcium homeostasis in cattle. These results are relevant to human vitamin D endocrinology. The current debate regarding vitamin D requirements is centered on the requirements for proper intracrine and paracrine vitamin D signaling. Studies in adult and young cattle can provide valuable insight for understanding vitamin D requirements as they relate to innate and adaptive immune responses during infectious disease. In cattle, toll-like receptor recognition activates intracrine and paracrine vitamin D signaling mechanism in the immune system that regulates innate and adaptive immune responses in the presence of adequate 25-hydroxyvitamin D. Furthermore, experiments with mastitis in dairy cattle have provided in vivo evidence for the intracrine vitamin D signaling mechanism in macrophages as well as vitamin D mediated suppression of infection. Epidemiological evidence indicates that circulating concentrations above 32 ng/mL of 25-hydroxyvitamin D are necessary for optimal vitamin D signaling in the immune system, but experimental evidence is lacking for that value. Experiments in cattle can provide that evidence as circulating 25-hydroxyvitamin D concentrations can be experimentally manipulated within ranges that are normal for humans and cattle. Additionally, young and adult cattle can be experimentally infected with bacteria and viruses associated with significant diseases in both cattle and humans. Utilizing the bovine model to further delineate the immunomodulatory role of vitamin D will provide potentially valuable insights into the vitamin D requirements of both humans and cattle, especially as they relate to immune response capacity and infectious disease resistance.

  8. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.

    OpenAIRE

    Chylinski, Krzysztof; Le Rhun, Anaïs; Charpentier, Emmanuelle

    2013-01-01

    CRISPR-Cas is a rapidly evolving RNA-mediated adaptive immune system that protects bacteria and archaea against mobile genetic elements. The system relies on the activity of short mature CRISPR RNAs (crRNAs) that guide Cas protein(s) to silence invading nucleic acids. A set of CRISPR-Cas, type II, requires a trans-activating small RNA, tracrRNA, for maturation of precursor crRNA (pre-crRNA) and interference with invading sequences. Following co-processing of tracrRNA and pre-crRNA by RNase II...

  9. SEALMS: SEMANTICALLY ENHANCED ADAPTIVE LEARNING MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    M.Farida Begam

    2012-12-01

    Full Text Available Semantic web technologies have been attracting interest in many domains. E-learning is not an exception which also involves with many activities or tasks such as instructional design, content development, authoring, delivery, assessment, feedback and etc. which can be sequenced and composed as workflow. Web based E-learning services should be focused in this aspect to fulfill variant e-learners’ requirements. This paper focuses on the Adaptive instructional design framework in which three significant facets are considered 1 Knowledge extraction from user’s behavior, interactions and actions and convert them into semantics 2 Detection of learners style from the semantics defined in the knowledge base and 3 Composition of the workflow for the variant learners to satisfy their requirements dynamically. In this paper we have proposed SEALMS –Semantically Enhanced Adaptive Learning Management System a theoretical framework tracks the learners profile and composes the services for learners using OWL-S. Modules of SEALMS include intelligent agents which perform a kind of reasoning and deriving results from the input fed, finally personalized workflow has been recommended for the elearner. SEALMS is also a cyclic model where the feedback can be taken and reviving process can be initiated from the start to obtain the better results.

  10. Human Immune System and Characteristics of Herpetic Infection Pathogenesis (Review

    Directory of Open Access Journals (Sweden)

    Sobchak D.М.

    2014-09-01

    Full Text Available In recent years the significance of knowledge of immune mechanisms of various pathological conditions is growing, since it is related to the survival peculiarities of modern human. Acute diseases are frequently protracted, the number of chronic conditions increasing. The principal tasks of human immune system study is to determine an impaired component of immunity system, make the prognosis of a chronic character of the disease, and assess the provided treatment efficiency. Virus immunology is progressing rapidly. However, there are still many incomprehensible mechanisms of interaction between a human organism and viruses; some functions of many virus proteins enabling viruses to escape immune surveillance are understudied. Such studies will enable to comprehend significantly the pathogenesis of virus infections, and therefore develop new forms of treatment and prevention. The review presents current views on immune response formation in herpetic infection, the interaction mechanisms of a virus and a macroorganism, the main lines of research in a clinical picture, diagnosis and management of the pathology.

  11. Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation

    Institute of Scientific and Technical Information of China (English)

    陶莉莉; 孔祥东; 钟伟民; 钱锋

    2012-01-01

    In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.

  12. Special Operations Forces: A Global Immune System?

    CERN Document Server

    Norman, Joseph

    2016-01-01

    The use of special operations forces (SOF) in war fighting and peace keeping efforts has increased dramatically in recent decades. A scientific understanding of the reason for this increase would provide guidance as to the contexts in which SOF can be used to their best effect. Ashby's law of requisite variety provides a scientific framework for understanding and analyzing a system's ability to survive and prosper in the face of environmental challenges. We have developed a generalization of this law to extend the analysis to systems that must respond to disturbances at multiple scales. This analysis identifies a necessary tradeoff between scale and complexity in a multiscale control system. As with Ashby's law, the framework applies to the characterization of successful biological and social systems in the context of complex environmental challenges. Here we apply this multiscale framework to provide a control theoretic understanding of the historical and increasing need for SOF, as well as conventional mili...

  13. The contribution of the immune system to parturition

    Directory of Open Access Journals (Sweden)

    R. De Jongh

    1996-01-01

    Full Text Available The immune system plays a central role before and during parturition, including the main physiological processes of parturition: uterine contractions and cervical ripening. The immune system comprises white blood cells and their secretions. Polymorphonuclear cells and macrophages invade the cervical tissue and release compounds, such as oxygen radicals and enzymes, which break down the cervical matrix to allow softening and dilatation. During this inflammatory process, white blood cells undergo chemotaxis, adherence to endothelial cells, diapedesis, migration and activation. Factors that regulate white blood cell invasion and secretion include cytokines such as tumour necrosis factor and interleukins. Glucocorticoids, sex hormones and prostaglandins, affect cytokine synthesis. They also modulate the target cells, resulting in altered responses to cytokines. On the other hand, the immune system has profound effects on the hormonal system and prostaglandin synthesis. In animals, nitric oxide has marked effects on uterine quiescence during gestation. At the same time, it plays an important role in regulating the vascular tone of uterine arteries and has anti-adhesive effects on leukocytes. Cytokines are found in amniotic fluid, and in maternal and foetal serum at term and preterm. Several intrauterine cells have been shown to produce these cytoldnes. Since neither white blood cells, cytokines nor nitric oxide seem to be the ultimate intermediate for human parturition, the immune system is an additional but obligatory and underestimated component in the physiology of delivery. Scientists, obstetricians and anaesthesiologists must thus be aware of these processes.

  14. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response.

    Directory of Open Access Journals (Sweden)

    Anja Kathrin Wege

    Full Text Available BACKGROUND: Leishmania (L. species are the causative agent of leishmaniasis. Due to the lack of efficient vaccine candidates, drug therapies are the only option to deal with cutaneous leishmaniasis. Unfortunately, chemotherapeutic interventions show high toxicity in addition to an increased risk of dissemination of drug-resistant parasites. An appropriate laboratory animal based model is still missing which allows testing of new drug strategies in the context of human immune cells in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Humanized mice were infected subcutaneously with stationary phase promastigote L. major into the footpad. The human immune response against the pathogen and the parasite host interactions were analyzed. In addition we proved the versatility of this new model to conduct drug research studies by the inclusion of orally given Miltefosine. We show that inflammatory human macrophages get infected with Leishmania parasites at the site of infection. Furthermore, a Leishmania-specific human-derived T cell response is initiated. However, the human immune system is not able to prevent systemic infection. Thus, we treated the mice with Miltefosine to reduce the parasitic load. Notably, this chemotherapy resulted in a reduction of the parasite load in distinct organs. Comparable to some Miltefosine treated patients, humanized mice developed severe side effects, which are not detectable in the classical murine model of experimental leishmaniasis. CONCLUSIONS/SIGNIFICANCE: This study describes for the first time L. major infection in humanized mice, characterizes the disease development, the induction of human adaptive and innate immune response including cytokine production and the efficiency of Miltefosine treatment in these animals. In summary, humanized mice might be beneficial for future preclinical chemotherapeutic studies in systemic (visceral leishmaniasis allowing the investigation of human immune response, side effects of the drug

  15. Lipoxin A4 decreases human memory B cell antibody production via an ALX/FPR2-dependent mechanism: A link between resolution signals and adaptive immunity

    Science.gov (United States)

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N.; Phipps, Richard P.

    2013-01-01

    Summary Specialized proresolving mediators (SPMs) are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. SPMs are classified into lipoxins, resolvins, protectins and maresins. Lipoxins and other SPMs have been identified in important immunological tissues including bone marrow, spleen and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A4 (LXA4) and its receptor ALX/FPR2 on human B cells. LXA4 decreased IgM and IgG production on activated B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA4 also inhibited human memory B cell antibody production and proliferation, but not naïve B cell function. Lastly, LXA4 decreased antigen-specific antibody production in vivo. To our knowledge, this is the first description of the actions of lipoxins on human B cells, which shows a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B cell antibody production can be beneficial to threat inflammatory and autoimmune disorders. PMID:24166736

  16. Influence of Phthalates on in vitro Innate and Adaptive Immune Responses

    DEFF Research Database (Denmark)

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller;

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin......-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion......-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did...

  17. Model Driven Mutation Applied to Adaptative Systems Testing

    CERN Document Server

    Bartel, Alexandre; Munoz, Freddy; Klein, Jacques; Mouelhi, Tejeddine; Traon, Yves Le

    2012-01-01

    Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary resul...

  18. Adapted breeds for organic and low input dairy systems

    DEFF Research Database (Denmark)

    Horn, Marco; Ferris, C; Sairanen, A;

    2014-01-01

    Part of SOLID is to understand how contrasting genotypes adapt to a systematic restriction of nutrient and energy supply. In new studies, a number of genotypes identified as being adapted to organic and low input systems were compared with conventional breeds.......Part of SOLID is to understand how contrasting genotypes adapt to a systematic restriction of nutrient and energy supply. In new studies, a number of genotypes identified as being adapted to organic and low input systems were compared with conventional breeds....

  19. Adaptive Thermostats for Noisy Gradient Systems

    CERN Document Server

    Leimkuhler, Benedict

    2015-01-01

    We study numerical methods for sampling probability measures in high dimensions where the underlying model is only approximately identified with a gradient system. Extended stochastic dynamical methods are discussed which have application to multiscale models, nonequilibrium molecular dynamics and Bayesian sampling techniques arising in emerging machine learning applications. In addition to providing a more comprehensive discussion of the foundations of these methods, we propose a new numerical method for the Adaptive Langevin/stochastic gradient Nos\\'e-Hoover thermostat that achieves a dramatic improvement in numerical efficiency over the most popular stochastic gradient methods reported in the literature. We also demonstrate that the newly-established method inherits a superconvergence property (fourth order convergence to the invariant measure for configurational quantities) recently demonstrated in the setting of Langevin dynamics. Our findings are verified by numerical experiments.

  20. Adaptive model training system and method

    Science.gov (United States)

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  1. Adaptive model training system and method

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  2. Impact of autoimmune risk alleles on the immune system

    OpenAIRE

    Ray, John P.; Hacohen, Nir

    2015-01-01

    Genetic analyses of autoimmune diseases have revealed hundreds of disease-associated DNA variants, but the identity and function of the causal variants are understudied and warrant deeper mechanistic studies. Here, we highlight methods for deciphering how alleles that are associated with autoimmune disease alter the human immune system, and suggest strategies for future autoimmune genetic research.

  3. Systems vaccinology : molecular signatures of immunity to Bordetella pertussis

    NARCIS (Netherlands)

    Raeven, R.H.M.

    2016-01-01

    The worldwide resurgence of whooping cough (pertussis), even in highly vaccinated populations, demands improved pertussis vaccines. In this thesis a systems vaccinology approach is applied to deepen knowledge of the immune responses evoked by different pertussis vaccines and compare this with a Bord

  4. The immune system as a target for antibiotics.

    NARCIS (Netherlands)

    Grondel, J.L.

    1986-01-01

    Studies on antibiotics, oxytetracycline (OxyTC) in particular, are presented in this thesis with respect to the influence of these drugs on the immune system of carp and chickens. Special attention was paid to the pharmacokinetic behaviour of OxyTC.ImmunologyCarp ( Cyprinusca

  5. The human spleen. Development and role in the immune system.

    NARCIS (Netherlands)

    Timens, Willem

    1988-01-01

    In the present thesis an extensive in situ characterization is given of cellular constituents of the human spleen, that play a role in the human immune system. The development of immunocompetent cells in their micro-environment was studied in early embryonic life, fetal life, infancy and childhood,

  6. BRAF inhibition improves tumor recognition by the immune system

    DEFF Research Database (Denmark)

    Donia, Marco; Fagone, Paolo; Nicoletti, Ferdinando;

    2012-01-01

    to be poorly efficient. By characterizing the immunological interactions between T cells and cancer cells in clinical material as well as the influence of the FDA-approved BRAF inhibitor vemurafenib on the immune system, we aimed at unraveling new strategies to expand the efficacy of adoptive T-cell transfer...

  7. Rearing environment affects development of the immune system in neonates

    NARCIS (Netherlands)

    Inman, C.F.; Haverson, K.; Konstantinov, S.R.; Jones, P.H.; Harris, C.; Smidt, H.; Miller, B.; Bailey, M.; Stokes, C.

    2010-01-01

    P>Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect th

  8. MECHANISMS OF VITAMIN D ACTION ON THE IMMUNE SYSTEM

    OpenAIRE

    S. A. Snopov

    2014-01-01

    Besides the well-known effects upon bone metabolism, vitamin D (VD) plays important roles in many other processes in the body, including immune regulation. VD action is carried out through its cellular membrane receptor, which is expressed in a variety of human organs and tissues, e.g., most cells of immune system, as well as epithelial cells lining the mucous membranes. The cell-membrane bound VD receptor is transferred to the cytoplasm, to form a functional complex with vitamin A and its re...

  9. Disgust as an adaptive system for disease avoidance behaviour.

    Science.gov (United States)

    Curtis, Valerie; de Barra, Mícheál; Aunger, Robert

    2011-02-12

    Disgust is an evolved psychological system for protecting organisms from infection through disease avoidant behaviour. This 'behavioural immune system', present in a diverse array of species, exhibits universal features that orchestrate hygienic behaviour in response to cues of risk of contact with pathogens. However, disgust is also a dynamic adaptive system. Individuals show variation in pathogen avoidance associated with psychological traits like having a neurotic personality, as well as a consequence of being in certain physiological states such as pregnancy or infancy. Three specialized learning mechanisms modify the disgust response: the Garcia effect, evaluative conditioning and the law of contagion. Hygiene behaviour is influenced at the group level through social learning heuristics such as 'copy the frequent'. Finally, group hygiene is extended symbolically to cultural rules about purity and pollution, which create social separations and are enforced as manners. Cooperative hygiene endeavours such as sanitation also reduce pathogen prevalence. Our model allows us to integrate perspectives from psychology, ecology and cultural evolution with those of epidemiology and anthropology. Understanding the nature of disease avoidance psychology at all levels of human organization can inform the design of programmes to improve public health. PMID:21199843

  10. Th17 cells confer long term adaptive immunity to oral mucosal Candida albicans infections

    OpenAIRE

    Hernández-Santos, Nydiaris; Huppler, Anna R; Peterson, Alanna C.; Khader, Shabaana A.; McKenna, Kyle C.; Sarah L Gaffen

    2012-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both Th1 and Th17 responses, and considerable evidence implicates IL-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relat...

  11. [THE DEVELOPMENT OF IMMUNE ENZYME AND IMMUNE CHROMATOGRAPHIC MONOCLONAL TEST-SYSTEM FOR DETECTING TULAREMIA AGENT].

    Science.gov (United States)

    Eremkin, A V; Elagin, G D; Petchenkin, D V; Fomenkov, O O; Bogatcheva, N V; Kitmanov, A A; Kuklina, G V; Tikhvinskaya, O V

    2016-03-01

    The immune enzyme and immunochromatographic test-systems for detecting tularemia agent were developed on the basis of selected set of monoclonal antibodies having immunochemical activity to antigens Francisella tularensis. The evaluation of sensitivity and specificity of developed test-systems demonstrated that samples provided detection of strains of F. tularensis in concentration from 5.0 x 105 mkxcm-3 to 1.0 x 106 mkxcm-3 and gave no false positive results in analysis of heterologous microorganisms in concentration of 1.0 x 108 mkxcm-3.

  12. Preliminary images from an adaptive imaging system.

    Science.gov (United States)

    Griffiths, J A; Metaxas, M G; Pani, S; Schulerud, H; Esbrand, C; Royle, G J; Price, B; Rokvic, T; Longo, R; Asimidis, A; Bletsas, E; Cavouras, D; Fant, A; Gasiorek, P; Georgiou, H; Hall, G; Jones, J; Leaver, J; Li, G; Machin, D; Manthos, N; Matheson, J; Noy, M; Ostby, J M; Psomadellis, F; van der Stelt, P F; Theodoridis, S; Triantis, F; Turchetta, R; Venanzi, C; Speller, R D

    2008-06-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephalography. In our system, the exposure in each image region is optimised and the beam intensity is a function of tissue thickness and attenuation, and also of local physical and statistical parameters in the image. Using a linear array of detectors, the system will perform on-line analysis of the image during the scan, followed by optimisation of the X-ray intensity to obtain the maximum diagnostic information from the region of interest while minimising exposure of diagnostically less important regions. This paper presents preliminary images obtained with a small area CMOS detector developed for this application. Wedge systems were used to modulate the beam intensity during breast and dental imaging using suitable X-ray spectra. The sensitive imaging area of the sensor is 512 x 32 pixels 32 x 32 microm(2) in size. The sensors' X-ray sensitivity was increased by coupling to a structured CsI(Tl) scintillator. In order to develop the I-ImaS prototype, the on-line data analysis and data acquisition control are based on custom-developed electronics using multiple FPGAs. Images of both breast tissues and jaw samples were acquired and different exposure optimisation algorithms applied. Results are very promising since the average dose has been reduced to around 60% of the dose delivered by conventional imaging systems without decrease in the visibility of details. PMID:18291697

  13. Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens.

    Science.gov (United States)

    Simon, K; Verwoolde, M B; Zhang, J; Smidt, H; de Vries Reilingh, G; Kemp, B; Lammers, A

    2016-07-01

    Due to an interplay between intestinal microbiota and immune system, disruption of intestinal microbiota composition during immune development may have consequences for immune responses later in life. The present study investigated the effects of antibiotic treatment in the first weeks of life on the specific antibody response later in life in chickens. Layer chicks received an antibiotic cocktail consisting of vancomycin, neomycin, metronidazole, and amphotericin-B by oral gavage every 12 h, and ampicillin and colistin in drinking water for the first week of life. After the first week of life, chicks received ampicillin and colistin in drinking water for two more weeks. Control birds received no antibiotic cocktail and plain drinking water. Fecal microbiota composition was determined during antibiotic treatment (d 8 and 22), two weeks after cessation of antibiotic treatment (d 36), and at the end of the experimental period at d 175 using a 16S ribosomal RNA gene targeted microarray, the Chicken Intestinal Tract Chip (ChickChip). During antibiotic treatment fecal microbiota composition differed strongly between treatment groups. Fecal microbiota of antibiotic treated birds consisted mainly of Proteobacteria, and in particular E.coli, whereas fecal microbiota of control birds consisted mainly of Firmicutes, such as lactobacilli and clostridia. Two weeks after cessation of antibiotic treatment fecal microbiota composition of antibiotic treated birds had recovered and was similar to that of control birds. On d 105, 12 weeks after cessation of antibiotic treatment, chicks of both treatment groups received an intra-tracheal lipopolysaccharide (LPS)/human serum albumin (HuSA) challenge. Antibody titers against LPS and HuSA were measured 10 days after administration of the challenge. While T cell independent antibody titers (LPS) were not affected by antibiotic treatment, antibiotic treated birds showed lower T cell dependent antibody titers (HuSA) compared with control

  14. Immune System Dysregulation and Latent Herpesvirus Reactivation During Winterover at Concordia Station, Dome C, Antarctica

    Science.gov (United States)

    Crucian, B. E.; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Meta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; Kaufmann, I.; Baatout, D. S.; Pierson, D. L.; Sams, C. F.; Chouker, A.

    2011-01-01

    Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented.

  15. Important ingredients for health adaptive information systems.

    Science.gov (United States)

    Senathirajah, Yalini; Bakken, Suzanne

    2011-01-01

    Healthcare information systems frequently do not truly meet clinician needs, due to the complexity, variability, and rapid change in medical contexts. Recently the internet world has been transformed by approaches commonly termed 'Web 2.0'. This paper proposes a Web 2.0 model for a healthcare adaptive architecture. The vision includes creating modular, user-composable systems which aim to make all necessary information from multiple internal and external sources available via a platform, for the user to use, arrange, recombine, author, and share at will, using rich interfaces where advisable. Clinicians can create a set of 'widgets' and 'views' which can transform data, reflect their domain knowledge and cater to their needs, using simple drag and drop interfaces without the intervention of programmers. We have built an example system, MedWISE, embodying the user-facing parts of the model. This approach to HIS is expected to have several advantages, including greater suitability to user needs (reflecting clinician rather than programmer concepts and priorities), incorporation of multiple information sources, agile reconfiguration to meet emerging situations and new treatment deployment, capture of user domain expertise and tacit knowledge, efficiencies due to workflow and human-computer interaction improvements, and greater user acceptance.

  16. Adaptive dynamic programming for linear impulse systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-hua WANG; Juan-juan YU; Yao HUANG; Hua WANG; Zhong-hua MIAO

    2014-01-01

    We investigate the optimization of linear impulse systems with the reinforcement learning based adaptive dynamic programming (ADP) method. For linear impulse systems, the optimal objective function is shown to be a quadric form of the pre-impulse states. The ADP method provides solutions that iteratively converge to the optimal objective function. If an initial guess of the pre-impulse objective function is selected as a quadratic form of the pre-impulse states, the objective function iteratively converges to the optimal one through ADP. Though direct use of the quadratic objective function of the states within the ADP method is theoretically possible, the numerical singularity problem may occur due to the matrix inversion therein when the system dimensionality increases. A neural network based ADP method can circumvent this problem. A neural network with polynomial activation functions is selected to approximate the pre-impulse objective function and trained iteratively using the ADP method to achieve optimal control. After a successful training, optimal impulse control can be derived. Simulations are presented for illustrative purposes.

  17. Platelets--an important element of the immune system.

    Science.gov (United States)

    Trzeciak-Ryczek, A; Tokarz-Deptuła, B; Deptuła, W

    2013-01-01

    Platelets are anucleate cells derived from the megakaryocyte series, and have long been considered only as cells responsible for coagulation and the fibrinolysis process. However, recently more data shows that they are also effector cells in the inflammatory response and important elements of the immunological response. Platelets store and release many biologically active substances, including growth factors, cytokines and chemokines (tab. 1), which actively affect i.a. elements of the immune system, and thus become regulators of immunity and mediators of inflammatory response. Their impact on the immune system cells is also associated with the induction of leucocytes and progenitor cells to the site of pathogen permeation or vascular injury inflow, as well as endothelial cells. Interacting with neutrophils, monocytes and lymphocytes, they not only activate them, but also form platelet-leukocyte aggregates that immobilise pathogens and prevent their spreading. Furthermore, platelets are capable of absorbing pathogens, affecting anti-infection immunity of the system. It is also assumed that the presence of receptors on their surface, such as Toll-like receptors (TLRs), affects their initiation and activity of the immunological response.

  18. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  19. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  20. Immunity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by