WorldWideScience

Sample records for adaptive epigenetic reorganization

  1. Epigenetic contribution to stress adaptation in plants.

    Science.gov (United States)

    Mirouze, Marie; Paszkowski, Jerzy

    2011-06-01

    Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.

  2. Epigenetic Regulation of Adaptive NK Cell Diversification.

    Science.gov (United States)

    Tesi, Bianca; Schlums, Heinrich; Cichocki, Frank; Bryceson, Yenan T

    2016-07-01

    Natural killer (NK) cells were previously considered to represent short-lived, innate lymphocytes. However, mouse models have revealed expansion and persistence of differentiated NK cell subsets in response to cytomegalovirus (CMV) infection, paralleling antigen-specific T cell differentiation. Congruently, analyses of humans have uncovered CMV-associated NK cell subsets characterized by epigenetic diversification processes that lead to altered target cell specificities and functional capacities. Here, focusing on responses to viruses, we review similarities and differences between mouse and human adaptive NK cells, identifying molecular analogies that may be key to transcriptional reprogramming and functional alterations. We discuss possible molecular mechanisms underlying epigenetic diversification and hypothesize that processes driving epigenetic diversification may represent a more widespread mechanism for fine-tuning and optimization of cellular immunity.

  3. Epigenetic contribution to stress adaptation in plants

    OpenAIRE

    Mirouze, Marie; Paszkowski, Jerzy

    2011-01-01

    Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and g...

  4. Transgenerational epigenetic inheritance: adaptation through the germline epigenome?

    Science.gov (United States)

    Prokopuk, Lexie; Western, Patrick S; Stringer, Jessica M

    2015-08-01

    Epigenetic modifications direct the way DNA is packaged into the nucleus, making genes more or less accessible to transcriptional machinery and influencing genomic stability. Environmental factors have the potential to alter the epigenome, allowing genes that are silenced to be activated and vice versa. This ultimately influences disease susceptibility and health in an individual. Furthermore, altered chromatin states can be transmitted to subsequent generations, thus epigenetic modifications may provide evolutionary mechanisms that impact on adaptation to changed environments. However, the mechanisms involved in establishing and maintaining these epigenetic modifications during development remain unclear. This review discusses current evidence for transgenerational epigenetic inheritance, confounding issues associated with its study, and the biological relevance of altered epigenetic states for subsequent generations.

  5. [Structural and functional reorganization of photosynthetic apparatus in cold adaptation of wheat plants].

    Science.gov (United States)

    Venzhik, Ju V; Titov, D F; Talanova, V V; Miroslavov, E D; Koteeva, N K

    2012-01-01

    The structural and functional characteristics of the photosynthetic apparatus (PSA) and the cold resistance of wheat seedlings were studied during low-temperature adaptation. It has been established that large chloroplasts with thylakoid system of "sun type" forme in the mesophyll cells in the early hours of plants hardening. At the same time the functional reorganization of the PSA in the leaves of wheat occurs: content of pigments changes, stabilization of the pigment-protein complexes is observed, non-photochemical quenching of excess energy increases. The stabilization of photosynthesis during cold adaptation occurs due to structural and functional reorganization of the PSA. It is assumed that the reorganization of the PSA is a prerequisite for formation of increased cold resistance of leaf cells, and this, along with other physiological and biochemical changes occurring in cells and tissues of plants, allows the plants to survive in chilling.

  6. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  7. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and mo

  8. Epigenetic Signals on Plant Adaptation: A Biotic Stress Perspective.

    Science.gov (United States)

    Neto, José Ribamar Costa Ferreira; da Silva, Manassés Daniel; Pandolfi, Valesca; Crovella, Sérgio; Benko-Iseppon, Ana Maria; Kido, Ederson Akio

    2016-07-24

    For sessile organisms such as plants, regulatory mechanisms of gene expression are vital, since they remain exposed to climatic and biological threats. Thus, they have to face hazards with instantaneous reorganization of their internal environment. For this purpose, besides the use of transcription factors, the participation of chromatin as an active factor in the regulation of transcription is crucial. Chemical changes in chromatin structure affect the accessibility of the transcriptional machinery and acting in signaling, engaging/inhibiting factors that participate in the transcription processes. Mechanisms in which gene expression undergoes changes without the occurrence of DNA gene mutations in the monomers that make up DNA, are understood as epigenetic phenomena. These include (1) post-translational modifications of histones, which results in stimulation or repression of gene activity and (2) cytosine methylation in the promoter region of individual genes, both preventing access of transcriptional activators as well as signaling the recruitment of repressors. There is evidence that such modifications can pass on to subsequent generations of daughter cells and even generations of individuals. However, reports indicate that they persist only in the presence of a stressor factor (or an inductor of the above-mentioned modifications). In its absence, these modifications weaken or lose heritability, being eliminated in the next few generations. In this review, it is argued how epigenetic signals influence gene regulation, the mechanisms involved and their participation in processes of resistance to biotic stresses, controlling processes of the plant immune system.

  9. Epigenetic memory for stress response and adaptation in plants.

    Science.gov (United States)

    Kinoshita, Tetsu; Seki, Motoaki

    2014-11-01

    In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants.

  10. Cortical reorganization after long-term adaptation to retinal lesions in humans.

    Science.gov (United States)

    Chung, Susana T L

    2013-11-13

    Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial-tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial-tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.

  11. Physical exercise and epigenetic adaptations of the cardiovascular system.

    Science.gov (United States)

    Zimmer, P; Bloch, W

    2015-05-01

    During the last decade, epigenetics became one of the fastest growing research fields in numerous clinical and basic science disciplines. Evidence suggests that chromatin modifications (e.g., histone modifications and DNA methylation) as well as the expression of micro-RNA molecules play a crucial role in the pathogenesis of several cardiovascular diseases. On the one hand, they are involved in the development of general risk factors like chronic inflammation, but on the other hand, epigenetic modifications are conducive to smooth muscle cell, cardiomyocyte, and endothelial progenitor cell proliferation/differentiation as well as to extracellular matrix processing and endothelial function (e.g., endothelial nitric oxide synthase regulation). Therefore, epigenetic medical drugs have gained increased attention and provided the first promising results in the context of cardiovascular malignancies. Beside other lifestyle factors, physical activity and sports essentially contribute to cardiovascular health and regeneration. In this review we focus on recent research proposing physical activity as a potent epigenetic regulator that has the potential to counteract pathophysiological alterations in almost all the aforementioned cardiovascular cells and tissues. As with epigenetic medical drugs, more knowledge about the molecular mechanisms and dose-response relationships of exercise is needed to optimize the outcome of preventive and rehabilitative exercise programs and recommendations.

  12. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction.

    Science.gov (United States)

    Barreiro, Esther; Sznajder, Jacob I

    2013-05-01

    Quadriceps muscle dysfunction occurs in one-third of patients with chronic obstructive pulmonary disease (COPD) in very early stages of their condition, even prior to the development of airway obstruction. Among several factors, deconditioning and muscle mass loss are the most relevant contributing factors leading to this dysfunction. Moreover, epigenetics, defined as the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence, could be involved in the susceptibility to muscle dysfunction, pathogenesis, and progression. Herein, we review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors such as immobilization and exercise, and their implications in the pathophysiology and susceptibility to muscle dysfunction in COPD. The epigenetic modifications identified so far include DNA methylation, histone acetylation and methylation, and non-coding RNAs such as microRNAs (miRNAs). In the present review, we describe the specific contribution of epigenetic mechanisms to the regulation of embryonic myogenesis, muscle structure and metabolism, immobilization, and exercise, and in muscles of COPD patients. Events related to muscle development and regeneration and the response to exercise and immobilization are tightly regulated by epigenetic mechanisms. These environmental factors play a key role in the outcome of muscle mass and function as well as in the susceptibility to muscle dysfunction in COPD. Future research remains to be done to shed light on the specific target pathways of miRNA function and other epigenetic mechanisms in the susceptibility, pathogenesis, and progression of COPD muscle dysfunction.

  13. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps.

    Directory of Open Access Journals (Sweden)

    Santiago Sandoval Motta

    Full Text Available Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1 intrinsic variability in the expression of the EPRN transcription factors; 2 epigenetic inheritance of the transcription rate of EPRN associated genes; and 3 energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics.

  14. Adaptive reorganization of 2D molecular nanoporous network induced by coadsorbed guest molecule.

    Science.gov (United States)

    Zheng, Qing-Na; Wang, Lei; Zhong, Yu-Wu; Liu, Xuan-He; Chen, Ting; Yan, Hui-Juan; Wang, Dong; Yao, Jian-Nian; Wan, Li-Jun

    2014-03-25

    The ordered array of nanovoids in nanoporous networks, such as honeycomb, Kagome, and square, provides a molecular template for the accommodation of "guest molecules". Compared with the commonly studied guest molecules featuring high symmetry evenly incorporated into the template, guest molecules featuring lower symmetry are rare to report. Herein, we report the formation of a distinct patterned superlattice of guest molecules by selective trapping of guest molecules into the honeycomb network of trimesic acid (TMA). Two distinct surface patterns have been achieved by the guest inclusion induced adaptive reconstruction of a 2D molecular nanoporous network. The honeycomb networks can synergetically tune the arrangement upon inclusion of the guest molecules with different core size but similar peripherals groups, resulting in a trihexagonal Kagome or triangular patterns.

  15. Ecological epigenetics.

    Science.gov (United States)

    Kilvitis, Holly J; Alvarez, Mariano; Foust, Christy M; Schrey, Aaron W; Robertson, Marta; Richards, Christina L

    2014-01-01

    Biologists have assumed that heritable variation due to DNA sequence differences (i.e., genetic variation) allows populations of organisms to be both robust and adaptable to extreme environmental conditions. Natural selection acts on the variation among different genotypes and ultimately changes the genetic composition of the population. While there is compelling evidence about the importance of genetic polymorphisms, evidence is accumulating that epigenetic mechanisms (e.g., chromatin modifications, DNA methylation) can affect ecologically important traits, even in the absence of genetic variation. In this chapter, we review this evidence and discuss the consequences of epigenetic variation in natural populations. We begin by defining the term epigenetics, providing a brief overview of various epigenetic mechanisms, and noting the potential importance of epigenetics in the study of ecology. We continue with a review of the ecological epigenetics literature to demonstrate what is currently known about the amount and distribution of epigenetic variation in natural populations. Then, we consider the various ecological contexts in which epigenetics has proven particularly insightful and discuss the potential evolutionary consequences of epigenetic variation. Finally, we conclude with suggestions for future directions of ecological epigenetics research.

  16. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Atack, John M; Srikhanta, Yogitha N; Fox, Kate L; Jurcisek, Joseph A; Brockman, Kenneth L; Clark, Tyson A; Boitano, Matthew; Power, Peter M; Jen, Freda E-C; McEwan, Alastair G; Grimmond, Sean M; Smith, Arnold L; Barenkamp, Stephen J; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P

    2015-07-28

    Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.

  17. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae

    Science.gov (United States)

    Atack, John M.; Srikhanta, Yogitha N.; Fox, Kate L.; Jurcisek, Joseph A.; Brockman, Kenneth L.; Clark, Tyson A.; Boitano, Matthew; Power, Peter M.; Jen, Freda E.-C.; McEwan, Alastair G.; Grimmond, Sean M.; Smith, Arnold L.; Barenkamp, Stephen J.; Korlach, Jonas; Bakaletz, Lauren O.; Jennings, Michael P.

    2015-01-01

    Non-typeable Haemophilus influenzae contains an N6-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system. PMID:26215614

  18. Schistosoma mansoni mucin gene (SmPoMuc expression: epigenetic control to shape adaptation to a new host.

    Directory of Open Access Journals (Sweden)

    Cecile Perrin

    Full Text Available The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C or incompatible (IC with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general.

  19. The epigenetic basis of adaptation and responses to environmental change: perspective on human reproduction.

    Science.gov (United States)

    Fernández, Agustín F; Toraño, Estela García; Urdinguio, Rocío González; Lana, Abel Gayo; Fernández, Ignacio Arnott; Fraga, Mario F

    2014-01-01

    Not only genetic but also epigenetic mechanisms regulate gene expression, cellular differentiation and development processes. Additionally, "environmental epigenetics" studies the interaction between the environment and the epigenome, and its potential role in the regulation of gene activity. Several studies have shown that the impact of environmental exposures on the epigenome takes on more importance during early fertilization and embryonic development, given that during these periods epigenetic reprogramming occurs and the new epigenetic profile of the offspring is established. Epigenetic alterations in the germline are especially relevant since they can be transmitted trans-generationally and could be associated with a wide range of diseases including several reproductive disorders. In this chapter we review some epigenetic mechanisms, focusing mainly on DNA methylation and histone modifications, which are related to reproductive aspects, and we discuss the controversies in the literature surrounding how environmental conditions, such as exposure to toxic substances or treatment with assisted reproductive techniques (ART), may be involved in epigenetic alterations that affect reproductive success.

  20. ISSUES IN ROMANIAN BANKING SYSTEM IN THE CONTEXT OF REORGANIZING ITS ADAPTATION TO THE REQUIREMENTS OF THE MARKET ECONOMY

    Directory of Open Access Journals (Sweden)

    IOAN DUMITRU MOTONIU

    2011-01-01

    Full Text Available Based on the concept that the banking system is the engine of economic development, the paper is intended as a blueprint for the banking system in Romania since 1989, stages and parts of its reorganizing process. In the article is also carried out an analysis of the Romanian banking system in terms of numerical development banks and through the two indicators considered fundamental in the banking system: market share, expressed in terms of net balance sheet asset, that social / endowment capital and are presented the conclusions that have been drawn from this analysis.

  1. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions.

    Science.gov (United States)

    González, Rodrigo M; Ricardi, Martiniano M; Iusem, Norberto D

    2013-08-01

    Tolerance to water deficits was evolutionarily relevant to the conquest of land by primitive plants. In this context, epigenetic events may have played important roles in the establishment of drought stress responses. We decided to inspect epigenetic marks in the plant organ that is crucial in the sensing of drought stress: the root. Using tomato as a crop model plant, we detected the methylated epialleles of Asr2, a protein-coding gene widespread in the plant kingdom and thought to alleviate restricted water availability. We found 3 contexts (CG, CNG, and CNN) of methylated cytosines in the regulatory region of Solanum lycopersicum Asr2 but only one context (CG) in the gene body. To test the hypothesis of a link between epigenetics marks and the adaptation of plants to drought, we explored the cytosine methylation status of Asr2 in the root resulting from water-deficit stress conditions. We found that a brief exposure to simulated drought conditions caused the removal of methyl marks in the regulatory region at 77 of the 142 CNN sites. In addition, the study of histone modifications around this model gene in the roots revealed that the distal regulatory region was rich in H3K27me3 but that its abundance did not change as a consequence of stress. Additionally, under normal conditions, both the regulatory and coding regions contained the typically repressive H3K9me2 mark, which was lost after 30 min of water deprivation. As analogously conjectured for the paralogous gene Asr1, rapidly acquired new Asr2 epialleles in somatic cells due to desiccation might be stable enough and heritable through the germ line across generations, thereby efficiently contributing to constitutive, adaptive gene expression during the evolution of desiccation-tolerant populations or species.

  2. Molecular Mechanisms of Processing Proteome Reorganization of Interphase Chromatin During Stress and Adaptation to Winter in Wheat

    Directory of Open Access Journals (Sweden)

    Ivanov R.S.

    2015-06-01

    Full Text Available Research of fundamental molecular and genetic processes of plant interaction with the environment, is a progressive field of understanding the fundamental problems of stress supramolecular biochemistry of developmental biology. The purpose of the work was the analysis of localization shielded to protease processing proteins of suprastructures of interphase chromatin matrix in the conditions of adaptation during vegetative phase of wheat to stressful environment factors. It is shown that in the conditions of perennial adaptation to cold shock of wheat at the level of chromatin suprastructures tightly bound to the nuclear matrix there is a total shielding of arginine-X sites to protease-processing. Perhaps these are zones that affect to the architecture organization of the cell nucleus that can help to survive in complex environmental conditions. According to the priorities in the study of agricultural plants, put forward by EPIC (The Epigenomics of Plants International Consortium in 2011 for the next decade, was included the point of necessity to understand the molecular basis of the interactions of genotype and environment that change the characteristics of plants in different conditions of the environment. These data will be useful for those who involved in the development of mathematical logic schemes of the theory and practice of biological specificity, and it could be included in the ontology of the stages plant growth and development.

  3. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change.

    Science.gov (United States)

    Casey, Theresa; Patel, Osman V; Plaut, Karen

    2015-04-01

    Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.

  4. Epigenetics in adaptive evolution and development: the interplay between evolving species and epigenetic mechanisms: extract from Trygve Tollefsbol (ed.) (2011) Handbook of epigenetics--the new molecular and medical genetics. Chapter 26. Amsterdam, USA: Elsevier, pp. 423-446.

    Science.gov (United States)

    House, Simon H

    2013-04-01

    By comparing epigenetics of current species with fossil records across evolutionary transitions, we can gauge the moment of emergence of some novel mechanisms in evolution, and recognize that epigenetic mechanisms have a bearing on mutation. Understanding the complexity and changeability of these mechanisms, as well as the changes they can effect, is both fascinating and of vital practical benefit. Our most serious pandemics of so-called 'non-communicable' diseases - mental and cardiovascular disorders, obesity and diabetes, rooted in the 'metabolic syndrome' - are evidently related to effects on our evolutionary mechanisms of agricultural and food industrialization, modern lifestyle and diet. Pollution affects us directly as well as indirectly by its destruction of ecologically essential biosystems. Evidently such powerful conditions of existence have epigenetic effects on both our health and our continuing evolution. Such effects are most profound during reproductive and developmental processes, when levels of hormones, as affected by stress particularly, may be due to modern cultures in childbearing such as excessive intervention, separation, maternal distress and disruption of bonding. Mechanisms of genomic imprinting seem likely to throw light on problems in assisted reproductive technology, among other transgenerational effects.

  5. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive tran

  6. Epigenetics in an ecotoxicological context.

    Science.gov (United States)

    Vandegehuchte, Michiel B; Janssen, Colin R

    2014-04-01

    Epigenetics can play a role in interactions between chemicals and exposed species, between species and abiotic ecosystem components or between species of the same or another population in a community. Technological progress and advanced insights into epigenetic processes have led to the description of epigenetic features (mainly DNA methylation) in many ecologically relevant species: algae, plants, several invertebrates and fish. Epigenetic changes in plants, insects and cladocerans have been reported to be induced by various environmental stress factors including nutrition or water deficiency, grazing, light or temperature alterations, social environment, and dissolved organic matter concentrations. As regards chemicals, studies in rats and mice exposed to specific pesticides, hydrocarbons, dioxins, and endocrine disrupting chemicals demonstrated the induction of epigenetic changes, suggesting the need for further research with these substances in an ecotoxicological context. In fish and plants, exposure to polyaromatic hydrocarbons, metals, and soluble fractions of solid waste affected the epigenetic status. A novel concept in ecotoxicological epigenetics is the induction of transgenerational stress resistance upon chemical exposure, as demonstrated in rice exposed to metals. Evaluating epigenetics in ecotoxicological field studies is a second relatively new approach. A cryptic lineage of earthworms had developed arsenic tolerance in the field, concurrent with specific DNA methylation patterns. Flatfish caught in the framework of environmental monitoring had developed tumours, exhibiting specific DNA methylation patterns. Two main potential implications of epigenetics in an ecotoxicological context are (1) the possibility of transgenerationally inherited, chemical stress-induced epigenetic changes with associated phenotypes and (2) epigenetically induced adaptation to stress upon long-term chemical exposure. Key knowledge gaps are concerned with the causality of

  7. Nutritional epigenetics

    Science.gov (United States)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  8. Epigenetic variation in asexually reproducing organisms

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Preite, V.

    2014-01-01

    The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual re

  9. Behavioral epigenetics

    OpenAIRE

    Lester, Barry M.; Tronick, Edward; Nestler, Eric; Abel, Ted; Kosofsky, Barry; Kuzawa, Christopher W.; Marsit, Carmen J; Maze, Ian; Meaney, Michael J.; Monteggia, Lisa M.; Reul, Johannes M. H. M.; Skuse, David H.; Sweatt, J. David; Wood, Marcelo A.

    2011-01-01

    Sponsored by the New York Academy of Sciences, the Warren Alpert Medical School of Brown University and the University of Massachusetts Boston, “Behavioral Epigenetics” was held on October 29–30, 2010 at the University of Massachusetts Boston Campus Center, Boston, Massachusetts. This meeting featured speakers and panel discussions exploring the emerging field of behavioral epigenetics, from basic biochemical and cellular mechanisms to the epigenetic modulation of normative development, devel...

  10. The Reorganization Law in Poland

    Directory of Open Access Journals (Sweden)

    Rafał ADAMUS

    2012-03-01

    Full Text Available The aim of this paper is to present general remarks of the legal structure of the Polish reorganization law. This is a completely new institution in Poland. The Act of 28 February 2003 the Bankruptcy and Reorganization Law (J.L. No 60, item 535 as amended, the articles 492 - 521 b.r.l. is the main source of law in the commented matter. The idea of the Polish regulation derives from the Chapter 11 of the Bankruptcy Code of the United States. The statistics of the usage of the reorganization proceedings in Poland are not very impressive. In this respect some critics maintain that the legislative experiment called “reorganization proceedings” is unsuccessful. Nevertheless the Reorganization Law is a very important figure in the Polish commercial law. Reorganization proceedings seriously differ from bankruptcy proceedings

  11. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation.

    Science.gov (United States)

    Sharples, Adam P; Polydorou, Ioanna; Hughes, David C; Owens, Daniel J; Hughes, Thomas M; Stewart, Claire E

    2016-06-01

    Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that

  12. Epigenetics and child abuse: Modern-day Darwinism--The miraculous ability of the human genome to adapt, and then adapt again.

    Science.gov (United States)

    Gershon, Naomi B; High, Pamela C

    2015-12-01

    It has long been recognized that early adversity can have life-long consequences, and the extent to which this is true is gaining increasing attention. A growing body of literature implicates Adverse Childhood Experiences, including physical, sexual, and emotional abuse, in a broad range of negative health consequences including adult psychopathology, cardiovascular, and immune disease. Increasing evidence from animal, clinical, and epidemiological studies highlight the critical role of epigenetic programing, such as DNA methylation and histone modification, in altering gene expression, brain structure and function, and ultimately life-course trajectories. This review outlines our developing insight into the interplay between our human biology and our changing environment, and explores the growing evidence base for how interventions may prevent and ameliorate damage inflicted by toxic stress in early life.

  13. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection.

    Science.gov (United States)

    Kroetz, Danielle N; Allen, Ronald M; Schaller, Matthew A; Cavallaro, Cleyton; Ito, Toshihiro; Kunkel, Steven L

    2015-12-01

    Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the

  14. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection.

    Directory of Open Access Journals (Sweden)

    Danielle N Kroetz

    2015-12-01

    Full Text Available Influenza A virus (IAV is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and

  15. Epigenetics and nutritional environmental signals.

    Science.gov (United States)

    Mazzio, Elizabeth A; Soliman, Karam F A

    2014-07-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.

  16. Adaptive Reorganization of German Special Operations Forces

    Science.gov (United States)

    2013-12-01

    of major uprisings in Rwanda in 1994, rebels took eleven German hostages. Despite the existence of GSG9 and specially-trained military units like... Congo in 2006, operations in Syria or Libya and a hostage rescue operation somewhere else. 38. Ibid...Special Operations Forces (the Army’s KSK) were founded in 1996 after the events in Rwanda 1994. In 2005, Navy’s Kampfschwimmer also achieved the

  17. Egypt/FOF reorganize.

    Science.gov (United States)

    1984-01-01

    In Egypt, both the national family planning program and the privately operated social marketing program, Family of the Future (FOF), are currently being reorganized. The Population and Family Planning Board, orginally charged with the responsibility of overseeing the national family planning program, was replaced by the newly created National Council. The reasons for the change and the type of program changes which will ensue from this organizational change are unclear. The FOF recently adopted a new management organizational structure, implemented a computerized management and information system, and initiated a staff training program. The management of the program's product line is now divided into 3 sections. There are separate sections for IUDs, barrier methods, and hormonal methods. Each section is responsible for developing a marketing plan for its products and overseeing the distribution of its products. The management staff is now provided with management skills training. To date, 9 managers have received training in management techniques in the US at George Washington University. Personal computers are being installed at the FOF office in Cairo. The system will be used to keep tract of inventory, volunteer activities, and product distribution and to handle accounting procedures. These innovations are expected to facilitate the handling of planned changes in FOF's product line. FOF will begin selling surgical gloves, as a supplemental item for its currently marketed IUD kit, and pregnancy testing kits for use by physicians and hospitals. Other anticipated introductions include Depo Provera, an injectable contraceptive, the new Ortho vaginal tablet which will replace the currently marketed Annan vaginal tablet, and possibly, the implant contraceptive, Norplant. Triton is currently under contract with the US Agency for International Development to provide technical assistance for the FOF program. This contract is due to expire in December, 1984, and a

  18. Transgenerational epigenetic inheritance in plants.

    Science.gov (United States)

    Hauser, Marie-Theres; Aufsatz, Werner; Jonak, Claudia; Luschnig, Christian

    2011-08-01

    Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".

  19. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Patrick Bateson

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  20. Epigenetics and the evolution of virulence.

    Science.gov (United States)

    Kasuga, Takao; Gijzen, Mark

    2013-11-01

    A feature of pathogenic and invasive organisms is their adaptability when confronted with host and environmental challenges. Recent studies have demonstrated that plant pathogens rely on epigenetic processes for this purpose. Epiallelic variation of effector genes that results in evasion of host immunity is one emerging phenomenon. Another is the epigenetically induced reprogramming and diversification of transcriptional patterns by de-repression of transposable elements. These observations indicate that epigenetic control of gene expression provides a versatile means of generating phenotypic diversity that is adaptable and heritable across generations.

  1. Epigenetic Inheritance Across the Landscape

    Directory of Open Access Journals (Sweden)

    Amy Vaughn Whipple

    2016-10-01

    Full Text Available The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  2. Epigenetics protocols

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-06-01

    Full Text Available Thanks to the creative effort of Prof. Trygve O. Tollefsbol (Dept. of Biology, University of Alabama at Birmingham, USA we can handle the second edition in just seven years of this must needed volume devoted to the study of the epigenome. In the very same window-time the field of epigenetics is dramatically changed as for the technical tools employed by the pupils of this pervasive discipline: actually there is no one hot topics in biology (e.g., development, differentiation, genomic toxicity and medicine .....

  3. RNA epigenetics

    OpenAIRE

    Liu, Nian; Pan, Tao

    2014-01-01

    Mammalian messenger and long non-coding RNA contain tens of thousands of post-transcriptional chemical modifications. Among these, the N6-methyl-adenosine (m6A) modification is the most abundant and can be removed by specific mammalian enzymes. M6A modification is recognized by families of RNA binding proteins that affect many aspects of mRNA function. mRNA/lncRNA modification represents another layer of epigenetic regulation of gene expression, analogous to DNA methylation and histone modifi...

  4. How might epigenetics contribute to ecological speciation?

    Directory of Open Access Journals (Sweden)

    Gilbert SMITH, Michael G. RITCHIE

    2013-10-01

    Full Text Available Speciation research has seen a renewed interest in ecological speciation, which emphasises divergent ecological selection leading to the evolution of reproductive isolation. Selection from divergent ecologies means that phenotypic plasticity can play an important role in ecological speciation. Phenotypic plasticity involves the induction of phenotypes over the lifetime of an organism and emerging evidence suggests that epigenetic marks such as cytosine and protein (histone modifications might regulate such environmental induction. Epigenetic marks play a wide role in a variety of processes including development, sex differentiation and allocation, sexual conflict, regulation of transposable elements and phenotypic plasticity. Here we describe recent studies that investigate epigenetic mechanisms in a variety of contexts. There is mounting evidence for environmentally induced epigenetic variation and for the stable inheritance of epigenetic marks between generations. Thus, epigenetically-based phenotypic plasticity may play a role in adaptation and ecological speciation. However, there is less evidence for the inheritance of induced epigenetic variation across multiple generations in animals. Currently few studies of ecological speciation incorporate the potential for the involvement of epigenetically-based induction of phenotypes, and we argue that this is an important omission [Current Zoology 59 (5: 686-696, 2013 ].

  5. Epigenetic inheritance and plasticity: The responsive germline.

    Science.gov (United States)

    Jablonka, Eva

    2013-04-01

    Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that "priming" and "epigenetic learning" may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.

  6. Epigenetic Regulation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Qidong eHu

    2012-11-01

    Full Text Available Recently, there has been tremendous progress in characterizing the transcriptional network regulating hESCs (MacArthur et al., 2009; Loh et al., 2011, including those signaling events mediated by Oct4, Nanog and Sox2. There is growing interest in the epigenetic machinery involved in hESC self-renewal and differentiation. In general, epigenetic regulation includeschromatin reorganization, DNA modification and histone modification, which are not directly related to alterations in DNA sequences. Various protein complexes, includingPolycomb, trithorax, NuRD, SWI/SNF andOct4, have been shown to play critical roles in epigenetic control of hESC maintenance and differentiation. Hence, we will formally review recent advances in unraveling the multifaceted role of epigenetic regulation in hESC self-renewal and induced differentiation, particularly with respect to chromatin remodeling and DNA methylation events. Unraveling the molecular mechanisms underlying the maintenance/differentiation of hESCs and reprogramming of somatic cells will greatly strengthen our capacity to generate various types of cells to treat human diseases.

  7. Genetic and epigenetic changes in malignant cells of tumors of urogenital organs

    Directory of Open Access Journals (Sweden)

    Gordiyuk V. V.

    2010-11-01

    Full Text Available More than 90 % of human malignant neoplasms are presented by epithelial tumors. Cancer of urogenital organs is a serious problem because of wide spread of disease and high mortality rates. Tumorogenesis is associated with different defects of genetic apparatus of cells as well as epigenetic factors (DNA methylation disorders, chromatin reorganizations in processes of histones modifications, regulation of gene expression with small non-coding RNAs. In this review we analyzed genetic and epigenetic changes in the urogenital tumors

  8. Development, epigenetics and metabolic programming

    Science.gov (United States)

    Godfrey, Keith M; Costello, Paula; Lillycrop, Karen

    2016-01-01

    It is now widely recognised that the environment in early life can have important effects on human growth and development, including the “programming” of far reaching effects on the risk of developing common metabolic and other non-communicable diseases in later life. We have shown that greater childhood adiposity is associated with higher maternal adiposity, low maternal vitamin D status, excessive gestational weight gain, and short duration of breastfeeding; maternal dietary patterns in pregnancy and vitamin D status have been linked with childhood bone mineral content and muscle function. Human studies have identified fetal liver blood flow adaptations and epigenetic changes as potential mechanisms that could link maternal influences with offspring body composition. In experimental studies there is now substantial evidence that the environment during early life induces altered phenotypes through epigenetic mechanisms. Epigenetic processes such as DNA methylation, covalent modifications of histones and non-coding RNAs can induce changes in gene expression without a change in DNA base sequence. Such processes are involved in cell differentiation and genomic imprinting, as well as the phenomenon of developmental plasticity in response to environmental influences. Elucidation of such epigenetic processes may enable early intervention strategies to improve early development and growth. PMID:27088334

  9. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae.

    Directory of Open Access Journals (Sweden)

    Carlos M Herrera

    Full Text Available Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP technique to paired plant-pollen (i.e., sporophyte-male gametophyte DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae. Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ~75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations.

  10. Epigenetic memory in plants.

    Science.gov (United States)

    Iwasaki, Mayumi; Paszkowski, Jerzy

    2014-09-17

    Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms.

  11. Plant Transgenerational Epigenetics

    OpenAIRE

    Quadrana, Leandro; Colot, Vincent

    2016-01-01

    International audience; Transgenerational epigenetics is defined in opposition to developmental epi-genetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about trans-generational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the cr...

  12. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  13. Epigenetic drift, epigenetic clocks and cancer risk.

    Science.gov (United States)

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.

  14. Stemming epigenetics in marine stramenopiles.

    Science.gov (United States)

    Maumus, Florian; Rabinowicz, Pablo; Bowler, Chris; Rivarola, Maximo

    2011-08-01

    Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ago (mya), as well as the one of a brown algae that diverged from diatoms ~250 Mya, provide a great system of related, yet diverged set of organisms to compare epigenetic marks and their relationships. For example, putative DNA methyltransferase homologues were found in diatoms while none could be identified in the brown algal genome. On the other hand, no canonical DICER-like protein was found in diatoms in contrast to what is observed in brown algae. A key interest relies in understanding the adaptive nature of epigenetics and its inheritability. In contrast to yeast that lack DNA methylation, homogeneous cultures of diatoms constitute an attractive system to study epigenetic changes in response to environmental conditions such as nutrient-rich to nutrient-poor transitions which is especially relevant because of their ecological importance. P. tricornutum is also of outstanding interest because it is observed as three different morphotypes and thus constitutes a simple and promising model for the study of the epigenetic phenomena that accompany cellular differentiation. In this review we focus on the insights obtained from MAS comparative genomics and epigenomic analyses.

  15. Epigenetics: ambiguities and implications.

    Science.gov (United States)

    Stotz, Karola; Griffiths, Paul

    2016-12-01

    Everyone has heard of 'epigenetics', but the term means different things to different researchers. Four important contemporary meanings are outlined in this paper. Epigenetics in its various senses has implications for development, heredity, and evolution, and also for medicine. Concerning development, it cements the vision of a reactive genome strongly coupled to its environment. Concerning heredity, both narrowly epigenetic and broader 'exogenetic' systems of inheritance play important roles in the construction of phenotypes. A thoroughly epigenetic model of development and evolution was Waddington's aim when he introduced the term 'epigenetics' in the 1940s, but it has taken the modern development of molecular epigenetics to realize this aim. In the final sections of the paper we briefly outline some further implications of epigenetics for medicine and for the nature/nurture debate.

  16. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  17. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Mark F. Mehler

    2011-09-01

    Full Text Available Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs, which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  18. Firm Reorganization : Social Control or Social Contract?

    NARCIS (Netherlands)

    Aalbers, Hendrik Leendert; Dolfsma, Wilfred; Blinde-Leerentveld, Rowan

    2014-01-01

    Firm reorganizations deeply affect employees. Management can reorganize in different ways, focusing on costs or acknowledging the involvement of employees. The latter implies following a social contract that complements incomplete (formal) labor contracts. Little is known about how the way in which

  19. Firm Reorganization: Social Control or Social Contract

    NARCIS (Netherlands)

    Aalbers, H.L.; Dolfsma, W.A.; Blinde-Leerentveld, R.

    2014-01-01

    Firm reorganizations deeply affect employees. Management can reorganize in different ways, focusing on costs or acknowledging the involvement of employees. The latter implies following a social contract that complements incomplete (formal) labor contracts. Little is known about how the way in which

  20. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  1. Massive cortical reorganization in sighted Braille readers.

    Science.gov (United States)

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  2. [Early attachement relationships and epigenetic customization].

    Science.gov (United States)

    Rocchi, Giordana; Serio, Valentina; Carluccio, Giuseppe Mattia; Marini, Isabella; Meuti, Valentina; Zaccagni, Michela; Giacchetti, Nicoletta; Aceti, Franca

    2015-01-01

    Recently, new findings in epigenetic science switched the focus from the observation of physiological intragenomic dynamics to the idea of an environmental co-construction of phenotypic expression. In psichodynamic field, objectual relations and attachement theoreticians emphasized the interpersonal dimension of individual development, focusing the attention on the relational matrix of self organization. The construction of stable affective-behavioral traits throughout different parenting styles has actually found a coincidence in ethological studies, which have explored the epigenetic processes underlying the relationship between caregiving and HPA stress responsiveness. An adequate parenting style seems to support affective regulation throughout psychobiological hidden moderators, which would tend to rebalance the physiological systems homeostasis; an unconfident attachment style would promote, on the other hand, the allostatic load rise. Sites of longlife epigenetic susceptibility have also been identified in humans; although associated with risk of maladaptive developing in adverse environmental conditions, they seem to confer protection under favorable conditions. This persisting possibility of reorganization of stable traits throughout lifetime, which seems to be activated by a relevant environmental input, grant to significant relationships, and to therapeutical one as well, an implicit reconditioning potential which could result into the configuration of new stable affective-behavioral styles.

  3. Porous silicon reorganization: Influence on the structure, surface roughness and strain

    Science.gov (United States)

    Milenkovic, N.; Drießen, M.; Weiss, C.; Janz, S.

    2015-12-01

    Porous silicon and epitaxial thickening is a lift-off approach for silicon foil fabrication to avoid kerf losses and produce foils with thicknesses less than 50 μm. The crystal quality of the epitaxial silicon film strongly depends on the porous silicon template, which can be adapted through a reorganization process prior to epitaxy. In this work, we investigated the influence of reorganization on the structure of etched porous silicon layers. The reorganization processes were carried out in a quasi-inline Atmospheric Pressure Chemical Vapor Deposition reactor. Variations on the temperatures and process durations for the reorganization step were examined. The cross-sections showed that porous silicon requires temperatures of approximately 1150 °C to produce an excellent template for epitaxy. Atomic Force Microscopy measurements on the samples annealed at different temperatures showed the evolution of the pores from as-etched to a closed surface. These measurements confirm that the surface is not yet closed after 30 min of reorganization at 1000 °C. Different durations of the reorganization step at a fixed temperature of 1150 °C all lead to a closed surface with a comparable roughness of less than 0.5 nm. X-ray diffraction measurements show a change in the strain in the porous layer from tensile to compressive when the reorganization temperature is increased from 800 °C to 1150 °C. A longer reorganization at a fixed temperature of 1150 °C leads to a reduction in the strain without reducing the quality of the surface roughness. Defect density measurements on silicon layers deposited on those templates confirm an improvement of the template for longer reorganization times. This study shows that our porous silicon templates achieve lower surface roughness and strain values than those reported in other publications.

  4. Dynamic epigenetic responses to muscle contraction

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Zierath, Juleen R; Barrès, Romain

    2014-01-01

    Skeletal muscle is a malleable organ that responds to a single acute exercise bout by inducing the expression of genes involved in structural, metabolic and functional adaptations. Several epigenetic mechanisms including histone H4 deacetylation and loss of promoter methylation have been implicated...

  5. Progress in mitochondrial epigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  6. Epigenetics and primary care.

    Science.gov (United States)

    Wright, Robert; Saul, Robert A

    2013-12-01

    Epigenetics, the study of functionally relevant chemical modifications to DNA that do not involve a change in the DNA nucleotide sequence, is at the interface between research and clinical medicine. Research on epigenetic marks, which regulate gene expression independently of the underlying genetic code, has dramatically changed our understanding of the interplay between genes and the environment. This interplay alters human biology and developmental trajectories, and can lead to programmed human disease years after the environmental exposure. In addition, epigenetic marks are potentially heritable. In this article, we discuss the underlying concepts of epigenetics and address its current and potential applicability for primary care providers.

  7. Epigenetic mechanisms and gastrointestinal development

    Science.gov (United States)

    This review considers the hypothesis that nutrition during infancy affects developmental epigenetics in the gut, causing metabolic imprinting of gastrointestinal (GI) structure and function. Fundamentals of epigenetic gene regulation are reviewed, with an emphasis on the epigenetic mechanism of DNA ...

  8. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  9. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  10. Obesity: epigenetic aspects.

    Science.gov (United States)

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  11. Farthest First Clustering in Links Reorganization

    Directory of Open Access Journals (Sweden)

    Deepshree A. Vadeyar

    2014-07-01

    Full Text Available Website can be easily design but to efficient user navigation is not a easy task since user behavior is keep changing and developer view is quite different from what user wants, so to improve navigation one way is reorganization of website structure. For reorganization here proposed strategy is farthest first traversal clustering algorithm perform clustering on two numeric parameters and for finding frequent traversal path of user Apriori algorithm is used. Our aim is to perform reorganization with fewer changes in website structure.

  12. Epigenetic learning in non-neural organisms.

    Science.gov (United States)

    Ginsburg, Simona; Jablonka, Eva

    2009-10-01

    Learning involves a usually adaptive response to an input (an external stimulus or the organism's own behaviour) in which the input-response relation is memorized; some physical traces of the relation persist and can later be the basis of a more effective response. Using toy models we show that this characterization applies not only to the paradigmatic case of neural learning, but also to cellular responses that are based on epigenetic mechanisms of cell memory. The models suggest that the research agenda of epigenetics needs to be expanded.

  13. Epigenetic learning in non-neural organisms

    Indian Academy of Sciences (India)

    Simona Ginsburg; Eva Jablonka

    2009-10-01

    Learning involves a usually adaptive response to an input (an external stimulus or the organism’s own behaviour) in which the input-response relation is memorized; some physical traces of the relation persist and can later be the basis of a more effective response. Using toy models we show that this characterization applies not only to the paradigmatic case of neural learning, but also to cellular responses that are based on epigenetic mechanisms of cell memory. The models suggest that the research agenda of epigenetics needs to be expanded.

  14. Epigenetics and bacterial infections.

    Science.gov (United States)

    Bierne, Hélène; Hamon, Mélanie; Cossart, Pascale

    2012-12-01

    Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or orchestrate cellular responses to external stimuli. Recent studies highlight that bacteria can affect the chromatin structure and transcriptional program of host cells by influencing diverse epigenetic factors (i.e., histone modifications, DNA methylation, chromatin-associated complexes, noncoding RNAs, and RNA splicing factors). In this article, we first review the molecular bases of the epigenetic language and then describe the current state of research regarding how bacteria can alter epigenetic marks and machineries. Bacterial-induced epigenetic deregulations may affect host cell function either to promote host defense or to allow pathogen persistence. Thus, pathogenic bacteria can be considered as potential epimutagens able to reshape the epigenome. Their effects might generate specific, long-lasting imprints on host cells, leading to a memory of infection that influences immunity and might be at the origin of unexplained diseases.

  15. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is e......Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  16. PDGF induces reorganization of vimentin filaments.

    Science.gov (United States)

    Valgeirsdóttir, S; Claesson-Welsh, L; Bongcam-Rudloff, E; Hellman, U; Westermark, B; Heldin, C H

    1998-07-30

    In this study we demonstrate that stimulation with platelet-derived growth factor (PDGF) leads to a marked reorganization of the vimentin filaments in porcine aortic endothelial (PAE) cells ectopically expressing the PDGF beta-receptor. Within 20 minutes after stimulation, the well-spread fine fibrillar vimentin was reorganized as the filaments aggregated into a dense coil around the nucleus. The solubility of vimentin upon Nonidet-P40-extraction of cells decreased considerably after PDGF stimulation, indicating that PDGF caused a redistribution of vimentin to a less soluble compartment. In addition, an increased tyrosine phosphorylation of vimentin was observed. The redistribution of vimentin was not a direct consequence of its tyrosine phosphorylation, since treatment of cells with an inhibitor for the cytoplasmic tyrosine kinase Src, attenuated phosphorylation but not redistribution of vimentin. These changes in the distribution of vimentin occurred in conjunction with reorganization of actin filaments. In PAE cells expressing a Y740/751F mutant receptor that is unable to bind and activate phosphatidylinositol 3'-kinase (PI3-kinase), the distribution of vimentin was virtually unaffected by PDGF stimulation. Thus, PI3-kinase is important for vimentin reorganization, in addition to its previously demonstrated role in actin reorganization. The small GTPase Rac has previously been shown to be involved downstream of PI3-kinase in the reorganization of actin filaments. In PAE cells overexpressing dominant negative Rac1 (N17Rac1), no change in the fine fibrillar vimentin network was seen after PDGF-BB stimulation, whereas in PAE cells overexpressing constitutively active Rac1 (V12Rac1), there was a dramatic change in vimentin filament organization independent of PDGF stimulation. These data indicate that PDGF causes a reorganization of microfilaments as well as intermediate filaments in its target cells and suggest an important role for Rac downstream of PI3-kinase in

  17. Epigenetics and the evolution of Darwin's Finches.

    Science.gov (United States)

    Skinner, Michael K; Gurerrero-Bosagna, Carlos; Haque, M Muksitul; Nilsson, Eric E; Koop, Jennifer A H; Knutie, Sarah A; Clayton, Dale H

    2014-07-24

    The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin's finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin's finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin's finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these

  18. Chromatin resetting mechanisms preventing trangenerational inheritance of epigenetic states

    Directory of Open Access Journals (Sweden)

    Mayumi eIwasaki

    2015-05-01

    Full Text Available Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.

  19. Models of epigenetics

    DEFF Research Database (Denmark)

    Alsing, Anne

    genomic material can show quiet diverse phenotypes characterized by organ speci c gene expression patterns. The mechanisms responsible for this phenotypic plasticity are characterized as epigenetic, as they in ict their e ect \\epi-" (Greek for \\above" or \\on top") of the genetic code. For a gene...... regulatory mechanism to be classi ed as epigenetic, it is required that it is self-sustainable in the sense that the governed gene expression or repression should prevail for the lifetime of the cell and must be inherited by possible daughter cells. An example of epigenetic di erentiation is the bistable...

  20. Epigenetic Drugs for Multiple Sclerosis

    OpenAIRE

    Peedicayil, Jacob

    2016-01-01

    There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the development of multiple sclerosis (MS). Advances in epigenetics have given rise to a new class of drugs, epigenetic drugs. Although many classes of epigenetic drugs are being investigated, at present most attention is being paid to two classes of epigenetic drugs: drugs that inhibit DNA methyltransferase (DNMTi) and drugs that inhibit histone deacetylase (HDACi). This paper discusses ...

  1. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  2. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  3. Epigenetics of Aging

    Science.gov (United States)

    Sierra, Marta I.; Fernández, Agustín F.; Fraga, Mario F.

    2015-01-01

    The best-known phenomenon exemplifying epigenetic drift (the alteration of epigenetic patterns during aging) is the gradual decrease of global DNA methylation. Aging cells, different tissue types, as well as a variety of human diseases possess their own distinct DNA methylation profiles, although the functional impact of these is not always clear. DNA methylation appears to be a dynamic tool of transcriptional regulation, with an extra layer of complexity due to the recent discovery of the conversion of 5-methylcytosine into 5-hydroxymethylcytosine. This age-related DNA demethylation is associated with changes in histone modification patterns and, furthermore, we now know that ncRNAs have evolved in eukaryotes as epigenetic regulators of gene expression. In this review, we will discuss current knowledge on how all these epigenetic phenomena are implicated in human aging, and their links with external, internal and stochastic factors which can affect human age-related diseases onset. PMID:27019618

  4. Epigenetics and obesity.

    Science.gov (United States)

    Campión, Javier; Milagro, Fermin; Martínez, J Alfredo

    2010-01-01

    The etiology of obesity is multifactorial, involving complex interactions among the genetic makeup, neuroendocrine status, fetal programming, and different unhealthy environmental factors, such as sedentarism or inadequate dietary habits. Among the different mechanisms causing obesity, epigenetics, defined as the study of heritable changes in gene expression that occur without a change in the DNA sequence, has emerged as a very important determinant. Experimental evidence concerning dietary factors influencing obesity development through epigenetic mechanisms has been described. Thus, identification of those individuals who present with changes in DNA methylation profiles, certain histone modifications, or other epigenetically related processes could help to predict their susceptibility to gain or lose weight. Indeed, research concerning epigenetic mechanisms affecting weight homeostasis may play a role in the prevention of excessive fat deposition, the prediction of the most appropriate weight reduction plan, and the implementation of newer therapeutic approaches.

  5. Epigenetics: SUPERMAN dresses up.

    Science.gov (United States)

    Lachner, Monika

    2002-06-25

    DNA and histone methylation have been implicated in epigenetic gene regulation. Recent studies in Neurospora and now Arabidopsis indicate that histone methylation can direct DNA methylation, suggesting that these two methylation systems have been functionally linked during evolution.

  6. Epigenetics of asthma.

    Science.gov (United States)

    Durham, Andrew L; Wiegman, Coen; Adcock, Ian M

    2011-11-01

    Asthma is caused by both heritable and environmental factors. It has become clear that genetic studies do not adequately explain the heritability and susceptibility to asthma. The study of epigenetics, heritable non-coding changes to DNA may help to explain the heritable component of asthma. Additionally, epigenetic modifications can be influenced by the environment, including pollution and cigarette smoking, which are known asthma risk factors. These environmental trigger-induced epigenetic changes may be involved in skewing the immune system towards a Th2 phenotype following in utero exposure and thereby enhancing the risk of asthma. Alternatively, they may directly or indirectly modulate the immune and inflammatory processes in asthmatics via effects on treatment responsiveness. The study of epigenetics may therefore play an important role in our understanding and possible treatment of asthma and other allergic diseases. This article is part of a Special Issue entitled: Biochemistry of Asthma.

  7. Transgenerational Radiation Epigenetics

    Science.gov (United States)

    2014-11-01

    showed altered expression in normal lung from F3 mice. Thus, traces of the effects of a single dose of radiation during development persist into...radiation showed a loss of global cytosine methylation in DNA from thymus , implicating profound epigenetic dysregulation (Tawa et al., 1998; Pogribny...for the carcinogenic and transgenerational effects of radiation. It is also anticipated that these epigenetic signatures will be developed as

  8. Epigenetic epidemiology of cancer.

    Science.gov (United States)

    Barrow, Timothy M; Michels, Karin B

    2014-12-05

    Epigenetic epidemiology includes the study of variation in epigenetic traits and the risk of disease in populations. Its application to the field of cancer has provided insight into how lifestyle and environmental factors influence the epigenome and how epigenetic events may be involved in carcinogenesis. Furthermore, it has the potential to bring benefit to patients through the identification of diagnostic markers that enable the early detection of disease and prognostic markers that can inform upon appropriate treatment strategies. However, there are a number of challenges associated with the conduct of such studies, and with the identification of biomarkers that can be applied to the clinical setting. In this review, we delineate the challenges faced in the design of epigenetic epidemiology studies in cancer, including the suitability of blood as a surrogate tissue and the capture of genome-wide DNA methylation. We describe how epigenetic epidemiology has brought insight into risk factors associated with lung, breast, colorectal and bladder cancer and review relevant research. We discuss recent findings on the identification of epigenetic diagnostic and prognostic biomarkers for these cancers.

  9. DNA methylation topology: potential of a chromatin landmark for epigenetic drug toxicology.

    Science.gov (United States)

    Tajbakhsh, Jian

    2011-12-01

    Targeting chromatin and its basic components through epigenetic drug therapy has become an increased focus in the treatment of complex diseases. This boost calls for the implementation of high-throughput cell-based assays that exploit the increasing knowledge about epigenetic mechanisms and their interventions for genotoxicity testing of epigenetic drugs. 3D quantitative DNA methylation imaging is a novel approach for detecting drug-induced DNA demethylation and concurrent heterochromatin decondensation/reorganization in cells through the analysis of differential nuclear distribution patterns of methylcytosine and gDNA visualized by fluorescence and processed by machine-learning algorithms. Utilizing 3D DNA methylation patterns is a powerful precursor to a series of fully automatable assays that employ chromatin structure and higher organization as novel pharmacodynamic biomarkers for various epigenetic drug actions.

  10. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  11. Epigenetics and epilepsy.

    Science.gov (United States)

    Roopra, Avtar; Dingledine, Raymond; Hsieh, Jenny

    2012-12-01

    Seizures can give rise to enduring changes that reflect alterations in gene-expression patterns, intracellular and intercellular signaling, and ultimately network alterations that are a hallmark of epilepsy. A growing body of literature suggests that long-term changes in gene transcription associated with epilepsy are mediated via modulation of chromatin structure. One transcription factor in particular, repressor element 1-silencing transcription factor (REST), has received a lot of attention due to the possibility that it may control fundamental transcription patterns that drive circuit excitability, seizures, and epilepsy. REST represses a suite of genes in the nervous system by utilizing nuclear protein complexes that were originally identified as mediators of epigenetic inheritance. Epigenetics has traditionally referred to mechanisms that allow a heritable change in gene expression in the absence of DNA mutation. However a more contemporaneous definition acknowledges that many of the mechanisms used to perpetuate epigenetic traits in dividing cells are utilized by neurons to control activity-dependent gene expression. This review surveys what is currently understood about the role of epigenetic mechanisms in epilepsy. We discuss how REST controls gene expression to affect circuit excitability and neurogenesis in epilepsy. We also discuss how the repressor methyl-CpG-binding protein 2 (MeCP2) and activator cyclic AMP response element binding protein (CREB) regulate neuronal activity and are themselves controlled by activity. Finally we highlight possible future directions in the field of epigenetics and epilepsy.

  12. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  13. Plant Transgenerational Epigenetics.

    Science.gov (United States)

    Quadrana, Leandro; Colot, Vincent

    2016-11-23

    Transgenerational epigenetics is defined in opposition to developmental epigenetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about transgenerational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the creation of epimutable alleles. We also argue that because reprogramming of DNA methylation across generations seems limited in plants, the inheritance of DNA methylation defects results from the failure to reinforce rather than reset this modification during sexual reproduction. We compare genome-wide assessments of heritable DNA methylation variation and its phenotypic impact in natural populations to those made using near-isogenic populations derived from crosses between parents with experimentally induced DNA methylation differences. Finally, we question the role of the environment in inducing transgenerational epigenetic variation and briefly present theoretical models under which epimutability is expected to be selected for.

  14. Epigenetics in neonatal diseases

    Institute of Scientific and Technical Information of China (English)

    XU Xue-feng; DU Li-zhong

    2010-01-01

    Objective To review the role of epigenetic regulation in neonatal diseases and better understand Barker's "fetal origins of adult disease hypothesis".Data sources The data cited in this review were mainly obtained from the articles published in Medline/PubMed between January 1953 and December 2009.Study selection Articles associated with epigenetics and neonatal diseases were selected.Results There is a wealth of epidemiological evidence that lower birth weight is strongly correlated with an increased risk of adult diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular disease. This phenomenon of fetal origins of adult disease is strongly associated with fetal insults to epigenetic modifications of genes. A potential role of epigenetic modifications in congenital disorders, transient neonatal diabetes mellitus (TNDM), intrauterine growth retardation (IUGR), and persistent pulmonary hypertension of the newborn (PPHN) have been studied.Conclusions Acknowledgment of the role of these epigenetic modifications in neonatal diseases would be conducive to better understanding the pathogenesis of these diseases, and provide new insight for improved treatment and prevention of later adult diseases.

  15. Epigenetics of Obesity.

    Science.gov (United States)

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences.

  16. Epigenetics and neuropsychiatric diseases: introduction and meeting summary.

    Science.gov (United States)

    Mehler, Mark F

    2010-09-01

    This volume is an outgrowth of a symposium entitled "Epigenetics and Neuropsychiatric Diseases: Mechanisms Mediating Nature and Nurture" presented at the 88th Annual Conference of the Association for Nervous and Mental Diseases, held on December 5, 2008 at the New York Academy of Medicine. Dolores Malaspina (New York University Medical Center) and Mark F. Mehler (Albert Einstein College of Medicine) organized the symposium as two sessions, "Epigenetics and Brain Behavior Relationships" and "Epigenetics and Neuropsychiatric Diseases." The symposium brought together basic and translational neuroscientists, neurologists, psychiatrists, neuropsychologists, neuropsycho-pharmacologists, and other allied biomedical professionals to establish an enduring dialogue and collaborative interactions concerning epigenetics and epigenomic medicine as a "new science" of brain and behavior relationships. This new discipline has begun to revolutionize our understanding of nervous system development in many specific areas, including neural stem cell biology, fate decisions, and cell diversity and connectivity; learning and memory; neuronal and neural network homeostasis; plasticity and stress responses; the pathogenesis of neuropsychiatric diseases and novel therapeutic interventions involving dynamic cellular reprogramming; reorganization of synaptic and neural network connections; and remodeling of the brain parenchyma and its systemic connections to promote restoration of higher-order cognitive, behavioral, and sensorimotor functions.

  17. The physics of epigenetics

    CERN Document Server

    Cortini, Ruggero; Caré, Bertrand R; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2015-01-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multi-scale physical mechanisms that govern the biological processes behind the initiation, spreading and inheritance of epigenetic states. These include not only the change in the molecular properties associated with the chemical modifications of DNA and histone proteins - such as methylation and acetylation - but also less conventional ones, such as the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of m...

  18. Epigenetics: heterochromatin meets RNAi

    Institute of Scientific and Technical Information of China (English)

    Ingela Djupedal; Karl Ekwall

    2009-01-01

    The term epigenetics refers to heritable changes not encoded by DNA. The organization of DNA into chromatin fibers affects gene expression in a heritable manner and is therefore one mechanism of epigenetic inheritance. Large parts of eukaryotic genomes consist of constitutively highly condensed heterochromatin, important for maintaining genome integrity but also for silencing of genes within. Small RNA, together with factors typically associated with RNA interference (RNAi) targets homologous DNA sequences and recruits factors that modify the chromatin, com-monly resulting in formation of heterochromatin and silencing of target genes. The scope of this review is to provide an overview of the roles of small RNA and the RNAi components, Dicer, Argonaute and RNA dependent polymeras-es in epigenetic inheritance via heterochromatin formation, exemplified with pathways from unicellular eukaryotes, plants and animals.

  19. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  20. Reorganizing Complex Network to Improve Large-Scale Multiagent Teamwork

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2014-01-01

    Full Text Available Large-scale multiagent teamwork has been popular in various domains. Similar to human society infrastructure, agents only coordinate with some of the others, with a peer-to-peer complex network structure. Their organization has been proven as a key factor to influence their performance. To expedite team performance, we have analyzed that there are three key factors. First, complex network effects may be able to promote team performance. Second, coordination interactions coming from their sources are always trying to be routed to capable agents. Although they could be transferred across the network via different paths, their sources and sinks depend on the intrinsic nature of the team which is irrelevant to the network connections. In addition, the agents involved in the same plan often form a subteam and communicate with each other more frequently. Therefore, if the interactions between agents can be statistically recorded, we are able to set up an integrated network adjustment algorithm by combining the three key factors. Based on our abstracted teamwork simulations and the coordination statistics, we implemented the adaptive reorganization algorithm. The experimental results briefly support our design that the reorganized network is more capable of coordinating heterogeneous agents.

  1. Simultaneous statistical inference for epigenetic data.

    Science.gov (United States)

    Schildknecht, Konstantin; Olek, Sven; Dickhaus, Thorsten

    2015-01-01

    Epigenetic research leads to complex data structures. Since parametric model assumptions for the distribution of epigenetic data are hard to verify we introduce in the present work a nonparametric statistical framework for two-group comparisons. Furthermore, epigenetic analyses are often performed at various genetic loci simultaneously. Hence, in order to be able to draw valid conclusions for specific loci, an appropriate multiple testing correction is necessary. Finally, with technologies available for the simultaneous assessment of many interrelated biological parameters (such as gene arrays), statistical approaches also need to deal with a possibly unknown dependency structure in the data. Our statistical approach to the nonparametric comparison of two samples with independent multivariate observables is based on recently developed multivariate multiple permutation tests. We adapt their theory in order to cope with families of hypotheses regarding relative effects. Our results indicate that the multivariate multiple permutation test keeps the pre-assigned type I error level for the global null hypothesis. In combination with the closure principle, the family-wise error rate for the simultaneous test of the corresponding locus/parameter-specific null hypotheses can be controlled. In applications we demonstrate that group differences in epigenetic data can be detected reliably with our methodology.

  2. Epigenetic Risk Factors in PTSD and Depression

    Directory of Open Access Journals (Sweden)

    Florian Joachim Raabe

    2013-08-01

    Full Text Available Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders and PTSD. A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD as an adult. The brain is highly plastic during early life and encodes acquired information into lasting memories that normally subserve adaptation. Translational studies in rodents showed that enduring sensitization of neuronal and neuroendocrine circuits in response to early life adversity are likely risk factors of life time vulnerability to stress. Hereby, the hypothalamic-pituitary-adrenal (HPA axis integrates cognitive, behavioural and emotional responses to early-life stress and can be epigenetically programmed during sensitive windows of development. Epigenetic mechanisms, comprising reciprocal regulation of chromatin structure and DNA methylation, are important to establish and maintain sustained, yet potentially reversible, changes in gene transcription. The relevance of these findings for the development of PTSD requires further studies in humans where experience-dependent epigenetic programming can additionally depend on genetic variation in the underlying substrates which may protect from or advance disease development. Overall, identification of early-life stress associated epigenetic risk markers informing on previous stress history can help to advance early diagnosis, personalized prevention and timely therapeutic interventions, thus reducing long-term social and health costs.

  3. JUDICIAL REORGANIZATION – SOLUTION FOR CRISIS PERIODS

    Directory of Open Access Journals (Sweden)

    MARINA UHER

    2012-05-01

    Full Text Available Currently in the Romanian economic landscape the insolvency phenomenon began to be increasingly better known to the business community first through the impact on business partners from different areas of the industry, and then through the personal experience. For creditors supporting a reorganization plan with real prospects of recovery and covering claims proves to be advantageous especially in current market conditions.

  4. Epigenetics in Stroke Recovery

    Science.gov (United States)

    Kassis, Haifa; Shehadah, Amjad; Chopp, Michael; Zhang, Zheng Gang

    2017-01-01

    Abstract: While the death rate from stroke has continually decreased due to interventions in the hyperacute stage of the disease, long-term disability and institutionalization have become common sequelae in the aftermath of stroke. Therefore, identification of new molecular pathways that could be targeted to improve neurological recovery among survivors of stroke is crucial. Epigenetic mechanisms such as post-translational modifications of histone proteins and microRNAs have recently emerged as key regulators of the enhanced plasticity observed during repair processes after stroke. In this review, we highlight the recent advancements in the evolving field of epigenetics in stroke recovery. PMID:28264471

  5. Epigenetic Therapy in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Stephen V Liu

    2013-05-01

    Full Text Available Epigenetic dysregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  6. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  7. The Factors and Transversal Reorganizations Principles of Romanian Textile Industry Enterprises using Activity-Based Costing Method

    Directory of Open Access Journals (Sweden)

    Sorinel Capusneanu

    2007-04-01

    Full Text Available This article describes the factors and the principles of transversal reorganization of the enterprises from the Romanian textile industry by adapting the Activity-Based Costing method (ABC to its specific. There are presented and analyzed the real possibilities of reorganization of the enterprises in Romania by elaboration of methodological phases that will be covered until the implementation of their transversal organization. Are we ready to adapt the Activity-Based Costing method to the specific of the Romanian textile industry and not only? Here is the question whose response we will find in this article.

  8. Sex differences in brain epigenetics.

    Science.gov (United States)

    Menger, Yannick; Bettscheider, Marc; Murgatroyd, Chris; Spengler, Dietmar

    2010-12-01

    Sexual differentiation of the brain takes place during a perinatal-sensitive time window as a result of gonadal hormone-induced activational and organizational effects on neuronal substrates. Increasing evidence suggests that epigenetic mechanisms can contribute to the establishment and maintenance of some aspects of these processes, and that these epigenetic mechanisms may themselves be under the control of sex hormones. Epigenetic programming of neuroendocrine and behavioral phenotypes frequently occurs sex specifically, pointing to sex differences in brain epigenetics as a possible determinant. Understanding how sex-specific epigenomes and sex-biased responses to environmental cues contribute to the development of brain diseases might provide new insights for epigenetic therapy.

  9. Epigenetics and memigenetics.

    Science.gov (United States)

    Mann, Jeffrey R

    2014-04-01

    The field of epigenetics is expanding rapidly, yet there is persistent uncertainty in the definition of the term. The word was coined in the mid-twentieth century as a descriptor of how intrinsic, yet largely unknown, forces act with genes to channel progenitor cells along pathways of differentiation. Near the end of the twentieth century, epigenetics was defined more specifically as the study of changes in gene activity states. In some definitions, only those activity states that are inherited across cell division were considered. Other definitions were broader, also including activity states that are transient, or occurring in non-dividing cells. The greatest point of disagreement in these current definitions, is if the term should concern only inherited activity states. To alleviate this disparity, an alternative term, 'memigenetics', could be used in place of epigenetics to describe inherited chromatin activity states. The advantage of this term is that it is self-defining, and would serve to emphasize the important concept of cell memory. It would also free the term epigenetics to be used in a broader sense in accord with the meaning of the prefix 'epi', that is, as a descriptor of what is 'over' DNA at any point in time.

  10. Epigenetics, Darwin, and Lamarck

    Science.gov (United States)

    Penny, David

    2015-01-01

    It is not really helpful to consider modern environmental epigenetics as neo-Lamarckian; and there is no evidence that Lamarck considered the idea original to himself. We must all keep learning about inheritance, but attributing modern ideas to early researchers is not helpful, and can be misleading. PMID:26026157

  11. Unilateral hearing during development: hemispheric specificity in plastic reorganizations

    Directory of Open Access Journals (Sweden)

    Andrej eKral

    2013-11-01

    Full Text Available The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness. The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. The data revealed that effects of hearing experience were more pronounced when stimulating the hearing ear. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive

  12. Epigenetic Drugs for Multiple Sclerosis.

    Science.gov (United States)

    Peedicayil, Jacob

    2016-01-01

    There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the development of multiple sclerosis (MS). Advances in epigenetics have given rise to a new class of drugs, epigenetic drugs. Although many classes of epigenetic drugs are being investigated, at present most attention is being paid to two classes of epigenetic drugs: drugs that inhibit DNA methyltransferase (DNMTi) and drugs that inhibit histone deacetylase (HDACi). This paper discusses the potential use of epigenetic drugs in the treatment of MS, focusing on DNMTi and HDACi. Preclinical drug trials of DNMTi and HDACi for the treatment of MS are showing promising results. Epigenetic drugs could improve the clinical management of patients with MS.

  13. Active Polymers Confer Fast Reorganization Kinetics

    CERN Document Server

    Swanson, Douglas

    2011-01-01

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime and mean length, MFPT ~ , by analogy to 1-d Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT ~ ^{1/2}. Since to be biologically useful, structural biopolymers must typically be many monomers long, yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify active polymers' greater energy cost. PACS numbers: 87.10.Ed, 87.16.ad, 87.16.Ln

  14. Active biopolymers confer fast reorganization kinetics.

    Science.gov (United States)

    Swanson, Douglas; Wingreen, Ned S

    2011-11-18

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or MFPT) and mean length, MFPT∼, by analogy to 1D Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT∼(1/2). Since, to be biologically useful, structural biopolymers must typically be many monomers long yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify the active polymers' greater energy cost.

  15. Reorganizing and restructuring the human resources function

    OpenAIRE

    Alexandrina Mirela, Stan

    2010-01-01

    To determine what kind of skills (internal or external) of human resources are adequate organization can use human resources audit. Audit is an action guide that provides step by step consistency of human resources activities within the organization with legal regulations and informal practices. This paper aims to highlight the importance of human resources audit which is an essential activity and is basis for the reorganization and restructuring of human resources function.

  16. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.

    Science.gov (United States)

    Roy, Ram Vinod; Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; D, Rakesh; Kim, Donghern; Yin, Yuanqin; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.

  17. Sex, epilepsy, and epigenetics.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-12-01

    Epilepsy refers to a heterogeneous group of disorders that are associated with a wide range of pathogenic mechanisms, seizure manifestations, comorbidity profiles, and therapeutic responses. These characteristics are all influenced quite significantly by sex. As with other conditions exhibiting such patterns, sex differences in epilepsy are thought to arise-at the most fundamental level-from the "organizational" and "activational" effects of sex hormones as well as from the direct actions of the sex chromosomes. However, our understanding of the specific molecular, cellular, and network level processes responsible for mediating sex differences in epilepsy remains limited. Because increasing evidence suggests that epigenetic mechanisms are involved both in epilepsy and in brain sexual dimorphism, we make the case here that analyzing epigenetic regulation will provide novel insights into the basis for sex differences in epilepsy.

  18. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage

    NARCIS (Netherlands)

    Wilschut, Rutger; Oplaat, C.; Snoek, L.B.; Kirschner, J.; Verhoeven, K.J.F.

    2016-01-01

    Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations

  19. The epigenetics of autoimmunity

    Science.gov (United States)

    Meda, Francesca; Folci, Marco; Baccarelli, Andrea; Selmi, Carlo

    2011-01-01

    The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases. PMID:21278766

  20. Epigenetic mechanisms in leukemia.

    Science.gov (United States)

    Zaidi, Sayyed K; Trombly, Daniel J; Dowdy, Christopher R; Lian, Jane B; Stein, Janet L; van Wijnen, Andre J; Stein, Gary S

    2012-09-01

    Focal organization of regulatory machinery within the interphase nucleus is linked to biological responsiveness and perturbed in cancer. Lineage determinant Runx proteins organize and assemble multi-protein complexes at sites of transcription within the nucleus and regulate both RNA polymerase II- and I-mediated gene expression. In addition, Runx proteins epigenetically control lineage determining transcriptional programs including: 1) architectural organization of macromolecular complexes in interphase, 2) regulation of gene expression through bookmarking during mitosis, and 3) microRNA-mediated translational control in the interphase nucleus. These mechanisms are compromised with the onset and progression of cancer. For example, the oncogenic AML1-ETO protein, which results from a chromosomal translocation between chromosomes 8 and 21, is expressed in nearly 25% of all acute myelogenous leukemias, disrupts Runx1 subnuclear localization during interphase and compromises transcriptional regulation. Epigenetically, the leukemic protein redirects the Runx1 DNA binding domain to leukemia-specific nuclear microenvironments, modifies regulatory protein accessibility to Runx1 target genes by imprinting repressive chromatin marks, and deregulates the microRNA (miR) profile of diseased myeloid cells. Consequently, the entire Runx1-dependent transcriptional program of myeloid cells is deregulated leading to onset and progression of acute myeloid leukemia and maintenance of leukemic phenotype. We discuss the potential of modified epigenetic landscape of leukemic cells as a viable therapeutic target.

  1. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Pandey, Suryanarayan; Choubey, Priyansha; Rajput, Prabha; Saroha, Babita; Bezbaruah, Babul Kumar; Lahkar, Mangala

    2016-01-01

    Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development. PMID:27780992

  2. Physical exercise as an epigenetic modulator: Eustress, the "positive stress" as an effector of gene expression.

    Science.gov (United States)

    Sanchis-Gomar, Fabian; Garcia-Gimenez, Jose Luis; Perez-Quilis, Carme; Gomez-Cabrera, Mari Carmen; Pallardo, Federico V; Lippi, Giuseppe

    2012-12-01

    Physical exercise positively influences epigenetic mechanisms and improves health. Several issues remain unclear concerning the links between physical exercise and epigenetics. There is growing concern about the negative influence of excessive and persistent physical exercise on health. How an individual physically adapts to the prevailing environmental conditions might influence epigenetic mechanisms and modulate gene expression. In this article, we put forward the idea that physical exercise, especially long-term repetitive strenuous exercise, positively affects health, reduces the aging process, and decreases the incidence of cancer through induced stress and epigenetic mechanisms. We propose herein that stress may stimulate genetic adaptations through epigenetics that, in turn, modulate the link between the environment, human lifestyle factors, and genes.

  3. Epigenetic memory in kidney diseases.

    Science.gov (United States)

    Mimura, Imari

    2016-02-01

    Epigenetic mechanisms have been the focus of intensive research. De Marinis et al. demonstrated that high glucose levels exert stimulatory effects on activation histone marks, leading to the upregulation of thioredoxin-interacting protein (TXNIP) gene expression, which is proinflammatory. They also showed that the effect was reversed by the inhibition of histone acetyltransferase, suggesting a new therapeutic approach for improving diabetic kidney disease. Epigenetic changes are memorized as epigenetic memory that could exacerbate diabetic complications.

  4. The complexity of epigenetic diseases.

    Science.gov (United States)

    Brazel, Ailbhe Jane; Vernimmen, Douglas

    2016-01-01

    Over the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease-causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer.

  5. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems.

    OpenAIRE

    Nestor, Colm E; Ottaviano, Raffaele; Reinhardt, Diana; Cruickshanks, Hazel A; Mjoseng, Heidi K.; McPherson, Rhoanne C; Lentini, Antonio; Thomson, John P; Dunican, Donncha S; Pennings, Sari; Anderton, Stephen M.; Benson, Mikael; Meehan, Richard R

    2015-01-01

    BackgroundThe DNA methylation profile of mammalian cell lines differs from the primary tissue from which they were derived, exhibiting increasing divergence from the in vivo methylation profile with extended time in culture. Few studies have directly examined the initial epigenetic and transcriptional consequences of adaptation of primary mammalian cells to culture, and the potential mechanisms through which this epigenetic dysregulation occurs is unknown.ResultsWe demonstrate that adaptation...

  6. The expanding epigenetic landscape of non-model organisms.

    Science.gov (United States)

    Bonasio, Roberto

    2015-01-01

    Epigenetics studies the emergence of different phenotypes from a single genotype. Although these processes are essential to cellular differentiation and transcriptional memory, they are also widely used in all branches of the tree of life by organisms that require plastic but stable adaptation to their physical and social environment. Because of the inherent flexibility of epigenetic regulation, a variety of biological phenomena can be traced back to evolutionary adaptations of few conserved molecular pathways that converge on chromatin. For these reasons chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, flies, plants and humans. Many more fascinating examples of epigenetic plasticity lie outside the realm of model organisms and have so far been only sporadically investigated at a molecular level; however, recent progress on sequencing technology and genome editing tools have begun to blur the lines between model and non-model organisms, opening numerous new avenues for investigation. Here, I review examples of epigenetic phenomena in non-model organisms that have emerged as potential experimental systems, including social insects, fish and flatworms, and are becoming accessible to molecular approaches.

  7. Epigenetics: a key regulator of platyhelminth developmental biology?

    Science.gov (United States)

    Geyer, Kathrin K; Hoffmann, Karl F

    2012-01-01

    The Platyhelminthes (flukes/flatworms) are a large group of derived metazoans beautifully adapted for existence in diversely challenging ecosystems. As tractable examples of development and self-regeneration or as causative agents of aquacultural, veterinary and biomedically-relevant parasitic diseases, the platyhelminths are subject to intensive inter-disciplinary research. Given the complex lifestyles exhibited by individuals within this phylum, we postulate that epigenetic processes feature in many aspects of platyhelminth lifecycle diversity, development and environmentally-driven adaptations.

  8. Epigenetics primer: why the clinician should care about epigenetics.

    Science.gov (United States)

    Duarte, Julio D

    2013-12-01

    Epigenetics describes heritable alterations of gene expression that do not involve DNA sequence variation and are changeable throughout an organism's lifetime. Not only can epigenetic status influence drug response, but it can also be modulated by drugs. In this review, the three major epigenetic mechanisms are described: covalent DNA modification, histone protein modification, and regulation by noncoding RNA. Further, this review describes how drug therapy can influence, and be influenced by, these mechanisms. Drugs with epigenetic mechanisms are already in use, with many more likely to be approved within the next few years. As the understanding of epigenetic processes improves, so will the ability to use these data in the clinic to improve patient care.

  9. Common non-epigenetic drugs as epigenetic modulators.

    Science.gov (United States)

    Lötsch, Jörn; Schneider, Gisbert; Reker, Daniel; Parnham, Michael J; Schneider, Petra; Geisslinger, Gerd; Doehring, Alexandra

    2013-12-01

    Epigenetic effects are exerted by a variety of factors and evidence increases that common drugs such as opioids, cannabinoids, valproic acid, or cytostatics may induce alterations in DNA methylation patterns or histone conformations. These effects occur via chemical structural interactions with epigenetic enzymes, through interactions with DNA repair mechanisms. Computational predictions indicate that one-twentieth of all drugs might potentially interact with human histone deacetylase, which was prospectively experimentally verified for the compound with the highest predicted interaction probability. These epigenetic effects add to wanted and unwanted drug effects, contributing to mechanisms of drug resistance or disease-related and unrelated phenotypes. Because epigenetic changes might be transmitted to offspring, the need for reliable and cost-effective epigenetic screening tools becomes acute.

  10. 76 FR 71919 - Corporate Reorganizations; Allocation of Basis in “All Cash D” Reorganizations

    Science.gov (United States)

    2011-11-21

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BJ21 Corporate Reorganizations; Allocation of Basis in.... Fuller, Office of Associate Chief Counsel (Corporate). However, other personnel from the IRS and the..., Reporting and recordkeeping requirements. Proposed Amendments to the Regulations Accordingly, 26 CFR part...

  11. Epigenetics, Behaviour, and Health

    Directory of Open Access Journals (Sweden)

    Szyf Moshe

    2008-03-01

    Full Text Available The long-term effects of behaviour and environmental exposures, particularly during childhood, on health outcomes are well documented. Particularly thought provoking is the notion that exposures to different social environments have a long-lasting impact on human physical health. However, the mechanisms mediating the effects of the environment are still unclear. In the last decade, the main focus of attention was the genome, and interindividual genetic polymorphisms were sought after as the principal basis for susceptibility to disease. However, it is becoming clear that recent dramatic increases in the incidence of certain human pathologies, such as asthma and type 2 diabetes, cannot be explained just on the basis of a genetic drift. It is therefore extremely important to unravel the molecular links between the "environmental" exposure, which is believed to be behind this emerging incidence in certain human pathologies, and the disease's molecular mechanisms. Although it is clear that most human pathologies involve long-term changes in gene function, these might be caused by mechanisms other than changes in the deoxyribonucleic acid (DNA sequence. The genome is programmed by the epigenome, which is composed of chromatin and a covalent modification of DNA by methylation. It is postulated here that "epigenetic" mechanisms mediate the effects of behavioural and environmental exposures early in life, as well as lifelong environmental exposures and the susceptibility to disease later in life. In contrast to genetic sequence differences, epigenetic aberrations are potentially reversible, raising the hope for interventions that will be able to reverse deleterious epigenetic programming.

  12. Unresolved Trauma in Mothers: Intergenerational Effects and the Role of Reorganization

    Directory of Open Access Journals (Sweden)

    Udita eIyengar

    2014-09-01

    Full Text Available A mother’s unresolved trauma may interfere with her ability to sensitively respond to her infant, thus affecting the development of attachment in her own child, and potentially contributing to the intergenerational transmission of trauma. One novel construct within the Dynamic Maturational Model of Attachment and Adaptation (DMM coding of the Adult Attachment Interview (AAI is reorganization, a process whereby speakers are actively changing their understanding of past and present experiences and moving toward attachment security. We conducted a study of mothers with unresolved trauma, exploring their own attachment classification, attachment outcomes of their children, and the potential effects of reorganization on child attachment. Forty-seven first-time mothers participated in the AAI during pregnancy, and returned with their child at 11 months to assess child attachment using the Strange Situation Procedure. Mothers with and without unresolved trauma were compared. We found that mothers with unresolved trauma had insecure attachment themselves and were more likely to have infants with insecure attachment. However, the one exception was that all of the mothers with unresolved trauma who were reorganizing towards secure attachment had infants with secure attachment. These preliminary findings suggest that mothers who are reorganizing may be able to more sensitively respond to their child’s cues, contributing to the development of secure attachment. While our results need to be replicated in a larger cohort, this study is the first to explore the construct of reorganization and its potential relationship with child attachment. If confirmed in future studies, it may provide clinical insight into the intergenerational transmission of insecure attachment within the context of unresolved trauma.

  13. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  14. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  15. [Epigenetic dysregulation in myelodysplastic syndrome].

    Science.gov (United States)

    Sashida, Goro; Iwama, Atsushi

    2015-02-01

    Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia. Various epigenetic regulators are mutated in MDS patients, indicating that accumulation of epigenetic alterations together with genetic alterations plays a crucial role in the development of MDS.

  16. Is Glioblastoma an Epigenetic Malignancy?

    Energy Technology Data Exchange (ETDEWEB)

    Maleszewska, Marta; Kaminska, Bozena, E-mail: B.Kaminska@nencki.gov.pl [Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str., Warsaw 02-093 (Poland)

    2013-09-03

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens.

  17. Epigenetic mechanisms in epilepsy.

    Science.gov (United States)

    Kobow, Katja; Blümcke, Ingmar

    2014-01-01

    In humans, genomic DNA is organized in 23 chromosome pairs coding for roughly 25,000 genes. Not all of them are active at all times. During development, a broad range of different cell types needs to be generated in a highly ordered and reproducible manner, requiring selective gene expression programs. Epigenetics can be regarded as the information management system that is able to index or bookmark distinct regions in our genome to regulate the readout of DNA. It further comprises the molecular memory of any given cell, allowing it to store information of previously experienced external (e.g., environmental) or internal (e.g., developmental) stimuli, to learn from this experience and to respond. The underlying epigenetic mechanisms can be synergistic, antagonistic, or mutually exclusive and their large variety combined with the variability and interdependence is thought to provide the molecular basis for any phenotypic variation in physiological and pathological conditions. Thus, widespread reconfiguration of the epigenome is not only a key feature of neurodevelopment, brain maturation, and adult brain function but also disease.

  18. Stress, epigenetics, and alcoholism.

    Science.gov (United States)

    Moonat, Sachin; Pandey, Subhash C

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.

  19. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss.

    Science.gov (United States)

    Sabbah, Norman; Sanda, Nicolae; Authié, Colas N; Mohand-Saïd, Saddek; Sahel, José-Alain; Habas, Christophe; Amedi, Amir; Safran, Avinoam B

    2017-02-24

    Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.

  20. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  1. An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

    Science.gov (United States)

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2015-12-01

    Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

  2. Rotational reorganization of doped cholesteric liquid crystalline films

    NARCIS (Netherlands)

    Eelkema, R.; M. Pollard, M.; Katsonis, N.; Vicario, J.; J. Broer, D.; Feringa, B.L.

    2006-01-01

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pi

  3. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Stock dividends and splits; reorganizations... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10 Stock dividends and splits; reorganizations. (a) The acquisition of voting securities pursuant to a stock split...

  4. Specification and epigenetic programming of the human germ line.

    Science.gov (United States)

    Tang, Walfred W C; Kobayashi, Toshihiro; Irie, Naoko; Dietmann, Sabine; Surani, M Azim

    2016-10-01

    Primordial germ cells (PGCs), the precursors of sperm and eggs, are established in perigastrulation-stage embryos in mammals. Signals from extra-embryonic tissues induce a unique gene regulatory network in germline-competent cells for PGC specification. This network also initiates comprehensive epigenome resetting, including global DNA demethylation and chromatin reorganization. Mouse germline development has been studied extensively, but the extent to which such knowledge applies to humans was unclear. Here, we review the latest advances in human PGC specification and epigenetic reprogramming. The overall developmental dynamics of human and mouse germline cells appear to be similar, but there are crucial mechanistic differences in PGC specification, reflecting divergence in the regulation of pluripotency and early development.

  5. Epigenetic Alterations Associated with War Trauma and Childhood Maltreatment.

    Science.gov (United States)

    Ramo-Fernández, Laura; Schneider, Anna; Wilker, Sarah; Kolassa, Iris-Tatjana

    2015-10-01

    Survivors of war trauma or childhood maltreatment are at increased risk for trauma-spectrum disorders such as post-traumatic stress disorder (PTSD). In addition, traumatic stress has been associated with alterations in the neuroendocrine and the immune system, enhancing the risk for physical diseases. Traumatic experiences might even affect psychological as well as biological parameters in the next generation, i.e. traumatic stress might have transgenerational effects. This article outlines how epigenetic processes, which represent a pivotal biological mechanism for dynamic adaptation to environmental challenges, might contribute to the explanation of the long-lasting and transgenerational effects of trauma. In particular, epigenetic alterations in genes regulating the hypothalamus-pituitary-adrenal axis as well as the immune system have been observed in survivors of childhood and adult trauma. These changes could result in enduring alterations of the stress response as well as the physical health risk. Furthermore, the effects of parental trauma could be transmitted to the next generation by parental distress and the pre- and postnatal environment, as well as by epigenetic marks transmitted via the germline. While epigenetic research has a high potential of advancing our understanding of the consequences of trauma, the findings have to be interpreted with caution, as epigenetics only represent one piece of a complex puzzle of interacting biological and environmental factors. Copyright © 2015 John Wiley & Sons, Ltd.

  6. A truly ecological epigenetics study.

    Science.gov (United States)

    Bossdorf, Oliver; Zhang, Yuanye

    2011-04-01

    Until a few years ago, epigenetics was a field of research that had nothing to do with ecology and that virtually no ecologist had ever heard of. This is now changing, as more and more ecologists learn about epigenetic processes and their potential ecological and evolutionary relevance, and a new research field of ecological epigenetics is beginning to take shape. One question that is particularly intriguing ecologists is to what extent epigenetic variation is an additional, and hitherto overlooked, source of natural variation in ecologically important traits. In this issue of Molecular Ecology, Herrera & Bazaga (2011) provide one of the first attempts to truly address this question in an ecological setting. They study variation of DNA methylation in a wild population of the rare, long-lived violet Viola cazorlensis, and they use these data to explore interrelations between environmental, genetic and epigenetic variation, and in particular the extent to which these factors are related to long-term differences in herbivore damage among plants. They find substantial epigenetic variation among plant individuals. Interestingly, this epigenetic variation is significantly correlated with long-term differences in herbivory, but only weakly with herbivory-related DNA sequence variation, which suggests that besides habitat, substrate and genetic variation, epigenetic variation may be an additional, and at least partly independent, factor influencing plant–herbivore interactions in the field. Although the study by Herrera & Bazaga (2011) raises at least as many new questions as it answers, it is a pioneering example of how epigenetics can be incorporated into ecological field studies, and it illustrates the value and potential novel insights to be gained from such efforts.

  7. Perilesional reorganization of motor function in stroke patients

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang

    2010-01-01

    Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke rehabilitation can be established when detailed mechanisms of recovery are clarified. In addition, studies at the subcortical level remain in the early stages. Therefore, the present study suggested that additional investigations should focus on perilesional reorganization at the subcortical level, identifying the critical period for this mechanism and determining treatment strategies and modalities to facilitate development. The present study reviews literature focused on perilesional reorganization in stroke patients with regard to demonstration, clinical characteristics,and rehabilitative aspects, as well as previous studies of perilesional reorganization at cortical and subcortical levels.

  8. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM

    DEFF Research Database (Denmark)

    Barrès, Romain; Zierath, Juleen R

    2016-01-01

    Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins....... Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response...... to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding...

  9. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases.

    Science.gov (United States)

    Ahmadi, Majid; Gharibi, Tohid; Dolati, Sanam; Rostamzadeh, Davood; Aslani, Saeed; Baradaran, Behzad; Younesi, Vahid; Yousefi, Mehdi

    2017-03-01

    Recent genome-wide association studies have documented a number of genetic variants to explain mechanisms underlying autoimmune diseases. However, the precise etiology of autoimmune diseases remains largely unknown. Epigenetic mechanisms like alterations in the post-translational modification of histones and DNA methylation may potentially cause a breakdown of immune tolerance and the perpetuation of autoreactive responses. Recently, several studies both in experimental models and clinical settings proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in autoimmune diseases, in some cases based on mechanistical observations. Epigenetic therapy already being employed in hematopoietic malignancies may also be associated with beneficial effects in autoimmune diseases. In this review, we will discuss on what we know and expect about the treatment of autoimmune disease based on epigenetic aberrations.

  10. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  11. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  12. Epigenetics of sleep and chronobiology.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-03-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.

  13. The epigenetic landscape of alcoholism.

    Science.gov (United States)

    Krishnan, Harish R; Sakharkar, Amul J; Teppen, Tara L; Berkel, Tiffani D M; Pandey, Subhash C

    2014-01-01

    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism.

  14. Epigenetic Alterations in Muscular Disorders

    Directory of Open Access Journals (Sweden)

    Chiara Lanzuolo

    2012-01-01

    Full Text Available Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.

  15. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...... to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant...... for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic...

  16. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  17. Epigenetic regulation of skeletal myogenesis

    OpenAIRE

    Saccone, Valentina; Puri, Pier Lorenzo

    2010-01-01

    During embryogenesis a timely and coordinated expression of different subsets of genes drives the formation of skeletal muscles in response to developmental cues. In this review, we will summarize the most recent advances on the “epigenetic network” that promotes the transcription of selective groups of genes in muscle progenitors, through the concerted action of chromatin-associated complexes that modify histone tails and microRNAs (miRNAs). These epigenetic players cooperate to establish fo...

  18. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    Science.gov (United States)

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans.

  19. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Directory of Open Access Journals (Sweden)

    Penny J Tricker

    2015-09-01

    Full Text Available The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  20. Epigenetics Across the Human Lifespan

    Directory of Open Access Journals (Sweden)

    Riya Rajan Kanherkar

    2014-09-01

    Full Text Available Epigenetics has the potential to explain various biological phenomena that have heretofore defied complete explication. This review describes the various types of endogenous human developmental milestones such as birth, puberty, and menopause, as well as the diverse exogenous environmental factors that influence human health, in a chronological epigenetic context. We describe the entire course of human life from periconception to death and chronologically note all of the potential internal timepoints and external factors that influence the human epigenome. Ultimately, the environment presents these various factors to the individual that influence the epigenome, and the unique epigenetic and genetic profile of each individual also modulates the specific response to these factors. During the course of human life, we are exposed to an environment that abounds with a potent and dynamic milieu capable of triggering chemical changes that activate or silence genes. There is constant interaction between the external and internal environments that is required for normal development and health maintenance as well as for influencing disease load and resistance. For example, exposure to pharmaceutical and toxic chemicals, diet, stress, exercise, and other environmental factors are capable of eliciting positive or negative epigenetic modifications with lasting effects on development, metabolism and health. These can impact the body so profoundly as to permanently alter the epigenetic profile of an individual. We also present a comprehensive new hypothesis of how these diverse environmental factors cause both direct and indirect epigenetic changes and how this knowledge can ultimately be used to improve personalized medicine.

  1. Diet, Nutrition, and Cancer Epigenetics.

    Science.gov (United States)

    Sapienza, Carmen; Issa, Jean-Pierre

    2016-07-17

    The search for a connection between diet and human cancer has a long history in cancer research, as has interest in the mechanisms by which dietary factors might increase or decrease cancer risk. The realization that altering diet can alter the epigenetic state of genes and that these epigenetic alterations might increase or decrease cancer risk is a more modern notion, driven largely by studies in animal models. The connections between diet and epigenetic alterations, on the one hand, and between epigenetic alterations and cancer, on the other, are supported by both observational studies in humans as well as animal models. However, the conclusion that diet is linked directly to epigenetic alterations and that these epigenetic alterations directly increase or decrease the risk of human cancer is much less certain. We suggest that true and measurable effects of diet or dietary supplements on epigenotype and cancer risk are most likely to be observed in longitudinal studies and at the extremes of the intersection of dietary risk factors and human population variability. Careful analysis of such outlier populations is most likely to shed light on the molecular mechanisms by which suspected environmental risk factors drive the process of carcinogenesis.

  2. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow.

  3. Exploiting epigenetic vulnerabilities for cancer therapeutics.

    Science.gov (United States)

    Mair, Barbara; Kubicek, Stefan; Nijman, Sebastian M B

    2014-03-01

    Epigenetic deregulation is a hallmark of cancer, and there has been increasing interest in therapeutics that target chromatin-modifying enzymes and other epigenetic regulators. The rationale for applying epigenetic drugs to treat cancer is twofold. First, epigenetic changes are reversible, and drugs could therefore be used to restore the normal (healthy) epigenetic landscape. However, it is unclear whether drugs can faithfully restore the precancerous epigenetic state. Second, chromatin regulators are often mutated in cancer, making them attractive drug targets. However, in most instances it is unknown whether cancer cells are addicted to these mutated chromatin proteins, or whether their mutation merely results in epigenetic instability conducive to the selection of secondary aberrations. An alternative incentive for targeting chromatin regulators is the exploitation of cancer-specific vulnerabilities, including synthetic lethality, caused by epigenetic deregulation. We review evidence for the hypothesis that mechanisms other than oncogene addiction are a basis for the application of epigenetic drugs, and propose future research directions.

  4. Epigenetics and Breast Cancers

    Directory of Open Access Journals (Sweden)

    An T. Vo

    2012-01-01

    Full Text Available Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2, phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM to 5′-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes.

  5. Epigenetics and the regulation of stress vulnerability and resilience.

    Science.gov (United States)

    Zannas, A S; West, A E

    2014-04-04

    The human brain has a remarkable capacity to adapt to and learn from a wide range of variations in the environment. However, environmental challenges can also precipitate psychiatric disorders in susceptible individuals. Why any given experience should induce one brain to adapt while another is edged toward psychopathology remains poorly understood. Like all aspects of psychological function, both nature (genetics) and nurture (life experience) sculpt the brain's response to stressful stimuli. Here we review how these two influences intersect at the epigenetic regulation of neuronal gene transcription, and we discuss how the regulation of genomic DNA methylation near key stress-response genes may influence psychological susceptibility or resilience to environmental stressors. Our goal is to offer a perspective on the epigenetics of stress responses that works to bridge the gap between the study of this molecular process in animal models and its potential usefulness for understanding stress vulnerabilities in humans.

  6. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    Directory of Open Access Journals (Sweden)

    Sarathi Kundu

    2013-09-01

    Full Text Available Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001 substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  7. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents

    OpenAIRE

    Wenjing Li; Jianhong Li; Jieqiong Wang; Peng Zhou; Zhenchang Wang; Junfang Xian; Huiguang He

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain ne...

  8. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  9. Epigenetic regulation in Parkinson's disease.

    Science.gov (United States)

    Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Ross, Owen A

    2016-10-01

    Recent efforts have shed new light on the epigenetic mechanisms driving gene expression alterations associated with Parkinson's disease (PD) pathogenesis. Changes in gene expression are a well-established cause of PD, and epigenetic mechanisms likely play a pivotal role in regulation. Studies in families with PD harboring duplications and triplications of the SNCA gene have demonstrated that gene dosage is associated with increased expression of both SNCA mRNA and protein, and correlates with a fulminant disease course. Furthermore, it is postulated that even subtle changes in SNCA expression caused by common variation is associated with disease risk. Of note, genome-wide association studies have identified over 30 loci associated with PD with most signals located in non-coding regions of the genome, thus likely influencing transcript expression levels. In health, epigenetic mechanisms tightly regulate gene expression, turning genes on and off to balance homeostasis and this, in part, explains why two cells with the same DNA sequence will have different RNA expression profiles. Understanding this phenomenon will be crucial to our interpretation of the selective vulnerability observed in neurodegeneration and specifically dopaminergic neurons in the PD brain. In this review, we discuss epigenetic mechanisms, such as DNA methylation and histone modifications, involved in regulating the expression of genes relevant to PD, RNA-based mechanisms, as well as the effect of toxins and potential epigenetic-based treatments for PD.

  10. The cancer epigenome : towards epigenetic therapy

    NARCIS (Netherlands)

    Geutjes, E.J.A.J.

    2011-01-01

    Epigenetic gene silencing occurs in many important biological processes including differentiation, senescence and imprinting. In most cases, epigenetic silencing is orchestrated by an intricate interplay between DNA methylation, histone modifications and nucleosome remodeling that act in concert to

  11. Epigenetic alterations underlying autoimmune diseases.

    Science.gov (United States)

    Aslani, Saeed; Mahmoudi, Mahdi; Karami, Jafar; Jamshidi, Ahmad Reza; Malekshahi, Zahra; Nicknam, Mohammad Hossein

    2016-01-01

    Recent breakthroughs in genetic explorations have extended our understanding through discovery of genetic patterns subjected to autoimmune diseases (AID). Genetics, on the contrary, has not answered all the conundrums to describe a comprehensive explanation of causal mechanisms of disease etiopathology with regard to the function of environment, sex, or aging. The other side of the coin, epigenetics which is defined by gene manifestation modification without DNA sequence alteration, reportedly has come in to provide new insights towards disease apprehension through bridging the genetics and environmental factors. New investigations in genetic and environmental contributing factors for autoimmunity provide new explanation whereby the interactions between genetic elements and epigenetic modifications signed by environmental agents may be responsible for autoimmune disease initiation and perpetuation. It is aimed through this article to review recent progress attempting to reveal how epigenetics associates with the pathogenesis of autoimmune diseases.

  12. Epigenetic mechanisms in penile carcinoma

    DEFF Research Database (Denmark)

    Kuasne, Hellen; Marchi, Fabio Albuquerque; Rogatto, Silvia Regina

    2013-01-01

    Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in diffe......Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity...... in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including...

  13. Epigenetic changes in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Yan Jia; Mingzhou Guo

    2013-01-01

    Epigenetic changes frequently occur in human colorectal cancer.Genomic global hypomethylation,gene promoter region hypermethylation,histone modifications,and alteration of miRNA patterns are major epigenetic changes in colorectal cancer.Loss of imprinting (LOI) is associated with colorectal neoplasia.Folate deficiency may cause colorectal carcinogenesis by inducing gene-specific hypermethylation and genomic global hypomethylation.HDAC inhibitors and demethylating agents have been approved by the FDA for myelodysplastic syndrome and leukemia treatment.Non-coding RNA is regarded as another kind of epigenetic marker in colorectal cancer.This review is mainly focused on DNA methylation,histone modification,and microRNA changes in colorectal cancer.

  14. Epigenetic biomarkers in liver cancer.

    Science.gov (United States)

    Banaudha, Krishna K; Verma, Mukesh

    2015-01-01

    Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.

  15. Epigenetics in heart failure phenotypes

    Directory of Open Access Journals (Sweden)

    Alexander Berezin

    2016-12-01

    Full Text Available Chronic heart failure (HF is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF and HF with preserved left ventricular ejection fraction (HFpEF. Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF.

  16. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente

    2016-01-01

    associated with ART techniques, but disentangling the influence of the ART procedures per se from the effect of the reproductive disease of the parents is a challenge. Epidemiological human studies have shown altered birth weight profiles in ART compared with spontaneously conceived singletons. Conception......Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...... with cryopreserved/thawed embryos results in a higher risk of large-for-gestational age babies, which may be due to epigenetic modification. Further animal studies have shown altered gene expression profiles in offspring conceived by ART related to altered glucose metabolism. It is controversial whether human...

  17. Epigenetic phenomena and the evolution of plant allopolyploids

    Institute of Scientific and Technical Information of China (English)

    BaoLiu; JonathanF.Wendel

    2005-01-01

    Allopolyploid speciation is widespread in plants, yet the molecular requirements for successful orchestration of coordinated gene expression for two divergent and reunited genomes are poorly understood. Recent studies in several plant systems have revealed that allopolyploid genesis under both synthetic and natural conditions often is accompanied by rapid and sometimes evolutionarily conserved epigeuetic changes, including alteration in cytosine methylation patterns, rapid silencing in ribosomal RNA and proteincoding genes, and de-repression of dormant transposable elements. These changes are inter-related and likely arise from chromatin remodeling and its effects on epigenetic codes during and subsequent to allopolyploid formation. Epigenetic modifications could produce adaptive epimutations and novel phenotypes, some of which may be evolutionarily stable for millions of years, thereby representing a vast reservoir of latent variation that may be episodically released and made visible to selection. This epigenetic variation may contribute to several important attributes of allopolyploidy, including functional diversification or subfunctionalization of duplicated genes, genetic and cytological diploidization, and quenching of incompatible inter-genomic interactions that are characteristic of allopolyploids. It is likely that the evolutionary success of allopolyploidy is in part attributatble to epigenetic phenomena that we are only just beginning to understand.

  18. Epigenetic inheritance and evolution: A paternal perspective on dietary influences.

    Science.gov (United States)

    Soubry, Adelheid

    2015-07-01

    The earliest indications for paternally induced transgenerational effects from the environment to future generations were based on a small number of long-term epidemiological studies and some empirical observations. Only recently have experimental animal models and a few analyses on human data explored the transgenerational nature of phenotypic changes observed in offspring. Changes include multiple metabolic disorders, cancer and other chronic diseases. These phenotypes cannot always be explained by Mendelian inheritance, DNA mutations or genetic damage. Hence, a new compelling theory on epigenetic inheritance is gaining interest, providing new concepts that extend Darwin's evolutionary theory. Epigenetic alterations or "epimutations" are being considered to explain transgenerational inheritance of parentally acquired traits. The responsible mechanisms for these epimutations include DNA methylation, histone modification, and RNA-mediated effects. This review explores the literature on a number of time-dependent environmentally induced epigenetic alterations, specifically those from dietary exposures. We suggest a role for the male germ line as one of nature's tools to capture messages from our continuously changing environment and to transfer this information to subsequent generations. Further, we open the discussion that the paternally inherited epigenetic information may contribute to evolutionary adaptation.

  19. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  20. Review of Epigenetics: A Reference Manual

    OpenAIRE

    Banister, Carolyn E

    2012-01-01

    The study of epigenetics has experienced exponential growth in the past 15 years and continues to be a major focus of study across biological disciplines. A new reference text Epigenetics: A Reference Manual, published by Caister Academic Press and edited by Jeffrey M. Craig and Nicholas C. Wong (Developmental Epigenetics Group, Murdoch Children's Research Institute, Victoria, Australia), presents a current and comprehensive look into the many facets of epigenetics research. The information t...

  1. Epigenetic influence on embryonic development

    DEFF Research Database (Denmark)

    Donkin, Ida; Barrès, Romain; Pinborg, Anja

    2016-01-01

    The epigenome is sensitive to environmental changes and can sustainably alter gene expression, notably during embryonic development. New research indicates that epigenetic factors are heritable, which is why paternal lifestyle may affect fetal development and risk of disease. Children conceived...... by assisted reproduction technology (ART) have an increased risk of peri- and postnatal complications, and as specific ART protocols associate with specific risk profiles, the procedures themselves may cause epigenetic changes contributing to the altered outcomes of the 5,000 Danish children annually...

  2. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  3. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  4. Epigenetic Case Studies in Agricultural Animals

    Science.gov (United States)

    In many biological processes, the regulation of gene expression involves epigenetic mechanisms. An altered pattern of epigenetic modification is central to many animal diseases. Using animal disease models, we have studied one of the major epigenetic components: DNA methylation. We characterized the...

  5. Epigenetics: a new frontier in dentistry.

    Science.gov (United States)

    Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C

    2014-06-01

    In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases.

  6. [DNA methylation and epigenetics].

    Science.gov (United States)

    Vaniushin, B F

    2006-09-01

    sensitive to DNA methylation. It seems likely that plants, similarly to microorganisms and some lower eukaryotes, have restriction--modification (R--M) system. Discovery of the essential role of DNA methylation in regulation of genetic processes served as a principle basis and materialization of epigenetics and epigenomics.

  7. Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2014-12-01

    Full Text Available Epigenetic mechanisms regulate gene expression, thereby mediating the interaction between environment, genotype and phenotype. Changes to epigenetic regulation of genes may be heritable, permitting rapid adaptation of a species to environmental cues. However, most of the current understanding of epigenetic gene regulation has been gained from studies of mice and humans, with only a limited understanding of the conservation of epigenetic mechanisms across divergent taxa. The relative ease at which genome sequence data is now obtained and the advancements made in epigenomics techniques for non-model species provides a basis for carrying out comparative epigenomic studies across a wider range of species, making it possible to start unraveling the evolution of epigenetic mechanisms. We review the current knowledge of epigenetic mechanisms obtained from studying model organisms, give an example of how comparative epigenomics using non-model species is helping to trace the evolutionary history of X chromosome inactivation in mammals and explore the opportunities to study comparative epigenomics in biological systems displaying adaptation between species, such as the immune system and sex determination.

  8. Epigenetics of hepatocellular carcinoma: a new horizon

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-ren; SHI Ying-hong; PENG Yuan-fei; FAN Jia

    2012-01-01

    Epigenetic changes refer to stable alterations in gene expression with no underlying modifications in the genetic sequence itself.It has become clear that not only gene variations but also epigenetic modifications may contribute to varied diseases,including cancer.This review will provide an overview of how epigenetic factors,including genomic DNA methylation,histone modifications,and miRNA regulation,contribute to hepatocellular carcinoma (HCC) dissemination,invasion,and metastasis.Additionally,the reversal of dysregulated epigenetic changes has emerged as a potential strategy for the treatment of HCC,and we will summarize the latest epigenetic therapies for HCC.

  9. Epigenetics and psychoneuroimmunology: mechanisms and models.

    Science.gov (United States)

    Mathews, Herbert L; Janusek, Linda Witek

    2011-01-01

    In this Introduction to the Named Series "Epigenetics, Brain, Behavior, and Immunity" an overview of epigenetics is provided with a consideration of the nature of epigenetic regulation including DNA methylation, histone modification and chromatin re-modeling. Illustrative examples of recent scientific developments are highlighted to demonstrate the influence of epigenetics in areas of research relevant to those who investigate phenomena within the scientific discipline of psychoneuroimmunology. These examples are presented in order to provide a perspective on how epigenetic analysis will add insight into the molecular processes that connect the brain with behavior, neuroendocrine responsivity and immune outcome.

  10. Epigenetic Modifications: Therapeutic Potential in Cancer

    Directory of Open Access Journals (Sweden)

    Manisha Sachan

    2015-08-01

    Full Text Available Epigenetic modifications and alterations in chromatin structure and function contribute to the cumulative changes observed as normal cells undergo malignant transformation. These modifications and enzymes (DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases related to them have been deeply studied to develop new drugs, epigenome-targeted therapies and new diagnostic tools. Epigenetic modifiers aim to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. Four of them (azacitidine, decitabine, vorinostat and romidepsin are approved by the U.S. Food and Drug Administration. This article provides an overview about the known functional roles of epigenetic enzymes in cancer development.

  11. Mass spectrometry in epigenetic research

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2010-01-01

    -based proteomics techniques to histone biology has gained new insight into the function of the nucleosome: Novel posttranslational modifications have been discovered at the lateral surface of the nucleosome. These modifications regulate histone-DNA interactions, adding a new dimension to the epigenetic regulation...

  12. Epigenetics of the Developing Brain

    Science.gov (United States)

    Champagne, Frances A.

    2015-01-01

    Advances in understanding of the dynamic molecular interplay between DNA and its surrounding proteins suggest that epigenetic mechanisms are a critical link between early life experiences (e.g., prenatal stress, parent-offspring interactions) and long-term changes in brain and behavior. Although much of this evidence comes from animal studies,…

  13. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  14. Epigenetics and Peripheral Artery Disease.

    Science.gov (United States)

    Golledge, Jonathan; Biros, Erik; Bingley, John; Iyer, Vikram; Krishna, Smriti M

    2016-04-01

    The term epigenetics is usually used to describe inheritable changes in gene function which do not involve changes in the DNA sequence. These typically include non-coding RNAs, DNA methylation and histone modifications. Smoking and older age are recognised risk factors for peripheral artery diseases, such as occlusive lower limb artery disease and abdominal aortic aneurysm, and have been implicated in promoting epigenetic changes. This brief review describes studies that have associated epigenetic factors with peripheral artery diseases and investigations which have examined the effect of epigenetic modifications on the outcome of peripheral artery diseases in mouse models. Investigations have largely focused on microRNAs and have identified a number of circulating microRNAs associated with human peripheral artery diseases. Upregulating or antagonising a number of microRNAs has also been reported to limit aortic aneurysm development and hind limb ischemia in mouse models. The importance of DNA methylation and histone modifications in peripheral artery disease has been relatively little studied. Whether circulating microRNAs can be used to assist identification of patients with peripheral artery diseases and be modified in order to improve the outcome of peripheral artery disease will require further investigation.

  15. Epigenetic silencing in transgenic plants

    Directory of Open Access Journals (Sweden)

    Sarma eRajeev Kumar

    2015-09-01

    Full Text Available Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS, which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

  16. Epigenetic Placental Programming of Preeclampsia

    Science.gov (United States)

    Preeclampsia (PE) affects 8-10% of women in the US and long-term consequences include subsequent development of maternal hypertension and hypertension in offspring. As methylation patterns are established during fetal life, we focused on epigenetic alterations in DNA methylation as a plausible expla...

  17. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  18. Alcohol Metabolism and Epigenetics Changes

    Science.gov (United States)

    Zakhari, Samir

    2013-01-01

    Metabolites, including those generated during ethanol metabolism, can impact disease states by binding to transcription factors and/or modifying chromatin structure, thereby altering gene expression patterns. For example, the activities of enzymes involved in epigenetic modifications such as DNA and histone methylation and histone acetylation, are influenced by the levels of metabolites such as nicotinamide adenine dinucleotide (NAD), adenosine triphosphate (ATP), and S-adenosylmethionine (SAM). Chronic alcohol consumption leads to significant reductions in SAM levels, thereby contributing to DNA hypomethylation. Similarly, ethanol metabolism alters the ratio of NAD+ to reduced NAD (NADH) and promotes the formation of reactive oxygen species and acetate, all of which impact epigenetic regulatory mechanisms. In addition to altered carbohydrate metabolism, induction of cell death, and changes in mitochondrial permeability transition, these metabolism-related changes can lead to modulation of epigenetic regulation of gene expression. Understanding the nature of these epigenetic changes will help researchers design novel medications to treat or at least ameliorate alcohol-induced organ damage. PMID:24313160

  19. Twin methodology in epigenetic studies.

    Science.gov (United States)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob; Christensen, Kaare

    2015-01-01

    Since the final decades of the last century, twin studies have made a remarkable contribution to the genetics of human complex traits and diseases. With the recent rapid development in modern biotechnology of high-throughput genetic and genomic analyses, twin modelling is expanding from analysis of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic studies are going to help with efficiently unravelling the genetic and environmental basis of epigenomics in human complex diseases.

  20. The epigenetics of multiple sclerosis and other related disorders.

    Science.gov (United States)

    van den Elsen, Peter J; van Eggermond, Marja C J A; Puentes, Fabiola; van der Valk, Paul; Baker, David; Amor, Sandra

    2014-03-01

    Multiple Sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system (CNS) gray and white matter. Although the cause of MS is unknown, it is widely appreciated that innate and adaptive immune processes contribute to its pathogenesis. These include microglia/macrophage activation, pro-inflammatory T-cell (Th1) responses and humoral responses. Additionally, there is evidence indicating that MS has a neurodegenerative component since neuronal and axonal loss occurs even in the absence of overt inflammation. These aspects also form the rationale for clinical management of the disease. However, the currently available therapies to control the disease are only partially effective at best indicating that more effective therapeutic solutions are urgently needed. It is appreciated that in the immune-driven and neurodegenerative processes MS-specific deregulation of gene expressions and resulting protein dysfunction are thought to play a central role. These deviations in gene expression patterns contribute to the inflammatory response in the CNS, and to neuronal or axonal loss. Epigenetic mechanisms control transcription of most, if not all genes, in nucleated cells including cells of the CNS and in haematopoietic cells. MS-specific alterations in epigenetic regulation of gene expression may therefore lie at the heart of the deregulation of gene expression in MS. As such, epigenetic mechanisms most likely play an important role in disease pathogenesis. In this review we discuss a role for MS-specific deregulation of epigenetic features that control gene expression in the CNS and in the periphery. Furthermore, we discuss the application of small molecule inhibitors that target the epigenetic machinery to ameliorate disease in experimental animal models, indicating that such approaches may be applicable to MS patients.

  1. Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures.

    Science.gov (United States)

    Mirbahai, Leda; Chipman, James K

    2014-04-01

    Both genetic and epigenetic responses of organisms to environmental factors, including chemical exposures, influence adaptation, susceptibility to toxicity and biodiversity. In model organisms, it is established that epigenetic alterations, including changes to the methylome, can create a memory of the received signal. This is partly evidenced through the analysis of epigenetic differences that develop between identical twins throughout their lifetime. The epigenetic marks induce alterations to the gene expression profile, which, in addition to mediating homeostatic responses, have the potential to promote an abnormal physiology either immediately or at a later stage of development, for example leading to an adult onset of disease. Although this has been well established, epigenetic mechanisms are not considered in chemical risk assessment or utilised in the monitoring of the exposure and effects of chemicals and environmental change. In this review, epigenetic factors, specifically DNA methylation, are highlighted as mechanisms of adaptation and response to environmental factors and which, if persistent, have the potential, retrospectively, to reflect previous stress exposures. Thus, it is proposed that epigenetic "foot-printing" of organisms could identify classes of chemical contaminants to which they have been exposed throughout their lifetime. In some cases, the potential for persistent transgenerational modification of the epigenome may also inform on parental germ cell exposures. It is recommended that epigenetic mechanisms, alongside genetic mechanisms, should eventually be considered in environmental toxicity safety assessments and in biomonitoring studies. This will assist in determining the mode of action of toxicants, no observed adverse effect level and identification of biomarkers of toxicity for early detection and risk assessment in toxicology but there are critical areas that remain to be explored before this can be achieved.

  2. Epigenetic Determinism in Science and Society.

    Science.gov (United States)

    Waggoner, Miranda R; Uller, Tobias

    2015-04-03

    The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.

  3. Transgenerational epigenetic inheritance: an open discussion.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2015-08-01

    Much controversy surrounds the idea of transgenerational epigenetics. Recent papers argue that epigenetic marks acquired through experience are passed to offspring, but as in much of the field of epigenetics, there is lack of precision in the definitions and perhaps too much eagerness to translate animal research to humans. Here, we review operational definitions of transgenerational inheritance and the processes of epigenetic programing during early development. Subsequently, based on this background, we critically examine some recent findings of studies investigating transgenerational inheritance. Finally, we discuss possible mechanisms that may explain transgenerational inheritance, including transmission of an epigenetic blueprint, which may predispose offspring to specific epigenetic patterning. Taken together, we conclude that presently, the evidence suggesting that acquired epigenetic marks are passed to the subsequent generation remains limited.

  4. Epigenetics in Cancer: A Hematological Perspective.

    Directory of Open Access Journals (Sweden)

    Maximilian Stahl

    2016-10-01

    Full Text Available For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.

  5. Epigenetic variation: origin and transgenerational inheritance.

    Science.gov (United States)

    Becker, Claude; Weigel, Detlef

    2012-11-01

    Recent studies have revealed that epigenetic variation in plant populations exceeds genetic diversity and that it is influenced by the environment. Nevertheless, epigenetic differences are not entirely independent of shared ancestry. Epigenetic modifications have gained increasing attention, because one can now study their patterns across the entire genome and in many different individuals. Not only do epigenetic phenomena modulate the activity of the genome in response to environmental stimuli, but they also constitute a potential source of natural variation. Understanding the emergence and heritability of epigenetic variants is critical for understanding how they might become subject to natural selection and thus affect genetic diversity. Here we review progress in characterizing natural epigenetic variants in model and nonmodel plant species and how this work is helping to delineate the role of epigenetic changes in evolution.

  6. Epigenetic mechanisms of drug addiction.

    Science.gov (United States)

    Nestler, Eric J

    2014-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues, including brain. This has prompted recent research aimed at characterizing the influence of epigenetic regulatory events in mediating the lasting effects of drugs of abuse on the brain in animal models of drug addiction. This review provides a progress report of this still early work in the field. As will be seen, there is robust evidence that repeated exposure to drugs of abuse induces changes within the brain's reward regions in three major modes of epigenetic regulation-histone modifications such as acetylation and methylation, DNA methylation, and non-coding RNAs. In several instances, it has been possible to demonstrate directly the contribution of such epigenetic changes to addiction-related behavioral abnormalities. Studies of epigenetic mechanisms of addiction are also providing an unprecedented view of the range of genes and non-genic regions that are affected by repeated drug exposure and the precise molecular basis of that regulation. Work is now needed to validate key aspects of this work in human addiction and evaluate the possibility of mining this information to develop new diagnostic tests and more effective treatments for addiction syndromes. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.

  7. Epigenetic modifications and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marpadga A. Reddy

    2012-09-01

    Full Text Available Diabetic nephropathy (DN is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a “metabolic memory” of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.

  8. An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis

    Science.gov (United States)

    Matkar, Smita; Sharma, Paras; Gao, Shubin; Gurung, Buddha; Katona, Bryson W; Liao, Jennifer; Muhammad, Abdul Bari; Kong, Xiang-Cheng; Wang, Lei; Jin, Guanghui; Dang, Chi; Hua, Xianxin

    2016-01-01

    SUMMARY Human epidermal growth factor receptor 2 (HER2) is upregulated in a subset of human breast cancers. However, the cancer cells often quickly develop an adaptive response to HER2 kinase inhibitors. We found that an epigenetic pathway involving MLL2 is crucial for growth of HER2+ cells and MLL2 reduces sensitivity of the cancer cells to a HER2 inhibitor, Lapatinib. Lapatinib-induced FOXO transcription factors, normally tumor-suppressing, paradoxically upregulate c-Myc epigenetically, in concert with a cascade of MLL2-associating epigenetic regulators, to dampen sensitivity of the cancer cells to Lapatinib. An epigenetic inhibitor suppressing c-Myc synergizes with Lapatinib to suppress cancer growth in vivo, partly by repressing the FOXO/c-Myc axis, unraveling an epigenetically regulated FOXO/c-Myc axis as a potential target to improve therapy. PMID:26461093

  9. Differential enrichment of TTF-I and Tip5 in the T-like promoter structures of the rDNA contribute to the epigenetic response of Cyprinus carpio during environmental adaptation.

    Science.gov (United States)

    Nardocci, Gino; Simonet, Nicolas G; Navarro, Cristina; Längst, Gernot; Alvarez, Marco

    2016-08-01

    To ensure homeostasis, ectothermic organisms adapt to environmental variations through molecular mechanisms. We previously reported that during the seasonal acclimatization of the common carp Cyprinus carpio, molecular and cellular functions are reprogrammed, resulting in distinctive traits. Importantly, the carp undergoes a drastic rearrangement of nucleolar components during adaptation. This ultrastructural feature reflects a fine modulation of rRNA gene transcription. Specifically, we identified the involvement of the transcription termination factor I (TTF-I) and Tip-5 (member of nucleolar remodeling complex, NoRC) in the control of rRNA transcription. Our results suggest that differential Tip5 enrichment is essential for silencing carp ribosomal genes and that the T0 element is key for regulating the ribosomal gene during the acclimatization process. Interestingly, the expression and content of Tip5 were significantly higher in winter than in summer. Since carp ribosomal gene expression is lower in the winter than in summer, and considering that expression concomitantly occurs with nucleolar ultrastructural changes of the acclimatization process, these results indicate that Tip5 importantly contributes to silencing the ribosomal genes. In conclusion, the current study provides novel evidence on the contributions of TTF-I and NoRC in the environmental reprogramming of ribosomal genes during the seasonal adaptation process in carp.

  10. "Stress entropic load" as a transgenerational epigenetic response trigger.

    Science.gov (United States)

    Bienertová-Vašků, Julie; Nečesánek, Ivo; Novák, Jan; Vinklárek, Jan; Zlámal, Filip

    2014-03-01

    Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.

  11. EPA Workshop on Epigenetics and Cumulative Risk ...

    Science.gov (United States)

    Agenda Download the Workshop Agenda (PDF) The workshop included presentations and discussions by scientific experts pertaining to three topics (i.e., epigenetic changes associated with diverse stressors, key science considerations in understanding epigenetic changes, and practical application of epigenetic tools to address cumulative risks from environmental stressors), to address several questions under each topic, and included an opportunity for attendees to participate in break-out groups, provide comments and ask questions. Workshop Goals The workshop seeks to examine the opportunity for use of aggregate epigenetic change as an indicator in cumulative risk assessment for populations exposed to multiple stressors that affect epigenetic status. Epigenetic changes are specific molecular changes around DNA that alter expression of genes. Epigenetic changes include DNA methylation, formation of histone adducts, and changes in micro RNAs. Research today indicates that epigenetic changes are involved in many chronic diseases (cancer, cardiovascular disease, obesity, diabetes, mental health disorders, and asthma). Research has also linked a wide range of stressors including pollution and social factors with occurrence of epigenetic alterations. Epigenetic changes have the potential to reflect impacts of risk factors across multiple stages of life. Only recently receiving attention is the nexus between the factors of cumulative exposure to environmental

  12. Global epigenetic changes during somatic cell reprogramming to iPS cells

    Institute of Scientific and Technical Information of China (English)

    Anna Mattout; Alva Biran; Eran Meshorer

    2011-01-01

    Embryonic stem cells (ESCs) exhibit unique chromatin features,including a permissive transcriptional program and an open,decondensed chromatin state.Induced pluripotent stem cells (iPSCs),which are very similar to ESCs,hold great promise for therapy and basic research.However,the mechanisms by which reprogramming occurs and the chromatin organization that underlies the reprogramming process are largely unknown.Here we characterize and compare the epigenetic landscapes of partially and fully reprogrammed iPSCs to mouse embryonic fibroblasts (MEFs) and ESCs,which serves as a standard for pluripotency.Using immunofluorescence and biochemical fractionations,we analyzed the levels and distribution of a battery of histone modifications (H3ac,H4ac,H4KSac,H3Kgac,H3K27ac,H3K4me3,H3K36me2,H3K9me3,H3K27me3,and yH2AX),as well as HP1α and lamin A.We find that fully reprogrammed iPSCs are epigenetically identical to ESCs,and that partially reprogrammed iPSCs are closer to MEFs.Intriguingly,combining both time-course reprogramming experiments and data from the partially reprogrammed iPSCs,we find that heterochromatin reorganization precedes Nanog expression and active histone marking.Together,these data delineate the global epigenetic state of iPSCs in conjunction with their pluripotent state,and demonstrate that heterochromatin precedes euchromatin in reorganization during reprogramming.

  13. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  14. Epigenetic mechanisms in gastric cancer.

    Science.gov (United States)

    Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Calcagno, Danielle Queiroz; Wisnieski, Fernanda; Burbano, Rommel Rodriguez; Smith, Marilia Arruda Cardoso

    2012-06-01

    Cancer is considered one of the major health issues worldwide, and gastric cancer accounted for 8% of total cases and 10% of total deaths in 2008. Gastric cancer is considered an age-related disease, and the total number of newly diagnosed cases has been increasing as a result of the higher life expectancy. Therefore, the basic mechanisms underlying gastric tumorigenesis is worth investigation. This review provides an overview of the epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling complex and miRNA, involved in gastric cancer. As the studies in gastric cancer continue, the mapping of an epigenome code is not far for this disease. In conclusion, an epigenetic therapy might appear in the not too distant future.

  15. Epigenetics of the antibody response.

    Science.gov (United States)

    Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-09-01

    Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.

  16. Lifestyle, pregnancy and epigenetic effects.

    Science.gov (United States)

    Barua, Subit; Junaid, Mohammed A

    2015-01-01

    Rapidly growing evidences link maternal lifestyle and prenatal factors with serious health consequences and diseases later in life. Extensive epidemiological studies have identified a number of factors such as diet, stress, gestational diabetes, exposure to tobacco and alcohol during gestation as influencing normal fetal development. In light of recent discoveries, epigenetic mechanisms such as alteration of DNA methylation, chromatin modifications and modulation of gene expression during gestation are believed to possibly account for various types of plasticity such as neural tube defects, autism spectrum disorder, congenital heart defects, oral clefts, allergies and cancer. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations. To support these associations, we highlighted laboratory studies of rodents and epidemiological studies of human based on sampling population cohorts.

  17. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression.

    Science.gov (United States)

    Ambra, R; Manca, S; Palumbo, M C; Leoni, G; Natarelli, L; De Marco, A; Consoli, A; Pandolfi, A; Virgili, F

    2014-01-01

    Within the complex pathological picture associated to diabetes, high glucose (HG) has "per se" effects on cells and tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells (HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of samples analyzed (n=6), genes related to insulin sensing and extracellular matrix reorganization were found significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and provides a background for future investigations addressing genomic consequences of chronic HG.

  18. Epigenetic Characterization of Ovarian Cancer

    Science.gov (United States)

    2008-12-01

    prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease. Epigenetics, 2006. 1(4): p. 183-6. 6...32. Zhao, H., et al., CpG methylation at promoter site -140 inactivates TGFbeta2 receptor gene in prostate cancer. Cancer, 2005. 104(1): p. 44-52...5]: taxis GO:0006935 [6]: chemotaxis GO:0001525 [6]: angiogenesis GO:0007155 [4]: cell adhesion GO:0030155 [4]: regulation of cell adhesion GO:0006954

  19. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization.

    Science.gov (United States)

    Halberg, Kenneth Agerlin; Jørgensen, Aslak; Møbjerg, Nadja

    2013-01-01

    Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their ability to endure hostile conditions, such as complete desiccation--a phenomenon called anhydrobiosis. During dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called "tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i) mitochondrial energy production is a prerequisite for surviving desiccation, ii) uncoupling the mitochondria abolishes tun formation, and iii) inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry, confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that maintaining structural integrity is essential for resumption of life following rehydration.

  20. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization.

    Directory of Open Access Journals (Sweden)

    Kenneth Agerlin Halberg

    Full Text Available Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their ability to endure hostile conditions, such as complete desiccation--a phenomenon called anhydrobiosis. During dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called "tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i mitochondrial energy production is a prerequisite for surviving desiccation, ii uncoupling the mitochondria abolishes tun formation, and iii inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry, confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that maintaining structural integrity is essential for resumption of life following rehydration.

  1. Epigenetics, eh! A meeting summary of the Canadian Conference on Epigenetics.

    Science.gov (United States)

    Rodenhiser, David I; Bérubé, Nathalie G; Mann, Mellissa R W

    2011-10-01

    In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.

  2. Clinical implications of epigenetic alterations in human thoracic malignancies: epigenetic alterations in lung cancer.

    Science.gov (United States)

    Shinjo, Keiko; Kondo, Yutaka

    2012-01-01

    Besides known genetic aberrations, epigenetic alterations have emerged as common hallmarks of many cancer types, including lung cancer. Epigenetics is a process involved in gene regulation, mediated via DNA methylation, histone modification, chromatin remodeling, and functional noncoding RNAs, which influences the accessibility of the underlying DNA to transcriptional regulatory factors that activate or repress expression. Studies have shown that epigenetic dysregulation is associated with multiple steps during carcinogenesis. Since epigenetic therapy is now in clinical use in hematopoietic diseases and undergoing trials for lung cancer, a better understanding of epigenetic abnormalities is desired. Recent technologies for high-throughput genome-wide analyses for epigenetic modifications are promising and potent tools for understanding the global dysregulation of cancer epigenetics. In this chapter, studies of epigenetic abnormality and its clinical implication in lung cancers are discussed.

  3. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Science.gov (United States)

    2010-01-01

    ... that the bank holding company will provide to the shareholders of the reorganizing bank for their shares of stock of the bank; (B) The date as of which the rights of each shareholder to participate in... national bank. (e) Rights of dissenting shareholders. Any shareholder of a bank who has voted against...

  4. Rural School District Reorganization on the Great Plains.

    Science.gov (United States)

    Bryant, Miles

    2002-01-01

    Rural school district reorganization and school consolidation are put into perspective by reviewing the large population increases that fueled small-school growth in the Great Plains, 1870-1930. Since the Dust Bowl and Great Depression, population losses, improvements in transportation, and arguments advocating economies of scale and increased…

  5. Expediting Scientific Data Analysis with Reorganization of Data

    Energy Technology Data Exchange (ETDEWEB)

    Byna, Surendra; Wu, Kesheng

    2013-08-19

    Data producers typically optimize the layout of data files to minimize the write time. In most cases, data analysis tasks read these files in access patterns different from the write patterns causing poor read performance. In this paper, we introduce Scientific Data Services (SDS), a framework for bridging the performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns of analysis tasks and enables transparent data reads from the reorganized data. We implemented a HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls to the reorganized data. To demonstrate the effectiveness of SDS, we applied two parallel data organization techniques: a sort-based organization on a plasma physics data and a transpose-based organization on mass spectrometry imaging data. We also extended the HDF5 data access API to allow selection of data based on their values through a query interface, called SDS Query. We evaluated the execution time in accessing various subsets of data through existing HDF5 Read API and SDS Query. We showed that reading the reorganized data using SDS is up to 55X faster than reading the original data.

  6. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    Science.gov (United States)

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area.

  7. Epigenetics in autism and other neurodevelopmental diseases.

    Science.gov (United States)

    Miyake, Kunio; Hirasawa, Takae; Koide, Tsuyoshi; Kubota, Takeo

    2012-01-01

    Autism was previously thought to be caused by environmental factors. However, genetic factors are now considered to be more contributory to the pathogenesis of autism, based on the recent findings of mutations in the genes which encode synaptic molecules associated with the communication between neurons. Epigenetic is a mechanism that controls gene expression without changing DNA sequence but by changing chromosomal histone modifications and its abnormality is associated with several neurodevelopmental diseases. Since epigenetic modifications are known to be affected by environmental factors such as nutrition, drugs and mental stress, autistic diseases are not only caused by congenital genetic defects, but may also be caused by environmental factors via epigenetic mechanism. In this chapter, we introduce autistic diseases caused by epigenetic failures and discuss epigenetic changes by environmental factors and discuss new treatments for neurodevelopmental diseases based on the recent epigenetic findings.

  8. Interindividual variability in stress susceptibility: A role for epigenetic mechanisms in PTSD

    Directory of Open Access Journals (Sweden)

    Iva eZovkic

    2013-06-01

    Full Text Available Post-traumatic stress disorder (PTSD is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset.

  9. Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD.

    Science.gov (United States)

    Zovkic, Iva B; Meadows, Jarrod P; Kaas, Garrett A; Sweatt, J David

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset.

  10. T cell immunity as a tool for studying epigenetic regulation of cellular differentiation

    Directory of Open Access Journals (Sweden)

    Brendan Edward Russ

    2013-11-01

    Full Text Available Cellular differentiation is regulated by the strict spatial and temporal control of gene expression. This is achieved, in part, by regulating changes in histone post-translational modifications (PTMs and DNA methylation that in-turn, impact transcriptional activity. Further, histone PTMs and DNA methylation are often propagated faithfully at cell division (termed epigenetic propagation, and thus contribute to maintaining cellular identity in the absence of signals driving differentiation. Cardinal features of adaptive T cell immunity include the ability to differentiate in response to infection, resulting in acquisition of immune functions required for pathogen clearance; and the ability to maintain this functional capacity in the long-term, allowing more rapid and effective pathogen elimination following re-infection. These characteristics underpin vaccination strategies by effectively establishing a long-lived T cell population that contributes to an immunologically protective state (termed immunological memory. As we discuss in this review, epigenetic mechanisms provide attractive and powerful explanations for key aspects of T cell-mediated immunity - most obviously and notably, immunological memory, because of the capacity of epigenetic circuits to perpetuate cellular identities in the absence of the initial signals that drive differentiation. Indeed, T cell responses to infection are an ideal model system for studying how epigenetic factors shape cellular differentiation and development generally. This review will examine how epigenetic mechanisms regulate T cell function and differentiation, and how these model systems are providing general insights into the epigenetic regulation of gene transcription during cellular differentiation.

  11. Perspectives on the interactions between metabolism, redox, and epigenetics in plants.

    Science.gov (United States)

    Shen, Yuan; Issakidis-Bourguet, Emmanuelle; Zhou, Dao-Xiu

    2016-10-01

    Epigenetic modifications of chromatin usually involve consumption of key metabolites and redox-active molecules. Primary metabolic flux and cellular redox states control the activity of enzymes involved in chromatin modifications, such as DNA methylation, histone acetylation, and histone methylation, which in turn regulate gene expression and/or enzymatic activity of specific metabolic and redox pathways. Thus, coordination of metabolism and epigenetic regulation of gene expression is critical to control growth and development in response to the cellular environment. Much has been learned from animal and yeast cells with regard to the interplay between metabolism and epigenetic regulation, and now the metabolic control of epigenetic pathways in plants is an increasing area of study. Epigenetic mechanisms are largely similar between plant and mammalian cells, but plants display very important differences in both metabolism and metabolic/redox signaling pathways. In this review, we summarize recent developments in the field and discuss perspectives of studying interactions between plant epigenetic and metabolism/redox systems, which are essential for plant adaptation to environmental conditions.

  12. Why reorganization of firms fails: evidence from Estonia. Summary: Saneerimismenetluse ebaõnnestumise põhjused Eestis

    Directory of Open Access Journals (Sweden)

    Oliver Lukason

    2013-09-01

    Full Text Available Although most countries have firm reorganization option in legislation (either as a separate law or part of insolvency code, the practice of successful reorganizations has remained modest. Reorganization law was introduced in Estonia in late 2008, but only a few firms have been successfully reorganized since. Derived from previous the article studies, what are the reasons for firm reorganization failure. From legal viewpoint, main causes are found to be that firms under reorganization do not submit reorganization plans to court and the preconditions for reorganization lapse. The financial ratios for successful and unsuccessful reorganizations are not significantly different according to independent samples median test. Unsuccessfully reorganized firms perform worse than successful ones in the year before reorganization year, but the opposite phenomenon occurs two and three years before reorganization year.

  13. The epigenetic paradigm in periodontitis pathogenesis

    OpenAIRE

    2015-01-01

    Epigenome refers to “epi” meaning outside the “genome.” Epigenetics is the field of study of the epigenome. Epigenetic modifications include changes in the promoter CpG Islands, modifications of histone protein structure, posttranslational repression by micro-RNA which contributes to the alteration of gene expression. Epigenetics provides an understanding of the role of gene-environment interactions on disease phenotype especially in complex multifactorial diseases. Periodontitis is a chronic...

  14. Plant epigenetics : from genomes to epigenomes

    OpenAIRE

    Rival, Alain; Beulé, Thierry; Frédérique ABERLENC BERTOSSI; Tregear, James; Jaligot, Estelle

    2010-01-01

    Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. In recent years, this field has attracted increasing attention as more epigenetic mechanisms affecting gene activity are being discovered. Such processes involve a complex interplay between DNA methylation, histone modifications, and non-coding RNAs, notably small interfering RNAs (siRNAs) and micro RNAs (miRNAs). Epigenetic regulation is not only important for generating differen...

  15. Daphnia as an Emerging Epigenetic Model Organism

    OpenAIRE

    2012-01-01

    Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one sp...

  16. Clinical neurorehabilitation - implications of the Reorganization of Elementary Functions (REF) model

    DEFF Research Database (Denmark)

    Rytter, Hana Malá; Mogensen, Jesper

    The REF (Reorganization of Elementary Functions) model suggests mechanisms of posttraumatic reorganization, and resolves the contradiction between localization and functional recovery. In the process of developing this model, we have reconceptualised the term ‘function’ and introduced a concept...

  17. Epigenetic regulation in male germ cells.

    Science.gov (United States)

    Zamudio, Natasha M; Chong, Suyinn; O'Bryan, Moira K

    2008-08-01

    In recent years, it has become increasingly clear that epigenetic regulation of gene expression is critical during spermatogenesis. In this review, the epigenetic regulation and the consequences of its aberrant regulation during mitosis, meiosis and spermiogenesis are described. The current knowledge on epigenetic modifications that occur during male meiosis is discussed, with special attention on events that define meiotic sex chromosome inactivation. Finally, the recent studies focused on transgenerational and paternal effects in mice and humans are discussed. In many cases, these epigenetic effects resulted in impaired fertility and potentially long-ranging affects underlining the importance of research in this area.

  18. Epigenetic Modifications and Plant Hormone Action.

    Science.gov (United States)

    Yamamuro, Chizuko; Zhu, Jian-Kang; Yang, Zhenbiao

    2016-01-04

    The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mechanisms regulating epigenetic modifications.

  19. Obesity: epigenetic regulation – recent observations.

    Science.gov (United States)

    Remely, Marlene; de la Garza, Ana Laura; Magnet, Ulrich; Aumueller, Eva; Haslberger, Alexander G

    2015-06-01

    Genetic and environmental factors, especially nutrition and lifestyle, have been discussed in the literature for their relevance to epidemic obesity. Gene-environment interactions may need to be understood for an improved understanding of the causes of obesity, and epigenetic mechanisms are of special importance. Consequences of epigenetic mechanisms seem to be particularly important during certain periods of life: prenatal, postnatal and intergenerational, transgenerational inheritance are discussed with relevance to obesity. This review focuses on nutrients, diet and habits influencing intergenerational, transgenerational, prenatal and postnatal epigenetics; on evidence of epigenetic modifiers in adulthood; and on animal models for the study of obesity.

  20. Epigenetics, the role of DNA methylation in tree development.

    Science.gov (United States)

    Viejo, Marcos; Santamaría, María E; Rodríguez, José L; Valledor, Luis; Meijón, Mónica; Pérez, Marta; Pascual, Jesús; Hasbún, Rodrigo; Fernández Fraga, Mario; Berdasco, María; Toorop, Peter E; Cañal, María J; Rodríguez Fernández, Roberto

    2012-01-01

    During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.

  1. 26 CFR 54.4980B-9 - Business reorganizations and employer withdrawals from multiemployer plans.

    Science.gov (United States)

    2010-04-01

    ...-9 Business reorganizations and employer withdrawals from multiemployer plans. The following... multiemployer plans: Q-1: For purposes of this section, what are a business reorganization, a stock sale, and an... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Business reorganizations and...

  2. Everybody's welcome: The big tent approach to epigenetic drug discovery.

    Science.gov (United States)

    Green, Erin M; Gozani, Or

    2012-01-01

    The rapid expansion of epigenetics research is fueled by the increasing understanding that epigenetic processes are critical to regulating cellular development and dysfunction of epigenetic programs is responsible for a diverse set of human pathologies, including cancer, autoimmune and neurodegenerative diseases. The expansive set of components contributing to epigenetic disease mechanisms and the often reversible nature of epigenetic lesions provide prime opportunities for the development of novel therapeutic strategies. Here, we provide an overview of epigenetics and its relationship to disease, discuss current epigenetics-based therapies and suggest new avenues for the identification of therapies targeting deregulated epigenetic programs in disease.

  3. FTO, RNA epigenetics and epilepsy

    OpenAIRE

    2012-01-01

    Several recent landmark papers describing N6-methyladenosine (m6A) RNA modifications have provided valuable new insights as to the importance of m6A in the RNA transcriptome and in furthering the understanding of RNA epigenetics. One endogenous enzyme responsible for demethylating RNA m6A, FTO, is highly expressed in the CNS and is likely involved in mRNA metabolism, splicing or other nuclear RNA processing events. microRNAs (miRNAs), a family of small, non-coding transcripts that bind to tar...

  4. Epigenetics and its implications for ecotoxicology.

    Science.gov (United States)

    Vandegehuchte, Michiel B; Janssen, Colin R

    2011-05-01

    Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.

  5. Epigenetics and environmental impacts in cattle

    Science.gov (United States)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  6. Epigenetics in breast and prostate cancer.

    Science.gov (United States)

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

  7. Ecological epigenetics: an introduction to the symposium.

    Science.gov (United States)

    Ledón-Rettig, Cris C

    2013-08-01

    Phenotypic variation arises from interactions between environmental and genetic variation, and the emergence of such variation is, in part, mediated by epigenetic mechanisms: factors that modify gene expression but do not change the gene sequence, per se. The role of epigenetic variation and inheritance in natural populations, however, remains poorly understood. The budding field of Ecological Epigenetics seeks to extend our knowledge of epigenetic mechanisms and processes to natural populations, and recent conceptual and technical advances have made progress toward this goal more feasible. In light of these breakthroughs, now is a particularly opportune time to develop a framework that will guide and facilitate exceptional studies in Ecological Epigenetics. Toward this goal, the Ecological Epigenetics symposium brought together researchers with diverse strengths in theory, developmental genetics, ecology, and evolution, and the proceedings from their talks are presented in this issue. By characterizing environmentally dependent epigenetic variation in natural populations, we will enhance our understanding of developmental, ecological, and evolutionary phenomena. In particular, ecological epigenetics has the potential to explain how populations endure (or fail to endure) profound and rapid environmental change. Here, my goal is to introduce some of the common goals and challenges shared by those pursuing this critical field.

  8. Epigenetics in mammary gland biology and cancer

    Science.gov (United States)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  9. Cancer Epigenetics: New Therapies and New Challenges

    Directory of Open Access Journals (Sweden)

    Eleftheria Hatzimichael

    2013-01-01

    Full Text Available Cancer is nowadays considered to be both a genetic and an epigenetic disease. The most well studied epigenetic modification in humans is DNA methylation; however it becomes increasingly acknowledged that DNA methylation does not work alone, but rather is linked to other modifications, such as histone modifications. Epigenetic abnormalities are reversible and as a result novel therapies that work by reversing epigenetic effects are being increasingly explored. The biggest clinical impact of epigenetic modifying agents in neoplastic disorders thus far has been in haematological malignancies, and the efficacy of DNMT inhibitors and HDAC inhibitors in blood cancers clearly attests to the principle that therapeutic modification of the cancer cell epigenome can produce clinical benefit. This paper will discuss the most well studied epigenetic modifications and how these are linked to cancer, will give a brief overview of the clinical use of epigenetics as biomarkers, and will focus in more detail on epigenetic drugs and their use in solid and blood cancers.

  10. Phenotypic variation in plants : Roles for epigenetics

    NARCIS (Netherlands)

    Lauss, K.

    2017-01-01

    Besides genetics, also epigenetics can play a role in shaping the characteristics of a plant (phenotype). Epigenetics refers to chemical modifications of DNA and proteins associated with the DNA that can influence gene activity (the ‘epigenome’) and can be passed on through cell divisions and follow

  11. Workplace Re-organization and Changes in Physiological Stress Markers

    DEFF Research Database (Denmark)

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Kristiansen, Jesper

    2014-01-01

    The aim of this study was to investigate changes in physiological stress markers as a consequence of workplace reorganization. Moreover, we aimed to investigate changes in the psychosocial work environment (job strain, effortreward imbalance (ERI), in psychological distress (stress symptoms......, perceived stress) and the mediating effect of these factors on changes in physiological stress markers. We used data from a longitudinal study that studied the health consequences of a major reorganization of non-state public offices executed in Denmark on 1 January 2007. Collection of clinical...... and questionnaire data was in 2006 and 2008, and in this sub-study we included 359 participants. To reflect stress reactions of the autonomic nervous system, the endocrine system and the immune system, we included 13 physiological markers. We observed significant change in several physiological stress markers...

  12. Dynamic Reorganization and Correlation among Lipid Raft Components.

    Science.gov (United States)

    Lozano, Mónica M; Hovis, Jennifer S; Moss, Frank R; Boxer, Steven G

    2016-08-10

    Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.

  13. A self-reorganizing digital flight control system for aircraft

    Science.gov (United States)

    Montgomery, R. C.; Caglayan, A. K.

    1974-01-01

    This paper presents a design method for digital self-reorganizing control systems which is optimally tolerant of failures in aircraft sensors. The functions of this system are accomplished with software instead of the popular and costly technique of hardware duplication. The theoretical development, based on M-ary hypothesis testing, results in a bank of M Kalman filters operating in parallel in the failure detection logic. A moving window of the innovations of each Kalman filter drives the detection logic to decide the failure state of the system. The detection logic also selects the optimal state estimate (for control logic) from the bank of Kalman filters. The design process is applied to the design of a self-reorganizing control system for a current configuration of the space shuttle orbiter at Mach 5 and 120,000 feet. The failure detection capabilities of the system are demonstrated using a real-time simulation of the system with noisy sensors.

  14. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  15. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  16. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  17. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis.

  18. Epigenetics and therapeutic targets mediating neuroprotection.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.

  19. Epigenetics: the language of the cell?

    Science.gov (United States)

    Huang, Biao; Jiang, Cizhong; Zhang, Rongxin

    2014-02-01

    Epigenetics is one of the most rapidly developing fields of biological research. Breakthroughs in several technologies have enabled the possibility of genome-wide epigenetic research, for example the mapping of human genome-wide DNA methylation. In addition, with the development of various high-throughput and high-resolution sequencing technologies, a large number of functional noncoding RNAs have been identified. Massive studies indicated that these functional ncRNA also play an important role in epigenetics. In this review, we gain inspiration from the recent proposal of the ceRNAs hypothesis. This hypothesis proposes that miRNAs act as a language of communication. Accordingly, we further deduce that all of epigenetics may functionally acquire such a unique language characteristic. In summary, various epigenetic markers may not only participate in regulating cellular processes, but they may also act as the intracellular 'language' of communication and are involved in extensive information exchanges within cell.

  20. Epigenetic drift in the aging genome

    DEFF Research Database (Denmark)

    Tan, Qihua; Heijmans, Bastiaan T; Hjelmborg, Jacob V B

    2016-01-01

    BACKGROUND: Current epigenetic studies on aging are dominated by the cross-sectional design that correlates subjects' ages or age groups with their measured epigenetic profiles. Such studies have been more aimed at age prediction or building up the epigenetic clock of age rather than focusing...... on the dynamic patterns in epigenetic changes during the aging process. METHODS: We performed an epigenome-wide association study of intra-individual longitudinal changes in DNA methylation at CpG (cytosine-phosphate-guanine) sites measured in whole-blood samples of a cohort of 43 elderly twin pairs followed......-wide association studies on a cohort of old twins followed up for 10 years identified highly replicable epigenetic biomarkers predominantly implicated in signalling pathways of degenerative disorders and survival in the elderly....

  1. Epigenetic targets of polyphenols in cancer.

    Science.gov (United States)

    Yang, Pinglin; He, Xijing; Malhotra, Anshoo

    2014-01-01

    Interest in dietary polyphenols has recently increased greatly owing to their antioxidant capacity and their possible beneficial implications in various pathological states, including cancer. Polyphenols are a group of chemicals found in many fruits, vegetables, and plants and have the ability to remove free radicals from the body. In the last 2 decades, the numbers of reports on the potential health benefits of polyphenols have increased. This review provides the available scientific data that justify importance of polyphenols in correlation with epigenetics to fight against carcinogenesis. Epigenetics involves genetic control by mechanisms other than DNA sequence. These epigenetic mechanisms have ability to switch on or off various important genes influencing the process of cancer. Furthermore, due to the reversible nature of these epigenetic mechanisms, they are influenced by a variety of dietary polyphenols. This review focuses on the dietary polyphenols that significantly affect these epigenetic mechanisms to mitigate carcinogenesis.

  2. Adaptation of brain functional and structural networks in aging.

    Science.gov (United States)

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  3. Adaptation of brain functional and structural networks in aging.

    Directory of Open Access Journals (Sweden)

    Annie Lee

    Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  4. Enhancing Physical Activity and Brain Reorganization after Stroke

    OpenAIRE

    2011-01-01

    It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after dis...

  5. Interframe hierarchical vector quantization using hashing-based reorganized codebook

    Science.gov (United States)

    Choo, Chang Y.; Cheng, Che H.; Nasrabadi, Nasser M.

    1995-12-01

    Real-time multimedia communication over PSTN (Public Switched Telephone Network) or wireless channel requires video signals to be encoded at the bit rate well below 64 kbits/second. Most of the current works on such very low bit rate video coding are based on H.261 or H.263 scheme. The H.263 encoding scheme, for example, consists mainly of motion estimation and compensation, discrete cosine transform, and run and variable/fixed length coding. Vector quantization (VQ) is an efficient and alternative scheme for coding at very low bit rate. One such VQ code applied to video coding is interframe hierarchical vector quantization (IHVQ). One problem of IHVQ, and VQ in general, is the computational complexity due to codebook search. A number of techniques have been proposed to reduce the search time which include tree-structured VQ, finite-state VQ, cache VQ, and hashing based codebook reorganization. In this paper, we present an IHVQ code with a hashing based scheme to reorganize the codebook so that codebook search time, and thus encoding time, can be significantly reduced. We applied the algorithm to the same test environment as in H.263 and evaluated coding performance. It turned out that the performance of the proposed scheme is significantly better than that of IHVQ without hashed codebook. Also, the performance of the proposed scheme was comparable to and often better than that of the H.263, due mainly to hashing based reorganized codebook.

  6. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  7. Epigenetic Control of Female Puberty

    Science.gov (United States)

    Lomniczi, Alejandro; Loche, Alberto; Castellano, Juan Manuel; Ronnekleiv, Oline K.; Bosch, Martha; Kaidar, Gabi; Knoll, J. Gabriel; Wright, Hollis; Pfeifer, Gerd. P.; Ojeda, Sergio R.

    2013-01-01

    The timing of puberty is controlled by many genes. The elements coordinating this process have not, however, been identified. Here we show that an epigenetic mechanism of transcriptional repression times the initiation of female puberty in rats. We identify silencers of the Polycomb group (PcG) as major contributors to this mechanism, and show that PcG proteins repress Kiss1, a puberty-activating gene. Hypothalamic expression of two key PcG genes, Eed and Cbx7, decreases and methylation of their promoters increases preceding puberty. Inhibiting DNA methylation blocks both events and results in pubertal failure. The pubertal increase in Kiss1 is accompanied by EED loss from the Kiss1 promoter and enrichment of histone H3 modifications associated with gene activation. Preventing the eviction of EED from the Kiss1 promoter disrupts pulsatile GnRH release, delays puberty, and compromises fecundity. Our results identify epigenetic silencing as a novel mechanism underlying the neuroendocrine control of female puberty. PMID:23354331

  8. FTO, RNA epigenetics and epilepsy.

    Science.gov (United States)

    Rowles, Joie; Wong, Morgan; Powers, Ryan; Olsen, Mark

    2012-10-01

    Several recent landmark papers describing N(6) -methyladenosine (m(6) A) RNA modifications have provided valuable new insights as to the importance of m(6) A in the RNA transcriptome and in furthering the understanding of RNA epigenetics. One endogenous enzyme responsible for demethylating RNA m(6) A, FTO, is highly expressed in the CNS and is likely involved in mRNA metabolism, splicing or other nuclear RNA processing events. microRNAs (miRNAs), a family of small, non-coding transcripts that bind to target mRNAs and inhibit subsequent translation, are highly expressed in the CNS and are associated with several neurological disorders, including epilepsy. miRNAs frequently bind to recognition sequences in the 3'UTR, a region that is also enriched for m(6) A. Certain specific miRNAs are upregulated by neuronal activity and are coupled to epileptogenesis; these miRNAs contain a consensus m(6) A site that if methylated could possibly regulate miRNA processing or function. This commentary highlights aspects from recent papers to propose a functional association between FTO, RNA epigenetics and epilepsy.

  9. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression post-transcriptionally by binding to complementary sequences in the 3’UTR of target mRNAs in the cytoplasm. However, recent evidence suggests that certain miRNAs are enriched in the nucleus......, and their targets do not seem restricted to mRNA 3’UTRs. Therefore, miRNAs are predicted to have a variety functions throughout mammalian cells. MiRNA genes appear to be regulated in much the same way as coding genes, but current insight into transcriptional miRNA control lacks detail, as mapping miRNA promoters...... and confirming transcriptional start sites can be difficult. Epigenetics, gene regulatory and DNA modification mechanisms not involving a change to the primary sequence, have been implied in the regulation of a number of miRNA loci. Both epigenetic and miRNA signatures are broadly altered in cancer...

  10. Epigenetic regulation of protein glycosylation.

    Science.gov (United States)

    Zoldoš, Vlatka; Grgurević, Srđana; Lauc, Gordan

    2010-10-01

    Protein N-glycosylation is an ancient metabolic pathway that still exists in all three domains of life (Archaea, Bacteria and Eukarya). The covalent addition of one or more complex oligosaccharides (glycans) to protein backbones greatly diversifies their structures and makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, the glycan part of glycoproteins are encoded in a complex dynamic network of hundreds of proteins, whereby activity is defined by both genetic sequence and the regulation of gene expression. Owing to the complex nature of their biosynthesis, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. Composition of the individual glycome appears to be rather stable, and thus differences in the pattern of glycan synthesis between individuals could originate either from genetic polymorphisms or from stable epigenetic regulation of gene expression in different individuals. Studies of epigenetic modification of genes involved in protein glycosylation are still scarce, but their results indicate that this process might be very important for the regulation of protein glycosylation.

  11. Epigenetic Alterations in Parathyroid Cancers

    Science.gov (United States)

    Verdelli, Chiara; Corbetta, Sabrina

    2017-01-01

    Parathyroid cancers (PCas) are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH); consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile. PMID:28157158

  12. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes.

    Science.gov (United States)

    Degner-Leisso, Stephanie C; Feeney, Ann J

    2010-12-01

    V(D)J recombination is a crucial component of the adaptive immune response, allowing for the production of a diverse antigen receptor repertoire (Ig and TCR). This review will focus on how epigenetic regulation and 3-dimensional (3D) interactions may control V(D)J recombination at Ig loci. The interplay between transcription factors and post-translational modifications at the Igh, Igκ, and Igλ loci will be highlighted. Furthermore, we propose that the spatial organization and epigenetic boundaries of each Ig loci before and during V(D)J recombination may be influenced in part by the CTCF/cohesin complex. Taken together, the many epigenetic and 3D layers of control ensure that Ig loci are only rearranged at appropriate stages of B cell development.

  13. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  14. Ancient evolutionary origins of epigenetic regulation associated with posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Levent eSipahi

    2014-05-01

    Full Text Available Epigenetic marks, including DNA methylation, are modifiable molecular factors that may underlie mental disorders, especially responses to trauma, including the development of and resilience to posttraumatic stress disorder (PTSD. Previous work has identified differential DNA methylation at CpG dinucleotide sites genomewide between trauma exposed individuals with and without PTSD, suggesting a role for epigenetic potential – the capacity to epigenetically regulate behavior and physiology in response to lived experiences. The human species is characterized by an increased period of adaptive plasticity during brain development. The evolutionary history of epigenetic potential in relation to adaptive plasticity is currently unknown. Using phylogenetic methods and functional annotation analyses, we trace the evolution of over 7,000 CpG dinucleotides, including 203 associated with PTSD, during the descent of humans in during mammalian evolution and characterize the biological significance of this evolution. We demonstrate that few (7% PTSD-associated CpG sites are unique to humans, while the vast majority of sites have deep evolutionary origins: 73% and 93% were unambiguously present in the last common ancestor of humans/orangutans and humans/chimpanzees, respectively. Genes proximal to evolved PTSD-associated CpG sites revealed significant enrichment for immune function during recent human evolution and regulation of gene expression during more ancient periods of human evolution. Additionally, 765 putative transcription factor binding sites (TFBS were identified that overlap with PTSD-associated CpG sites. Elucidation of the evolutionary history of PTSD-associated CpG sites may provide insights into the function and origin of epigenetic potential in trauma responses, generally, and PTSD, specifically. The human capacity to respond to trauma with stable physiologic and behavioral changes may be due to epigenetic potentials that are shared among many

  15. Epigenetic reprogramming in plant sexual reproduction.

    Science.gov (United States)

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

  16. Epigenetic reprogramming in mammalian nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LI Shijie; DU Weihua; LI Ning

    2004-01-01

    Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.

  17. Epigenetic variation during the adult lifespan

    DEFF Research Database (Denmark)

    Talens, Rudolf P; Christensen, Kaare; Putter, Hein

    2012-01-01

    The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18-89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass......-related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ...

  18. Rice epigenomics and epigenetics: challenges and opportunities.

    Science.gov (United States)

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice.

  19. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    In the past decades, studies on twins have had a great impact on dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable samples of twins help to bridge the gap between gene activity and environmental conditions...... through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  20. Erwin Schroedinger, Francis Crick and epigenetic stability.

    Science.gov (United States)

    Ogryzko, Vasily V

    2008-04-17

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  1. Erwin Schroedinger, Francis Crick and epigenetic stability

    Directory of Open Access Journals (Sweden)

    Ogryzko Vasily V

    2008-04-01

    Full Text Available Abstract Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  2. Erwin Schroedinger, Francis Crick and epigenetic stability

    CERN Document Server

    Ogryzko, Vasily

    2007-01-01

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that lead Schroedinger to promote the idea of molecular code-script for explanation of stability of biological order.

  3. Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi.

    Science.gov (United States)

    Martín, Juan F; Liras, Paloma

    2016-02-01

    The biosynthesis of secondary metabolites in fungi is catalyzed by enzymes encoded by genes linked in clusters that are frequently co-regulated at the transcriptional level. Formation of gene clusters may take place by de novo assembly of genes recruited from other cellular functions, but also novel gene clusters are formed by reorganization of progenitor clusters and are distributed by horizontal gene transfer. This article reviews (i) the published information on the roquefortine/meleagrin/neoxaline gene clusters of Penicillium chrysogenum (Penicillium rubens) and the short roquefortine cluster of Penicillium roqueforti, and (ii) the correlation of the genes present in those clusters with the enzymes and metabolites derived from these pathways. The P. chrysogenum roq/mel cluster consists of seven genes and includes a gene (roqT) encoding a 12-TMS transporter protein of the MFS family. Interestingly, the orthologous P. roquefortine gene cluster has only four genes and the roqT gene is present as a residual pseudogene that encodes only small peptides. Two of the genes present in the central region of the P. chrysogenum roq/mel cluster have been lost during the evolutionary formation of the short cluster and the order of the structural genes in the cluster has been rearranged. The two lost genes encode a N1 atom hydroxylase (nox) and a roquefortine scaffold-reorganizing oxygenase (sro). As a consequence P. roqueforti has lost the ability to convert the roquefortine-type carbon skeleton to the glandicoline/meleagrin-type scaffold and is unable to produce glandicoline B, meleagrin and neoxaline. The loss of this genetic information is not recent and occurred probably millions of years ago when a progenitor Penicillium strain got adapted to life in a few rich habitats such as cheese, fermented cereal grains or silage. P. roqueforti may be considered as a "domesticated" variant of a progenitor common to contemporary P. chrysogenum and related Penicillia.

  4. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  5. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Linard Filli; Martin E Schwab

    2015-01-01

    Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.

  6. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  7. Epigenetic Modifications in Neurological Diseases: Natural Products as Epigenetic Modulators a Treatment Strategy.

    Science.gov (United States)

    Gangisetty, Omkaram; Murugan, Sengottuvelan

    2016-01-01

    Epigenetic modifications, including DNA methylation, covalent histone modifications, and small noncoding RNAs, play a key role in regulating the gene expression. This regulatory mechanism is important in cellular differentiation and development. Recent advances in the field of epigenetics extended the role of epigenetic mechanisms in controlling key biological processes such as genome imprinting and X-chromosome inactivation. Aberrant epigenetic modifications are associated with the development of many diseases. The role of epigenetic modifications in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington disease, epilepsy, and multiple sclerosis is rapidly emerging. The use of epigenetic modifying drugs to treat these diseases has been the interest in recent years. A number of natural products having diverse mechanism of action are used for drug discovery. For many years, natural compounds have been used to treat various neurodegenerative diseases, but the use of such compounds as epigenetic modulators to reverse or treat neurological diseases are not well studied. In this chapter, we mainly focus on how various epigenetic modifications play a key role in neurodegenerative diseases, their mechanism of action, and how it acts as a potential therapeutic target for epigenetic drugs to treat these diseases will be discussed.

  8. Emerging Trends in Epigenetic Regulation of Nutrient Deficiency Response in Plants.

    Science.gov (United States)

    Sirohi, Gunjan; Pandey, Bipin K; Deveshwar, Priyanka; Giri, Jitender

    2016-03-01

    Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement.

  9. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  10. The epigenetic paradigm in periodontitis pathogenesis

    Directory of Open Access Journals (Sweden)

    Vamsi Lavu

    2015-01-01

    Full Text Available Epigenome refers to "epi" meaning outside the "genome." Epigenetics is the field of study of the epigenome. Epigenetic modifications include changes in the promoter CpG Islands, modifications of histone protein structure, posttranslational repression by micro-RNA which contributes to the alteration of gene expression. Epigenetics provides an understanding of the role of gene-environment interactions on disease phenotype especially in complex multifactorial diseases. Periodontitis is a chronic inflammatory disorder that affects the supporting structures of the tooth. The role of the genome (in terms of genetic polymorphisms in periodontitis pathogenesis has been examined in numerous studies, and chronic periodontitis has been established as a polygenic disorder. The potential role of epigenetic modifications in the various facets of pathogenesis of periodontitis is discussed in this paper based on the available literature.

  11. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation......, development and maintenance of tissue-specific gene expression. These mechanisms also explain how cells with the same DNA content can differentiate into cells with different functions. Changes in epigenetic processes can lead to changes in gene function, cancer formation and progression, as well as other...

  12. Environmental epigenetics: a role in endocrine disease?

    Science.gov (United States)

    Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A

    2012-10-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.

  13. Transgenerational epigenetic inheritance in health and disease.

    Science.gov (United States)

    Whitelaw, Nadia C; Whitelaw, Emma

    2008-06-01

    Over the past century, patterns of phenotypic inheritance have been observed that are not easily rationalised by Mendel's rules of inheritance. Now that we have begun to understand more about non-DNA based, or 'epigenetic', control of phenotype at the molecular level, the idea that the transgenerational inheritance of these epigenetic states could explain non-Mendelian patterns of inheritance has become attractive. There is a growing body of evidence that abnormal epigenetic states, termed epimutations, are associated with disease in humans. For example, in several cases of colorectal cancer, epimutations have been identified that silence the human mismatch repair genes, MLH1 and MSH2. But strong evidence that the abnormal epigenetic states are primary events that occur in the absence of genetic change and are inherited across generations is still absent.

  14. Epigenetics, an emerging discipline with broad implications.

    Science.gov (United States)

    Feil, Robert

    2008-11-01

    The field of epigenetics is young and quickly expanding. During the last year alone, thousands of research articles considered epigenetic mechanisms and their phenotypic consequences in different animal and plant species. Various definitions have been given, though, as to what precisely is epigenetics. Recent ones take into consideration that chromatin at genes and chromosomal regions can be structurally organised by covalent modifications and nuclear proteins, and via RNA molecules, in order to achieve defined expression states that can be perpetuated. Such somatically and meiotically heritable effects on gene function have diverse biological and medical implications. In particular, they are known to be important in development. A recent discussion meeting in Paris at the French Academy of Sciences reviewed our current understanding of 'Epigenetics and Cellular Memory' and where this novel discipline in life sciences is heading.

  15. Epigenetic Effects of Di(2-ethylhexyl) Phthalate

    Science.gov (United States)

    Epidemiological and laboratory investigations suggest that, in addition to genetic changes, environmental pollutants can affect human health through altering epigenetic mechanisms including DNA methylation, histone modification, and microRNA expression. There is evidence in anima...

  16. Dubbing SAGA unveils new epigenetic crosstalk.

    Science.gov (United States)

    Pijnappel, W W M Pim; Timmers, H Th Marc

    2008-02-01

    In a recent issue of Molecular Cell, two independent studies (Zhang et al., 2008; Zhao et al., 2008) provide compelling evidence that targeted deubiquitylation of histones is intimately linked to transcription activation, epigenetic regulation, and cancer progression.

  17. Epigenetic control of GnRH neurons

    Directory of Open Access Journals (Sweden)

    Joseph Raymond Kurian

    2013-05-01

    Full Text Available Epigenetic modifications to the genome, including DNA methylation and histone modifications, occur in response to external stimuli. Reproductive function is highly sensitive to environmental conditions including season, diet, hormonal changes, and exposure to chemical contaminants. GnRH neurons, which play a key role in reproduction, are particularly sensitive to various environmental stimuli. We recently reported that the rhesus monkey GnRH gene exhibits distinct epigenetic differentiation during embryonic development. More recently, we further found that a similar epigenetic phenomenon occurs across puberty. In this article, we highlight recent findings, suggest implications of these findings (or potential mechanisms and then discuss current challenges as well as future work. Consequently, this review will provide background to understand the epigenetic control of GnRH neurons as a link between the environment and reproductive function.

  18. Epigenetics in the pathogenesis of rheumatoid arthritis

    OpenAIRE

    Glant, Tibor T.; Mikecz, Katalin; Tibor A Rauch

    2014-01-01

    An increasing number of studies show that besides the inherited genetic architecture (that is, genomic DNA), various environmental factors significantly contribute to the etiology of rheumatoid arthritis. Epigenetic factors react to external stimuli and form bridges between the environment and the genetic information-harboring DNA. Epigenetic mechanisms are implicated in the final interpretation of the encoded genetic information by regulating gene expression, and alterations in their profile...

  19. [Progress in epigenetic research on Alzheimer disease].

    Science.gov (United States)

    Yang, Nannan; Wei, Yang; Xu, Qian; Tang, Beisha

    2016-04-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, which features mainly with memory impairment as the initial symptom of progressive loss of cognitive function. Its main pathological changes include senile plaques and neurofibrillary tangles. The pathogenesis of AD is still unclear, though it may be connected with aging, genetic factors and environmental factors. Among these, aging and environmental factors can be modified by epigenetics. In this paper, advances in the study of epigenetic mechanisms related to the pathogenesis of AD are reviewed.

  20. Environmental Epigenetics: A Role in Endocrine Disease?

    OpenAIRE

    Fleisch, Abby F.; Wright, Robert O.; Baccarelli, Andrea A.

    2012-01-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples, 1) effect of early-life nutritional exposures on ...

  1. From Neo-Darwinism to Epigenetic Inheritance

    OpenAIRE

    Axholm, Ida; Ranum, Kasper; Al-Makdisi Razeeghi, Redaa

    2014-01-01

    Transgenerational epigenetic inheritance is at variance with the neo-Darwinian theory of inheritance, and this possibly has important implications for how we view evolution, since it could allow for a kind of inheritance of acquired characteristics. We have applied Imre Lakatos and Thomas Kuhn’s models of scientific change and investigated if they can accurately describe the change in the view on inheritance from neo-Darwinism to a view that includes transgenerational epigenetic inheritance, ...

  2. Conference scene: Select Biosciences Epigenetics Europe 2010.

    Science.gov (United States)

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts.

  3. Epigenetic regulation in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Pranoti Mandrekar

    2011-01-01

    Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively referred to as epigenetic effects are altered by alcohol. Recent studies have pointed to a significant role for epigenetic mechanisms at the nucleosomal level influencing gene expression and disease outcome in ALD. Specifically, epigenetic alterations by alcohol include histone modifications such as changes in acetylation and phosphorylation, hypomethylation of DNA, and alterations in miRNAs. These modifications can be induced by alcohol-induced oxidative stress that results in altered recruitment of transcriptional machinery and abnormal gene expression. Delineating these mechanisms in initiation and progression of ALD is becoming a major area of interest. This review summarizes key epigenetic mechanisms that are dysregulated by alcohol in the liver. Alterations by alcohol in histone and DNA modifications, enzymes related to histone acetylation such as histone acetyltransferases, histone deacetylases and sirtuins, and methylation enzymes such as DNA methyltransferases are discussed. Chromatin modifications and miRNA alterations that result in immune cell dysfunction contributing to inflammatory cytokine production in ALD is reviewed. Finally, the role of alcohol-mediated oxidative stress in epigenetic regulation in ALD is described. A better understanding of these mechanisms is crucial for designing novel epigenetic based therapies to ameliorate ALD.

  4. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  5. Epigenetic Mechanisms of the Aging Human Retina

    Science.gov (United States)

    Pennington, Katie L.; DeAngelis, Margaret M.

    2015-01-01

    Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions. PMID:26966390

  6. Epigenetics in C. elegans: facts and challenges.

    Science.gov (United States)

    Wenzel, Dirk; Palladino, Francesca; Jedrusik-Bode, Monika

    2011-08-01

    Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.

  7. Epigenetic manifestations in diet-related disorders.

    Science.gov (United States)

    Mariman, E C M

    2008-01-01

    Epigenetic phenomena are changes in phenotype that are due to resetting of gene expression under the influence of the environment or genetic factors without changing the DNA sequence. Usually this resetting occurs at a certain stage in life and remains fixed thereafter. In humans, evidence for epigenetic involvement in diet-related complex traits and disorders is accumulating. The fetal origins theory indicates that nutrition can influence the later life risk for certain common disorders like the metabolic syndrome. In parent-of-origin effects, the risk for a common disorder like type I diabetes depends on the sex of the parent who transmits genetic risk factors. Interestingly, both dietary and genetic factors can exert their epigenetic influence over several generations. Imprinting, i.e. silencing of one copy of an autosomal pair of genes, can be part of the mechanism pointing to the importance of DNA methylation. In addition, chromatin modifications have been shown to be involved in epigenetic manifestations. The intriguing possibility that diet may influence the direction and extent of epigenetic changes opens new ways for prevention or treatment of common disorders. At the same time, maternal nutrition might be used to actively direct fetal development with consequences for later life performance such as cognitive abilities. More knowledge on those novel applications is needed. This will in part come from novel strategies to map the epigenomic regions, allowing the identification of more genes involved in epigenetics and allowing the study of their response to nutrition.

  8. Transgenerational epigenetic effects on animal behaviour.

    Science.gov (United States)

    Jensen, Per

    2013-12-01

    Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations.

  9. Epigenetic programming by stress and glucocorticoids along the human lifespan.

    Science.gov (United States)

    Zannas, A S; Chrousos, G P

    2017-03-14

    Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.35.

  10. From network structure to network reorganization: implications for adult neurogenesis

    Science.gov (United States)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  11. Reorganization of cytoskeletal proteins of mouse oocytes mediated by integrins

    Institute of Scientific and Technical Information of China (English)

    YUE Limin; ZHANG Lei; HE Yaping; ZHANG Jinhu; ZHENG Jie; HE Yanfang; ZHENG Yu; ZHANG Jie; ZHANG Li

    2004-01-01

    To study whether integrins on cell membrane ligate with intracellular cytoskeletal proteins and mediate their reorganization in egg activation, female mice were used for superovulation. The zona-free oocytes were incubated separately with specific ligand of integrins,an active RGD peptide, in vitro for certain period of time. RGE peptide and mouse capacitated sperm were used as controls. Freshly ovulated oocytes and those treated with different factors were immunostained with FITC-labeled anti-actin antibody, then detected with confocal microscope. The results demonstrated that freshly ovulated mouse oocytes, oocytes incubated for 2 h in vitro and those treated with control RGE peptide for 15 min showed hardly visible fluorescene or only thin fluorescence in plasma membrane region. Oocytes coincubated with sperms for 15 min and those treated with active RGD peptide for 10 min, 30 min and 2 hours respectively had strong and thick fluorescence in the plasma membrane and cortical region of oocytes, and some of them showed asymmetrically fluorescent distribution. It is proved that integrins on membrane are ligated directly with cytoskeletal protein. Integrins binding with their ligands regulate reorganization of cytoskelal protein, which may be involved in transmembrane signaling in egg activation.

  12. Gut indigenous microbiota and epigenetics

    Directory of Open Access Journals (Sweden)

    Boris Arkadievich Shenderov

    2012-03-01

    Full Text Available This review introduces and discusses data regarding fundamental and applied investigations in mammalian epigenomics and gut microbiota received over the last 10 years. Analysis of these data enabled the author first to come to the conclusion that the multiple low molecular weight substances of indigenous gut microbiota origin should be considered one of the main endogenous factors actively participating in epigenomic mechanisms that responsible for the mammalian genome reprogramming and post-translated modifications. Gut microecological imbalance coursed by various biogenic and abiogenic agents and factors can produce the different epigenetic abnormalities and the onset and progression of metabolic diseases associated. The author substantiates the necessity to create an international project ‘Human Gut Microbiota and Epigenomics’ that facilitates interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics and metabolomics investigations as well as in diseases prevention and treatment. Some priority scientific and applied directions in the current omic technologies coupled with gnotobiological approaches are suggested that can open a new era in characterizing the role of the symbiotic microbiota small metabolic and signal molecules in the host epigenomics. Although discussed subject is only at an early stage its validation can open novel approaches in drug discovery studies.

  13. Epigenetic Control of Defense Signaling and Priming in Plants

    Science.gov (United States)

    Espinas, Nino A.; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens. PMID:27563304

  14. Epigenetic control of defense signaling and priming in plants

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR. These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements (TEs as critical regulators of interactions in the evolutionary arms race between plants and pathogens.

  15. DNA Methylation, Epigenetics, and Evolution in Vertebrates: Facts and Challenges

    Directory of Open Access Journals (Sweden)

    Annalisa Varriale

    2014-01-01

    Full Text Available DNA methylation is a key epigenetic modification in the vertebrate genomes known to be involved in biological processes such as regulation of gene expression, DNA structure and control of transposable elements. Despite increasing knowledge about DNA methylation, we still lack a complete understanding of its specific functions and correlation with environment and gene expression in diverse organisms. To understand how global DNA methylation levels changed under environmental influence during vertebrate evolution, we analyzed its distribution pattern along the whole genome in mammals, reptiles and fishes showing that it is correlated with temperature, independently on phylogenetic inheritance. Other studies in mammals and plants have evidenced that environmental stimuli can promote epigenetic changes that, in turn, might generate localized changes in DNA sequence resulting in phenotypic effects. All these observations suggest that environment can affect the epigenome of vertebrates by generating hugely different methylation patterns that could, possibly, reflect in phenotypic differences. We are at the first steps towards the understanding of mechanisms that underlie the role of environment in molding the entire genome over evolutionary times. The next challenge will be to map similarities and differences of DNA methylation in vertebrates and to associate them with environmental adaptation and evolution.

  16. Lipid metabolism is associated with developmental epigenetic programming

    Science.gov (United States)

    Marchlewicz, Elizabeth H.; Dolinoy, Dana C.; Tang, Lu; Milewski, Samantha; Jones, Tamara R.; Goodrich, Jaclyn M.; Soni, Tanu; Domino, Steven E.; Song, Peter X. K.; F. Burant, Charles; Padmanabhan, Vasantha

    2016-01-01

    Maternal diet and metabolism impact fetal development. Epigenetic reprogramming facilitates fetal adaptation to these in utero cues. To determine if maternal metabolite levels impact infant DNA methylation globally and at growth and development genes, we followed a clinical birth cohort of 40 mother-infant dyads. Targeted metabolomics and quantitative DNA methylation were analyzed in 1st trimester maternal plasma (M1) and delivery maternal plasma (M2) as well as infant umbilical cord blood plasma (CB). We found very long chain fatty acids, medium chain acylcarnitines, and histidine were: (1) stable in maternal plasma from pregnancy to delivery, (2) significantly correlated between M1, M2, and CB, and (3) in the top 10% of maternal metabolites correlating with infant DNA methylation, suggesting maternal metabolites associated with infant DNA methylation are tightly controlled. Global DNA methylation was highly correlated across M1, M2, and CB. Thus, circulating maternal lipids are associated with developmental epigenetic programming, which in turn may impact lifelong health and disease risk. Further studies are required to determine the causal link between maternal plasma lipids and infant DNA methylation patterns. PMID:27713555

  17. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  18. X-linked mental retardation and epigenetics.

    Science.gov (United States)

    Froyen, Guy; Bauters, Marijke; Voet, Thierry; Marynen, Peter

    2006-01-01

    The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications.

  19. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Brain-machine interface (BMI systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings. These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.

  20. A special issue on ‘epigenetics'

    Institute of Scientific and Technical Information of China (English)

    Wenlin Xu; Minghua Xu

    2012-01-01

    The term epigenetics was coined by Waddington CH in 1940s as a portmanteau of the words genetics and epigenesis to describe the differentiation of cells from their initial totipotent state in embryonic development.With the explosion of knowledge in this field in the recent 10 years,epigenetics is now typically defined as the study of heritable changes in gene expression that are not due to changes in the nucleotide sequence of DNA.The field of epigenetics is revolutionizing our understanding of biology and medicine.Recent studies have been focusing on the mechanisms of epigenetic regulation,including DNA methylation, histone modification,chromatin remodeling,etc.,and on their contributions to development and diseases.In this special issue,nine review articles written by prominent experts in this field are put together,trying to give our readers a broad picture of epigenetics and a summary of most recent research progress in this field.Here is a preview of what you will find in this issue.

  1. Diet and epigenetics in colon cancer

    Institute of Scientific and Technical Information of China (English)

    Minna Nystr(o)m; Marja Mutanen

    2009-01-01

    Over the past few years, evidence has accumulated indicating that apart from genetic alterations, epigenetic alterations, through e.g. aberrant promoter methylation, play a major role in the initiation and progression of colorectal cancer (CRC). Even in the hereditary colon cancer syndromes, in which the susceptibility is inherited dominantly, cancer develops only as the result of the progressive accumulation of genetic and epigenetic alterations. Diet can both prevent and induce colon carcinogenesis, for instance, through epigenetic changes, which regulate the homeostasis of the intestinal mucosa. Food-derived compounds are constantly present in the intestine and may shift cellular balance toward harmful outcomes, such as increased susceptibility to mutations. There is strong evidence that a major component of cancer risk may involve epigenetic changes in normal cells that increase the probability of cancer after genetic mutation. The recognition of epigenetic changes as a driving force in colorectal neoplasia would open new areas of research in disease epidemiology, risk assessment, and treatment, especially in mutation carriers who already have an inherited predisposition to cancer.(c) 2009 The WJG Press and Baishideng. All rights reserved.

  2. Gastric cancer and related epigenetic alterations

    Science.gov (United States)

    Patel, Trupti N; Roy, Soumyadipta; Ravi, Revathi

    2017-01-01

    Gastric cancer, a malignant and highly proliferative condition, has significantly affected a large population around the globe and is known to be caused by various factors including genetic, epigenetic, and environmental influences. Though the global trend of these cancers is declining, an increase in its frequency is still a threat because of changing lifestyles and dietary habits. However, genetic and epigenetic alterations related to gastric cancers also have an equivalent contribution towards carcinogenic development. DNA methylation is one of the major forms of epigenetic modification which plays a significant role in gastric carcinogenesis. Methylation leads to inactivation of some of the most important genes like DNA repair genes, cell cycle regulators, apoptotic genes, transcriptional regulators, and signalling pathway regulators; which subsequently cause uncontrolled proliferation of cells. Mutations in these genes can be used as suitable prognostic markers for early diagnosis of the disease, since late diagnosis of gastric cancers has a huge negative impact on overall patient survival. In this review, we focus on the important epigenetic mutations that contribute to the development of gastric cancer and the molecular pathogenesis underlying each of them. Methylation, acetylation, and histone modifications play an integral role in the onset of genomic instability, one of the many contributory factors to gastric cancer. This article also covers the constraints of incomplete knowledge of epigenetic factors influencing gastric cancer, thus throwing light on our understanding of the disease. PMID:28144288

  3. Epigenetic aberrations and therapeutic implications in gliomas.

    Science.gov (United States)

    Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-06-01

    Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.

  4. Epigenetic control of cancer by neuropeptides

    Science.gov (United States)

    Galoian, Karina; Patel, Parthik

    2017-01-01

    Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors.

  5. Epigenetics for anthropologists: An introduction to methods.

    Science.gov (United States)

    Non, Amy L; Thayer, Zaneta M

    2015-01-01

    The study of epigenetics, or chemical modifications to the genome that may alter gene expression, is a growing area of interest for social scientists. Anthropologists and human biologists are interested in epigenetics specifically, as it provides a potential link between the environment and the genome, as well as a new layer of complexity for the study of human biological variation. In pace with the rapid increase in interest in epigenetic research, the range of methods has greatly expanded over the past decade. The primary objective of this article is to provide an overview of the current methods for assaying DNA methylation, the most commonly studied epigenetic modification. We will address considerations for all steps required to plan and conduct an analysis of DNA methylation, from appropriate sample collection, to the most commonly used methods for laboratory analyses of locus-specific and genome-wide approaches, and recommendations for statistical analyses. Key challenges in the study of DNA methylation are also discussed, including tissue specificity, the stability of measures, timing of sample collection, statistical considerations, batch effects, and challenges related to analysis and interpretation of data. Our hope is that this review serves as a primer for anthropologists and human biologists interested in incorporating epigenetic data into their research programs.

  6. Ecological Epigenetics: Beyond MS-AFLP.

    Science.gov (United States)

    Schrey, Aaron W; Alvarez, Mariano; Foust, Christy M; Kilvitis, Holly J; Lee, Jacob D; Liebl, Andrea L; Martin, Lynn B; Richards, Christina L; Robertson, Marta

    2013-08-01

    Ecological Epigenetics studies the relationship between epigenetic variation and ecologically relevant phenotypic variation. As molecular epigenetic mechanisms often control gene expression, even across generations, they may impact many evolutionary processes. Multiple molecular epigenetic mechanisms exist, but methylation of DNA so far has dominated the Ecological Epigenetic literature. There are several molecular techniques used to screen methylation of DNA; here, we focus on the most common technique, methylation-sensitive-AFLP (MS-AFLP), which is used to identify genome-wide methylation patterns. We review studies that used MS-AFLP to address ecological questions, that describe which taxa have been investigated, and that identify general trends in the field. We then discuss, noting the general themes, four studies across taxa that demonstrate characteristics that increase the inferences that can be made from MS-AFLP data; we suggest that future MS-AFLP studies should incorporate these methods and techniques. We then review the short-comings of MS-AFLP and suggest alternative techniques that might address some of these limitations. Finally, we make specific suggestions for future research on MS-AFLP and identify questions that are most compelling and tractable in the short term.

  7. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Your Rights Under the Energy Reorganization Act A Appendix A to Part 24 Labor Office of the Secretary of Labor PROCEDURES FOR THE HANDLING OF RETALIATION... the Energy Reorganization Act ER10AU07.000...

  8. 76 FR 86 - Expansion/Reorganization of Foreign-Trade Zone 202, Los Angeles, CA

    Science.gov (United States)

    2011-01-03

    ... Foreign-Trade Zones Board Expansion/Reorganization of Foreign-Trade Zone 202, Los Angeles, CA Pursuant to... Commissioners of the City of Los Angeles, grantee of Foreign-Trade Zone 202, submitted an application to the Board for authority to reorganize and expand FTZ 202 in the Los Angeles, California area, within...

  9. A theoretical description of charge reorganization energies in molecular organic P-type semiconductors.

    Science.gov (United States)

    Brückner, Charlotte; Engels, Bernd

    2016-06-05

    Charge transport properties of materials composed of small organic molecules are important for numerous optoelectronic applications. A material's ability to transport charges is considerably influenced by the charge reorganization energies of the composing molecules. Hence, predictions about charge-transport properties of organic materials deserve reliable statements about these charge reorganization energies. However, using density functional theory which is mostly used for the predictions, the computed reorganization energies depend strongly on the chosen functional. To gain insight, a benchmark of various density functionals for the accurate calculation of charge reorganization energies is presented. A correlation between the charge reorganization energies and the ionization potentials is found which suggests applying IP-tuning to obtain reliable values for charge reorganization energies. According to benchmark investigations with IP-EOM-CCSD single-point calculations, the tuned functionals provide indeed more reliable charge reorganization energies. Among the standard functionals, ωB97X-D and SOGGA11X yield accurate charge reorganization energies in comparison with IP-EOM-CCSD values. © 2016 Wiley Periodicals, Inc.

  10. Cultural differences in perceptual reorganization in US and Piraha adults.

    Directory of Open Access Journals (Sweden)

    Jennifer M D Yoon

    Full Text Available Visual illusions and other perceptual phenomena can be used as tools to uncover the otherwise hidden constructive processes that give rise to perception. Although many perceptual processes are assumed to be universal, variable susceptibility to certain illusions and perceptual effects across populations suggests a role for factors that vary culturally. One striking phenomenon is seen with two-tone images-photos reduced to two tones: black and white. Deficient recognition is observed in young children under conditions that trigger automatic recognition in adults. Here we show a similar lack of cue-triggered perceptual reorganization in the Pirahã, a hunter-gatherer tribe with limited exposure to modern visual media, suggesting such recognition is experience- and culture-specific.

  11. Protein degradation during reconsolidation as a mechanism for memory reorganization

    Directory of Open Access Journals (Sweden)

    Bong-Kiun Kaang

    2011-02-01

    Full Text Available Memory is a reference formed from a past experience that is used to respond to present situations. However, the world is dynamic and situations change, so it is important to update the memory with new information each time it is reactivated in order to adjust the response in the future. Recent researches indicate that memory may undergo a dynamic process that could work as an updating mechanism. This process which is called reconsolidation involves destabilization of the memory after it is reactivated, followed by restabilization. Recently, it has been demonstrated that the initial destabilization process of reconsolidation requires protein degradation. Using protein degradation inhibition as a method to block reconsolidation, recent researches suggest that reconsolidation, especially the protein degradation-dependent destabilization process is necessary for memory reorganization.

  12. Glassy protein dynamics and gigantic solvent reorganization energy of plastocyanin

    CERN Document Server

    LeBard, David N

    2007-01-01

    We report the results of Molecular Dynamics simulations of electron transfer activation parameters of plastocyanin metalloprotein involved as electron carrier in natural photosynthesis. We have discovered that slow, non-ergodic conformational fluctuations of the protein, coupled to hydrating water, result in a very broad distribution of donor-acceptor energy gaps far exceeding that observed for commonly studied inorganic and organic donor-acceptor complexes. The Stokes shift is not affected by these fluctuations and can be calculated from solvation models in terms of the response of the solvent dipolar polarization. The non-ergodic character of large-amplitude protein/water mobility breaks the strong link between the Stokes shift and reorganization energy characteristic of equilibrium (ergodic) theories of electron transfer. This mechanism might be responsible for low activation barriers in natural electron transfer proteins characterized by low reaction free energy.

  13. Adjusting to global change through clonal growth and epigenetic variation

    Directory of Open Access Journals (Sweden)

    Richard S Dodd

    2016-07-01

    Full Text Available The earth is experiencing major changes in global and regional climates and changes are predicted to accelerate in the future. Many species will be under considerable pressure to evolve, to migrate, or be faced with extinction. Clonal plants would appear to be at a particular disadvantage due to their limited mobility and limited capacity for adaptation. However, they have outlived previous environmental shifts and clonal species have persisted for millenia. Clonal spread offers unique ecological advantages, such as resource sharing, risk sharing, and economies of scale among ramets within genotypes. We suggest that ecological attributes of clonal plants, in tandem with variation in gene regulation through epigenetic mechanisms that facilitate and optimize phenotype variation in response to environmental change may permit them to be well suited to projected conditions.

  14. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis.

    Science.gov (United States)

    Pollock, Emily; Everest, Michelle; Brown, Arthur; Poulter, Michael O

    2014-10-01

    The integrity and stability of interneurons in a cortical network are essential for proper network function. Loss of interneuron synaptic stability and precise organization can lead to disruptions in the excitation/inhibition balance, a characteristic of epilepsy. This study aimed to identify alterations to the GABAergic interneuron network in the piriform cortex (PC: a cortical area believed to be involved in the development of seizures) after kindling-induced seizures. Immunohistochemistry was used to mark perineuronal nets (PNNs: structures in the extracellular matrix that provide synaptic stability and restrict reorganization of inhibitory interneurons) and interneuron nerve terminals in control and kindled tissues. We found that PNNs were significantly decreased around parvalbumin-positive interneurons after the induction of experimental epilepsy. Additionally, we found layer-specific increases in GABA release sites originating from calbindin, calretinin, and parvalbumin interneurons, implying that there is a re-wiring of the interneuronal network. This increase in release sites was matched by an increase in GABAergic post-synaptic densities. We hypothesized that the breakdown of the PNN could be due to the activity of matrix metalloproteinases (MMP) and that the prevention of PNN breakdown may reduce the rewiring of interneuronal circuits and suppress seizures. To test this hypothesis we employed doxycycline, a broad spectrum MMP inhibitor, to stabilize PNNs in kindled rats. We found that doxycycline prevented PNN breakdown, re-organization of the inhibitory innervation, and seizure genesis. Our observations indicate that PNN degradation may be necessary for the development of seizures by facilitating interneuron plasticity and increased GABAergic activity.

  15. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  16. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    Science.gov (United States)

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  17. A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions.

    Directory of Open Access Journals (Sweden)

    Markus Butz

    Full Text Available Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke.

  18. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Takeo Kubota

    2016-05-01

    Full Text Available Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs. Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  19. Current status and future prospects for epigenetic psychopharmacology

    NARCIS (Netherlands)

    Boks, Marco P; de Jong, Noëlle M; Kas, Martien J H; Vinkers, Christiaan H; Fernandes, Cathy; Kahn, René S; Mill, Jonathan; Ophoff, Roel A

    2012-01-01

    Mounting evidence suggest that epigenetic regulation of brain functions is important in the etiology of psychiatric disorders. These epigenetic regulatory mechanisms, such as DNA methylation and histone acetylation, are influenced by many pharmaceutical compounds including psychiatric drugs. It is t

  20. Three epigenetic information channels and their different roles in evolution

    NARCIS (Netherlands)

    Shea, N.; Pen, I.; Uller, T.

    2011-01-01

    There is increasing evidence for epigenetically mediated transgenerational inheritance across taxa. However, the evolutionary implications of such alternative mechanisms of inheritance remain unclear. Herein, we show that epigenetic mechanisms can serve two fundamentally different functions in trans

  1. Individual epigenetic variation: When, why, and so what?

    Science.gov (United States)

    Epigenetics provides a potential explanation for how environmental factors modify the risk for common diseases among individuals. Interindividual variation in DNA methylation and epigenetic regulation has been reported at specific genomic regions including transposable elements, genomically imprinte...

  2. Epigenetic Mechanisms Facilitating Oligodendrocyte Development, Maturation, and Aging

    NARCIS (Netherlands)

    Copray, Sjef; Huynh, Jimmy Long; Sher, Falak; Casaccia-Bonnefil, Patrizia; Boddeke, Erik

    2009-01-01

    The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodend

  3. Age-associated epigenetic drift: implications, and a case of epigenetic thrift?

    Science.gov (United States)

    Teschendorff, Andrew E; West, James; Beck, Stephan

    2013-10-15

    It is now well established that the genomic landscape of DNA methylation (DNAm) gets altered as a function of age, a process we here call 'epigenetic drift'. The biological, functional, clinical and evolutionary significance of this epigenetic drift, however, remains unclear. We here provide a brief review of epigenetic drift, focusing on the potential implications for ageing, stem cell biology and disease risk prediction. It has been demonstrated that epigenetic drift affects most of the genome, suggesting a global deregulation of DNAm patterns with age. A component of this drift is tissue-specific, allowing remarkably accurate age-predictive models to be constructed. Another component is tissue-independent, targeting stem cell differentiation pathways and affecting stem cells, which may explain the observed decline of stem cell function with age. Age-associated increases in DNAm target developmental genes, overlapping those associated with environmental disease risk factors and with disease itself, notably cancer. In particular, cancers and precursor cancer lesions exhibit aggravated age DNAm signatures. Epigenetic drift is also influenced by genetic factors. Thus, drift emerges as a promising biomarker for premature or biological ageing, and could potentially be used in geriatrics for disease risk prediction. Finally, we propose, in the context of human evolution, that epigenetic drift may represent a case of epigenetic thrift, or bet-hedging. In summary, this review demonstrates the growing importance of the 'ageing epigenome', with potentially far-reaching implications for understanding the effect of age on stem cell function and differentiation, as well as for disease prevention.

  4. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp

    Directory of Open Access Journals (Sweden)

    De-la-Peña Clelia

    2012-11-01

    Full Text Available Abstract Background The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX transcription factors. Results To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M and temporary immersion in modular Bioreactors (B. No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. Conclusions Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition

  5. Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.

    Science.gov (United States)

    Haslberger, A; Varga, F; Karlic, H

    2006-01-01

    Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV

  6. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  7. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  8. [Progress on epigenetics applications in forensic science].

    Science.gov (United States)

    Yang, Ya-ran; Wang, Peng-xiang; Fang, Xiang-dong; Yan, Jiang-wei

    2012-10-01

    Epigenetics is the study of heritable changes in gene expression other than changes in the underlying DNA sequence. Such changes include DNA methylation, histone modification, chromatin remodeling, genomic imprinting, X chromosome inactivation and non-coding RNA regulation. Recent progresses on epigenetics open new possibilities in tackling these challenging problems in forensic science, including identification of fetal paternity testing in embryonic period, determination of the necessary allele in paternity testing, discrimination of identical twins, origination analysis of micro tissue, verification of forged DNA. This review focuses on epigenetics concept and its latest application in the field of paternity testing, age estimation, discrimination between the twins, identification of tissue of origin, and estimation of postmortem interval.

  9. Therapeutic perspectives of epigenetically active nutrients

    Science.gov (United States)

    Remely, M; Lovrecic, L; de la Garza, A L; Migliore, L; Peterlin, B; Milagro, F I; Martinez, A J; Haslberger, A G

    2015-01-01

    Many nutrients are known for a wide range of activities in prevention and alleviation of various diseases. Recently, their potential role in regulating human health through effects on epigenetics has become evident, although specific mechanisms are still unclear. Thus, nutriepigenetics/nutriepigenomics has emerged as a new and promising field in current epigenetics research in the past few years. In particular, polyphenols, as part of the central dynamic interaction between the genome and the environment with specificity at physiological concentrations, are well known to affect mechanisms underlying human health. This review summarizes the effects of dietary compounds on epigenetic mechanisms in the regulation of gene expression including expression of enzymes and other molecules responsible for drug absorption, distribution, metabolism and excretion in cancer, metabolic syndrome, neurodegenerative disorders and hormonal dysfunction. PMID:25046997

  10. Epigenetic regulatory mechanisms associated with infertility

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Madon, Prochi F; Parikh, Firuza R

    2010-01-01

    Infertility is a complex human condition and is known to be caused by numerous factors including genetic alterations and abnormalities. Increasing evidence from studies has associated perturbed epigenetic mechanisms with spermatogenesis and infertility. However, there has been no consensus...... on whether one or a collective of these altered states is responsible for the onset of infertility. Epigenetic alterations involve changes in factors that regulate gene expression without altering the physical sequence of DNA. Understanding these altered epigenetic states at the genomic level along...... with higher order organisation of chromatin in genes associated with infertility and pericentromeric regions of chromosomes, particularly 9 and Y, could further identify causes of idiopathic infertility. Determining the association between DNA methylation, chromatin state, and noncoding RNAs...

  11. Interactions between epigenetics and metabolism in cancers

    Directory of Open Access Journals (Sweden)

    Jihye eYun

    2012-11-01

    Full Text Available Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. Although it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA, are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, many enzymes that carry out post-translational modifications that alter epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  12. Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention.

    Science.gov (United States)

    Romagnolo, Donato F; Zempleni, Janos; Selmin, Ornella I

    2014-07-01

    Posttranslational modifications of histones, alterations in the recruitment and functions of non-histone proteins, DNA methylation, and changes in expression of noncoding RNAs contribute to current models of epigenetic regulation. Nuclear receptors (NRs) are a group of transcription factors that, through ligand-binding, act as sensors to changes in nutritional, environmental, developmental, pathophysiologic, and endocrine conditions and drive adaptive responses via gene regulation. One mechanism through which NRs direct gene expression is the assembly of transcription complexes with cofactors and coregulators that possess chromatin-modifying properties. Chromatin modifications can be transient or become part of the cellular "memory" and contribute to genomic imprinting. Because many food components bind to NRs, they can ultimately influence transcription of genes associated with biologic processes, such as inflammation, proliferation, apoptosis, and hormonal response, and alter the susceptibility to chronic diseases (e.g., cancer, diabetes, obesity). The objective of this review is to highlight how NRs influence epigenetic regulation and the relevance of dietary compound-NR interactions in human nutrition and for disease prevention and treatment. Identifying gene targets of unliganded and bound NRs may assist in the development of epigenetic maps for food components and dietary patterns. Progress in these areas may lead to the formulation of disease-prevention models based on epigenetic control by individual or associations of food ligands of NRs.

  13. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2015-02-01

    Full Text Available The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS´s regulation and neurological disorders are mediated via modulation of chromatin structure.Epigenetics, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA, nicotinamide adenine dinucleotide (NAD+ and beta hydroxybutyrate (β-HB, regulates some of these epigenetic modifications, linking in a precise way environment with gene expression.This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of

  14. Epigenetics and Vasculitis: a Comprehensive Review.

    Science.gov (United States)

    Renauer, Paul; Coit, Patrick; Sawalha, Amr H

    2016-06-01

    Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet's disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies.

  15. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Kuldip S Trehan; Kulbir S Gill

    2002-03-01

    We have isolated and purified two parental homodimers and a unique heterodimer of acid phosphatase [coded by Acph-11.05() and Acph-10.95()] from isogenic homozygotes and heterozygotes of Drosophila malerkotliana. and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity.

  16. Nutrients and the Pancreas: An Epigenetic Perspective

    Directory of Open Access Journals (Sweden)

    Andee Weisbeck

    2017-03-01

    Full Text Available Pancreatic cancer is the fourth most common cause of cancer-related deaths with a dismal average five-year survival rate of six percent. Substitutional progress has been made in understanding how pancreatic cancer develops and progresses. Evidence is mounting which demonstrates that diet and nutrition are key factors in carcinogenesis. In particular, diets low in folate and high in fruits, vegetables, red/processed meat, and saturated fat have been identified as pancreatic cancer risk factors with a proposed mechanism involving epigenetic modifications or gene regulation. We review the current literature assessing the correlation between diet, epigenetics, and pancreatic cancer.

  17. Epigenetic Modifications in Pediatric Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Michael James Burke

    2014-05-01

    Full Text Available Aberrant epigenetic modifications are well-recognized drivers for oncogenesis. Pediatric acute lymphoblastic leukemia (ALL is no exception and serves as a model toward the significant impact these heritable alterations can have in leukemogenesis. In this brief review, we will focus on the main aspects of epigenetics which control leukemogenesis in pediatric ALL, mainly DNA methylation, histone modification and microRNA alterations. As we continue to gain better understanding of the driving mechanisms for pediatric ALL at both diagnosis and relapse, therapeutic interventions directed toward these pathways and mechanisms can be harnessed and introduced into clinical trials for pediatric ALL.

  18. Nutrients and the Pancreas: An Epigenetic Perspective

    Science.gov (United States)

    Weisbeck, Andee; Jansen, Rick J.

    2017-01-01

    Pancreatic cancer is the fourth most common cause of cancer-related deaths with a dismal average five-year survival rate of six percent. Substitutional progress has been made in understanding how pancreatic cancer develops and progresses. Evidence is mounting which demonstrates that diet and nutrition are key factors in carcinogenesis. In particular, diets low in folate and high in fruits, vegetables, red/processed meat, and saturated fat have been identified as pancreatic cancer risk factors with a proposed mechanism involving epigenetic modifications or gene regulation. We review the current literature assessing the correlation between diet, epigenetics, and pancreatic cancer. PMID:28294968

  19. Obesity accelerates epigenetic aging of human liver

    OpenAIRE

    Horvath, S; Erhart, W.; Brosch, M; Ammerpohl, O.; von Schonfels, W.; Ahrens, M.; Heits, N.; Bell, J.T.; Tsai, P.-C.; Spector, T D; Deloukas, P.; Siebert, R.; Sipos, B.; Becker, T.; Rocken, C.

    2014-01-01

    Because obese people are at an increased risk of many age-related diseases, it is a plausible hypothesis that obesity increases the biological age of some tissues and cell types. However, it has been difficult to detect such an accelerated aging effect because it is unclear how to measure tissue age. Here we use a recently developed biomarker of aging (known as “epigenetic clock”) to study the relationship between epigenetic age and obesity in several human tissues. We report an unexpectedly ...

  20. Epigenetic dynamics in psychiatric disorders : environmental programming of neurodevelopmental processes

    NARCIS (Netherlands)

    Kofink, Daniel; Boks, Marco P M; Timmers, H T Marc; Kas, Martien J

    2013-01-01

    Epigenetic processes have profound influence on gene translation and play a key role in embryonic development and tissue type specification. Recent advances in our understanding of epigenetics have pointed out that epigenetic alterations also play an important role in neurodevelopment and may increa

  1. Epigenetic dynamics in psychiatric disorders : Environmental programming of neurodevelopmental processes

    NARCIS (Netherlands)

    Kofink, Daniel; Boks, Marco P. M.; Timmers, H. T. Marc; Kas, Martien J.

    2013-01-01

    Epigenetic processes have profound influence on gene translation and play a key role in embryonic development and tissue type specification. Recent advances in our understanding of epigenetics have pointed out that epigenetic alterations also play an important role in neurodevelopment and may increa

  2. Introduction to the Special Section on Epigenetics

    Science.gov (United States)

    Lester, Barry M.; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field…

  3. Epigenetics Europe conference. Munich, Germany, 8-9 September 2011.

    Science.gov (United States)

    Jeltsch, Albert

    2011-12-01

    At the Epigenetics Europe conference in Munich, Germany, held on 8-9 September 2011, 19 speakers from different European countries were presenting novel data and concepts on molecular epigenetics. The talks were mainly focused on questions of the generation, maintenance, flexibility and erasure of DNA methylation patterns in context of other epigenetic signals like histone tail modifications and ncRNAs.

  4. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation.

  5. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation.

    Science.gov (United States)

    Herceg, Zdenko; Lambert, Marie-Pierre; van Veldhoven, Karin; Demetriou, Christiana; Vineis, Paolo; Smith, Martyn T; Straif, Kurt; Wild, Christopher P

    2013-09-01

    Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.

  6. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa

    2013-01-01

    Foetal development of germ cells is a unique biological process orchestrated by cellular specification, migration and niche development in concert with extensive epigenetic and transcriptional programs. Many of these processes take place early in foetal life and are hence very difficult to study....... In this review, we will focus on current knowledge of the epigenetics of CIS cells and relate it to the epigenetic changes occurring in early developing germ cells of mice during specification, migration and colonization. We will focus on DNA methylation and some of the best studied histone modifications like H3......K9me2, H3K27me3 and H3K9ac. We also show that CIS cells contain high levels of H3K27ac, which is known to mark active enhancers. Proper epigenetic reprogramming seems to be a pre-requisite of normal foetal germ cell development and we propose that alterations in these programs may be a pathogenic...

  7. CROSSOVERS BETWEEN EPIGENESIS AND EPIGENETICS. A MULTICENTER APPROACH TO THE HISTORY OF EPIGENETICS (1901-1975).

    Science.gov (United States)

    Costa, Rossella; Frezza, Giulia

    2014-01-01

    The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms.

  8. Conference Scene: epigenetics eh! The first formal meeting of the Canadian epigenetics community.

    Science.gov (United States)

    Underhill, Alan; Hendzel, Michael J

    2011-08-01

    In recognition of Canada's longstanding interest in epigenetics - and a particular linguistic interjection - the inaugural 'Epigenetics, Eh!' conference was held between 4-7 May 2011 in London, Ontario. The meeting struck an excellent balance between Canadian and international leaders in epigenetic research while also providing a venue to showcase up-and-coming talent. Almost without exception, presentations touched on the wide-ranging and severe consequences of epigenetic dysfunction, as well as current and emerging therapeutic opportunities. While gaining a deeper understanding of how DNA and histone modifications, together with multiple classes of ncRNAs, act to functionalize our genome, participants were also provided with a glimpse of the astounding complexity of chromatin structure, challenging existing dogma.

  9. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  10. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li-Li Li; Xing-Sheng Shu; Zhao-Hui Wang; Ya Cao; Qian Tao

    2011-01-01

    Nasopharyngeal carcinoma (NPC) is a malignancy with remarkable ethnic and geographic distribution in southern China and Southeast Asia. Alternative to genetic changes, aberrant epigenetic events disrupt multiple genes involved in cell signaling pathways through DNA methylation of promoter CpG islands and/ or histone modifications. These epigenetic alterations grant cell growth advantage and contribute to the initiation and progression of NPC. In this review, we summariye the epigenetic deregulation of cell signaling in NPC tumorigenesis and highlight the importance of identifying epigenetic cell signaling regulators in NPC research. Developing pharmacologic strategies to reverse the epigenetic-silencing of cell signaling regulators might thus be useful to NPC prevention and therapy.

  11. Epigenetic architecture and miRNA: reciprocal regulators

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Kjems, Jørgen; Clark, Susan

    2010-01-01

    Deregulation of epigenetic and microRNA (miRNA) pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected......RNAs) are considered especially promising in clinical applications, and their biogenesis and function is a subject of active research. In this review, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer....

  12. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  13. Phenotype as Agent for Epigenetic Inheritance

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-07-01

    Full Text Available The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state.

  14. Evidence of epigenetic tags in cardiac fibrosis.

    Science.gov (United States)

    Grimaldi, Vincenzo; De Pascale, Maria Rosaria; Zullo, Alberto; Soricelli, Andrea; Infante, Teresa; Mancini, Francesco Paolo; Napoli, Claudio

    2017-02-01

    In cardiac fibrosis, following an injury or a stress, non-functional fibrotic tissue substitutes normal myocardium, thus leading to progressive heart failure. Activated fibroblasts are principal determinants of cardiac fibrosis by producing excessive fibrotic extracellular matrix and causing hypertrophy of cardiomyocytes. Epigenetic changes, such as DNA methylation, histone modifications, and miRNAs have been involved in these mechanisms. Therefore, there is a strong interest in reverting such epigenetic transformations in order to arrest myocardial fibrotic degeneration. Demethylating agents, such as 5-aza-2'-deoxycytidine, 5-azacytidine, some selective histone deacetylase inhibitors, including mocetinostat, trichostatin A, and MPT0E014, have a direct action on important inducers of cardiac fibrosis. Also dietary compounds, such as resveratrol, can suppress the differentiation of fibroblasts to myofibroblasts. Although in vivo and in vitro studies suggest specific epigenetic therapies to treat cardiac fibrosis, the related clinical trials are still lacking. A better understanding of the epigenetic effects of dietary compounds (e.g. curcumin and green tea catechins) on the onset and progression of cardiac fibrosis, will allow the identification of protective dietary patterns and/or the generation of novel potential epidrugs.

  15. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  16. Epigenetics as a First Exit Problem

    Science.gov (United States)

    Aurell, E.; Sneppen, K.

    2002-01-01

    We develop a framework to discuss the stability of epigenetic states as first exit problems in dynamical systems with noise. We consider in particular the stability of the lysogenic state of the λ prophage. The formalism defines a quantitative measure of robustness of inherited states.

  17. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  18. Dietary effects on adipocyte metabolism and epigenetics

    Science.gov (United States)

    Obesity risk appears to be perpetuated across generations by way of programmed DNA alterations that occur in utero and that affect gene expression throughout the life span. Studies have demonstrated associations of maternal obesity and epigenetic changes, such as DNA methylation, histone modifica...

  19. Epigenetics of inflammation, maternal infection and nutrition

    Science.gov (United States)

    Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk for chronic disease development. A few studies have begun to investigate whether dietary nutrients play...

  20. Epigenetics and the Social Work Imperative

    Science.gov (United States)

    Combs-Orme, Terri

    2013-01-01

    "Epigenesis" is the biochemical process through which some genes are expressed and others remain silent, and it reinforces and explains the powerful impact that the environment has on human development. Epigenetic effects occur not only through diet, chemical exposure, and high levels of environmental stress, but also through chronic poverty and…

  1. Design and Synthesis of Epigenetic Drugs

    DEFF Research Database (Denmark)

    Leurs, Ulrike

    2014-01-01

    Epigenetics have within the last decade evolved into an exciting new strategy to target diseases linked to changes in the transcriptome of a cell. Both DNA methylation and posttranslational modifications of histone proteins are important regulators of gene expression, and aberrant regulation...

  2. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  3. The Epigenetic Effects of Prenatal Cadmium Exposure.

    Science.gov (United States)

    Vilahur, Nadia; Vahter, Marie; Broberg, Karin

    2015-06-01

    Prenatal exposure to the highly toxic and common pollutant cadmium has been associated with adverse effects on child health and development. However, the underlying biological mechanisms of cadmium toxicity remain partially unsolved. Epigenetic disruption due to early cadmium exposure has gained attention as a plausible mode of action, since epigenetic signatures respond to environmental stimuli and the fetus undergoes drastic epigenomic rearrangements during embryogenesis. In the current review, we provide a critical examination of the literature addressing prenatal cadmium exposure and epigenetic effects in human, animal, and in vitro studies. We conducted a PubMed search and obtained eight recent studies addressing this topic, focusing almost exclusively on DNA methylation. These studies provide evidence that cadmium alters epigenetic signatures in the DNA of the placenta and of the newborns, and some studies indicated marked sexual differences for cadmium-related DNA methylation changes. Associations between early cadmium exposure and DNA methylation might reflect interference with de novo DNA methyltransferases. More studies, especially those including environmentally relevant doses, are needed to confirm the toxicoepigenomic effects of prenatal cadmium exposure and how that relates to the observed health effects of cadmium in childhood and later life.

  4. Epigenetic regulation of cystatins in cancer.

    Science.gov (United States)

    Rivenbark, Ashley G; Coleman, William B

    2009-01-01

    Cystatins function as cysteine protease inhibitors, are expressed in numerous cell types, and regulate a number of physiological processes. Four cystatins have been extensively studied: cystatin A, cystatin B, cystatin C, and cystatin M. Aberrant regulation of cystatins occurs in a number of diseases, including cancer and certain neurodegenerative disorders. Recent advances in the understanding of cystatin function suggest that these proteins may regulate promotion or suppression of tumor growth, invasion, and metastasis. Cancer is a disease of abnormal gene expression and cancer cells exhibit aberrant epigenetic events (such as DNA methylation), leading to gene silencing. Cystatins are epigenetically silenced through DNA methylation-dependent mechanisms in several forms of cancer, including breast, pancreatic, brain, and lung. These findings suggest that DNA methylation-dependent epigenetic mechanisms may play an important role in the loss of cystatin gene expression and protein function during neoplastic transformation and/or tumor progression. This review summarizes the biological processes in which cystatins function, focuses on the neoplastic events that involve aberrant regulation of cystatins, and discusses the possible epigenetic regulation of cystatins in cancer.

  5. Epigenetics of osteoarticular diseases: recent developments.

    Science.gov (United States)

    Roberts, S B; Wootton, E; De Ferrari, L; Albagha, O M; Salter, D M

    2015-08-01

    A variety of osteoarticular conditions possess an underlying genetic aetiology. Large-scale genome-wide association studies have identified several genetic loci associated with osteoarticular conditions, but were unable to fully account for their estimated heritability. Epigenetic modifications including DNA methylation, histone modification, nucleosome positioning, and microRNA expression may help account for this incomplete heritability. This articles reviews insights from epigenetic studies in osteoarticular diseases, focusing on osteoarthritis, but also examines recent advances in rheumatoid arthritis, osteoporosis, systemic lupus erythematosus (SLE), ankylosing spondylitis, and sarcoma. Genome-wide methylation studies are permitting identification of novel candidate genes and molecular pathways, and the pathogenic mechanisms with altered methylation status are beginning to be elucidated. These findings are gradually translating into improved understanding of disease pathogenesis and clinical applications. Functional studies in osteoarthritis, rheumatoid arthritis, and SLE are now identifying downstream molecular alterations that may confer disease susceptibility. Epigenetic markers are being validated as prognostic and therapeutic disease biomarkers in sarcoma, and clinical trials of hypomethylating agents as treatments for sarcoma are being conducted. In concert with advances in throughput and cost-efficiency of available technologies, future epigenetic research will enable greater characterisation and treatment for both common and rare osteoarticular diseases.

  6. Epigenetic mechanisms governing the process of neurodegeneration.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-01-01

    Studies elucidating how and why neurodegeneration unfolds suggest that a complex interplay between genetic and environmental factors is responsible for disease pathogenesis. Recent breakthroughs in the field of epigenetics promise to advance our understanding of these mechanisms and to promote the development of useful and effective pre-clinical risk stratification strategies, molecular diagnostic and prognostic methods, and disease-modifying treatments.

  7. Epigenetic regulation of the mammalian cell.

    Directory of Open Access Journals (Sweden)

    Keith Baverstock

    Full Text Available BACKGROUND: Understanding how mammalian cells are regulated epigenetically to express phenotype is a priority. The cellular phenotypic transition, induced by ionising radiation, from a normal cell to the genomic instability phenotype, where the ability to replicate the genotype accurately is compromised, illustrates important features of epigenetic regulation. Based on this phenomenon and earlier work we propose a model to describe the mammalian cell as a self assembled open system operating in an environment that includes its genotype, neighbouring cells and beyond. Phenotype is represented by high dimensional attractors, evolutionarily conditioned for stability and robustness and contingent on rules of engagement between gene products encoded in the genetic network. METHODOLOGY/FINDINGS: We describe how this system functions and note the indeterminacy and fluidity of its internal workings which place it in the logical reasoning framework of predicative logic. We find that the hypothesis is supported by evidence from cell and molecular biology. CONCLUSIONS: Epigenetic regulation and memory are fundamentally physical, as opposed to chemical, processes and the transition to genomic instability is an important feature of mammalian cells with probable fundamental relevance to speciation and carcinogenesis. A source of evolutionarily selectable variation, in terms of the rules of engagement between gene products, is seen as more likely to have greater prominence than genetic variation in an evolutionary context. As this epigenetic variation is based on attractor states phenotypic changes are not gradual; a phenotypic transition can involve the changed contribution of several gene products in a single step.

  8. Understanding neurological disease mechanisms in the era of epigenetics.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-06-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type-specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues.

  9. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    Science.gov (United States)

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2016-09-17

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  10. Epigenetic inheritance of cell fates during embryonic development

    Directory of Open Access Journals (Sweden)

    Sirisha eCheedipudi

    2014-02-01

    Full Text Available During embryonic development a large number of widely differing and specialized cell types with identical genomes are generated from a single totipotent zygote. Tissue specific transcription factors cooperate with epigenetic modifiers to establish cellular identity in differentiated cells and epigenetic regulatory mechanisms contribute to the maintenance of distinct chromatin states and cell-type specific gene expression patterns, a phenomenon referred to as epigenetic memory. This is accomplished via the stable maintenance of various epigenetic marks through successive rounds of cell division. Preservation of DNA methylation patterns is a well established mechanism of epigenetic memory, but more recently it has become clear that many other epigenetic modifications can also be maintained following DNA replication and cell division. In this review, we present an overview of the current knowledge regarding the role of histone lysine methylation in the establishment and maintenance of stable epigenetic states.

  11. Epigenetic modifications as regulatory elements of autophagy in cancer.

    Science.gov (United States)

    Sui, Xinbing; Zhu, Jing; Zhou, Jichun; Wang, Xian; Li, Da; Han, Weidong; Fang, Yong; Pan, Hongming

    2015-05-01

    Epigenetic modifications have been considered as hallmarks of cancer and play an important role in tumor initiation and development. Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, may regulate cell cycle and apoptosis, as well as macroautophagy (hereafter referred to as autophagy). Autophagy, as a crucial cellular homeostatic mechanism, performs a dual role, having pro-survival or pro-death properties. A variety of signaling pathways including epigenetic control have been implicated in the upregulation or downregulation of autophagy. However, the role of epigenetic regulation in autophagy is still less well acknowledged. Recent studies have linked epigenetic control to the autophagic process. Some epigenetic modifiers are also involved in the regulation of autophagy and potentiate the efficacy of traditional therapeutics. Thus, understanding the novel functions of epigenetic control in autophagy may allow us to develop potential therapeutic approaches for cancer treatment.

  12. Targeting cancer epigenetics: Linking basic biology to clinical medicine.

    Science.gov (United States)

    Shinjo, Keiko; Kondo, Yutaka

    2015-12-01

    Recent studies provide compelling evidence that epigenetic dysregulation is involved in almost every step of tumor development and progression. Differences in tumor behavior, which ultimately reflects clinical outcome, can be explained by variations in gene expression patterns generated by epigenetic mechanisms, such as DNA methylation. Therefore, epigenetic abnormalities are considered potential biomarkers and therapeutic targets. DNA methylation is stable at certain specific loci in cancer cells and predominantly reflects the characteristic clinicopathological features. Thus, it is an ideal biomarker for cancer screening, classification and prognostic purposes. Epigenetic treatment for cancers is based on the pharmacologic targeting of various core transcriptional programs that sustains cancer cell identity. Therefore, targeting aberrant epigenetic modifiers may be effective for multiple processes compared with using a selective inhibitor of aberrant single signaling pathway. This review provides an overview of the epigenetic alterations in human cancers and discusses about novel therapeutic strategies targeting epigenetic alterations.

  13. Why schizophrenia genetics needs epigenetics: a review.

    Science.gov (United States)

    Maric, Nadja P; Svrakic, Dragan M

    2012-03-01

    Schizophrenia (SZ) is a highly heritable disorder, with about 80% of the variance attributable to genetic factors. There is accumulating evidence that both common genetic variants with small effects and rare genetic lesions with large effects determine risk of SZ. As recently shown, thousands of common single nucleotide polymorphisms (SNPs), each with small effect, cumulatively could explain about 30% of the underlying genetic risk of SZ. On the other hand, rare and large copy number variants (CNVs) with high but incomplete penetrance, variable in different individual, could explain about additional 30% of SZ cases. Although these rare CNVs frequently develop de novo, it is not clear whether they affect risk independently or via interaction with a polygenic liability in the background. Finally, the role of environmental risk factors has been well established in SZ. Environmental factors are rarely sufficient to cause SZ independently, but act in parallel or in synergy with the underlying genetic liability. Epigenetic misregulation of the genome and direct CNS injury are probably the main mechanism to mediate prenatal environmental effects (e.g., viruses, ethanol, or nutritional deficiency) whereas postnatal risk factors (e.g., stress, urbanicity, cannabis use) may also affect risk via use-based potentiation of vulnerable CNS pathways implicated in SZ. In this review, we outline a general theoretical background of epigenetic mechanisms involved in GxE interactions, and then discuss epigenetic and neurodevelopmental features of SZ based on available information from genetics, epigenetics, epidemiology, neuroscience, and clinical research. We argue that epigenetic model of SZ provides a framework to integrate a variety of diverse empirical data into a powerful etiopathogenetic synthesis. The promising future of this model is the possibility to develop truly specific prevention and treatment strategies for SZ.

  14. Genetic and epigenetic alterations in pancreatic carcinogenesis.

    Science.gov (United States)

    Delpu, Yannick; Hanoun, Naïma; Lulka, Hubert; Sicard, Flavie; Selves, Janick; Buscail, Louis; Torrisani, Jérôme; Cordelier, Pierre

    2011-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could

  15. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    Directory of Open Access Journals (Sweden)

    Poulomi Ray

    Full Text Available Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF, Bone Morphogenetic Protein (BMP and Transforming Growth Factor beta (TGF-β signaling pathways. Rho Kinase (ROCK-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  16. Mechanism of filopodia initiation by reorganization of a dendritic network.

    Science.gov (United States)

    Svitkina, Tatyana M; Bulanova, Elena A; Chaga, Oleg Y; Vignjevic, Danijela M; Kojima, Shin-ichiro; Vasiliev, Jury M; Borisy, Gary G

    2003-02-03

    Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a specific nucleation event, but by reorganization of the lamellipodial dendritic network analogous to fusion of established filopodia but occurring at the level of individual filaments. Subsets of independently nucleated lamellipodial filaments elongated and gradually associated with each other at their barbed ends, leading to formation of cone-shaped structures that we term Lambda-precursors. An early marker of initiation was the gradual coalescence of GFP-vasodilator-stimulated phosphoprotein (GFP-VASP) fluorescence at the leading edge into discrete foci. The GFP-VASP foci were associated with Lambda-precursors, whereas Arp2/3 was not. Subsequent recruitment of fascin to the clustered barbed ends of Lambda-precursors initiated filament bundling and completed formation of the nascent filopodium. We propose a convergent elongation model of filopodia initiation, stipulating that filaments within the lamellipodial dendritic network acquire privileged status by binding a set of molecules (including VASP) to their barbed ends, which protect them from capping and mediate association of barbed ends with each other.

  17. Enhancing Physical Activity and Brain Reorganization after Stroke

    Directory of Open Access Journals (Sweden)

    Janet H. Carr

    2011-01-01

    Full Text Available It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after discharge. It is evident that many patients are discharged from inpatient rehabilitation severely deconditioned, meaning that their energy levels are too low for active participation in daily life. Physicians, therapists, and nursing staff responsible for rehabilitation practice should address this issue not only during inpatient rehabilitation but also after discharge by promoting and supporting community-based exercise opportunities. During inpatient rehabilitation, group sessions should be frequent and need to include specific aerobic training. Physiotherapy must take advantage of the training aids available, including exercise equipment such as treadmills, and of new developments in computerised feedback systems, robotics, and electromechanical trainers. For illustrative purposes, this paper focuses on the role of physiotherapists, but the necessary changes in practice and in attitude will require cooperation from many others.

  18. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation

    Science.gov (United States)

    Wassenburg, Jasper A.; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev K.; Sabaoui, Abdellah; Spötl, Christoph; Lohmann, Gerrit; Andreae, Meinrat O.; Immenhauser, Adrian

    2016-08-01

    The North Atlantic Oscillation is the dominant atmospheric pressure mode in the North Atlantic region and affects winter temperature and precipitation in the Mediterranean, northwest Europe, Greenland, and Asia. The index that describes the sea-level pressure difference between Iceland and the Azores is correlated with a dipole precipitation pattern over northwest Europe and northwest Africa. How the North Atlantic Oscillation will develop as the Greenland ice sheet melts is unclear. A potential past analogue is the early Holocene, during which melting ice sheets around the North Atlantic freshened surface waters, affecting the strength of the meridional overturning circulation. Here we present a Holocene rainfall record from northwest Africa based on speleothem δ18O and compare it against a speleothem-based rainfall record from Europe. The two records are positively correlated during the early Holocene, followed by a shift to an anti-correlation, similar to the modern record, during the mid-Holocene. On the basis of our simulations with an Earth system model, we suggest the shift to the anti-correlation reflects a large-scale atmospheric and oceanic reorganization in response to the demise of the Laurentide ice sheet and a strong reduction of meltwater flux to the North Atlantic, pointing to a potential sensitivity of the North Atlantic Oscillation to the melting of ice sheets.

  19. Membrane indentation triggers clathrin lattice reorganization and fluidization.

    Science.gov (United States)

    Cordella, Nicholas; Lampo, Thomas J; Melosh, Nicholas; Spakowitz, Andrew J

    2015-01-21

    Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties.

  20. Global Reorganization of the Nuclear Landscape in Senescent Cells

    Directory of Open Access Journals (Sweden)

    Tamir Chandra

    2015-02-01

    Full Text Available Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF. However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs, somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.

  1. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation

    Science.gov (United States)

    Sun, Liang; Pitto-Barry, Anaïs; Kirby, Nigel; Schiller, Tara L.; Sanchez, Ana M.; Dyson, M. Adam; Sloan, Jeremy; Wilson, Neil R.; O'Reilly, Rachel K.; Dove, Andrew P.

    2014-12-01

    Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(L-lactide) and poly(D-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(L-lactide)-b-poly(acrylic acid) and poly(D-lactide)-b-poly(acrylic acid) diblock copolymers in water via crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H2O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-b-PLLA/PEO-b-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications.

  2. Reorganization of the Brain and Heart Rhythm During Autogenic Meditation

    Directory of Open Access Journals (Sweden)

    Dae-Keun eKim

    2014-01-01

    Full Text Available The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower(alpha and higher(above beta band coherence during 3 minute epochs of heart coherent meditation compared to 3 minute epochs of heart noncoherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher(above beta band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state.

  3. Potential of epigenetic therapies in the management of solid tumors

    Directory of Open Access Journals (Sweden)

    Valdespino V

    2015-07-01

    Full Text Available Victor Valdespino,1 Patricia M Valdespino2 1Health Attention Department, Universidad Autónoma Metropolitana, Mexico; 2Bacterial Ecology and Epigenetics Laboratory, Universidad Nacional Autónoma de México, Mexico Abstract: Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and

  4. A model of epigenetic evolution based on theory of open quantum systems.

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2013-12-01

    We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance.

  5. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways.

    Science.gov (United States)

    Sun, Changhui; Chen, Dan; Fang, Jun; Wang, Pingrong; Deng, Xiaojian; Chu, Chengcai

    2014-12-01

    Although the molecular basis of flowering time control is well dissected in the long day (LD) plant Arabidopsis, it is still largely unknown in the short day (SD) plant rice. Rice flowering time (heading date) is an important agronomic trait for season adaption and grain yield, which is affected by both genetic and environmental factors. During the last decade, as the nature of florigen was identified, notable progress has been made on exploration how florigen gene expression is genetically controlled. In Arabidopsis expression of certain key flowering integrators such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) are also epigenetically regulated by various chromatin modifications, however, very little is known in rice on this aspect until very recently. This review summarized the advances of both genetic networks and chromatin modifications in rice flowering time control, attempting to give a complete view of the genetic and epigenetic architecture in complex network of rice flowering pathways.

  6. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  7. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  8. Bilateral experimental neck pain reorganize axioscapular muscle coordination and pain sensitivity

    DEFF Research Database (Denmark)

    Christensen, Steffan Wittrup; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas

    2017-01-01

    BACKGROUND: Neck pain is a large clinical problem where reorganized trunk and axioscapular muscle activities have been hypothesised contributing to pain persistence and pain hypersensitivity. This study investigated the effects of bilateral experimental neck pain on trunk and axioscapular muscle ...

  9. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  10. [Epigenetics, genomic imprinting and developmental disorders].

    Science.gov (United States)

    Le Bouc, Yves; Rossignol, Sylvie; Azzi, Salah; Brioude, Frédéric; Cabrol, Sylvie; Gicquel, Christine; Netchine, Irène

    2010-02-01

    Epigenetic phenomena play a key role in regulating gene expression. One of the most widely studied epigenetic modification is DNA methylation at cytosine residues of CpG dinucleotides in gene promoters, transposons and imprinting control regions (ICR). Genomic imprinting refers to epigenetic marking of genes that results in monoallelic expression depending on the parental origin. Several genes encoding key hormones involved in embryonic and fetal growth are imprinted. There are two critical periods of epigenetic reprogramming: gametogenesis and early preimplantation development. Major reprogramming takes place in primordial germ cells, in which parental imprints are erased and totipotency is restored. Imprint marks are then re-established during spermatogenesis or oogenesis, depending on gender. Upon fertilization, genome-wide demethylation is followed by a wave of de novo methylation, both processes being resisted by imprinted loci. Disruption of imprinting can cause growth defects such as the Beckwith-Wiedemann overgrowth syndrome (BWS) and the Russell-Silver (RSS) intrauterine and postnatal growth retardation syndrome. These growth disorders are caused by abnormal DNA methylation in the 11p15 imprinted region encompassing many imprinted genes, such as IGF2. BWS has been linked to loss of methylation (LOM) in the centromeric ICR2/KCNQIOT1 region of the maternal allele, or gain of methylation in the telomeric ICR1/IGF2/H19 region of the maternal allele. This latter epigenetic defect is associated with an increased risk of tumors such as nephroblastoma. LOM in the telomeric ICR1 region of the paternal allele has been detected in RSS. Early embryogenesis is a critical period of epigenetic regulation, and is sensitive to environmental factors. Individuals conceived with the help of assisted reproductive technology (ART) are over-represented among BWS patients, suggesting that ART may favor altered imprinting at the imprinted centromeric 11p15 locus (LOM in the

  11. Single-sphere model for solvent reorganization energy and its application to electron transfer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this work, the authors give detailed deductions and develop the single-sphere model of solvent reorganization energy in electron transfer with point dipole approximation. At the level of DFT/6- 31++G**, the electron transfer between 7,7,8,8-tetracyanoquinodimethane and its anion has been investigated. Using the novel single-sphere model, the authors evaluate the solvent reorganization energy of this system, and the computational result proves rational in comparison with the experimental estimations.

  12. Epigenetic mechanisms in atrial fibrillation: New insights and future directions.

    Science.gov (United States)

    Tao, Hui; Shi, Kai-Hu; Yang, Jing-Jing; Li, Jun

    2016-05-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia. AF is a complex disease that results from genetic and environmental factors and their interactions. In recent years, numerous studies have shown that epigenetic mechanisms significantly participate in AF pathogenesis. Even though a poor understanding of the molecular and electrophysiologic mechanisms of AF, accumulated evidence has suggested that the relevance of epigenetic changes in the development of AF. The aim of this review is to describe the present knowledge about the epigenetic regulatory features significantly participates in AF, and look ahead on new perspectives of epigenetic mechanisms research. Epigenetic regulatory features such as DNA methylation, histone modification, and microRNA influence gene expression by epigenetic mechanisms and by directly binding to various factor response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of factors-induced epigenetic alterations as informative factors in the risk assessment process. In this review, new insight into the epigenetic mechanisms in AF pathogenesis is discussed, with special emphasis on DNA methylation, histone modification, and microRNA. Further studies are needed to reveal the potential targets of epigenetic mechanisms, and it can be developed as a therapeutic target for AF.

  13. Transgenerational epigenetic inheritance in mammals: how good is the evidence?

    Science.gov (United States)

    van Otterdijk, Sanne D; Michels, Karin B

    2016-07-01

    Epigenetics plays an important role in orchestrating key biologic processes. Epigenetic marks, including DNA methylation, histones, chromatin structure, and noncoding RNAs, are modified throughout life in response to environmental and behavioral influences. With each new generation, DNA methylation patterns are erased in gametes and reset after fertilization, probably to prevent these epigenetic marks from being transferred from parents to their offspring. However, some recent animal studies suggest an apparent resistance to complete erasure of epigenetic marks during early development, enabling transgenerational epigenetic inheritance. Whether there are similar mechanisms in humans remains unclear, with the exception of epigenetic imprinting. Nevertheless, a distinctly different mechanism-namely, intrauterine exposure to environmental stressors that may affect establishment of the newly composing epigenetic patterns after fertilization-is often confused with transgenerational epigenetic inheritance. In this review, we delineate the definition of and requirement for transgenerational epigenetic inheritance, differentiate it from the consequences of intrauterine exposure, and discuss the available evidence in both animal models and humans.-Van Otterdijk, S. D., Michels, K. B. Transgenerational epigenetic inheritance in mammals: how good is the evidence?

  14. Epigenetics in the development, modification, and prevention of cardiovascular disease.

    Science.gov (United States)

    Whayne, Thomas F

    2015-04-01

    Epigenetics has major relevance to all disease processes; cardiovascular (CV) disease and its related conditions are no exception. Epigenetics is defined as the study of heritable alterations in gene expression, or cellular phenotype, and goes far beyond a pure genetic approach. A more precise definition is that epigenetics represents all the meiotically and mitotically inherited changes in gene expression that are not encoded on the deoxyribonucleic acid (DNA) sequence itself. Major epigenetic mechanisms are modifications of histone proteins in chromatin and DNA methylation (which does not alter the DNA sequence). There is increasing evidence for the involvement of epigenetics in human disease such as cancer, inflammatory disease and CV disease. Other chronic diseases are also susceptible to epigenetic modification such as metabolic diseases including obesity, metabolic syndrome, and diabetes mellitus. There is much evidence for the modification of epigenetics by nutrition and exercise. Through these modifications, there is infinite potential for benefit for the fetus, the newborn, and the individual as well as population effects. Association with CV disease, including coronary heart disease and peripheral vascular disease, is evident through epigenetic relationships and modification by major CV risk factors such as tobacco abuse. Aging itself may be altered by epigenetic modification. Knowledge of epigenetics and its relevance to the development, modification, and prevention of CV disease is in a very preliminary stage but has an infinite future.

  15. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    Science.gov (United States)

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration.

  16. Epigenetic Modifications of Major Depressive Disorder.

    Science.gov (United States)

    Saavedra, Kathleen; Molina-Márquez, Ana María; Saavedra, Nicolás; Zambrano, Tomás; Salazar, Luis A

    2016-08-05

    Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  17. Epigenetics of the yeast galactose genetic switch

    Indian Academy of Sciences (India)

    Paike Jayadeva Bhat; Revathi S Iyer

    2009-10-01

    The transcriptional activation of enzymes involved in galactose utilization (GAL genes) in Saccharomyces cerevisiae is regulated by a complex interplay between three regulatory proteins encoded by GAL4 (transcriptional activator), GAL3 (signal transducer) and GAL80 (repressor). The relative concentrations of the signal transducer and the repressor are maintained by autoregulation. Cells disabled for autoregulation exhibit phenotypes distinctly different from that of the wild type cells, enabling us to explore the biological significance of autoregulation. The redundancy in signal transduction due to the presence of GAL1 (alternate signal transducer) also makes it a suitable model to understand the phenomenon of epigenetics. In this article we review some of the recent attempts made to understand the importance of epigenetics in the establishment of cellular and transcriptional memory.

  18. Smoking and diabetes. Epigenetics involvement in osseointegration.

    Science.gov (United States)

    Razzouk, Sleiman; Sarkis, Rami

    2013-03-01

    Bone quality is a poorly defined parameter for successful implant placement, which largely depends upon many environmental and genetic factors unique to every individual. Smoking and diabetes are among the environmental factors that most impact osseointegration. However, there is an inter-individual variability of bone response in smokers and diabetic patients. Recent data on gene-environment interactions highlight the major role of epigenetic changes to induce a specific phenotype. Histone acetylation and DNA methylation are the main events that occur and modulate the gene expression. In this paper, we emphasize the impact of epigenetics on diabetes and smoking and describe their significance in bone healing. Also, we underscore the importance of adopting a new approach in clinical management for implant placement by customizing the treatment according to the patient's specific characteristics.

  19. Dynamic epigenetic states of maize centromeres

    Directory of Open Access Journals (Sweden)

    Yalin eLiu

    2015-10-01

    Full Text Available The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Nondisjunction of the supernumerary B chromosome early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis.

  20. Atherogenic Factors and Their Epigenetic Relationships

    Directory of Open Access Journals (Sweden)

    Ana Z. Fernandez

    2010-01-01

    Full Text Available Hypercholesterolemia, homocysteine, oxidative stress, and hyperglycemia have been recognized as the major risk factors for atherogenesis. Their impact on the physiology and biochemistry of vascular cells has been widely demonstrated for the last century. However, the recent discovery of the role of epigenetics in human disease has opened up a new field in the study of atherogenic factors. Thus, epigenetic tags in endothelial, smooth muscle, and immune cells seem to be differentially affected by similar atherogenic stimuli. This paper summarizes some recent works on expression of histone-modifying enzymes and DNA methylation directly linked to the presence of risk factors that could lead to the development or prevention of the atherosclerotic process.

  1. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  2. Genetics and epigenetics of aging and longevity.

    Science.gov (United States)

    Moskalev, Alexey A; Aliper, Alexander M; Smit-McBride, Zeljka; Buzdin, Anton; Zhavoronkov, Alex

    2014-01-01

    Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.

  3. The Stability of the Induced Epigenetic Programs

    Directory of Open Access Journals (Sweden)

    Maria J. Barrero

    2012-01-01

    Full Text Available For many years scientists have been attracted to the possibility of changing cell identity. In the last decades seminal discoveries have shown that it is possible to reprogram somatic cells into pluripotent cells and even to transdifferentiate one cell type into another. In view of the potential applications that generating specific cell types in the laboratory can offer for cell-based therapies, the next important questions relate to the quality of the induced cell types. Importantly, epigenetic aberrations in reprogrammed cells have been correlated with defects in differentiation. Therefore, a look at the epigenome and understanding how different regulators can shape it appear fundamental to anticipate potential therapeutic pitfalls. This paper covers these epigenetic aspects in stem cells, differentiation, and reprogramming and discusses their importance for the safety of in vitro engineered cell types.

  4. Time scales in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Masaki Sasai

    Full Text Available A remarkable feature of the self-renewing population of embryonic stem cells (ESCs is their phenotypic heterogeneity: Nanog and other marker proteins of ESCs show large cell-to-cell variation in their expression level, which should significantly influence the differentiation process of individual cells. The molecular mechanism and biological implication of this heterogeneity, however, still remain elusive. We address this problem by constructing a model of the core gene-network of mouse ESCs. The model takes account of processes of binding/unbinding of transcription factors, formation/dissolution of transcription apparatus, and modification of histone code at each locus of genes in the network. These processes are hierarchically interrelated to each other forming the dynamical feedback loops. By simulating stochastic dynamics of this model, we show that the phenotypic heterogeneity of ESCs can be explained when the chromatin at the Nanog locus undergoes the large scale reorganization in formation/dissolution of transcription apparatus, which should have the timescale similar to the cell cycle period. With this slow transcriptional switching of Nanog, the simulated ESCs fluctuate among multiple transient states, which can trigger the differentiation into the lineage-specific cell states. From the simulated transitions among cell states, the epigenetic landscape underlying transitions is calculated. The slow Nanog switching gives rise to the wide basin of ESC states in the landscape. The bimodal Nanog distribution arising from the kinetic flow running through this ESC basin prevents transdifferentiation and promotes the definite decision of the cell fate. These results show that the distribution of timescales of the regulatory processes is decisively important to characterize the fluctuation of cells and their differentiation process. The analyses through the epigenetic landscape and the kinetic flow on the landscape should provide a guideline to

  5. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration.

    Science.gov (United States)

    Curreli, Sabrina; Wong, Bin Sheng; Latinovic, Olga; Konstantopoulos, Konstantinos; Stamatos, Nicholas M

    2016-12-01

    Class 3 semaphorins (Semas) are soluble proteins that are well recognized for their role in guiding axonal migration during neuronal development. In the immune system, Sema3A has been shown to influence murine dendritic cell (DC) migration by signaling through a neuropilin (NRP)-1/plexin-A1 coreceptor axis. Potential roles for class 3 Semas in human DCs have yet to be described. We tested the hypothesis that Sema3A, -3C, and -3F, each with a unique NRP-1 and/or NRP-2 binding specificity, influence human DC migration. In this report, we find that although NRP-1 and NRP-2 are expressed in human immature DCs (imDCs), NRP-2 expression increases as cells mature further, whereas expression of NRP-1 declines dramatically. Elevated levels of RNA encoding plexin-A1 and -A3 are present in both imDCs and mature DC (mDCs), supporting the relevance of Sema/NRP/plexin signaling pathways in these cells. Sema3A, -3C, and -3F bind to human DCs, with Sema3F binding predominantly through NRP-2. The binding of these Semas leads to reorganization of actin filaments at the plasma membrane and increased transwell migration in the absence or presence of chemokine CCL19. Microfluidic chamber assays failed to demonstrate consistent changes in speed of Sema3C-treated DCs, suggesting increased cell deformability as a possible explanation for enhanced transwell migration. Although monocytes express RNA encoding Sema3A, -3C, and -3F, only RNA encoding Sema3C increases robustly during DC differentiation. These data suggest that Sema3A, -3C, and -3F, likely with coreceptors NRP-1, NRP-2, and plexin-A1 and/or -A3, promote migration and possibly other activities of human DCs during innate and adaptive immune responses.

  6. Noncoding Elements: Evolution and Epigenetic Regulation

    KAUST Repository

    Seridi, Loqmane

    2016-03-09

    When the human genome project was completed, it revealed a surprising result. 98% of the genome did not code for protein of which more than 50% are repeats— later known as ”Junk DNA”. However, comparative genomics unveiled that many noncoding elements are evolutionarily constrained; thus luckily to have a role in genome stability and regulation. Though, their exact functions remained largely unknown. Several large international consortia such as the Functional Annotation of Mammalian Genomes (FANTOM) and the Encyclopedia of DNA Elements (ENCODE) were set to understand the structure and the regulation of the genome. Specifically, these endeavors aim to measure and reveal the transcribed components and functional elements of the genome. One of the most the striking findings of these efforts is that most of the genome is transcribed, including non-conserved noncoding elements and repeat elements. Specifically, we investigated the evolution and epigenetic properties of noncoding elements. 1. We compared genomes of evolutionarily distant species and showed the ubiquity of constrained noncoding elements in metazoa. 2. By integrating multi-omic data (such as transcriptome, nucleosome profiling, histone modifications), I conducted a comprehensive analysis of epigenetic properties (chromatin states) of conserved noncoding elements in insects. We showed that those elements have distinct and protective sequence features, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. 3. I focused on the relationship between enhancers and repetitive elements. Using Cap Analysis of Gene Expression (CAGE) and RNASeq, I compiled a full catalog of active enhancers (a class of noncoding elements) during myogenesis of human primary cells of healthy donors and donors affected by Duchenne muscular dystrophy (DMD). Comparing the two time-courses, a significant change in the epigenetic

  7. Accelerated epigenetic aging in Down syndrome

    OpenAIRE

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-01-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P ...

  8. Genetics and epigenetics of aging and longevity

    OpenAIRE

    Moskalev, Alexey A; Aliper, Alexander M; Smit-McBride, Zeljka; Buzdin, Anton; Zhavoronkov, Alex

    2014-01-01

    Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect ...

  9. Epigenetic regulation in Autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Sraboni Chaudhury

    2016-12-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by an impaired social communication skill and often results in repetitive, stereotyped behavior which is observed in children during the first few years of life. Other characteristic of this disorder includes language disabilities, difficulties in sensory integration, lack of reciprocal interactions and in some cases, cognitive delays. One percentage of the general population is affected by ASD and is four times more common in boys than girls. There are hundreds of genes, which has been identified to be associated with ASD etiology. However it remains difficult to comprehend our understanding in defining the genetic architecture necessary for complete exposition of its pathophysiology. Seeing the complexity of the disease, it is important to adopt a multidisciplinary approach which should not only focus on the “genetics” of autism but also on epigenetics, transcriptomics, immune system disruption and environmental factors that could all impact the pathogenesis of the disease. As environmental factors also play a key role in regulating the trigger of ASD, the role of chromatin remodeling and DNA methylation has started to emerge. Such epigenetic modifications directly link molecular regulatory pathways and environmental factors, which might be able to explain some aspects of complex disorders like ASD. The present review will focus on the role of epigenetic regulation in defining the underlying cause for ASD

  10. Epigenetics and triplet repeat neurological diseases

    Directory of Open Access Journals (Sweden)

    Sathiji eNageshwaran

    2015-12-01

    Full Text Available The term ‘junk DNA’ has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterchromatinised resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide and tetranucleotide repeats. The association between repetitive regions and disease was emphasised following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease and fragile X syndrome of mental retardation (FRAXA in 1991. In this review we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.

  11. Developmental epigenetics of the murine secondary palate.

    Science.gov (United States)

    Seelan, Ratnam S; Mukhopadhyay, Partha; Pisano, M Michele; Greene, Robert M

    2012-01-01

    Orofacial clefts occur with a frequency of 1 to 2 per 1000 live births. Cleft palate, which accounts for 30% of orofacial clefts, is caused by the failure of the secondary palatal processes--medially directed, oral projections of the paired embryonic maxillary processes--to fuse. Both gene mutations and environmental effects contribute to the complex etiology of this disorder. Although much progress has been made in identifying genes whose mutations are associated with cleft palate, little is known about the mechanisms by which the environment adversely influences gene expression during secondary palate development. An increasing body of evidence, however, implicates epigenetic processes as playing a role in adversely influencing orofacial development. Epigenetics refers to inherited changes in phenotype or gene expression caused by processes other than changes in the underlying DNA sequence. Such processes include, but are not limited to, DNA methylation, microRNA effects, and histone modifications that alter chromatin conformation. In this review, we describe our current understanding of the possible role epigenetics may play during development of the secondary palate. Specifically, we present the salient features of the embryonic palatal methylome and profile the expression of numerous microRNAs that regulate protein-encoding genes crucial to normal orofacial ontogeny.

  12. Hormones as epigenetic signals in developmental programming.

    Science.gov (United States)

    Fowden, Abigail L; Forhead, Alison J

    2009-06-01

    In mammals, including man, epidemiological and experimental studies have shown that a range of environmental factors acting during critical periods of early development can alter adult phenotype. Hormones have an important role in these epigenetic modifications and can signal the type, severity and duration of the environmental cue to the developing feto-placental tissues. They affect development of these tissues both directly and indirectly by changes in placental phenotype. They act to alter gene expression, hence the protein abundance in a wide range of different tissues, which has functional consequences for many physiological systems both before and after birth. By producing an epigenome specific to the prevailing condition in utero, hormones act as epigenetic signals in developmental programming, with important implications for adult health and disease. This review examines the role of hormones as epigenetic signals by considering their responses to environmental cues, their effects on phenotypical development and the molecular mechanisms by which they programme feto-placental development, with particular emphasis on the glucocorticoids.

  13. Epigenetics and cardiovascular risk in childhood.

    Science.gov (United States)

    Martino, Francesco; Magenta, Alessandra; Pannarale, Giuseppe; Martino, Eliana; Zanoni, Cristina; Perla, Francesco M; Puddu, Paolo E; Barillà, Francesco

    2016-08-01

    Cardiovascular disease (CVD) can arise at the early stages of development and growth. Genetic and environmental factors may interact resulting in epigenetic modifications with abnormal phenotypic expression of genetic information without any change in the nucleotide sequence of DNA. Maternal dietary imbalance, inadequate to meet the nutritional needs of the fetus can lead to intrauterine growth retardation, decreased gestational age, low birth weight, excessive post-natal growth and metabolic alterations, with subsequent appearance of CVD risk factors. Fetal exposure to high cholesterol, diabetes and maternal obesity is associated with increased risk and progression of atherosclerosis. Maternal smoking during pregnancy and exposure to various environmental pollutants induce epigenetic alterations of gene expression relevant to the onset or progression of CVD. In children with hypercholesterolemia and/or obesity, oxidative stress activates platelets and monocytes, which release proinflammatory and proatherogenic substances, inducing endothelial dysfunction, decreased Doppler flow-mediated dilation and increased carotid intima-media thickness. Primary prevention of atherosclerosis should be implemented early. It is necessary to identify, through screening, high-risk apparently healthy children and take care of them enforcing healthy lifestyle (mainly consisting of Mediterranean diet and physical activity), prescribing nutraceuticals and eventual medications, if required by a high-risk profile. The key issue is the restoration of endothelial function in the reversible stage of atherosclerosis. Epigenetics may provide new markers for an early identification of children at risk and thereby develop innovative therapies and specific nutritional interventions in critical times.

  14. Shifting behaviour: epigenetic reprogramming in eusocial insects.

    Science.gov (United States)

    Patalano, Solenn; Hore, Timothy A; Reik, Wolf; Sumner, Seirian

    2012-06-01

    Epigenetic modifications are ancient and widely utilised mechanisms that have been recruited across fungi, plants and animals for diverse but fundamental biological functions, such as cell differentiation. Recently, a functional DNA methylation system was identified in the honeybee, where it appears to underlie queen and worker caste differentiation. This discovery, along with other insights into the epigenetics of social insects, allows provocative analogies to be drawn between insect caste differentiation and cellular differentiation, particularly in mammals. Developing larvae in social insect colonies are totipotent: they retain the ability to specialise as queens or workers, in a similar way to the totipotent cells of early embryos before they differentiate into specific cell lineages. Further, both differentiating cells and insect castes lose phenotypic plasticity by committing to their lineage, losing the ability to be readily reprogrammed. Hence, a comparison of the epigenetic mechanisms underlying lineage differentiation (and reprogramming) between cells and social insects is worthwhile. Here we develop a conceptual model of how loss and regain of phenotypic plasticity might be conserved for individual specialisation in both cells and societies. This framework forges a novel link between two fields of biological research, providing predictions for a unified approach to understanding the molecular mechanisms underlying biological complexity.

  15. Epigenetic mechanisms in cardiac development and disease

    Institute of Scientific and Technical Information of China (English)

    Marcus Vallaster; Caroline Dacwag Vallaster; Sean M. Wu

    2012-01-01

    During mammalian development,cardiac specification and ultimately lineage commitment to a specific cardiac cell type is accomplished by the action of specific transcription factors (TFs) and their meticulous control on an epigenetic level.In this review,we detail how cardiacspecific TFs function in concert with nucleosome remodeling and histone-modifying enzymes to regulate a diverse network of genes required for processes such as cell growth and proliferation,or epithelial to mesenchymal transition (EMT),for instance.We provide examples of how several cardiac TFs,such as Nkx2.5,WHSC1,Tbx5,and Tbx1,which are associated with developmental and congenital heart defects,are required for the recruitment of histone modifiers,such as Jarid2,p300,and Ash21,and components of ATP-dependent remodeling enzymes like Brg1,Baf60c,and Baf180.Binding of these TFs to their respective sites at cardiac genes coincides with a distinct pattern of histone marks,indicating that the precise regulation of cardiac gene networks is orchestrated by interactions between TFs and epigenetic modifiers.Furthermore,we speculate that an epigenetic signature,comprised of TF occupancy,histone modifications,and overall chromatin organization,is an underlying mechanism that governs cardiac morphogenesis and disease.

  16. [Genetic and epigenetic mechanisms in obesity].

    Science.gov (United States)

    Hinney, A; Herrfurth, N; Schonnop, L; Volckmar, A-L

    2015-02-01

    Obesity is a relevant medical problem. Around 60 % of German adults are overweight, 20 % are obese. The hereditary contribution to the variance of body weight is high. Nevertheless, molecular genetic studies have as yet explained only a small part of the inter-individual variability in the body mass index (BMI). Monogenic forms of obesity, in which loss of a single gene product leads to extreme obesity, are very infrequent. Variance of body weight is commonly explained by a complex interplay of many genetic variants (polygenic obesity). Each variant contributes only a small amount to the body weight. Currently, the largest published analysis of individuals of European origin identified 32 genetic variations (single nucleotide polymorphisms, SNPs) associated with BMI (obesity). Overall, these polygenic obesity variants only explain about 5 % of the variance of the BMI. In addition to the DNA variants epigenetic factors seem to also play a role in body weight regulation. These epigenetic marks can change in the course of life. They might provide an interface between genetic and environmental influences. It is conceivable that in future it will be possible to use epigenetic and genetic markers to detect a predisposition for obesity and to improve prevention and therapy.

  17. Epigenetic targets in the diagnosis and treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Murugesan Manoharan

    2007-02-01

    Full Text Available Prostate cancer (PC is one of leading cause of cancer related deaths in men. Various aspects of cancer epigenetics are rapidly evolving and the role of 2 major epigenetic changes including DNA methylation and histone modifications in prostate cancer is being studied widely. The epigenetic changes are early event in the cancer development and are reversible. Novel epigenetic markers are being studied, which have the potential as sensitive diagnostic and prognostic marker. Variety of drugs targeting epigenetic changes are being studied, which can be effective individually or in combination with other conventional drugs in PC treatment. In this review, we discuss epigenetic changes associated with PC and their potential diagnostic and therapeutic applications including future areas of research.

  18. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Shatadru Ghosh Roy

    2016-11-01

    Full Text Available Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV, the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.

  19. Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Eric J Nestler

    2016-03-01

    Full Text Available There has been increasing interest in the possibility that behavioral experience--in particular, exposure to stress--can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility--and the experimental evidence for and against the existence of such mechanisms--and outlines steps required for future investigations.

  20. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  1. Epigenetic diet: impact on the epigenome and cancer.

    Science.gov (United States)

    Hardy, Tabitha M; Tollefsbol, Trygve O

    2011-08-01

    A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an 'epigenetic diet'. Bioactive nutritional components of an epigenetic diet may be incorporated into one's regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies.

  2. Proteomics in epigenetics: new perspectives for cancer research.

    Science.gov (United States)

    Bartke, Till; Borgel, Julie; DiMaggio, Peter A

    2013-05-01

    The involvement of epigenetic processes in the origin and progression of cancer is now widely appreciated. Consequently, targeting the enzymatic machinery that controls the epigenetic regulation of the genome has emerged as an attractive new strategy for therapeutic intervention. The development of epigenetic drugs requires a detailed knowledge of the processes that govern chromatin regulation. Over the recent years, mass spectrometry (MS) has become an indispensable tool in epigenetics research. In this review, we will give an overview of the applications of MS-based proteomics in studying various aspects of chromatin biology. We will focus on the use of MS in the discovery and mapping of histone modifications and how novel proteomic approaches are being utilized to identify and study chromatin-associated proteins and multi-subunit complexes. Finally, we will discuss the application of proteomic methods in the diagnosis and prognosis of cancer based on epigenetic biomarkers and comment on their future impact on cancer epigenetics.

  3. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis.

    Science.gov (United States)

    Kim, Hyeonkyeong; Kang, Donghyun; Cho, Yongsik; Kim, Jin-Hong

    2015-08-01

    Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.

  4. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.

  5. Epigenetic therapy in gastrointestinal cancer: the right combination

    Science.gov (United States)

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-01-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  6. Epileptogenesis: Can the Science of Epigenetics Give Us Answers?

    OpenAIRE

    2012-01-01

    Epigenetic mechanisms are regulatory processes that control gene expression changes involved in multiple aspects of neuronal function, including central nervous system development, synaptic plasticity, and memory. Recent evidence indicates that dysregulation of epigenetic mechanisms occurs in several human epilepsy syndromes. Despite this discovery of a potential role for epigenetic mechanisms in epilepsy, few studies have fully explored their contribution to the process of epilepsy developme...

  7. Epigenetics and human disease: translating basic biology into clinical applications

    OpenAIRE

    Rodenhiser, David; Mann, Mellissa

    2006-01-01

    Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Research has shown that epigenetic mechanisms provide an "extra" layer of transcriptional control that regulates how genes are expressed. These mechanisms are critical components in the normal development and growth of cells. Epigenetic abnormalities have been found to be causative factors in cancer, genetic disorders and pediatric syndromes as well as contributing factors in a...

  8. Identifying Epigenetic Modulators of Resistance to ERK Signaling Inhibitors

    Science.gov (United States)

    2015-08-01

    AWARD NUMBER: WSlXWH-14-1-0230 TITLE: Identifying Epigenetic Modulators of Resistance to ERK Signaling Inhibitors PRINCIPAL INVESTIGATOR: Emily...5a. CONTRACT NUMBER Identifying Epigenetic Modulators of Resistance to ERK Signaling Inhibitors 5b. GRANT NUMBER W8 1XWH- 1 4 - 1 - 0230 5c...response to targeted therapies in cancer. However, a global and unbiased approach to decipher the epigenetic mechanisms underlying melanoma drug

  9. The role of epigenetics in age-related macular degeneration

    OpenAIRE

    Gemenetzi, M; Lotery, A.J.

    2014-01-01

    It is becoming increasingly evident that epigenetic mechanisms influence gene expression and can explain how interactions between genetics and the environment result in particular phenotypes during development. The extent to which this epigenetic effect contributes to phenotype heritability in age-related macular degeneration (AMD) is currently ill defined. However, emerging evidence suggests that epigenetic changes are relevant to AMD and as such provide an exciting new avenue of research fo...

  10. Mapping the new molecular landscape:Social dimensions of epigenetics

    OpenAIRE

    Pickersgill, M.; Niewöhner, J.; Müller, R.; Martin, P.; Cunningham-Burley, S.

    2013-01-01

    Epigenetics is the study of changes in gene expression caused by mechanisms other than changes in the DNA itself. The field is rapidly growing and being widely promoted, attracting attention in diverse arenas. These include those of the social sciences, where some researchers have been encouraged by the resonance between imaginaries of development within epigenetics and social theory. Yet, sustained attention from science and technology studies (STS) scholars to epigenetics and the praxis it ...

  11. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis

    OpenAIRE

    Kim, Hyeonkyeong; Kang, Donghyun; Cho, Yongsik; Kim, Jin-Hong

    2015-01-01

    Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenet...

  12. Epigenetic regulation in allergic diseases and related studies

    OpenAIRE

    Kuo, Chang-Hung; Hsieh, Chong-Chao; Lee, Min-Sheng; Chang, Kai-Ting; Kuo, Hsuan-Fu; Hung, Chih-Hsing

    2014-01-01

    Asthma, a chronic inflammatory disorder of the airway, has features of both heritability as well as environmental influences which can be introduced in utero exposures and modified through aging, and the features may attribute to epigenetic regulation. Epigenetic regulation explains the association between early prenatal maternal smoking and later asthma-related outcomes. Epigenetic marks (DNA methylation, modifications of histone tails or noncoding RNAs) work with other components of the cel...

  13. Environmental triggers and epigenetic deregulation in autoimmune disease.

    Science.gov (United States)

    Javierre, Biola M; Hernando, Henar; Ballestar, Esteban

    2011-12-01

    The study of epigenetic mechanisms in the pathogenesis of autoimmune diseases is receiving unprecedented attention from clinicians and researchers in the field. Autoimmune disorders comprise a wide range of genetically complex diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Together they affect a significant proportion of the population and have a great economic impact on public health systems. Epigenetic mechanisms control gene expression and are influenced by external stimuli, linking environment and gene function. A variety of environmental agents, such as viral infection, hormones, certain drugs, and pollutants, have been found to influence the development of autoimmune diseases. On the other hand, there is considerable evidence of epigenetic changes, particularly DNA methylation alterations, in diseases like systemic lupus erythematosus, rheumatoid arthritis, or multiple sclerosis. However, the gap in our understanding between the specific effects of external agents and the influence on epigenetic profiles has not yet been filled. Here we review a number of studies describing epigenetic alterations in autoimmune diseases and a range of environmental factors that influence the development of autoimmune diseases. We also discuss potential mechanisms linking environment and epigenetics, consider the prospects for future epigenetic studies addressing the relationship between environment and epigenetics, and comment on the use of drugs with an epigenetic-reversing effect in the clinical management of these diseases.

  14. Epigenetics and Child Psychiatry: Ethical and Legal Issues.

    Science.gov (United States)

    Thomas, Christopher R

    2015-10-01

    Epigenetics has the potential to revolutionize diagnosis and treatment in psychiatry, especially child psychiatry, as it may offer the opportunity for early detection and prevention, as well as development of new treatments. As with the previous introduction of genetic research in psychiatry, there is also the problem of unrealistic expectations and new legal and ethical problems. This article reviews the potential contributions and problems of epigenetic research in child psychiatry. Previous legal and ethical issues in genetic research serve as a guide to those in epigenetic research. Recommendations for safeguards and guidelines on the use of epigenetics with children and adolescents are outlined based on the identified issues.

  15. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  16. Epigenetic therapies - a new direction in clinical medicine.

    Science.gov (United States)

    Stein, R A

    2014-07-01

    A major biomedical advance from recent years was the finding that gene expression and phenotypic traits may be shaped by potentially reversible and heritable modifications that occur without altering the sequence of the nucleotides, and became known as epigenetic changes. The term 'epigenetics' dates back to the 1940s, when it was first used in context of cellular differentiation decisions that are made during development. Since then, our understanding of epigenetic modifications that govern development and disease expanded considerably. The contribution of epigenetic changes to shaping phenotypes brings at least two major clinically relevant benefits. One of these, stemming from the reversibility of epigenetic changes, involves the possibility to therapeutically revert epigenetic marks to re-establish prior gene expression patterns. The strength and the potential of this strategy are illustrated by the first four epigenetic drugs that were approved in recent years and by the additional candidates that are at various stages in preclinical studies and clinical trials. The second particularity is the finding that epigenetic changes precede the appearance of histopathological modifications. This has the potential to facilitate the emergence of epigenetic biomarkers, some of which already entered the clinical arena, catalysing a major shift in prophylactic and therapeutic strategies, and promising to fill a decades-old gap in preventive medicine.

  17. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  18. Developing epigenetic diagnostics and therapeutics for brain disorders.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-12-01

    Perturbations in epigenetic mechanisms have emerged as cardinal features in the molecular pathology of major classes of brain disorders. We therefore highlight evidence which suggests that specific epigenetic signatures measurable in central - and possibly even in peripheral tissues - have significant value as translatable biomarkers for screening, early diagnosis, and prognostication; developing molecularly targeted medicines; and monitoring disease progression and treatment responses. We also draw attention to existing and novel therapeutic approaches directed at epigenetic factors and mechanisms, including strategies for modulating enzymes that write and erase DNA methylation and histone/chromatin marks; protein-protein interactions responsible for reading epigenetic marks; and non-coding RNA pathways.

  19. Is epigenetics an important link between early life events and adult disease?

    Science.gov (United States)

    Epigenetic mechanisms provide one potential explanation for how environmental influences in early life cause long-term changes in chronic disease susceptibility. Whereas epigenetic dysregulation is increasingly implicated in various rare developmental syndromes and cancer, the role of epigenetics in...

  20. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum

    Science.gov (United States)

    Lu, Ake T.; Hannon, Eilis; Levine, Morgan E.; Hao, Ke; Crimmins, Eileen M.; Lunnon, Katie; Kozlenkov, Alexey; Mill, Jonathan; Dracheva, Stella; Horvath, Steve

    2016-02-01

    DNA methylation (DNAm) levels lend themselves for defining an epigenetic biomarker of aging known as the `epigenetic clock'. Our genome-wide association study (GWAS) of cerebellar epigenetic age acceleration identifies five significant (Pepigenetic tissue age as endophenotype in GWAS.

  1. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.

  2. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis.

    Science.gov (United States)

    Harris, N G; Verley, D R; Gutman, B A; Thompson, P M; Yeh, H J; Brown, J A

    2016-03-01

    While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity

  3. Burnout in health-care professionals during reorganizations and downsizing. A cohort study in nurses

    Directory of Open Access Journals (Sweden)

    Hall-Lord Marie-Louise

    2010-06-01

    Full Text Available Abstract Background Burnout is a psychological reaction triggered by interaction between personal characteristics and stress factors. Reorganizations and downsizing with increased workload imply stress for health-care professionals. This is a study of burnout in nurses during a period with two comprehensive reorganizations. Methods In this quasi-experimental retrospective cohort study, burnout was assessed in nurses with long work experience in three surveys during a 30 months' period with two comprehensive reorganizations and downsizing of a hospital unit with mostly seriously ill patients with cancer. Burnout was measured with Bergen Burnout Indicator (BBI at each survey, and "Sense of Coherence" (SOC with Antonovsky's questionnaire at the last survey. Results One man and 45 women aged 30 to 65 years were invited to the surveys. There was a significant increase in burnout during the study period, the mean increase in BBI-score was 12.5 pr year (p Conclusions There was a significant development of burnout in a group of nurses during a period with two reorganizations and downsizing. Burnout was associated with low SOC. Working with seriously ill patients with cancer has probably made the nurses exceptionally vulnerable to the stress and workload related to the reorganizations.

  4. Extrastriate visual cortex reorganizes despite sequential bilateral occipital stroke: implications for vision recovery.

    Science.gov (United States)

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2015-01-01

    The extent of visual cortex reorganization following injury remains controversial. We report serial functional magnetic resonance imaging (fMRI) data from a patient with sequential posterior circulation strokes occurring 3 weeks apart, compared with data from an age-matched healthy control subject. At 8 days following a left occipital stroke, contralesional visual cortical activation was within expected striate and extrastriate sites, comparable to that seen in controls. Despite a further infarct in the right (previously unaffected hemisphere), there was evolution of visual cortical reorganization progressed. In this patient, there was evidence of utilization of peri-infarct sites (right-sided) and recruitment of new activation sites in extrastriate cortices, including in the lateral middle and inferior temporal lobes. The changes over time corresponded topographically with the patient's lesion site and its connections. Reorganization of the surviving visual cortex was demonstrated 8 days after the first stroke. Ongoing reorganization in extant cortex was demonstrated at the 6 month scan. We present a summary of mechanisms of recovery following stroke relevant to the visual system. We conclude that mature primary visual cortex displays considerable plasticity and capacity to reorganize, associated with evolution of visual field deficits. We discuss these findings and their implications for therapy within the context of current concepts in visual compensatory and restorative therapies.

  5. Reorganization energy of the CuA center in purple azurin

    DEFF Research Database (Denmark)

    Farver, Ole; Hwang, Hee Jung; Pecht, Israel

    2007-01-01

    Mixed valence (MV) coordination compounds play important roles in redox reactions in chemistry and biology. Details of the contribution of a mixed valence state to protein electron transfer (ET) reactivity such as reorganization energy, however, have not been experimentally defined. Herein we...... report measurements of reorganization energies of a binuclear CuA center engineered into Pseudomonas aeruginosa azurin that exhibits a reversible transition between a totally delocalized MV state at pH 8.0 and a trapped valence (TV) state at pH 4.0. The reorganization energy of a His120Ala variant of Cu......A azurin that displays a TV state at both the above pH values has also been determined. We found that the MV-to-TV state transition increases the reorganization energy by 0.18 eV, providing evidence that the MV state of the CuA center has lower reorganization energy than its TV counterpart. We have also...

  6. A modified two-sphere model for solvent reorganization energy in electron transfer.

    Science.gov (United States)

    Wu, Han-Yu; Ren, Hai-Sheng; Zhu, Quan; Li, Xiang-Yuan

    2012-04-28

    In this work, the solvent reorganization energy is formulated within the framework of classical thermodynamics, by adding some external charges to construct a constrained equilibrium state. The derivation clearly shows that the reorganization energy is exactly the polarization cost for the inertial part of the polarization. We perform our derivation just within the framework of the first law of thermodynamics, and the final form of the reorganization energy is completely the same as that we gave in our recent work by defining a nonequilibrium solvation free energy. With the two-sphere model approximation, our solvent reorganization energy is derived as λ(0) = Δq(2)/2[1/r(D) + 1/r(A) - 2/d][(ε(-1)(op) - ε(-1)(s))/(1 - ε(-1)(s))]. This amends Marcus' model by a factor of (ε(-1)(op) - ε(-1)(s))/(1 - ε(-1)(s)), which is coupled with the solvent polarity. Making use of the modified expression of solvent reorganization energy, two recently reported electron transfer processes are investigated in representative solvents. The results show that our formula can well reproduce the experimental observations.

  7. Reorganization of visual processing in macular degeneration is not specific to the "preferred retinal locus".

    Science.gov (United States)

    Dilks, Daniel D; Baker, Chris I; Peli, Eli; Kanwisher, Nancy

    2009-03-04

    Recent work has shown that foveal cortex, deprived of its normal bottom-up input as a result of macular degeneration (MD), begins responding to stimuli presented to a peripheral retinal location. However, these studies have only presented stimuli to the "preferred retinal location," or PRL, a spared part of the peripheral retina used by individuals with MD for fixating, face recognition, reading, and other visual tasks. Thus, previous research has not yet answered a question critical for understanding the mechanisms underlying this reorganization: Does formerly foveal cortex respond only to stimuli presented at the PRL, or does it also respond to other peripheral locations of similar eccentricity? If foveal cortex responds to stimuli at PRL because it is the long-term habitual use of this region as a functional fovea that drives the formerly foveal cortex to respond to stimuli presented at the PRL (the "use-dependent reorganization" hypothesis), then foveal cortex will not respond to stimuli presented at other locations. Alternatively, it may be that foveal cortex responds to any peripheral retinal input, independent of whether input at that retinal location has been chronically attended for months or years (the "use-independent reorganization" hypothesis). Using fMRI, we found clear activation of formerly foveal cortex to stimuli presented at either the PRL or an isoeccentric non-PRL location in two individuals with MD, supporting the use-independent reorganization hypothesis. This finding suggests that reorganization is driven by passive, not use-dependent mechanisms.

  8. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  9. Making memories of stressful events: a journey along epigenetic, gene transcription and signaling pathways

    Directory of Open Access Journals (Sweden)

    Johannes M.H.M. eReul

    2014-01-01

    Full Text Available Strong psychologically stressful events are known to have a long-lasting impact on behavior. The consolidation of such, largely adaptive, behavioral responses to stressful events involves changes in gene expression in limbic brain regions such as the hippocampus and amygdala. The underlying molecular mechanisms however were until recently unresolved. More than a decade ago we started to investigate the role of these hormones in signaling and epigenetic mechanisms participating in the effects of stress on gene transcription in hippocampal neurons. We discovered a novel, rapid non-genomic mechanism in which glucocorticoids via glucocorticoid receptors (GRs facilitate signaling of the ERK MAPK signaling pathway to the downstream nuclear kinases MSK1 and Elk-1 in dentate gyrus (DG granule neurons. Activation of this signaling pathway results in serine10 (S10 phosphorylation and lysine14 (K14 acetylation at histone H3 (H3S10p-K14ac, leading to the induction of the immediate early genes c-Fos and Egr-1. In addition, we found a role of the DNA methylation status of gene promoters. A series of studies showed that these molecular mechanisms play a critical role in the long-lasting consolidation of behavioral responses in the forced swim test and Morris water maze. Furthermore, an important role of GABA was found in controlling the epigenetic and gene transcriptional responses to psychological stress. Thus, psychologically stressful events evoke a long-term impact on behavior through changes in hippocampal function brought about by distinct glutamatergic and glucocorticoid-driven changes in epigenetic regulation of gene transcription which are modulated by (local GABAergic interneurons and limbic afferent inputs. These epigenetic processes may play an important role in the etiology of stress-related mental disorders such as major depressive and anxiety disorders like PTSD.

  10. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available BACKGROUND: Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha. METHODOLOGY/PRINCIPAL FINDINGS: To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function. CONCLUSION/SIGNIFICANCE: Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  11. Epigenetic control of Ccr7 expression in distinct lineages of lung dendritic cells.

    Science.gov (United States)

    Moran, Timothy P; Nakano, Hideki; Kondilis-Mangum, Hrisavgi D; Wade, Paul A; Cook, Donald N

    2014-11-15

    Adaptive immune responses to inhaled allergens are induced following CCR7-dependent migration of precursor of dendritic cell (pre-DC)-derived conventional DCs (cDCs) from the lung to regional lymph nodes. However, monocyte-derived (moDCs) in the lung express very low levels of Ccr7 and consequently do not migrate efficiently to LN. To investigate the molecular mechanisms that underlie this dichotomy, we studied epigenetic modifications at the Ccr7 locus of murine cDCs and moDCs. When expanded from bone marrow precursors, moDCs were enriched at the Ccr7 locus for trimethylation of histone 3 lysine 27 (H3K27me3), a modification associated with transcriptional repression. Similarly, moDCs prepared from the lung also displayed increased levels of H3K27me3 at the Ccr7 promoter compared with migratory cDCs from that organ. Analysis of DC progenitors revealed that epigenetic modification of Ccr7 does not occur early during DC lineage commitment because monocytes and pre-DCs both had low levels of Ccr7-associated H3K27me3. Rather, Ccr7 is gradually silenced during the differentiation of monocytes to moDCs. Thus, epigenetic modifications of the Ccr7 locus control the migration and therefore the function of DCs in vivo. These findings suggest that manipulating epigenetic mechanisms might be a novel approach to control DC migration and thereby improve DC-based vaccines and treat inflammatory diseases of the lung.

  12. What Role Do Epigenetics and Developmental Epigenetics Play in Health and Disease?

    Science.gov (United States)

    ... switch on or off. The buildup of epigenetic changes is part of normal aging. However, this buildup may also increase the likelihood that certain genes will be changed in a way that leads a person to develop ... of different types of changes in many different genes. Some of these changes ...

  13. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M.; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention.

  14. Epigenetic Effects of Diet on Fruit Fly Lifespan: An Investigation to Teach Epigenetics to Biology Students

    Science.gov (United States)

    Billingsley, James; Carlson, Kimberly A.

    2010-01-01

    Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.

  15. Epigenetics and its Implications for Plant Biology. 1. The Epigenetic Network in Plants

    OpenAIRE

    GRANT-DOWNTON, R. T.; Dickinson, H. G.

    2005-01-01

    • Background Epigenetics has rapidly evolved in the past decade to form an exciting new branch of biology. In modern terms, ‘epigenetics’ studies molecular pathways regulating how the genes are packaged in the chromosome and expressed, with effects that are heritable between cell divisions and even across generations.

  16. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell.

    Science.gov (United States)

    Xiao, Tiejun; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  17. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network

    NARCIS (Netherlands)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W.; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, P.; van Strien, Miriam E; Hol, Elly M

    2014-01-01

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostati

  18. Transcriptional Selectivity of Epigenetic Therapy in Cancer.

    Science.gov (United States)

    Sato, Takahiro; Cesaroni, Matteo; Chung, Woonbok; Panjarian, Shoghag; Tran, Anthony; Madzo, Jozef; Okamoto, Yasuyuki; Zhang, Hanghang; Chen, Xiaowei; Jelinek, Jaroslav; Issa, Jean-Pierre J

    2017-01-15

    A central challenge in the development of epigenetic cancer therapy is the ability to direct selectivity in modulating gene expression for disease-selective efficacy. To address this issue, we characterized by RNA-seq, DNA methylation, and ChIP-seq analyses the epigenetic response of a set of colon, breast, and leukemia cancer cell lines to small-molecule inhibitors against DNA methyltransferases (DAC), histone deacetylases (Depsi), histone demethylases (KDM1A inhibitor S2101), and histone methylases (EHMT2 inhibitor UNC0638 and EZH2 inhibitor GSK343). We also characterized the effects of DAC as combined with the other compounds. Averaged over the cancer cell models used, we found that DAC affected 8.6% of the transcriptome and that 95.4% of the genes affected were upregulated. DAC preferentially regulated genes that were silenced in cancer and that were methylated at their promoters. In contrast, Depsi affected the expression of 30.4% of the transcriptome but showed little selectivity for gene upregulation or silenced genes. S2101, UNC0638, and GSK343 affected only 2% of the transcriptome, with UNC0638 and GSK343 preferentially targeting genes marked with H3K9me2 or H3K27me3, respectively. When combined with histone methylase inhibitors, the extent of gene upregulation by DAC was extended while still maintaining selectivity for DNA-methylated genes and silenced genes. However, the genes upregulated by combination treatment exhibited limited overlap, indicating the possibility of targeting distinct sets of genes based on different epigenetic therapy combinations. Overall, our results demonstrated that DNA methyltransferase inhibitors preferentially target cancer-relevant genes and can be combined with inhibitors targeting histone methylation for synergistic effects while still maintaining selectivity. Cancer Res; 77(2); 470-81. ©2016 AACR.

  19. A major reorganization of Asian climate by the early Miocene

    Directory of Open Access Journals (Sweden)

    Z. T. Guo

    2008-08-01

    circulations, one from the ocean carrying moisture and another from the inland deserts transporting dust. The formation of the early Miocene paleosols resulted from interactive soil forming and dust deposition processes in these two seasonally alternating monsoonal circulations. The much stronger development of the early Miocene soils compared to those in the Quaternary loess indicates that summer monsoons were either significantly stronger, more persistent through the year, or both.

    These lines of evidence indicate a joint change in circulation and inland aridity by the early Miocene and suggest a dynamic linkage of them. Our recent sensitivity tests with a general circulation model, along with relevant geological data, suggest that the onset of these contrasting wet/dry responses, as well as the change from the "planetary" subtropical aridity pattern to the "inland" aridity pattern, resulted from the combined effects of Tibetan uplift and withdrawal of the Paratethys seaway in central Asia, as suggested by earlier experiments. The spreading of South China Sea also helped to enhance the south-north contrast of humidity. The Miocene loess record provides a vital insight that these tectonic factors had evolved by the early Miocene to a threshold sufficient to cause this major climate reorganization in Asia.

  20. Fetal metabolic programming and epigenetic modifications: a systems biology approach.

    Science.gov (United States)

    Sookoian, Silvia; Gianotti, Tomas Fernández; Burgueño, Adriana L; Pirola, Carlos J

    2013-04-01

    A growing body of evidence supports the notion that epigenetic changes such as DNA methylation and histone modifications, both involving chromatin remodeling, contribute to fetal metabolic programming. We use a combination of gene-protein enrichment analysis resources along with functional annotations and protein interaction networks for an integrative approach to understanding the mechanisms underlying fetal metabolic programming. Systems biology approaches suggested that fetal adaptation to an impaired nutritional environment presumes profound changes in gene expression that involve regulation of tissue-specific patterns of methylated cytosine residues, modulation of the histone acetylation-deacetylation switch, cell differentiation, and stem cell pluripotency. The hypothalamus and the liver seem to be differently involved. In addition, new putative explanations have emerged about the question of whether in utero overnutrition modulates fetal metabolic programming in the same fashion as that of a maternal environment of undernutrition, suggesting that the mechanisms behind these two fetal nutritional imbalances are different. In conclusion, intrauterine growth restriction is most likely to be associated with the induction of persistent changes in tissue structure and functionality. Conversely, a maternal obesogenic environment is most probably associated with metabolic reprogramming of glucose and lipid metabolism, as well as future risk of metabolic syndrome (MS), fatty liver, and insulin (INS) resistance.

  1. Models of life: epigenetics, diversity and cycles

    Science.gov (United States)

    Sneppen, Kim

    2017-04-01

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  2. Accelerated epigenetic aging in Down syndrome.

    Science.gov (United States)

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-06-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10(-14)).

  3. Environmental alterations of epigenetics prior to the birth.

    Science.gov (United States)

    Lo, Chiao-Ling; Zhou, Feng C

    2014-01-01

    The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, noncoding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late-onset neuropsychiatric diseases, or idiosyncratic mental disorders.

  4. Studies into epigenetic variation and its contribution to cardiovascular disease

    NARCIS (Netherlands)

    Talens, Rudolf Pieter

    2015-01-01

    Epigenetic mechanisms regulate cellular gene expression potential without changing the genetic code. Like the genetic sequence, epigenetic marks are faithfully transmitted during mitosis and are generally stable in differentiated cells, but in contrast with the static genome, the epigenome retains t

  5. Cancer development, progression, and therapy: an epigenetic overview.

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-10-21

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell-cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  6. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention.

    Science.gov (United States)

    Thakur, Vijay S; Deb, Gauri; Babcook, Melissa A; Gupta, Sanjay

    2014-01-01

    In recent years, "nutri-epigenetics," which focuses on the influence of dietary agents on epigenetic mechanism(s), has emerged as an exciting novel area in epigenetics research. Targeting of aberrant epigenetic modifications has gained considerable attention in cancer chemoprevention research because, unlike genetic changes, epigenetic alterations are reversible and occur during early carcinogenesis. Aberrant epigenetic mechanisms, such as promoter DNA methylation, histone modifications, and miRNA-mediated post-transcriptional alterations, can silence critical tumor suppressor genes, such as transcription factors, cell cycle regulators, nuclear receptors, signal transducers, and apoptosis-inducing and DNA repair gene products, and ultimately contribute to carcinogenesis. In an effort to identify and develop anticancer agents which cause minimal harm to normal cells while effectively killing cancer cells, a number of naturally occurring phytochemicals in food and medicinal plants have been investigated. This review highlights the potential role of plant-derived phytochemicals in targeting epigenetic alterations that occur during carcinogenesis, by modulating the activity or expression of DNA methyltransferases, histone modifying enzymes, and miRNAs. We present in detail the epigenetic mode of action of various phytochemicals and discuss their potential as safe and clinically useful chemopreventive strategies.

  7. Epigenetics in adipose tissue, obesity, weight loss and diabetes

    Science.gov (United States)

    Given the role that the diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that the environmental factors can cause cell type-dependent epigenetic changes, inc...

  8. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  9. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  10. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  11. Recent advances in the epigenetics and genomics of asthma

    NARCIS (Netherlands)

    Koppelman, Gerard H.; Nawijn, Martijn C.

    2011-01-01

    Purpose of review Epigenetics is the study of heritable changes in gene expression that occur without direct changes in the DNA sequence. Epigenetic mechanisms may explain important observations in asthma, such as the effect of the environment during certain periods in life, transgenerational, and m

  12. Detection of epigenetic changes using ANOVA with spatially varying coefficients.

    Science.gov (United States)

    Guanghua, Xiao; Xinlei, Wang; Quincey, LaPlant; Nestler, Eric J; Xie, Yang

    2013-03-13

    Identification of genome-wide epigenetic changes, the stable changes in gene function without a change in DNA sequence, under various conditions plays an important role in biomedical research. High-throughput epigenetic experiments are useful tools to measure genome-wide epigenetic changes, but the measured intensity levels from these high-resolution genome-wide epigenetic profiling data are often spatially correlated with high noise levels. In addition, it is challenging to detect genome-wide epigenetic changes across multiple conditions, so efficient statistical methodology development is needed for this purpose. In this study, we consider ANOVA models with spatially varying coefficients, combined with a hierarchical Bayesian approach, to explicitly model spatial correlation caused by location-dependent biological effects (i.e., epigenetic changes) and borrow strength among neighboring probes to compare epigenetic changes across multiple conditions. Through simulation studies and applications in drug addiction and depression datasets, we find that our approach compares favorably with competing methods; it is more efficient in estimation and more effective in detecting epigenetic changes. In addition, it can provide biologically meaningful results.

  13. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes12

    Science.gov (United States)

    Martínez, J. Alfredo; Milagro, Fermín I.; Claycombe, Kate J.; Schalinske, Kevin L.

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them. PMID:24425725

  14. Epigenetics and transgenerational inheritance in domesticated farm animals.

    Science.gov (United States)

    Feeney, Amanda; Nilsson, Eric; Skinner, Michael K

    2014-01-01

    Epigenetics provides a molecular mechanism of inheritance that is not solely dependent on DNA sequence and that can account for non-Mendelian inheritance patterns. Epigenetic changes underlie many normal developmental processes, and can lead to disease development as well. While epigenetic effects have been studied in well-characterized rodent models, less research has been done using agriculturally important domestic animal species. This review will present the results of current epigenetic research using farm animal models (cattle, pigs, sheep and chickens). Much of the work has focused on the epigenetic effects that environmental exposures to toxicants, nutrients and infectious agents has on either the exposed animals themselves or on their direct offspring. Only one porcine study examined epigenetic transgenerational effects; namely the effect diet micronutrients fed to male pigs has on liver DNA methylation and muscle mass in grand-offspring (F2 generation). Healthy viable offspring are very important in the farm and husbandry industry and epigenetic differences can be associated with production traits. Therefore further epigenetic research into domestic animal health and how exposure to toxicants or nutritional changes affects future generations is imperative.

  15. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  16. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    Science.gov (United States)

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  17. SETD2 : an epigenetic modifier with tumor suppressor functionality

    NARCIS (Netherlands)

    Li, Jun; Duns, Gerben; Westers, Helga; Sijmons, Rolf; van den Berg, Anke; Kok, Klaas

    2016-01-01

    In the past decade important progress has been made in our understanding of the epigenetic regulatory machinery. It has become clear that genetic aberrations in multiple epigenetic modifier proteins are associated with various types of cancer. Moreover, targeting the epigenome has emerged as a novel

  18. Epigenetics in adipose tissue, obesity, weight loss, and diabetes.

    Science.gov (United States)

    Martínez, J Alfredo; Milagro, Fermín I; Claycombe, Kate J; Schalinske, Kevin L

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.

  19. Heterochromatin Reorganization during Early Mouse Development Requires a Single-Stranded Noncoding Transcript

    Directory of Open Access Journals (Sweden)

    Miguel Casanova

    2013-09-01

    Full Text Available The equalization of pericentric heterochromatin from distinct parental origins following fertilization is essential for genome function and development. The recent implication of noncoding transcripts in this process raises questions regarding the connection between RNA and the nuclear organization of distinct chromatin environments. Our study addresses the interrelationship between replication and transcription of the two parental pericentric heterochromatin (PHC domains and their reorganization during early embryonic development. We demonstrate that the replication of PHC is dispensable for its clustering at the late two-cell stage. In contrast, using parthenogenetic embryos, we show that pericentric transcripts are essential for this reorganization independent of the chromatin marks associated with the PHC domains. Finally, our discovery that only reverse pericentric transcripts are required for both the nuclear reorganization of PHC and development beyond the two-cell stage challenges current views on heterochromatin organization.

  20. Epileptogenesis: can the science of epigenetics give us answers?

    Science.gov (United States)

    Lubin, Farah D

    2012-05-01

    Epigenetic mechanisms are regulatory processes that control gene expression changes involved in multiple aspects of neuronal function, including central nervous system development, synaptic plasticity, and memory. Recent evidence indicates that dysregulation of epigenetic mechanisms occurs in several human epilepsy syndromes. Despite this discovery of a potential role for epigenetic mechanisms in epilepsy, few studies have fully explored their contribution to the process of epilepsy development known as epileptogenesis. The purpose of this article is to discuss recent findings suggesting that the process of epileptogenesis may alter the epigenetic landscape, affecting the gene expression patterns observed in epilepsy. Future studies focused on a better characterization of these aberrant epigenetic mechanisms hold the promise of revealing novel treatment options for the prevention and even the reversal of epilepsy.