WorldWideScience

Sample records for adaptive epigenetic reorganization

  1. Epigenetic Regulation of Adaptive NK Cell Diversification.

    Science.gov (United States)

    Tesi, Bianca; Schlums, Heinrich; Cichocki, Frank; Bryceson, Yenan T

    2016-07-01

    Natural killer (NK) cells were previously considered to represent short-lived, innate lymphocytes. However, mouse models have revealed expansion and persistence of differentiated NK cell subsets in response to cytomegalovirus (CMV) infection, paralleling antigen-specific T cell differentiation. Congruently, analyses of humans have uncovered CMV-associated NK cell subsets characterized by epigenetic diversification processes that lead to altered target cell specificities and functional capacities. Here, focusing on responses to viruses, we review similarities and differences between mouse and human adaptive NK cells, identifying molecular analogies that may be key to transcriptional reprogramming and functional alterations. We discuss possible molecular mechanisms underlying epigenetic diversification and hypothesize that processes driving epigenetic diversification may represent a more widespread mechanism for fine-tuning and optimization of cellular immunity.

  2. Epigenetics and the Adaptive Immune Response

    OpenAIRE

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathoge...

  3. Transgenerational epigenetic inheritance: adaptation through the germline epigenome?

    Science.gov (United States)

    Prokopuk, Lexie; Western, Patrick S; Stringer, Jessica M

    2015-08-01

    Epigenetic modifications direct the way DNA is packaged into the nucleus, making genes more or less accessible to transcriptional machinery and influencing genomic stability. Environmental factors have the potential to alter the epigenome, allowing genes that are silenced to be activated and vice versa. This ultimately influences disease susceptibility and health in an individual. Furthermore, altered chromatin states can be transmitted to subsequent generations, thus epigenetic modifications may provide evolutionary mechanisms that impact on adaptation to changed environments. However, the mechanisms involved in establishing and maintaining these epigenetic modifications during development remain unclear. This review discusses current evidence for transgenerational epigenetic inheritance, confounding issues associated with its study, and the biological relevance of altered epigenetic states for subsequent generations.

  4. Multigenerational Epigenetic Adaptation of the Hepatic Wound-Healing Response

    OpenAIRE

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K.; Mathers, John C; Fox, Christopher R.; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L.; Anstee, Quentin M.; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M.; Mann, Derek A.; Mann, Jelena

    2012-01-01

    We asked if ancestral liver damage leads to heritable reprogramming of hepatic wound-healing. We discovered that male rats with a history of liver damage transmit epigenetic suppressive adaptation of the fibrogenic component of wound-healing through male F1 and F2 generations. Underlying this adaptation was reduced generation of liver myofibroblasts, increased hepatic expression of antifibrogenic PPAR-γ and decreased expression of profibrogenic TGF-β1. Remodelling of DNA methylation and histo...

  5. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu;

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  6. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    Science.gov (United States)

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis. PMID:22941276

  7. Factors Influencing Adaptive Capacity in the Reorganization of Forest Management in Alaska

    Directory of Open Access Journals (Sweden)

    Colin Beier

    2011-03-01

    Full Text Available Several studies of U.S. National Forests suggest that declines of their associated forest products industries were driven by synergistic changes in federal governance and market conditions during the late 20th century. In Alaska, dramatic shifts in the economic and political settings of the Tongass National Forest (Tongass drove changes in governance leading to collapse of an industrial forest management system in the early 1990s. However, 15 years since collapse, the reorganization of Tongass governance to reflect 'new' economic and political realities has not progressed. To understand both the factors that hinder institutional change (inertia and the factors that enable progress toward reorganization (adaptation, I analyzed how Tongass forest management, specifically timber sale planning, has responded to changes in market conditions, local industry structure, and larger-scale political governance. Inertia was evidenced by continued emphasis on even-aged management and large-scale harvesting, i.e., the retention of an industrial forestry philosophy that, in the current political situation, yields mostly litigation and appeals, and relatively few forest products. Adaptation was evidenced by flexibility in harvest methods, a willingness to meet local demand instead of political targets, and a growing degree of cooperation with environmental advocacy groups. New partnerships, markets, and political leaders at state and national levels can frame a new blueprint for reorganization of Tongass management toward a more sustainable future.

  8. Cortical reorganization after long-term adaptation to retinal lesions in humans.

    Science.gov (United States)

    Chung, Susana T L

    2013-11-13

    Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial-tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial-tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.

  9. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants

    OpenAIRE

    Bernal, Autumn J.; Dolinoy, Dana C; Huang, Dale; Skaar, David A.; Weinhouse, Caren; Jirtle, Randy L

    2013-01-01

    Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (Avy) locus in a sex-specific man...

  10. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    Science.gov (United States)

    Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174

  11. Adaptive reorganization of 2D molecular nanoporous network induced by coadsorbed guest molecule.

    Science.gov (United States)

    Zheng, Qing-Na; Wang, Lei; Zhong, Yu-Wu; Liu, Xuan-He; Chen, Ting; Yan, Hui-Juan; Wang, Dong; Yao, Jian-Nian; Wan, Li-Jun

    2014-03-25

    The ordered array of nanovoids in nanoporous networks, such as honeycomb, Kagome, and square, provides a molecular template for the accommodation of "guest molecules". Compared with the commonly studied guest molecules featuring high symmetry evenly incorporated into the template, guest molecules featuring lower symmetry are rare to report. Herein, we report the formation of a distinct patterned superlattice of guest molecules by selective trapping of guest molecules into the honeycomb network of trimesic acid (TMA). Two distinct surface patterns have been achieved by the guest inclusion induced adaptive reconstruction of a 2D molecular nanoporous network. The honeycomb networks can synergetically tune the arrangement upon inclusion of the guest molecules with different core size but similar peripherals groups, resulting in a trihexagonal Kagome or triangular patterns.

  12. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Atack, John M; Srikhanta, Yogitha N; Fox, Kate L; Jurcisek, Joseph A; Brockman, Kenneth L; Clark, Tyson A; Boitano, Matthew; Power, Peter M; Jen, Freda E-C; McEwan, Alastair G; Grimmond, Sean M; Smith, Arnold L; Barenkamp, Stephen J; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P

    2015-01-01

    Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system. PMID:26215614

  13. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Atack, John M; Srikhanta, Yogitha N; Fox, Kate L; Jurcisek, Joseph A; Brockman, Kenneth L; Clark, Tyson A; Boitano, Matthew; Power, Peter M; Jen, Freda E-C; McEwan, Alastair G; Grimmond, Sean M; Smith, Arnold L; Barenkamp, Stephen J; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P

    2015-01-01

    Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.

  14. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae

    Science.gov (United States)

    Atack, John M.; Srikhanta, Yogitha N.; Fox, Kate L.; Jurcisek, Joseph A.; Brockman, Kenneth L.; Clark, Tyson A.; Boitano, Matthew; Power, Peter M.; Jen, Freda E.-C.; McEwan, Alastair G.; Grimmond, Sean M.; Smith, Arnold L.; Barenkamp, Stephen J.; Korlach, Jonas; Bakaletz, Lauren O.; Jennings, Michael P.

    2015-01-01

    Non-typeable Haemophilus influenzae contains an N6-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system. PMID:26215614

  15. Schistosoma mansoni mucin gene (SmPoMuc expression: epigenetic control to shape adaptation to a new host.

    Directory of Open Access Journals (Sweden)

    Cecile Perrin

    Full Text Available The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C or incompatible (IC with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general.

  16. ISSUES IN ROMANIAN BANKING SYSTEM IN THE CONTEXT OF REORGANIZING ITS ADAPTATION TO THE REQUIREMENTS OF THE MARKET ECONOMY

    Directory of Open Access Journals (Sweden)

    IOAN DUMITRU MOTONIU

    2011-01-01

    Full Text Available Based on the concept that the banking system is the engine of economic development, the paper is intended as a blueprint for the banking system in Romania since 1989, stages and parts of its reorganizing process. In the article is also carried out an analysis of the Romanian banking system in terms of numerical development banks and through the two indicators considered fundamental in the banking system: market share, expressed in terms of net balance sheet asset, that social / endowment capital and are presented the conclusions that have been drawn from this analysis.

  17. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity.

    Science.gov (United States)

    Porto-Neto, Laercio R; Fortes, Marina R S; McWilliam, Sean M; Lehnert, Sigrid A; Reverter, Antonio

    2014-01-01

    We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550). We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10(-5)). A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r (2) > 0.84). To further characterize the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterize the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes. PMID:24795751

  18. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity

    Directory of Open Access Journals (Sweden)

    Laercio R Porto-Neto

    2014-04-01

    Full Text Available We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2,112 and Tropical Composite (n = 2,550. We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases and 99 (chromatin remodelling factors genes. A total of 3,091 SNP mapped to positions within 3,000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2,738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10-5. A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r2 > 0.84. To further characterise the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05 enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterise the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes.

  19. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  20. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells.

    Science.gov (United States)

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N(8)-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  1. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells

    Science.gov (United States)

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N8-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  2. Molecular Mechanisms of Processing Proteome Reorganization of Interphase Chromatin During Stress and Adaptation to Winter in Wheat

    Directory of Open Access Journals (Sweden)

    Ivanov R.S.

    2015-06-01

    Full Text Available Research of fundamental molecular and genetic processes of plant interaction with the environment, is a progressive field of understanding the fundamental problems of stress supramolecular biochemistry of developmental biology. The purpose of the work was the analysis of localization shielded to protease processing proteins of suprastructures of interphase chromatin matrix in the conditions of adaptation during vegetative phase of wheat to stressful environment factors. It is shown that in the conditions of perennial adaptation to cold shock of wheat at the level of chromatin suprastructures tightly bound to the nuclear matrix there is a total shielding of arginine-X sites to protease-processing. Perhaps these are zones that affect to the architecture organization of the cell nucleus that can help to survive in complex environmental conditions. According to the priorities in the study of agricultural plants, put forward by EPIC (The Epigenomics of Plants International Consortium in 2011 for the next decade, was included the point of necessity to understand the molecular basis of the interactions of genotype and environment that change the characteristics of plants in different conditions of the environment. These data will be useful for those who involved in the development of mathematical logic schemes of the theory and practice of biological specificity, and it could be included in the ontology of the stages plant growth and development.

  3. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions

    OpenAIRE

    González, Rodrigo M; Martiniano M Ricardi; Iusem, Norberto D

    2013-01-01

    Tolerance to water deficits was evolutionarily relevant to the conquest of land by primitive plants. In this context, epigenetic events may have played important roles in the establishment of drought stress responses. We decided to inspect epigenetic marks in the plant organ that is crucial in the sensing of drought stress: the root. Using tomato as a crop model plant, we detected the methylated epialleles of Asr2, a protein-coding gene widespread in the plant kingdom and thought to alleviate...

  4. Epigenetics in adaptive evolution and development: the interplay between evolving species and epigenetic mechanisms: extract from Trygve Tollefsbol (ed.) (2011) Handbook of epigenetics--the new molecular and medical genetics. Chapter 26. Amsterdam, USA: Elsevier, pp. 423-446.

    Science.gov (United States)

    House, Simon H

    2013-04-01

    By comparing epigenetics of current species with fossil records across evolutionary transitions, we can gauge the moment of emergence of some novel mechanisms in evolution, and recognize that epigenetic mechanisms have a bearing on mutation. Understanding the complexity and changeability of these mechanisms, as well as the changes they can effect, is both fascinating and of vital practical benefit. Our most serious pandemics of so-called 'non-communicable' diseases - mental and cardiovascular disorders, obesity and diabetes, rooted in the 'metabolic syndrome' - are evidently related to effects on our evolutionary mechanisms of agricultural and food industrialization, modern lifestyle and diet. Pollution affects us directly as well as indirectly by its destruction of ecologically essential biosystems. Evidently such powerful conditions of existence have epigenetic effects on both our health and our continuing evolution. Such effects are most profound during reproductive and developmental processes, when levels of hormones, as affected by stress particularly, may be due to modern cultures in childbearing such as excessive intervention, separation, maternal distress and disruption of bonding. Mechanisms of genomic imprinting seem likely to throw light on problems in assisted reproductive technology, among other transgenerational effects.

  5. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive tran

  6. Epigenetics in an ecotoxicological context.

    Science.gov (United States)

    Vandegehuchte, Michiel B; Janssen, Colin R

    2014-04-01

    Epigenetics can play a role in interactions between chemicals and exposed species, between species and abiotic ecosystem components or between species of the same or another population in a community. Technological progress and advanced insights into epigenetic processes have led to the description of epigenetic features (mainly DNA methylation) in many ecologically relevant species: algae, plants, several invertebrates and fish. Epigenetic changes in plants, insects and cladocerans have been reported to be induced by various environmental stress factors including nutrition or water deficiency, grazing, light or temperature alterations, social environment, and dissolved organic matter concentrations. As regards chemicals, studies in rats and mice exposed to specific pesticides, hydrocarbons, dioxins, and endocrine disrupting chemicals demonstrated the induction of epigenetic changes, suggesting the need for further research with these substances in an ecotoxicological context. In fish and plants, exposure to polyaromatic hydrocarbons, metals, and soluble fractions of solid waste affected the epigenetic status. A novel concept in ecotoxicological epigenetics is the induction of transgenerational stress resistance upon chemical exposure, as demonstrated in rice exposed to metals. Evaluating epigenetics in ecotoxicological field studies is a second relatively new approach. A cryptic lineage of earthworms had developed arsenic tolerance in the field, concurrent with specific DNA methylation patterns. Flatfish caught in the framework of environmental monitoring had developed tumours, exhibiting specific DNA methylation patterns. Two main potential implications of epigenetics in an ecotoxicological context are (1) the possibility of transgenerationally inherited, chemical stress-induced epigenetic changes with associated phenotypes and (2) epigenetically induced adaptation to stress upon long-term chemical exposure. Key knowledge gaps are concerned with the causality of

  7. Nutritional epigenetics

    Science.gov (United States)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  8. Epigenetic rejuvenation.

    Science.gov (United States)

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. PMID:22487104

  9. Epigenetic variation in asexually reproducing organisms

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Preite, V.

    2014-01-01

    The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual re

  10. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation.

    Science.gov (United States)

    Sharples, Adam P; Polydorou, Ioanna; Hughes, David C; Owens, Daniel J; Hughes, Thomas M; Stewart, Claire E

    2016-06-01

    Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that

  11. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation.

    Science.gov (United States)

    Sharples, Adam P; Polydorou, Ioanna; Hughes, David C; Owens, Daniel J; Hughes, Thomas M; Stewart, Claire E

    2016-06-01

    Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that

  12. Epigenetics and child abuse: Modern-day Darwinism--The miraculous ability of the human genome to adapt, and then adapt again.

    Science.gov (United States)

    Gershon, Naomi B; High, Pamela C

    2015-12-01

    It has long been recognized that early adversity can have life-long consequences, and the extent to which this is true is gaining increasing attention. A growing body of literature implicates Adverse Childhood Experiences, including physical, sexual, and emotional abuse, in a broad range of negative health consequences including adult psychopathology, cardiovascular, and immune disease. Increasing evidence from animal, clinical, and epidemiological studies highlight the critical role of epigenetic programing, such as DNA methylation and histone modification, in altering gene expression, brain structure and function, and ultimately life-course trajectories. This review outlines our developing insight into the interplay between our human biology and our changing environment, and explores the growing evidence base for how interventions may prevent and ameliorate damage inflicted by toxic stress in early life. PMID:26502111

  13. Epigenetics and child abuse: Modern-day Darwinism--The miraculous ability of the human genome to adapt, and then adapt again.

    Science.gov (United States)

    Gershon, Naomi B; High, Pamela C

    2015-12-01

    It has long been recognized that early adversity can have life-long consequences, and the extent to which this is true is gaining increasing attention. A growing body of literature implicates Adverse Childhood Experiences, including physical, sexual, and emotional abuse, in a broad range of negative health consequences including adult psychopathology, cardiovascular, and immune disease. Increasing evidence from animal, clinical, and epidemiological studies highlight the critical role of epigenetic programing, such as DNA methylation and histone modification, in altering gene expression, brain structure and function, and ultimately life-course trajectories. This review outlines our developing insight into the interplay between our human biology and our changing environment, and explores the growing evidence base for how interventions may prevent and ameliorate damage inflicted by toxic stress in early life.

  14. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection.

    Directory of Open Access Journals (Sweden)

    Danielle N Kroetz

    2015-12-01

    Full Text Available Influenza A virus (IAV is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and

  15. Epigenetics and nutritional environmental signals.

    Science.gov (United States)

    Mazzio, Elizabeth A; Soliman, Karam F A

    2014-07-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses. PMID:24861811

  16. LOS ALAMOS: Reorganization

    International Nuclear Information System (INIS)

    Full text: A few months ago Los Alamos National Laboratory embarked on a major reorganization. All upper management was invited to submit their resignations and reapply for new positions, of which there are only about one third as many. This action was coordinated with an attractive early retirement incentive so that displaced managers, as well as any other employee, could choose to retire if they were unhappy with the reorganization, or for any other reason. About 850 of the Lab's 7,700 employees have chosen retirement. MP (Meson or Medium Energy Physics) and AT (Accelerator Technology) Divisions have been combined into the AOT (Accelerator Operations and Technology) Division. Stanley O. Schriber is its new Director. AOT Division is responsible for operations and improvements at the Los Alamos Meson Physics Facility (LAMPF) and supports traditional users, LANSCE (the Los Alamos Neutron Scattering Center), and the emerging neutron applications community. Advanced accelerator development, including beam transport theory, instrumentation, free electron laser technology, and engineering for research, defence, industrial, and medical applications will be a major focus

  17. Epistemological Pluralism: Reorganizing Interdisciplinary Research

    Directory of Open Access Journals (Sweden)

    F. Stuart Chapin III

    2008-12-01

    Full Text Available Despite progress in interdisciplinary research, difficulties remain. In this paper, we argue that scholars, educators, and practitioners need to critically rethink the ways in which interdisciplinary research and training are conducted. We present epistemological pluralism as an approach for conducting innovative, collaborative research and study. Epistemological pluralism recognizes that, in any given research context, there may be several valuable ways of knowing, and that accommodating this plurality can lead to more successful integrated study. This approach is particularly useful in the study and management of social–ecological systems. Through resilience theory's adaptive cycle, we demonstrate how a focus on epistemological pluralism can facilitate the reorganization of interdisciplinary research and avoid the build-up of significant, but insufficiently integrative, disciplinary-dominated research. Finally, using two case studies—urban ecology and social–ecological research in Alaska—we highlight how interdisciplinary work is impeded when divergent epistemologies are not recognized and valued, and that by incorporating a pluralistic framework, these issues can be better explored, resulting in more integrated understanding.

  18. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Patrick Bateson

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  19. Epigenetic rejuvenation

    OpenAIRE

    Manukyan, Maria; Singh, Prim B

    2012-01-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for ‘patient-specific’ regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using ‘epigenetic rejuvenation’, where the specia...

  20. Epigenetics protocols

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-06-01

    Full Text Available Thanks to the creative effort of Prof. Trygve O. Tollefsbol (Dept. of Biology, University of Alabama at Birmingham, USA we can handle the second edition in just seven years of this must needed volume devoted to the study of the epigenome. In the very same window-time the field of epigenetics is dramatically changed as for the technical tools employed by the pupils of this pervasive discipline: actually there is no one hot topics in biology (e.g., development, differentiation, genomic toxicity and medicine .....

  1. Egypt/FOF reorganize.

    Science.gov (United States)

    1984-01-01

    In Egypt, both the national family planning program and the privately operated social marketing program, Family of the Future (FOF), are currently being reorganized. The Population and Family Planning Board, orginally charged with the responsibility of overseeing the national family planning program, was replaced by the newly created National Council. The reasons for the change and the type of program changes which will ensue from this organizational change are unclear. The FOF recently adopted a new management organizational structure, implemented a computerized management and information system, and initiated a staff training program. The management of the program's product line is now divided into 3 sections. There are separate sections for IUDs, barrier methods, and hormonal methods. Each section is responsible for developing a marketing plan for its products and overseeing the distribution of its products. The management staff is now provided with management skills training. To date, 9 managers have received training in management techniques in the US at George Washington University. Personal computers are being installed at the FOF office in Cairo. The system will be used to keep tract of inventory, volunteer activities, and product distribution and to handle accounting procedures. These innovations are expected to facilitate the handling of planned changes in FOF's product line. FOF will begin selling surgical gloves, as a supplemental item for its currently marketed IUD kit, and pregnancy testing kits for use by physicians and hospitals. Other anticipated introductions include Depo Provera, an injectable contraceptive, the new Ortho vaginal tablet which will replace the currently marketed Annan vaginal tablet, and possibly, the implant contraceptive, Norplant. Triton is currently under contract with the US Agency for International Development to provide technical assistance for the FOF program. This contract is due to expire in December, 1984, and a

  2. A Guide to School District Reorganization.

    Science.gov (United States)

    Warner, Allan K.

    School district reorganization is a process that requires considerable planning. This guide provides information on school district reorganization in the state of Nebraska, to interested boards of education and county and citizen reorganization committees. Topics discussed include planning for reorganization, establishing citizen committees, using…

  3. Epigenetic inheritance and plasticity: The responsive germline.

    Science.gov (United States)

    Jablonka, Eva

    2013-04-01

    Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that "priming" and "epigenetic learning" may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.

  4. Nutritional Epigenetics

    Directory of Open Access Journals (Sweden)

    L. Preston Mercer

    2013-12-01

    Full Text Available Questions concerning the fundamental effects of nutrition on gene function are now being elucidated as the human genome project has been completed. Nutritional genomics seeks to expand the use of foods to achieve human genetic potential, while reducing the risk of diseases. As issues such as nutrigenomics (dietary influence on gene function and nutrigenetics (genomic reaction to diet are unraveled, thepotential for personalized nutrition becomes attainable. It has been stated that “genomics is to the 21st century what infectious disease was to the 20th century”. The nucleotide sequence of DNA was once seen as the only mechanism by which genetic information could be transmitted between generations. Phenotypic variation resulted from recombination and, occasionally, genetic mutation. This widely accepted concept is now undergoing modification as evidence builds to support the idea that reversible, heritable changes in gene function - termed “epigenetics”- can occur without a change in the sequence of nuclear DNA (i.e., non-Mendelian inheritance. The word epigenetics is of Greek origin and literallymeans over and above (epi the genome. The terminology“same genome, different epigenome” has been demonstrated in several experiments. As research and understanding advances, dietary advice based on the human genome will become more prevalent and new pharmacological interventions may be developed.

  5. Natural epigenetic variation in bats and its role in evolution.

    Science.gov (United States)

    Liu, Sen; Sun, Keping; Jiang, Tinglei; Feng, Jiang

    2015-01-01

    When facing the challenges of environmental change, such as habitat fragmentation, organisms have to adjust their phenotype to adapt to various environmental stresses. Recent studies show that epigenetic modifications could mediate environmentally induced phenotypic variation, and this epigenetic variance could be inherited by future generations, indicating that epigenetic processes have potential evolutionary effects. Bats living in diverse environments show geographic variations in phenotype, and the females usually have natal philopatry, presenting an opportunity to explore how environments shape epigenetic marks on the genome and the evolutionary potential of epigenetic variance in bat populations for adaptation. We have explored the natural epigenetic diversity and structure of female populations of the great roundleaf bat (Hipposideros armiger), the least horseshoe bat (Rhinolophus pusillus) and the eastern bent-winged bat (Miniopterus fuliginosus) using a methylation-sensitive amplified polymorphism technique. We have also estimated the effects of genetic variance and ecological variables on epigenetic diversification. All three bat species have a low level of genomic DNA methylation and extensive epigenetic diversity that exceeds the corresponding genetic variance. DNA sequence divergence, epigenetic drift and environmental variables contribute to the epigenetic diversities of each species. Environment-induced epigenetic variation may be inherited as a result of both mitosis and meiosis, and their potential roles in evolution for bat populations are also discussed in this review. PMID:25568456

  6. Epigenetics and Nutritional Environmental Signals

    OpenAIRE

    Mazzio, Elizabeth A.; Soliman, Karam F. A.

    2014-01-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system...

  7. Development, epigenetics and metabolic programming

    Science.gov (United States)

    Godfrey, Keith M; Costello, Paula; Lillycrop, Karen

    2016-01-01

    It is now widely recognised that the environment in early life can have important effects on human growth and development, including the “programming” of far reaching effects on the risk of developing common metabolic and other non-communicable diseases in later life. We have shown that greater childhood adiposity is associated with higher maternal adiposity, low maternal vitamin D status, excessive gestational weight gain, and short duration of breastfeeding; maternal dietary patterns in pregnancy and vitamin D status have been linked with childhood bone mineral content and muscle function. Human studies have identified fetal liver blood flow adaptations and epigenetic changes as potential mechanisms that could link maternal influences with offspring body composition. In experimental studies there is now substantial evidence that the environment during early life induces altered phenotypes through epigenetic mechanisms. Epigenetic processes such as DNA methylation, covalent modifications of histones and non-coding RNAs can induce changes in gene expression without a change in DNA base sequence. Such processes are involved in cell differentiation and genomic imprinting, as well as the phenomenon of developmental plasticity in response to environmental influences. Elucidation of such epigenetic processes may enable early intervention strategies to improve early development and growth. PMID:27088334

  8. Epigenetic drift, epigenetic clocks and cancer risk.

    Science.gov (United States)

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.

  9. Epigenetic drift, epigenetic clocks and cancer risk.

    Science.gov (United States)

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies. PMID:27104983

  10. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae.

    Directory of Open Access Journals (Sweden)

    Carlos M Herrera

    Full Text Available Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP technique to paired plant-pollen (i.e., sporophyte-male gametophyte DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae. Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ~75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations.

  11. Genetic and epigenetic changes in malignant cells of tumors of urogenital organs

    Directory of Open Access Journals (Sweden)

    Gordiyuk V. V.

    2010-11-01

    Full Text Available More than 90 % of human malignant neoplasms are presented by epithelial tumors. Cancer of urogenital organs is a serious problem because of wide spread of disease and high mortality rates. Tumorogenesis is associated with different defects of genetic apparatus of cells as well as epigenetic factors (DNA methylation disorders, chromatin reorganizations in processes of histones modifications, regulation of gene expression with small non-coding RNAs. In this review we analyzed genetic and epigenetic changes in the urogenital tumors

  12. Reorganizando a modernidade Reorganizing modernity

    Directory of Open Access Journals (Sweden)

    José Maurício Domingues

    1998-01-01

    Full Text Available Discute-se idéias (tais como a "política gerativa" proposta por Anthony Giddens para uma reorganização da modernidade, alternativas tanto ao privatismo individualista quanto a uma concepção de solidariedade excessivamente estatizada que é própria do Welfare State.Some ideas about a reorganization of modernity (such as Anthony Giddens "gerative politics" wich present alternatives both to privatist individualism and to a excessively state-oriented concept of solidarity such as found in the Welfare State are discussed.

  13. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  14. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  15. Epigenetics in liver disease

    OpenAIRE

    Mann, Derek A.

    2014-01-01

    Epigenetics is a term that encompasses a variety of regulatory processes that are able to crosstalk in order to influence gene expression and cell phenotype in response to environmental cues. A deep understanding of epigenetics offers the potential for fresh insights into the basis for complex chronic diseases and improved diagnostic and prognostic tools. Moreover, as epigenetic modifications are highly plastic and responsive to the environment, there is much excitement around the theme of ep...

  16. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  17. Epigenetics of induced pluripotency, the seven-headed dragon.

    Science.gov (United States)

    Djuric, Ugljesa; Ellis, James

    2010-01-01

    Induction of pluripotency from somatic cells by exogenous transcription factors is made possible by a variety of epigenetic changes that take place during the reprogramming process. The derivation of fully reprogrammed induced pluripotent stem (iPS) cells is achieved through establishment of embryonic stem cell (ESC)-like epigenetic architecture permitting the reactivation of key endogenous pluripotency-related genes, establishment of appropriate bivalent chromatin domains and DNA hypomethylation of genomic heterochromatic regions. Restructuring of the epigenetic landscape, however, is a very inefficient process and the vast majority of the induced cells fail to complete the reprogramming process. Optimal ESC-like epigenetic reorganization is necessary for all reliable downstream uses of iPS cells, including in vitro modeling of disease and clinical applications. Here, we discuss the key advancements in the understanding of dynamic epigenetic changes taking place over the course of the reprogramming process and how aberrant epigenetic remodeling may impact downstream applications of iPS cell technology. PMID:20504284

  18. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  19. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Mark F. Mehler

    2011-09-01

    Full Text Available Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs, which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  20. Epigenetics and aging

    Science.gov (United States)

    Pal, Sangita; Tyler, Jessica K.

    2016-01-01

    Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer. PMID:27482540

  1. Maintenance of Epigenetic Information.

    Science.gov (United States)

    Almouzni, Geneviève; Cedar, Howard

    2016-01-01

    SUMMARYThe genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase. This involves the action of histone chaperones, nucleosome-remodeling enzymes, histone and DNA methylation binding proteins, and chromatin-modifying enzymes. Last, the timing of DNA replication is discussed, including the question of whether this constitutes an epigenetic mark that facilitates the propagation of epigenetic marks. PMID:27141050

  2. Epigenetics and aging.

    Science.gov (United States)

    Pal, Sangita; Tyler, Jessica K

    2016-07-01

    Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer. PMID:27482540

  3. Epigenetic mechanisms and gastrointestinal development

    Science.gov (United States)

    This review considers the hypothesis that nutrition during infancy affects developmental epigenetics in the gut, causing metabolic imprinting of gastrointestinal (GI) structure and function. Fundamentals of epigenetic gene regulation are reviewed, with an emphasis on the epigenetic mechanism of DNA ...

  4. Dynamic epigenetic responses to muscle contraction

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Zierath, Juleen R; Barrès, Romain

    2014-01-01

    Skeletal muscle is a malleable organ that responds to a single acute exercise bout by inducing the expression of genes involved in structural, metabolic and functional adaptations. Several epigenetic mechanisms including histone H4 deacetylation and loss of promoter methylation have been implicated...

  5. [Early attachement relationships and epigenetic customization].

    Science.gov (United States)

    Rocchi, Giordana; Serio, Valentina; Carluccio, Giuseppe Mattia; Marini, Isabella; Meuti, Valentina; Zaccagni, Michela; Giacchetti, Nicoletta; Aceti, Franca

    2015-01-01

    Recently, new findings in epigenetic science switched the focus from the observation of physiological intragenomic dynamics to the idea of an environmental co-construction of phenotypic expression. In psichodynamic field, objectual relations and attachement theoreticians emphasized the interpersonal dimension of individual development, focusing the attention on the relational matrix of self organization. The construction of stable affective-behavioral traits throughout different parenting styles has actually found a coincidence in ethological studies, which have explored the epigenetic processes underlying the relationship between caregiving and HPA stress responsiveness. An adequate parenting style seems to support affective regulation throughout psychobiological hidden moderators, which would tend to rebalance the physiological systems homeostasis; an unconfident attachment style would promote, on the other hand, the allostatic load rise. Sites of longlife epigenetic susceptibility have also been identified in humans; although associated with risk of maladaptive developing in adverse environmental conditions, they seem to confer protection under favorable conditions. This persisting possibility of reorganization of stable traits throughout lifetime, which seems to be activated by a relevant environmental input, grant to significant relationships, and to therapeutical one as well, an implicit reconditioning potential which could result into the configuration of new stable affective-behavioral styles.

  6. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  7. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  8. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is e......Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  9. Epigenetic learning in non-neural organisms.

    Science.gov (United States)

    Ginsburg, Simona; Jablonka, Eva

    2009-10-01

    Learning involves a usually adaptive response to an input (an external stimulus or the organism's own behaviour) in which the input-response relation is memorized; some physical traces of the relation persist and can later be the basis of a more effective response. Using toy models we show that this characterization applies not only to the paradigmatic case of neural learning, but also to cellular responses that are based on epigenetic mechanisms of cell memory. The models suggest that the research agenda of epigenetics needs to be expanded.

  10. Epigenetic learning in non-neural organisms

    Indian Academy of Sciences (India)

    Simona Ginsburg; Eva Jablonka

    2009-10-01

    Learning involves a usually adaptive response to an input (an external stimulus or the organism’s own behaviour) in which the input-response relation is memorized; some physical traces of the relation persist and can later be the basis of a more effective response. Using toy models we show that this characterization applies not only to the paradigmatic case of neural learning, but also to cellular responses that are based on epigenetic mechanisms of cell memory. The models suggest that the research agenda of epigenetics needs to be expanded.

  11. Massive cortical reorganization in sighted Braille readers.

    Science.gov (United States)

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  12. Epigenetics and the evolution of Darwin's Finches.

    Science.gov (United States)

    Skinner, Michael K; Gurerrero-Bosagna, Carlos; Haque, M Muksitul; Nilsson, Eric E; Koop, Jennifer A H; Knutie, Sarah A; Clayton, Dale H

    2014-07-24

    The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin's finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin's finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin's finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these

  13. Scrutinizing the epigenetics revolution.

    Science.gov (United States)

    Meloni, Maurizio; Testa, Giuseppe

    2014-11-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as 'epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  14. Epigenetic changes in diabetes.

    Science.gov (United States)

    Al-Haddad, Rami; Karnib, Nabil; Assaad, Rawad Abi; Bilen, Yara; Emmanuel, Nancy; Ghanem, Anthony; Younes, Joe; Zibara, Victor; Stephan, Joseph S; Sleiman, Sama F

    2016-06-20

    The incidence of diabetes is increasing worldwide. Diabetes is quickly becoming one of the leading causes of death. Diabetes is a genetic disease; however, the environment plays critical roles in its development and progression. Epigenetic changes often translate environmental stimuli to changes in gene expression. Changes in epigenetic marks and differential regulation of epigenetic modulators have been observed in different models of diabetes and its associated complications. In this minireview, we will focus DNA methylation, Histone acetylation and methylation and their roles in the pathogenesis of diabetes. PMID:27130819

  15. Transposable element origins of epigenetic gene regulation.

    Science.gov (United States)

    Lisch, Damon; Bennetzen, Jeffrey L

    2011-04-01

    Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation. PMID:21444239

  16. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents

    Science.gov (United States)

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  17. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    Science.gov (United States)

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  18. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    Science.gov (United States)

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input.

  19. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation.

    Science.gov (United States)

    Senerchia, Natacha; Felber, François; Parisod, Christian

    2015-04-01

    Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation. PMID:25716787

  20. Farthest First Clustering in Links Reorganization

    Directory of Open Access Journals (Sweden)

    Deepshree A. Vadeyar

    2014-07-01

    Full Text Available Website can be easily design but to efficient user navigation is not a easy task since user behavior is keep changing and developer view is quite different from what user wants, so to improve navigation one way is reorganization of website structure. For reorganization here proposed strategy is farthest first traversal clustering algorithm perform clustering on two numeric parameters and for finding frequent traversal path of user Apriori algorithm is used. Our aim is to perform reorganization with fewer changes in website structure.

  1. [Epigenetics in Parkinson's Disease].

    Science.gov (United States)

    Wüllner, U

    2016-07-01

    The genetic information encoded in the DNA sequence provides a blueprint of the entire organism. The epigenetic modifications, in particular DNA methylation and histone modifications, determine how and when this information is made available and define the specific gene transcription pattern of a given cell. Epigenetic modifications determine the functional differences of genetically identical cells in multicellular organisms and are important factors in various processes from embryonic development to learning and memory consolidation. DNA methylation patterns are altered by environmental conditions and some alterations are preserved through mitosis and meiosis. Thus, DNA methylation can mediate environmental impact on health and disease, contributes to the severity of diseases and probably contributes to the effects and side effects of drugs. In addition to the classical monogenic epigenetic diseases such as Prader-Willi syndrome and Rett syndrome, recent data point to an epigenetic component also in sporadic neuro-psychiatric disorders. PMID:27299943

  2. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  3. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  4. Epigenetics in Rheumatoid Arthritis

    OpenAIRE

    Trenkmann, M.; Brock, M; Ospelt, C; Gay, S.

    2010-01-01

    Epigenetics is a steadily growing research area. In many human diseases, especially in cancers, but also in autoimmune diseases, epigenetic aberrations have been found. Rheumatoid arthritis is an autoimmune disease characterized by chronic inflammation and destruction of synovial joints. Even though the etiology is not yet fully understood, rheumatoid arthritis is generally considered to be caused by a combination of genetic predisposition, deregulated immunomodulation, and environmental infl...

  5. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  6. DNA methylation topology: potential of a chromatin landmark for epigenetic drug toxicology.

    Science.gov (United States)

    Tajbakhsh, Jian

    2011-12-01

    Targeting chromatin and its basic components through epigenetic drug therapy has become an increased focus in the treatment of complex diseases. This boost calls for the implementation of high-throughput cell-based assays that exploit the increasing knowledge about epigenetic mechanisms and their interventions for genotoxicity testing of epigenetic drugs. 3D quantitative DNA methylation imaging is a novel approach for detecting drug-induced DNA demethylation and concurrent heterochromatin decondensation/reorganization in cells through the analysis of differential nuclear distribution patterns of methylcytosine and gDNA visualized by fluorescence and processed by machine-learning algorithms. Utilizing 3D DNA methylation patterns is a powerful precursor to a series of fully automatable assays that employ chromatin structure and higher organization as novel pharmacodynamic biomarkers for various epigenetic drug actions.

  7. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  8. Epigenetics of Obesity.

    Science.gov (United States)

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. PMID:27288829

  9. Epigenetics and epilepsy.

    Science.gov (United States)

    Roopra, Avtar; Dingledine, Raymond; Hsieh, Jenny

    2012-12-01

    Seizures can give rise to enduring changes that reflect alterations in gene-expression patterns, intracellular and intercellular signaling, and ultimately network alterations that are a hallmark of epilepsy. A growing body of literature suggests that long-term changes in gene transcription associated with epilepsy are mediated via modulation of chromatin structure. One transcription factor in particular, repressor element 1-silencing transcription factor (REST), has received a lot of attention due to the possibility that it may control fundamental transcription patterns that drive circuit excitability, seizures, and epilepsy. REST represses a suite of genes in the nervous system by utilizing nuclear protein complexes that were originally identified as mediators of epigenetic inheritance. Epigenetics has traditionally referred to mechanisms that allow a heritable change in gene expression in the absence of DNA mutation. However a more contemporaneous definition acknowledges that many of the mechanisms used to perpetuate epigenetic traits in dividing cells are utilized by neurons to control activity-dependent gene expression. This review surveys what is currently understood about the role of epigenetic mechanisms in epilepsy. We discuss how REST controls gene expression to affect circuit excitability and neurogenesis in epilepsy. We also discuss how the repressor methyl-CpG-binding protein 2 (MeCP2) and activator cyclic AMP response element binding protein (CREB) regulate neuronal activity and are themselves controlled by activity. Finally we highlight possible future directions in the field of epigenetics and epilepsy.

  10. Epigenetics in neonatal diseases

    Institute of Scientific and Technical Information of China (English)

    XU Xue-feng; DU Li-zhong

    2010-01-01

    Objective To review the role of epigenetic regulation in neonatal diseases and better understand Barker's "fetal origins of adult disease hypothesis".Data sources The data cited in this review were mainly obtained from the articles published in Medline/PubMed between January 1953 and December 2009.Study selection Articles associated with epigenetics and neonatal diseases were selected.Results There is a wealth of epidemiological evidence that lower birth weight is strongly correlated with an increased risk of adult diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular disease. This phenomenon of fetal origins of adult disease is strongly associated with fetal insults to epigenetic modifications of genes. A potential role of epigenetic modifications in congenital disorders, transient neonatal diabetes mellitus (TNDM), intrauterine growth retardation (IUGR), and persistent pulmonary hypertension of the newborn (PPHN) have been studied.Conclusions Acknowledgment of the role of these epigenetic modifications in neonatal diseases would be conducive to better understanding the pathogenesis of these diseases, and provide new insight for improved treatment and prevention of later adult diseases.

  11. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  12. Epigenetics: heterochromatin meets RNAi

    Institute of Scientific and Technical Information of China (English)

    Ingela Djupedal; Karl Ekwall

    2009-01-01

    The term epigenetics refers to heritable changes not encoded by DNA. The organization of DNA into chromatin fibers affects gene expression in a heritable manner and is therefore one mechanism of epigenetic inheritance. Large parts of eukaryotic genomes consist of constitutively highly condensed heterochromatin, important for maintaining genome integrity but also for silencing of genes within. Small RNA, together with factors typically associated with RNA interference (RNAi) targets homologous DNA sequences and recruits factors that modify the chromatin, com-monly resulting in formation of heterochromatin and silencing of target genes. The scope of this review is to provide an overview of the roles of small RNA and the RNAi components, Dicer, Argonaute and RNA dependent polymeras-es in epigenetic inheritance via heterochromatin formation, exemplified with pathways from unicellular eukaryotes, plants and animals.

  13. Epigenetics and lifestyle

    Science.gov (United States)

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2013-01-01

    The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and microRNA expression. Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress, and working on night shifts. Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. Here, we review current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms. PMID:22122337

  14. The physics of epigenetics

    CERN Document Server

    Cortini, Ruggero; Caré, Bertrand R; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2015-01-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multi-scale physical mechanisms that govern the biological processes behind the initiation, spreading and inheritance of epigenetic states. These include not only the change in the molecular properties associated with the chemical modifications of DNA and histone proteins - such as methylation and acetylation - but also less conventional ones, such as the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of m...

  15. Epigenetics and neuropsychiatric diseases: introduction and meeting summary.

    Science.gov (United States)

    Mehler, Mark F

    2010-09-01

    This volume is an outgrowth of a symposium entitled "Epigenetics and Neuropsychiatric Diseases: Mechanisms Mediating Nature and Nurture" presented at the 88th Annual Conference of the Association for Nervous and Mental Diseases, held on December 5, 2008 at the New York Academy of Medicine. Dolores Malaspina (New York University Medical Center) and Mark F. Mehler (Albert Einstein College of Medicine) organized the symposium as two sessions, "Epigenetics and Brain Behavior Relationships" and "Epigenetics and Neuropsychiatric Diseases." The symposium brought together basic and translational neuroscientists, neurologists, psychiatrists, neuropsychologists, neuropsycho-pharmacologists, and other allied biomedical professionals to establish an enduring dialogue and collaborative interactions concerning epigenetics and epigenomic medicine as a "new science" of brain and behavior relationships. This new discipline has begun to revolutionize our understanding of nervous system development in many specific areas, including neural stem cell biology, fate decisions, and cell diversity and connectivity; learning and memory; neuronal and neural network homeostasis; plasticity and stress responses; the pathogenesis of neuropsychiatric diseases and novel therapeutic interventions involving dynamic cellular reprogramming; reorganization of synaptic and neural network connections; and remodeling of the brain parenchyma and its systemic connections to promote restoration of higher-order cognitive, behavioral, and sensorimotor functions.

  16. Epigenetic Risk Factors in PTSD and Depression

    Directory of Open Access Journals (Sweden)

    Florian Joachim Raabe

    2013-08-01

    Full Text Available Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders and PTSD. A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD as an adult. The brain is highly plastic during early life and encodes acquired information into lasting memories that normally subserve adaptation. Translational studies in rodents showed that enduring sensitization of neuronal and neuroendocrine circuits in response to early life adversity are likely risk factors of life time vulnerability to stress. Hereby, the hypothalamic-pituitary-adrenal (HPA axis integrates cognitive, behavioural and emotional responses to early-life stress and can be epigenetically programmed during sensitive windows of development. Epigenetic mechanisms, comprising reciprocal regulation of chromatin structure and DNA methylation, are important to establish and maintain sustained, yet potentially reversible, changes in gene transcription. The relevance of these findings for the development of PTSD requires further studies in humans where experience-dependent epigenetic programming can additionally depend on genetic variation in the underlying substrates which may protect from or advance disease development. Overall, identification of early-life stress associated epigenetic risk markers informing on previous stress history can help to advance early diagnosis, personalized prevention and timely therapeutic interventions, thus reducing long-term social and health costs.

  17. Epigenetic Therapy in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Stephen V Liu

    2013-05-01

    Full Text Available Epigenetic dysregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  18. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  19. Epigenetic Therapy in Lung Cancer

    OpenAIRE

    Liu, Stephen V.; Fabbri, Muller; Gitlitz, Barbara J.; Laird-Offringa, Ite A.

    2013-01-01

    Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  20. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection. PMID:27278298

  1. Shareholders, creditors approve utility reorganization plan

    International Nuclear Information System (INIS)

    Shareholders and all classes of secured creditors of Public Service Company of New Hampshire voted overwhelmingly last month to approve Northeast Utilities' Chapter 11 reorganization plan for PSNH, the utility announced. PSNH filed for bankruptcy protection in January 1988. Under the reorganization plan, Connecticut-based NU would acquire the utility for $2.3 billion. While PSNH's preferred and common stockholders voted to accept the proposal, holders of warrants to purchase PSNH common stock rejected the plan. Except for the votes of a group of independent power producers, PSNH's unsecured creditors also voted to accept the plan

  2. Reorganizing the nursing home industry: a proposal.

    Science.gov (United States)

    Shulman, D; Galanter, R

    1976-01-01

    This paper proposes a reorganization of the nursing home industry with capital facilities owned by government, but with management conducted through a system of competitive contracts with the private sector. The paper explicity demonstrates in real estate finance terms how the present system of private ownership of capital facilities inherently impedes providing a high quality of care. The authors believe that in the proposed industry reorganization, market forces, instead of working against quality care, would be supportive of quality care in a framework that would involve generally less regulation than exists today. PMID:1272543

  3. Epigenetics and Future Generations.

    Science.gov (United States)

    Del Savio, Lorenzo; Loi, Michele; Stupka, Elia

    2015-10-01

    Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. PMID:25644664

  4. Epigenetics, Darwin, and Lamarck

    Science.gov (United States)

    Penny, David

    2015-01-01

    It is not really helpful to consider modern environmental epigenetics as neo-Lamarckian; and there is no evidence that Lamarck considered the idea original to himself. We must all keep learning about inheritance, but attributing modern ideas to early researchers is not helpful, and can be misleading. PMID:26026157

  5. Epigenetic Therapy for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhong

    2011-07-01

    Full Text Available Both genetic and epigenetic alterations can control the progression of cancer. Genetic alterations are impossible to reverse, while epigenetic alterations are reversible. This advantage suggests that epigenetic modifications should be preferred in therapy applications. DNA methyltransferases and histone deacetylases have become the primary targets for studies in epigenetic therapy. Some DNA methylation inhibitors and histone deacetylation inhibitors are approved by the US Food and Drug Administration as anti-cancer drugs. Therefore, the uses of epigenetic targets are believed to have great potential as a lasting favorable approach in treating breast cancer.

  6. Reorganizing Complex Network to Improve Large-Scale Multiagent Teamwork

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2014-01-01

    Full Text Available Large-scale multiagent teamwork has been popular in various domains. Similar to human society infrastructure, agents only coordinate with some of the others, with a peer-to-peer complex network structure. Their organization has been proven as a key factor to influence their performance. To expedite team performance, we have analyzed that there are three key factors. First, complex network effects may be able to promote team performance. Second, coordination interactions coming from their sources are always trying to be routed to capable agents. Although they could be transferred across the network via different paths, their sources and sinks depend on the intrinsic nature of the team which is irrelevant to the network connections. In addition, the agents involved in the same plan often form a subteam and communicate with each other more frequently. Therefore, if the interactions between agents can be statistically recorded, we are able to set up an integrated network adjustment algorithm by combining the three key factors. Based on our abstracted teamwork simulations and the coordination statistics, we implemented the adaptive reorganization algorithm. The experimental results briefly support our design that the reorganized network is more capable of coordinating heterogeneous agents.

  7. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.

    Science.gov (United States)

    Roy, Ram Vinod; Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; D, Rakesh; Kim, Donghern; Yin, Yuanqin; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.

  8. The Factors and Transversal Reorganizations Principles of Romanian Textile Industry Enterprises using Activity-Based Costing Method

    Directory of Open Access Journals (Sweden)

    Sorinel Capusneanu

    2007-04-01

    Full Text Available This article describes the factors and the principles of transversal reorganization of the enterprises from the Romanian textile industry by adapting the Activity-Based Costing method (ABC to its specific. There are presented and analyzed the real possibilities of reorganization of the enterprises in Romania by elaboration of methodological phases that will be covered until the implementation of their transversal organization. Are we ready to adapt the Activity-Based Costing method to the specific of the Romanian textile industry and not only? Here is the question whose response we will find in this article.

  9. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    and confirming transcriptional start sites can be difficult. Epigenetics, gene regulatory and DNA modification mechanisms not involving a change to the primary sequence, have been implied in the regulation of a number of miRNA loci. Both epigenetic and miRNA signatures are broadly altered in cancer......, and are thought to play essential roles in cancer etiology and progression. Here, we aimed to identify epigenetic miRNA deregulation in bladder and oral carcinoma, and to develop a robust approach to epigenetic miRNA prediction and detection. In addition, non-canonical epigenetic functions directed by a nuclear...... miRNA were investigated. In summary, we report that the miR-200 family and miR-205 are coordinately epigenetically regulated in a variety of cell lines, tumors and normal tissues. MiR-200c expression is correlated with bladder cancer disease progression, and miR-375 levels in oral rinse can...

  10. Unilateral hearing during development: hemispheric specificity in plastic reorganizations

    Directory of Open Access Journals (Sweden)

    Andrej eKral

    2013-11-01

    Full Text Available The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness. The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. The data revealed that effects of hearing experience were more pronounced when stimulating the hearing ear. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive

  11. Epigenetics in the hematologic malignancies

    OpenAIRE

    Fong, Chun Yew; Morison, Jessica; Dawson, Mark A.

    2014-01-01

    A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies...

  12. Epigenetic memory in kidney diseases.

    Science.gov (United States)

    Mimura, Imari

    2016-02-01

    Epigenetic mechanisms have been the focus of intensive research. De Marinis et al. demonstrated that high glucose levels exert stimulatory effects on activation histone marks, leading to the upregulation of thioredoxin-interacting protein (TXNIP) gene expression, which is proinflammatory. They also showed that the effect was reversed by the inhibition of histone acetyltransferase, suggesting a new therapeutic approach for improving diabetic kidney disease. Epigenetic changes are memorized as epigenetic memory that could exacerbate diabetic complications.

  13. The complexity of epigenetic diseases.

    Science.gov (United States)

    Brazel, Ailbhe Jane; Vernimmen, Douglas

    2016-01-01

    Over the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease-causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer.

  14. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    OpenAIRE

    Kristina Budimir; Gordana Kralik; Vladimir Margeta

    2013-01-01

    Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactiv...

  15. Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Pandey, Suryanarayan; Choubey, Priyansha; Rajput, Prabha; Saroha, Babita; Bezbaruah, Babul Kumar; Lahkar, Mangala

    2016-01-01

    Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development. PMID:27780992

  16. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage

    NARCIS (Netherlands)

    Wilschut, Rutger; Oplaat, C.; Snoek, L.B.; Kirschner, J.; Verhoeven, K.J.F.

    2016-01-01

    Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations

  17. Physical exercise as an epigenetic modulator: Eustress, the "positive stress" as an effector of gene expression.

    Science.gov (United States)

    Sanchis-Gomar, Fabian; Garcia-Gimenez, Jose Luis; Perez-Quilis, Carme; Gomez-Cabrera, Mari Carmen; Pallardo, Federico V; Lippi, Giuseppe

    2012-12-01

    Physical exercise positively influences epigenetic mechanisms and improves health. Several issues remain unclear concerning the links between physical exercise and epigenetics. There is growing concern about the negative influence of excessive and persistent physical exercise on health. How an individual physically adapts to the prevailing environmental conditions might influence epigenetic mechanisms and modulate gene expression. In this article, we put forward the idea that physical exercise, especially long-term repetitive strenuous exercise, positively affects health, reduces the aging process, and decreases the incidence of cancer through induced stress and epigenetic mechanisms. We propose herein that stress may stimulate genetic adaptations through epigenetics that, in turn, modulate the link between the environment, human lifestyle factors, and genes.

  18. Active Polymers Confer Fast Reorganization Kinetics

    CERN Document Server

    Swanson, Douglas

    2011-01-01

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime and mean length, MFPT ~ , by analogy to 1-d Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT ~ ^{1/2}. Since to be biologically useful, structural biopolymers must typically be many monomers long, yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify active polymers' greater energy cost. PACS numbers: 87.10.Ed, 87.16.ad, 87.16.Ln

  19. Reorganizing and restructuring the human resources function

    OpenAIRE

    Alexandrina Mirela, Stan

    2010-01-01

    To determine what kind of skills (internal or external) of human resources are adequate organization can use human resources audit. Audit is an action guide that provides step by step consistency of human resources activities within the organization with legal regulations and informal practices. This paper aims to highlight the importance of human resources audit which is an essential activity and is basis for the reorganization and restructuring of human resources function.

  20. Exploiting tumor epigenetics to improve oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Nicole E. Forbes

    2013-09-01

    Full Text Available Oncolytic viruses (OVs comprise a versatile and multi-mechanistic therapeutic platform in the growing arsenal of anticancer biologics. These replicating therapeutics find favorable conditions in the tumor niche, characterized among others by increased metabolism, reduced anti-tumor/antiviral immunity, and disorganized vasculature. Through a self-amplification that is dependent on multiple cancer-specific defects, these agents exhibit remarkable tumor selectivity. With several OVs completing or entering Phase III clinical evaluation, their therapeutic potential as well as the challenges ahead are increasingly clear. One key hurdle is tumor heterogeneity, which results in variations in the ability of tumors to support productive infection by OVs and to induce adaptive anti-tumor immunity. To this end, mounting evidence suggests tumor epigenetics may play a key role. This review will focus on the epigenetic landscape of tumors and how it relates to OV infection. Therapeutic strategies aiming to exploit the epigenetic identity of tumors in order to improve OV therapy are also discussed.

  1. The expanding epigenetic landscape of non-model organisms.

    Science.gov (United States)

    Bonasio, Roberto

    2015-01-01

    Epigenetics studies the emergence of different phenotypes from a single genotype. Although these processes are essential to cellular differentiation and transcriptional memory, they are also widely used in all branches of the tree of life by organisms that require plastic but stable adaptation to their physical and social environment. Because of the inherent flexibility of epigenetic regulation, a variety of biological phenomena can be traced back to evolutionary adaptations of few conserved molecular pathways that converge on chromatin. For these reasons chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, flies, plants and humans. Many more fascinating examples of epigenetic plasticity lie outside the realm of model organisms and have so far been only sporadically investigated at a molecular level; however, recent progress on sequencing technology and genome editing tools have begun to blur the lines between model and non-model organisms, opening numerous new avenues for investigation. Here, I review examples of epigenetic phenomena in non-model organisms that have emerged as potential experimental systems, including social insects, fish and flatworms, and are becoming accessible to molecular approaches.

  2. Common non-epigenetic drugs as epigenetic modulators.

    Science.gov (United States)

    Lötsch, Jörn; Schneider, Gisbert; Reker, Daniel; Parnham, Michael J; Schneider, Petra; Geisslinger, Gerd; Doehring, Alexandra

    2013-12-01

    Epigenetic effects are exerted by a variety of factors and evidence increases that common drugs such as opioids, cannabinoids, valproic acid, or cytostatics may induce alterations in DNA methylation patterns or histone conformations. These effects occur via chemical structural interactions with epigenetic enzymes, through interactions with DNA repair mechanisms. Computational predictions indicate that one-twentieth of all drugs might potentially interact with human histone deacetylase, which was prospectively experimentally verified for the compound with the highest predicted interaction probability. These epigenetic effects add to wanted and unwanted drug effects, contributing to mechanisms of drug resistance or disease-related and unrelated phenotypes. Because epigenetic changes might be transmitted to offspring, the need for reliable and cost-effective epigenetic screening tools becomes acute.

  3. Epigenetics, Behaviour, and Health

    Directory of Open Access Journals (Sweden)

    Szyf Moshe

    2008-03-01

    Full Text Available The long-term effects of behaviour and environmental exposures, particularly during childhood, on health outcomes are well documented. Particularly thought provoking is the notion that exposures to different social environments have a long-lasting impact on human physical health. However, the mechanisms mediating the effects of the environment are still unclear. In the last decade, the main focus of attention was the genome, and interindividual genetic polymorphisms were sought after as the principal basis for susceptibility to disease. However, it is becoming clear that recent dramatic increases in the incidence of certain human pathologies, such as asthma and type 2 diabetes, cannot be explained just on the basis of a genetic drift. It is therefore extremely important to unravel the molecular links between the "environmental" exposure, which is believed to be behind this emerging incidence in certain human pathologies, and the disease's molecular mechanisms. Although it is clear that most human pathologies involve long-term changes in gene function, these might be caused by mechanisms other than changes in the deoxyribonucleic acid (DNA sequence. The genome is programmed by the epigenome, which is composed of chromatin and a covalent modification of DNA by methylation. It is postulated here that "epigenetic" mechanisms mediate the effects of behavioural and environmental exposures early in life, as well as lifelong environmental exposures and the susceptibility to disease later in life. In contrast to genetic sequence differences, epigenetic aberrations are potentially reversible, raising the hope for interventions that will be able to reverse deleterious epigenetic programming.

  4. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  5. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  6. [Epigenetic dysregulation in myelodysplastic syndrome].

    Science.gov (United States)

    Sashida, Goro; Iwama, Atsushi

    2015-02-01

    Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia. Various epigenetic regulators are mutated in MDS patients, indicating that accumulation of epigenetic alterations together with genetic alterations plays a crucial role in the development of MDS.

  7. Epigenetic mechanisms in epilepsy.

    Science.gov (United States)

    Kobow, Katja; Blümcke, Ingmar

    2014-01-01

    In humans, genomic DNA is organized in 23 chromosome pairs coding for roughly 25,000 genes. Not all of them are active at all times. During development, a broad range of different cell types needs to be generated in a highly ordered and reproducible manner, requiring selective gene expression programs. Epigenetics can be regarded as the information management system that is able to index or bookmark distinct regions in our genome to regulate the readout of DNA. It further comprises the molecular memory of any given cell, allowing it to store information of previously experienced external (e.g., environmental) or internal (e.g., developmental) stimuli, to learn from this experience and to respond. The underlying epigenetic mechanisms can be synergistic, antagonistic, or mutually exclusive and their large variety combined with the variability and interdependence is thought to provide the molecular basis for any phenotypic variation in physiological and pathological conditions. Thus, widespread reconfiguration of the epigenome is not only a key feature of neurodevelopment, brain maturation, and adult brain function but also disease.

  8. An improved algorithm of fiber tractography demonstrates postischemic cerebral reorganization

    Science.gov (United States)

    Liu, Xiao-dong; Lu, Jie; Yao, Li; Li, Kun-cheng; Zhao, Xiao-jie

    2008-03-01

    In vivo white matter tractography by diffusion tensor imaging (DTI) accurately represents the organizational architecture of white matter in the vicinity of brain lesions and especially ischemic brain. In this study, we suggested an improved fiber tracking algorithm based on TEND, called TENDAS, for tensor deflection with adaptive stepping, which had been introduced a stepping framework for interpreting the algorithm behavior as a function of the tensor shape (linear-shaped or not) and tract history. The propagation direction at each step was given by the deflection vector. TENDAS tractography was used to examine a 17-year-old recovery patient with congenital right hemisphere artery stenosis combining with fMRI. Meaningless picture location was used as spatial working memory task in this study. We detected the shifted functional localization to the contralateral homotypic cortex and more prominent and extensive left-sided parietal and medial frontal cortical activations which were used directly as seed mask for tractography for the reconstruction of individual spatial parietal pathways. Comparing with the TEND algorithms, TENDAS shows smoother and less sharp bending characterization of white matter architecture of the parietal cortex. The results of this preliminary study were twofold. First, TENDAS may provide more adaptability and accuracy in reconstructing certain anatomical features, whereas it is very difficult to verify tractography maps of white matter connectivity in the living human brain. Second, our study indicates that combination of TENDAS and fMRI provide a unique image of functional cortical reorganization and structural modifications of postischemic spatial working memory.

  9. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  10. Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment.

    Science.gov (United States)

    Powell, Weston T; LaSalle, Janine M

    2015-10-15

    The circadian cycle is a genetically encoded clock that drives cellular rhythms of transcription, translation and metabolism. The circadian clock interacts with the diurnal environment that also drives transcription and metabolism during light/dark, sleep/wake, hot/cold and feast/fast daily and seasonal cycles. Epigenetic regulation provides a mechanism for cells to integrate genetic programs with environmental signals in order produce an adaptive and consistent output. Recent studies have revealed that DNA methylation is one epigenetic mechanism that entrains the circadian clock to a diurnal environment. We also review recent circadian findings in the epigenetic neurodevelopmental disorders Prader-Willi, Angelman and Rett syndromes and hypothesize a link between optimal brain development and intact synchrony between circadian and diurnal rhythms. PMID:26105183

  11. An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

    Science.gov (United States)

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2015-12-01

    Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

  12. Chromatin, epigenetics and stem cells.

    Science.gov (United States)

    Roloff, Tim C; Nuber, Ulrike A

    2005-03-01

    Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. PMID:15819395

  13. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    Directory of Open Access Journals (Sweden)

    Kristina Budimir

    2013-06-01

    Full Text Available Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactivates. Its influence can be seen on productive and reproductive traits. Discovering new imprinted genes is important because of their conservation and understanding their function.

  14. Epigenetic Alterations Associated with War Trauma and Childhood Maltreatment.

    Science.gov (United States)

    Ramo-Fernández, Laura; Schneider, Anna; Wilker, Sarah; Kolassa, Iris-Tatjana

    2015-10-01

    Survivors of war trauma or childhood maltreatment are at increased risk for trauma-spectrum disorders such as post-traumatic stress disorder (PTSD). In addition, traumatic stress has been associated with alterations in the neuroendocrine and the immune system, enhancing the risk for physical diseases. Traumatic experiences might even affect psychological as well as biological parameters in the next generation, i.e. traumatic stress might have transgenerational effects. This article outlines how epigenetic processes, which represent a pivotal biological mechanism for dynamic adaptation to environmental challenges, might contribute to the explanation of the long-lasting and transgenerational effects of trauma. In particular, epigenetic alterations in genes regulating the hypothalamus-pituitary-adrenal axis as well as the immune system have been observed in survivors of childhood and adult trauma. These changes could result in enduring alterations of the stress response as well as the physical health risk. Furthermore, the effects of parental trauma could be transmitted to the next generation by parental distress and the pre- and postnatal environment, as well as by epigenetic marks transmitted via the germline. While epigenetic research has a high potential of advancing our understanding of the consequences of trauma, the findings have to be interpreted with caution, as epigenetics only represent one piece of a complex puzzle of interacting biological and environmental factors. Copyright © 2015 John Wiley & Sons, Ltd.

  15. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM

    DEFF Research Database (Denmark)

    Barrès, Romain; Zierath, Juleen R

    2016-01-01

    Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins....... Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response...... to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding...

  16. Specification and epigenetic programming of the human germ line.

    Science.gov (United States)

    Tang, Walfred W C; Kobayashi, Toshihiro; Irie, Naoko; Dietmann, Sabine; Surani, M Azim

    2016-10-01

    Primordial germ cells (PGCs), the precursors of sperm and eggs, are established in perigastrulation-stage embryos in mammals. Signals from extra-embryonic tissues induce a unique gene regulatory network in germline-competent cells for PGC specification. This network also initiates comprehensive epigenome resetting, including global DNA demethylation and chromatin reorganization. Mouse germline development has been studied extensively, but the extent to which such knowledge applies to humans was unclear. Here, we review the latest advances in human PGC specification and epigenetic reprogramming. The overall developmental dynamics of human and mouse germline cells appear to be similar, but there are crucial mechanistic differences in PGC specification, reflecting divergence in the regulation of pluripotency and early development.

  17. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente;

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...... with cryopreserved/thawed embryos results in a higher risk of large-for-gestational age babies, which may be due to epigenetic modification. Further animal studies have shown altered gene expression profiles in offspring conceived by ART related to altered glucose metabolism. It is controversial whether human...... adolescents conceived by ART have altered lipid and glucose profiles and thereby a higher long-term risk of cardiovascular disease and diabetes. This commentary describes the basic concepts of epigenetics and gives a short overview of the existing literature on the association between imprinting disorders...

  18. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob;

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...... to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant...... for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic...

  19. Epigenetics of sleep and chronobiology.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-03-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.

  20. Epigenetics of sleep and chronobiology.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-03-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging. PMID:24477387

  1. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    M.L. de Groote; P.J. Verschure; M.G. Rots

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  2. Epigenetic Mechanisms in Penile Carcinoma

    Directory of Open Access Journals (Sweden)

    Hellen Kuasne

    2013-05-01

    Full Text Available Penile carcinoma (PeCa represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations in specific genes in a limited number of cases. This review aims to provide an overview of the current knowledge of the epigenetic alterations in PeCa and the promising results in this field. The identification of epigenetically altered genes in PeCa is an important step in understanding the mechanisms involved in this unexplored disease.

  3. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  4. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    Science.gov (United States)

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans.

  5. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Directory of Open Access Journals (Sweden)

    Penny J Tricker

    2015-09-01

    Full Text Available The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  6. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Stock dividends and splits; reorganizations... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10 Stock dividends and splits; reorganizations. (a) The acquisition of voting securities pursuant to a stock split...

  7. Rotational reorganization of doped cholesteric liquid crystalline films

    NARCIS (Netherlands)

    Eelkema, R.; M. Pollard, M.; Katsonis, N.; Vicario, J.; J. Broer, D.; Feringa, B.L.

    2006-01-01

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pi

  8. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow.

  9. Exploiting epigenetic vulnerabilities for cancer therapeutics.

    Science.gov (United States)

    Mair, Barbara; Kubicek, Stefan; Nijman, Sebastian M B

    2014-03-01

    Epigenetic deregulation is a hallmark of cancer, and there has been increasing interest in therapeutics that target chromatin-modifying enzymes and other epigenetic regulators. The rationale for applying epigenetic drugs to treat cancer is twofold. First, epigenetic changes are reversible, and drugs could therefore be used to restore the normal (healthy) epigenetic landscape. However, it is unclear whether drugs can faithfully restore the precancerous epigenetic state. Second, chromatin regulators are often mutated in cancer, making them attractive drug targets. However, in most instances it is unknown whether cancer cells are addicted to these mutated chromatin proteins, or whether their mutation merely results in epigenetic instability conducive to the selection of secondary aberrations. An alternative incentive for targeting chromatin regulators is the exploitation of cancer-specific vulnerabilities, including synthetic lethality, caused by epigenetic deregulation. We review evidence for the hypothesis that mechanisms other than oncogene addiction are a basis for the application of epigenetic drugs, and propose future research directions.

  10. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. PMID:26822440

  11. Epigenetics and Breast Cancers

    Directory of Open Access Journals (Sweden)

    An T. Vo

    2012-01-01

    Full Text Available Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2, phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM to 5′-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes.

  12. Perilesional reorganization of motor function in stroke patients

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang

    2010-01-01

    Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke rehabilitation can be established when detailed mechanisms of recovery are clarified. In addition, studies at the subcortical level remain in the early stages. Therefore, the present study suggested that additional investigations should focus on perilesional reorganization at the subcortical level, identifying the critical period for this mechanism and determining treatment strategies and modalities to facilitate development. The present study reviews literature focused on perilesional reorganization in stroke patients with regard to demonstration, clinical characteristics,and rehabilitative aspects, as well as previous studies of perilesional reorganization at cortical and subcortical levels.

  13. Evolution or adaptation? What do heritable adaptive changes imply?

    OpenAIRE

    M. Kemal Irmak

    2014-01-01

    Interactions between environmental factors and epigenetic inheritance system produce a great deal of variation from one geographic region to another in human craniofacial morphology, skin color, hair form, stature and body proportions. In this system, while environmental factors produce modifications in the body, they simultaneously induce long-term epigenetic modifications in the germ cells that are inherited to offspring. This kind of heritable changes is called biological adaptation. It wa...

  14. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development

    OpenAIRE

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H

    2015-01-01

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented ...

  15. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  16. 26 CFR 54.4980B-9 - Business reorganizations and employer withdrawals from multiemployer plans.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Business reorganizations and employer...-9 Business reorganizations and employer withdrawals from multiemployer plans. The following... affected qualified beneficiaries in the context of business reorganizations and employer withdrawals...

  17. Epigenetic mechanisms in penile carcinoma

    DEFF Research Database (Denmark)

    Kuasne, Hellen; Marchi, Fabio Albuquerque; Rogatto, Silvia Regina;

    2013-01-01

    Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in diffe......Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity...... in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including...... cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations...

  18. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  19. Epigenetics and assisted reproductive technologies.

    Science.gov (United States)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv B; Wennerholm, Ulla-Britt; Söderström-Anttila, Viveca; Bergh, Christina; Aittomäki, Kristiina

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development, coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been associated with ART techniques, but disentangling the influence of the ART procedures per se from the effect of the reproductive disease of the parents is a challenge. Epidemiological human studies have shown altered birthweight profiles in ART compared with spontaneously conceived singletons. Conception with cryopreserved/thawed embryos results in a higher risk of large-for-gestational-age babies, which may be due to epigenetic modification. Further animal studies have shown altered gene expression profiles in offspring conceived by ART related to altered glucose metabolism. It is controversial whether human adolescents conceived by ART have altered lipid and glucose profiles and thereby a higher long-term risk of cardiovascular disease and diabetes. This commentary describes the basic concepts of epigenetics and gives a short overview of the existing literature on the association between imprinting disorders, epigenetic modification and ART. PMID:26458360

  20. Epigenetic regulation in Parkinson's disease.

    Science.gov (United States)

    Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Ross, Owen A

    2016-10-01

    Recent efforts have shed new light on the epigenetic mechanisms driving gene expression alterations associated with Parkinson's disease (PD) pathogenesis. Changes in gene expression are a well-established cause of PD, and epigenetic mechanisms likely play a pivotal role in regulation. Studies in families with PD harboring duplications and triplications of the SNCA gene have demonstrated that gene dosage is associated with increased expression of both SNCA mRNA and protein, and correlates with a fulminant disease course. Furthermore, it is postulated that even subtle changes in SNCA expression caused by common variation is associated with disease risk. Of note, genome-wide association studies have identified over 30 loci associated with PD with most signals located in non-coding regions of the genome, thus likely influencing transcript expression levels. In health, epigenetic mechanisms tightly regulate gene expression, turning genes on and off to balance homeostasis and this, in part, explains why two cells with the same DNA sequence will have different RNA expression profiles. Understanding this phenomenon will be crucial to our interpretation of the selective vulnerability observed in neurodegeneration and specifically dopaminergic neurons in the PD brain. In this review, we discuss epigenetic mechanisms, such as DNA methylation and histone modifications, involved in regulating the expression of genes relevant to PD, RNA-based mechanisms, as well as the effect of toxins and potential epigenetic-based treatments for PD.

  1. Epigenetic Disregulation in Oral Cancer

    Directory of Open Access Journals (Sweden)

    Stefania Staibano

    2012-02-01

    Full Text Available Squamous cell carcinoma of the oral region (OSCC is one of the most common and highly aggressive malignancies worldwide, despite the fact that significant results have been achieved during the last decades in its detection, prevention and treatment. Although many efforts have been made to define the molecular signatures that identify the clinical outcome of oral cancers, OSCC still lacks reliable prognostic molecular markers. Scientific evidence indicates that transition from normal epithelium to pre-malignancy, and finally to oral carcinoma, depends on the accumulation of genetic and epigenetic alterations in a multistep process. Unlike genetic alterations, epigenetic changes are heritable and potentially reversible. The most common examples of such changes are DNA methylation, histone modification, and small non-coding RNAs. Although several epigenetic changes have been currently linked to OSCC initiation and progression, they have been only partially characterized. Over the last decade, it has been demonstrated that especially aberrant DNA methylation plays a critical role in oral cancer. The major goal of the present paper is to review the recent literature about the epigenetic modifications contribution in early and later phases of OSCC malignant transformation; in particular we point out the current evidence of epigenetic marks as novel markers for early diagnosis and prognosis as well as potential therapeutic targets in oral cancer.

  2. [Advances in epigenetic researches of Toxoplasma gondii].

    Science.gov (United States)

    Yang, Pei-Liang; Chen, Xiao-Guang

    2012-06-30

    Toxoplasma gondii undergoes a complex life cycle that involves multiple development stages, hosts and environments. The ability to transform from one stage to another and adapt to changing environments demands precise regulation of gene expression. Bioinformatic surveys of the sequenced genomes of T. gondii revealed a peculiar absence of DNA-binding transcription factors that are well-conserved from yeast through humans, but a wealth of epigenetic machinery present in T. gondii. Evidence from reports demonstrates that remodeling of the chromatin structure particularly through post-translational modifications of histones, such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, is potentially a major process that coordinates regulation of its gene expression. In addition, no-coding RNAs may play an important role in modulating gene expression of T. gondii. These results provide reliable foundations for prevention of toxoplasmosis by revealing its pathogenic mechanism. PMID:23072142

  3. Epigenetic regulation in mammalian preimplantation embryo development

    Directory of Open Access Journals (Sweden)

    Shi Lingjun

    2009-06-01

    Full Text Available Abstract Preimplantation embryo development involves four stages: fertilization, cell cleavage, morula and blastocyst formation. During these stages, maternal and zygotic epigenetic factors play crucial roles. The gene expression profile is changed dramatically, chromatin is modified and core histone elements undergo significant changes. Each preimplantation embryo stage has its own characteristic epigenetic profile, consistent with the acquisition of the capacity to support development. Moreover, histone modifications such as methylation and acetylation as well as other epigenetic events can act as regulatory switches of gene transcription. Because the epigenetic profile is largely related to differentiation, epigenetic dysfunction can give rise to developmental abnormalities. Thus, epigenetic profiling of the embryo is of pivotal importance clinically. Given the importance of these aspects, this review will mainly focus on the epigenetic profile during preimplantation embryo development, as well as interactions between epigenetic and genetic regulation in these early developmental stages.

  4. The cancer epigenome : towards epigenetic therapy

    NARCIS (Netherlands)

    Geutjes, E.J.A.J.

    2011-01-01

    Epigenetic gene silencing occurs in many important biological processes including differentiation, senescence and imprinting. In most cases, epigenetic silencing is orchestrated by an intricate interplay between DNA methylation, histone modifications and nucleosome remodeling that act in concert to

  5. Epigenetic changes in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Yan Jia; Mingzhou Guo

    2013-01-01

    Epigenetic changes frequently occur in human colorectal cancer.Genomic global hypomethylation,gene promoter region hypermethylation,histone modifications,and alteration of miRNA patterns are major epigenetic changes in colorectal cancer.Loss of imprinting (LOI) is associated with colorectal neoplasia.Folate deficiency may cause colorectal carcinogenesis by inducing gene-specific hypermethylation and genomic global hypomethylation.HDAC inhibitors and demethylating agents have been approved by the FDA for myelodysplastic syndrome and leukemia treatment.Non-coding RNA is regarded as another kind of epigenetic marker in colorectal cancer.This review is mainly focused on DNA methylation,histone modification,and microRNA changes in colorectal cancer.

  6. Epigenetics in heart failure phenotypes.

    Science.gov (United States)

    Berezin, Alexander

    2016-12-01

    Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF. PMID:27335803

  7. Epigenetic biomarkers in liver cancer.

    Science.gov (United States)

    Banaudha, Krishna K; Verma, Mukesh

    2015-01-01

    Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.

  8. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  9. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities.

    Science.gov (United States)

    Baseler, Heidi A; Brewer, Alyssa A; Sharpe, Lindsay T; Morland, Antony B; Jägle, Herbert; Wandell, Brian A

    2002-04-01

    We describe a compelling demonstration of large-scale developmental reorganization in the human visual pathways. The developmental reorganization was observed in rod monochromats, a rare group of congenitally colorblind individuals who virtually lack cone photoreceptor function. Normal controls had a cortical region, spanning several square centimeters, that responded to signals initiated in the all-cone foveola but was inactive under rod viewing conditions; in rod monochromats this cortical region responded powerfully to rod-initiated signals. The measurements trace a causal pathway that begins with a genetic anomaly that directly influences sensory cells and ultimately results in a substantial central reorganization. PMID:11914722

  10. Case managers reorganize to challenge claims denials.

    Science.gov (United States)

    1999-08-01

    A combination of diminished reimbursement, decreased funding for residency programs, an epidemic of claims denials, and the skilled nursing crisis has imperiled teaching hospitals across the country. Increasingly, these hospitals are looking to case management departments as potential saviors. In the short term, that could mean more staff and a beefier budget, but if your department can't produce, cuts later on could be drastic. The University of Pennsylvania Health System in Philadelphia lost $90 million in FY1998 and responded by cutting 1,100 positions--9% of its work force. The case management department lost eight positions and is trying to take up the slack with a massive reorganization of its care delivery system and a rigorous education program designed to reduce claims denials. At Georgetown University Medical Center in Washington, DC, however, case management staff and resources have been increased for now. The department is using its new-found prosperity to thoroughly screen all incoming patients for appropriateness of admission, upgrade its discharge planning capabilities, and hire a full-time employee to appeal denied claims. PMID:10557727

  11. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  12. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  13. Epigenetic phenomena and the evolution of plant allopolyploids

    Institute of Scientific and Technical Information of China (English)

    BaoLiu; JonathanF.Wendel

    2005-01-01

    Allopolyploid speciation is widespread in plants, yet the molecular requirements for successful orchestration of coordinated gene expression for two divergent and reunited genomes are poorly understood. Recent studies in several plant systems have revealed that allopolyploid genesis under both synthetic and natural conditions often is accompanied by rapid and sometimes evolutionarily conserved epigeuetic changes, including alteration in cytosine methylation patterns, rapid silencing in ribosomal RNA and proteincoding genes, and de-repression of dormant transposable elements. These changes are inter-related and likely arise from chromatin remodeling and its effects on epigenetic codes during and subsequent to allopolyploid formation. Epigenetic modifications could produce adaptive epimutations and novel phenotypes, some of which may be evolutionarily stable for millions of years, thereby representing a vast reservoir of latent variation that may be episodically released and made visible to selection. This epigenetic variation may contribute to several important attributes of allopolyploidy, including functional diversification or subfunctionalization of duplicated genes, genetic and cytological diploidization, and quenching of incompatible inter-genomic interactions that are characteristic of allopolyploids. It is likely that the evolutionary success of allopolyploidy is in part attributatble to epigenetic phenomena that we are only just beginning to understand.

  14. Epigenetic inheritance and evolution: A paternal perspective on dietary influences.

    Science.gov (United States)

    Soubry, Adelheid

    2015-07-01

    The earliest indications for paternally induced transgenerational effects from the environment to future generations were based on a small number of long-term epidemiological studies and some empirical observations. Only recently have experimental animal models and a few analyses on human data explored the transgenerational nature of phenotypic changes observed in offspring. Changes include multiple metabolic disorders, cancer and other chronic diseases. These phenotypes cannot always be explained by Mendelian inheritance, DNA mutations or genetic damage. Hence, a new compelling theory on epigenetic inheritance is gaining interest, providing new concepts that extend Darwin's evolutionary theory. Epigenetic alterations or "epimutations" are being considered to explain transgenerational inheritance of parentally acquired traits. The responsible mechanisms for these epimutations include DNA methylation, histone modification, and RNA-mediated effects. This review explores the literature on a number of time-dependent environmentally induced epigenetic alterations, specifically those from dietary exposures. We suggest a role for the male germ line as one of nature's tools to capture messages from our continuously changing environment and to transfer this information to subsequent generations. Further, we open the discussion that the paternally inherited epigenetic information may contribute to evolutionary adaptation.

  15. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  16. Epigenetic drift in the aging genome

    DEFF Research Database (Denmark)

    Tan, Qihua; Heijmans, Bastiaan T; Hjelmborg, Jacob V B;

    2016-01-01

    BACKGROUND: Current epigenetic studies on aging are dominated by the cross-sectional design that correlates subjects' ages or age groups with their measured epigenetic profiles. Such studies have been more aimed at age prediction or building up the epigenetic clock of age rather than focusing on ...

  17. A Topology Reorganization Scheme for Reliable Communication in Underwater Wireless Sensor Networks Affected by Shadow Zones

    Directory of Open Access Journals (Sweden)

    Mari Carmen Domingo

    2009-10-01

    Full Text Available Effective solutions should be devised to handle the effects of shadow zones in Underwater Wireless Sensor Networks (UWSNs. An adaptive topology reorganization scheme that maintains connectivity in multi-hop UWSNs affected by shadow zones has been developed in the context of two Spanish-funded research projects. A mathematical model has been proposed to find the optimal location for sensors with two objectives: the minimization of the transmission loss and the maintenance of network connectivity. The theoretical analysis and the numerical evaluations reveal that our scheme reduces the transmission loss under all propagation phenomena scenarios for all water depths in UWSNs and improves the signal-to-noise ratio.

  18. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    Directory of Open Access Journals (Sweden)

    Sarathi Kundu

    2013-09-01

    Full Text Available Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001 substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  19. Predicting response to epigenetic therapy

    DEFF Research Database (Denmark)

    Treppendahl, Marianne B; Sommer Kristensen, Lasse; Grønbæk, Kirsten

    2014-01-01

    Drugs targeting the epigenome are new promising cancer treatment modalities; however, not all patients receive the same benefit from these drugs. In contrast to conventional chemotherapy, responses may take several months after the initiation of treatment to occur. Accordingly, identification of ......-approved epigenetic drugs....

  20. Mass spectrometry in epigenetic research

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2010-01-01

    -based proteomics techniques to histone biology has gained new insight into the function of the nucleosome: Novel posttranslational modifications have been discovered at the lateral surface of the nucleosome. These modifications regulate histone-DNA interactions, adding a new dimension to the epigenetic regulation...

  1. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  2. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  3. Epigenetics and Peripheral Artery Disease.

    Science.gov (United States)

    Golledge, Jonathan; Biros, Erik; Bingley, John; Iyer, Vikram; Krishna, Smriti M

    2016-04-01

    The term epigenetics is usually used to describe inheritable changes in gene function which do not involve changes in the DNA sequence. These typically include non-coding RNAs, DNA methylation and histone modifications. Smoking and older age are recognised risk factors for peripheral artery diseases, such as occlusive lower limb artery disease and abdominal aortic aneurysm, and have been implicated in promoting epigenetic changes. This brief review describes studies that have associated epigenetic factors with peripheral artery diseases and investigations which have examined the effect of epigenetic modifications on the outcome of peripheral artery diseases in mouse models. Investigations have largely focused on microRNAs and have identified a number of circulating microRNAs associated with human peripheral artery diseases. Upregulating or antagonising a number of microRNAs has also been reported to limit aortic aneurysm development and hind limb ischemia in mouse models. The importance of DNA methylation and histone modifications in peripheral artery disease has been relatively little studied. Whether circulating microRNAs can be used to assist identification of patients with peripheral artery diseases and be modified in order to improve the outcome of peripheral artery disease will require further investigation.

  4. Epigenetic Placental Programming of Preeclampsia

    Science.gov (United States)

    Preeclampsia (PE) affects 8-10% of women in the US and long-term consequences include subsequent development of maternal hypertension and hypertension in offspring. As methylation patterns are established during fetal life, we focused on epigenetic alterations in DNA methylation as a plausible expla...

  5. Cytomegalovirus infection accelerates epigenetic aging.

    Science.gov (United States)

    Kananen, Laura; Nevalainen, Tapio; Jylhävä, Juulia; Marttila, Saara; Hervonen, Antti; Jylhä, Marja; Hurme, Mikko

    2015-12-01

    Epigenetic mechanisms such as DNA methylation (DNAm) have a central role in the regulation of gene expression and thereby in cellular differentiation and tissue homeostasis. It has recently been shown that aging is associated with profound changes in DNAm. Several of these methylation changes take place in a clock-like fashion, i.e. correlating with the calendar age of an individual. Thus, the epigenetic clock based on these kind of DNAm changes could provide a new biomarker for human aging process, i.e. being able to separate the calendar and biological age. Information about the correlation of the time indicated by this clock to the various aspects of immunosenescence is still missing. As chronic cytomegalovirus (CMV) infection is probably one of the major driving forces of immunosenescence, we now have analyzed the correlation of CMV seropositivity with the epigenetic age in the Vitality 90+cohort 1920 (122 nonagenarians and 21 young controls, CMV seropositivity rates 95% and 57%, respectively). The data showed that CMV seropositivity was associated with a higher epigenetic age in both of these age groups (median 26.5 vs. 24.0 (p < 0.02,Mann–Whitney U-test) in the young controls and 76.0 vs. 70.0 (p < 0.01) in the nonagenarians). Thus, these data provide a new aspect to the CMV associated pathological processes. PMID:26485162

  6. Alcohol Metabolism and Epigenetics Changes

    Science.gov (United States)

    Zakhari, Samir

    2013-01-01

    Metabolites, including those generated during ethanol metabolism, can impact disease states by binding to transcription factors and/or modifying chromatin structure, thereby altering gene expression patterns. For example, the activities of enzymes involved in epigenetic modifications such as DNA and histone methylation and histone acetylation, are influenced by the levels of metabolites such as nicotinamide adenine dinucleotide (NAD), adenosine triphosphate (ATP), and S-adenosylmethionine (SAM). Chronic alcohol consumption leads to significant reductions in SAM levels, thereby contributing to DNA hypomethylation. Similarly, ethanol metabolism alters the ratio of NAD+ to reduced NAD (NADH) and promotes the formation of reactive oxygen species and acetate, all of which impact epigenetic regulatory mechanisms. In addition to altered carbohydrate metabolism, induction of cell death, and changes in mitochondrial permeability transition, these metabolism-related changes can lead to modulation of epigenetic regulation of gene expression. Understanding the nature of these epigenetic changes will help researchers design novel medications to treat or at least ameliorate alcohol-induced organ damage. PMID:24313160

  7. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  8. Functional reorganization of sensorimotor cortex in early Parkinson disease.

    OpenAIRE

    Kojovic, M.; Bologna, M; Kassavetis, P.; Murase, N.; Palomar, F. J.; Berardelli, A; Rothwell, J C; Edwards, M. J.; Bhatia, K P

    2012-01-01

    OBJECTIVE: Compensatory reorganization of the nigrostriatal system is thought to delay the onset of symptoms in early Parkinson disease (PD). Here we sought evidence that compensation may be a part of a more widespread functional reorganization in sensorimotor networks, including primary motor cortex. METHODS: Several neurophysiologic measures known to be abnormal in the motor cortex (M1) of patients with advanced PD were tested on the more and less affected side of 16 newly diagnosed and dru...

  9. An Analysis of the Bankruptcy Reorganization Procedure in China

    OpenAIRE

    Fei Leng

    2013-01-01

    This paper analyzes the reorganization procedure introduced into the Chinese bankruptcy system in 2007. It shows that managers devote more effort during the reorganization than before the bankruptcy when the emergence value of the bankrupt firm is substantial. In addition, in the pre-bankruptcy period, managers were shown to input less effort under the new law than under the old law. Finally, the paper demonstrates that the market interest rate under the new bankruptcy law is not necessarily ...

  10. Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2014-12-01

    Full Text Available Epigenetic mechanisms regulate gene expression, thereby mediating the interaction between environment, genotype and phenotype. Changes to epigenetic regulation of genes may be heritable, permitting rapid adaptation of a species to environmental cues. However, most of the current understanding of epigenetic gene regulation has been gained from studies of mice and humans, with only a limited understanding of the conservation of epigenetic mechanisms across divergent taxa. The relative ease at which genome sequence data is now obtained and the advancements made in epigenomics techniques for non-model species provides a basis for carrying out comparative epigenomic studies across a wider range of species, making it possible to start unraveling the evolution of epigenetic mechanisms. We review the current knowledge of epigenetic mechanisms obtained from studying model organisms, give an example of how comparative epigenomics using non-model species is helping to trace the evolutionary history of X chromosome inactivation in mammals and explore the opportunities to study comparative epigenomics in biological systems displaying adaptation between species, such as the immune system and sex determination.

  11. An update on the epigenetics of glioblastomas.

    Science.gov (United States)

    Ferreira, Wallax Augusto Silva; Pinheiro, Danilo do Rosário; Costa Junior, Carlos Antonio da; Rodrigues-Antunes, Symara; Araújo, Mariana Diniz; Leão Barros, Mariceli Baia; Teixeira, Adriana Corrêa de Souza; Faro, Thamirys Aline Silva; Burbano, Rommel Rodriguez; Oliveira, Edivaldo Herculano Correa de; Harada, Maria Lúcia; Borges, Bárbara do Nascimento

    2016-09-01

    Glioblastomas, also known as glioblastoma multiforme (GBM), are the most aggressive and malignant type of primary brain tumor in adults, exhibiting notable variability at the histopathological, genetic and epigenetic levels. Recently, epigenetic alterations have emerged as a common hallmark of many tumors, including GBM. Considering that a deeper understanding of the epigenetic modifications that occur in GBM may increase the knowledge regarding the tumorigenesis, progression and recurrence of this disease, in this review we discuss the recent major advances in GBM epigenetics research involving histone modification, glioblastoma stem cells, DNA methylation, noncoding RNAs expression, including their main alterations and the use of epigenetic therapy as a valid option for GBM treatment. PMID:27585647

  12. Epigenetics of hepatocellular carcinoma: a new horizon

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-ren; SHI Ying-hong; PENG Yuan-fei; FAN Jia

    2012-01-01

    Epigenetic changes refer to stable alterations in gene expression with no underlying modifications in the genetic sequence itself.It has become clear that not only gene variations but also epigenetic modifications may contribute to varied diseases,including cancer.This review will provide an overview of how epigenetic factors,including genomic DNA methylation,histone modifications,and miRNA regulation,contribute to hepatocellular carcinoma (HCC) dissemination,invasion,and metastasis.Additionally,the reversal of dysregulated epigenetic changes has emerged as a potential strategy for the treatment of HCC,and we will summarize the latest epigenetic therapies for HCC.

  13. Epigenetics and psychoneuroimmunology: mechanisms and models.

    Science.gov (United States)

    Mathews, Herbert L; Janusek, Linda Witek

    2011-01-01

    In this Introduction to the Named Series "Epigenetics, Brain, Behavior, and Immunity" an overview of epigenetics is provided with a consideration of the nature of epigenetic regulation including DNA methylation, histone modification and chromatin re-modeling. Illustrative examples of recent scientific developments are highlighted to demonstrate the influence of epigenetics in areas of research relevant to those who investigate phenomena within the scientific discipline of psychoneuroimmunology. These examples are presented in order to provide a perspective on how epigenetic analysis will add insight into the molecular processes that connect the brain with behavior, neuroendocrine responsivity and immune outcome.

  14. Epigenetic Modifications: Therapeutic Potential in Cancer

    Directory of Open Access Journals (Sweden)

    Manisha Sachan

    2015-08-01

    Full Text Available Epigenetic modifications and alterations in chromatin structure and function contribute to the cumulative changes observed as normal cells undergo malignant transformation. These modifications and enzymes (DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases related to them have been deeply studied to develop new drugs, epigenome-targeted therapies and new diagnostic tools. Epigenetic modifiers aim to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. Four of them (azacitidine, decitabine, vorinostat and romidepsin are approved by the U.S. Food and Drug Administration. This article provides an overview about the known functional roles of epigenetic enzymes in cancer development.

  15. Epigenetic mechanisms of drug addiction.

    Science.gov (United States)

    Nestler, Eric J

    2014-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues, including brain. This has prompted recent research aimed at characterizing the influence of epigenetic regulatory events in mediating the lasting effects of drugs of abuse on the brain in animal models of drug addiction. This review provides a progress report of this still early work in the field. As will be seen, there is robust evidence that repeated exposure to drugs of abuse induces changes within the brain's reward regions in three major modes of epigenetic regulation-histone modifications such as acetylation and methylation, DNA methylation, and non-coding RNAs. In several instances, it has been possible to demonstrate directly the contribution of such epigenetic changes to addiction-related behavioral abnormalities. Studies of epigenetic mechanisms of addiction are also providing an unprecedented view of the range of genes and non-genic regions that are affected by repeated drug exposure and the precise molecular basis of that regulation. Work is now needed to validate key aspects of this work in human addiction and evaluate the possibility of mining this information to develop new diagnostic tests and more effective treatments for addiction syndromes. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. PMID:23643695

  16. The ambiguous nature of epigenetic responsibility.

    Science.gov (United States)

    Dupras, Charles; Ravitsky, Vardit

    2016-08-01

    Over the past decade, epigenetic studies have been providing further evidence of the molecular interplay between gene expression and its health outcomes on one hand, and the physical and social environments in which individuals are conceived, born and live on the other. As knowledge of epigenetic programming expands, a growing body of literature in social sciences and humanities is exploring the implications of this new field of study for contemporary societies. Epigenetics has been mobilised to support political claims, for instance, with regard to collective obligations to address socio-environmental determinants of health. The idea of a moral 'epigenetic responsibility' has been proposed, meaning that individuals and/or governments should be accountable for the epigenetic programming of children and/or citizens. However, these discussions have largely overlooked important biological nuances and ambiguities inherent in the field of epigenetics. In this paper, we argue that the identification and assignment of moral epigenetic responsibilities should reflect the rich diversity and complexity of epigenetic mechanisms, and not rely solely on a gross comparison between epigenetics and genetics. More specifically, we explore how further investigation of the ambiguous notions of epigenetic normality and epigenetic plasticity should play a role in shaping this emerging debate. PMID:27015741

  17. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  18. Transgenerational epigenetic inheritance: an open discussion.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2015-08-01

    Much controversy surrounds the idea of transgenerational epigenetics. Recent papers argue that epigenetic marks acquired through experience are passed to offspring, but as in much of the field of epigenetics, there is lack of precision in the definitions and perhaps too much eagerness to translate animal research to humans. Here, we review operational definitions of transgenerational inheritance and the processes of epigenetic programing during early development. Subsequently, based on this background, we critically examine some recent findings of studies investigating transgenerational inheritance. Finally, we discuss possible mechanisms that may explain transgenerational inheritance, including transmission of an epigenetic blueprint, which may predispose offspring to specific epigenetic patterning. Taken together, we conclude that presently, the evidence suggesting that acquired epigenetic marks are passed to the subsequent generation remains limited.

  19. Epigenetic variation: origin and transgenerational inheritance.

    Science.gov (United States)

    Becker, Claude; Weigel, Detlef

    2012-11-01

    Recent studies have revealed that epigenetic variation in plant populations exceeds genetic diversity and that it is influenced by the environment. Nevertheless, epigenetic differences are not entirely independent of shared ancestry. Epigenetic modifications have gained increasing attention, because one can now study their patterns across the entire genome and in many different individuals. Not only do epigenetic phenomena modulate the activity of the genome in response to environmental stimuli, but they also constitute a potential source of natural variation. Understanding the emergence and heritability of epigenetic variants is critical for understanding how they might become subject to natural selection and thus affect genetic diversity. Here we review progress in characterizing natural epigenetic variants in model and nonmodel plant species and how this work is helping to delineate the role of epigenetic changes in evolution.

  20. The epigenetics of multiple sclerosis and other related disorders.

    Science.gov (United States)

    van den Elsen, Peter J; van Eggermond, Marja C J A; Puentes, Fabiola; van der Valk, Paul; Baker, David; Amor, Sandra

    2014-03-01

    Multiple Sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system (CNS) gray and white matter. Although the cause of MS is unknown, it is widely appreciated that innate and adaptive immune processes contribute to its pathogenesis. These include microglia/macrophage activation, pro-inflammatory T-cell (Th1) responses and humoral responses. Additionally, there is evidence indicating that MS has a neurodegenerative component since neuronal and axonal loss occurs even in the absence of overt inflammation. These aspects also form the rationale for clinical management of the disease. However, the currently available therapies to control the disease are only partially effective at best indicating that more effective therapeutic solutions are urgently needed. It is appreciated that in the immune-driven and neurodegenerative processes MS-specific deregulation of gene expressions and resulting protein dysfunction are thought to play a central role. These deviations in gene expression patterns contribute to the inflammatory response in the CNS, and to neuronal or axonal loss. Epigenetic mechanisms control transcription of most, if not all genes, in nucleated cells including cells of the CNS and in haematopoietic cells. MS-specific alterations in epigenetic regulation of gene expression may therefore lie at the heart of the deregulation of gene expression in MS. As such, epigenetic mechanisms most likely play an important role in disease pathogenesis. In this review we discuss a role for MS-specific deregulation of epigenetic features that control gene expression in the CNS and in the periphery. Furthermore, we discuss the application of small molecule inhibitors that target the epigenetic machinery to ameliorate disease in experimental animal models, indicating that such approaches may be applicable to MS patients. PMID:25878004

  1. Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures.

    Science.gov (United States)

    Mirbahai, Leda; Chipman, James K

    2014-04-01

    Both genetic and epigenetic responses of organisms to environmental factors, including chemical exposures, influence adaptation, susceptibility to toxicity and biodiversity. In model organisms, it is established that epigenetic alterations, including changes to the methylome, can create a memory of the received signal. This is partly evidenced through the analysis of epigenetic differences that develop between identical twins throughout their lifetime. The epigenetic marks induce alterations to the gene expression profile, which, in addition to mediating homeostatic responses, have the potential to promote an abnormal physiology either immediately or at a later stage of development, for example leading to an adult onset of disease. Although this has been well established, epigenetic mechanisms are not considered in chemical risk assessment or utilised in the monitoring of the exposure and effects of chemicals and environmental change. In this review, epigenetic factors, specifically DNA methylation, are highlighted as mechanisms of adaptation and response to environmental factors and which, if persistent, have the potential, retrospectively, to reflect previous stress exposures. Thus, it is proposed that epigenetic "foot-printing" of organisms could identify classes of chemical contaminants to which they have been exposed throughout their lifetime. In some cases, the potential for persistent transgenerational modification of the epigenome may also inform on parental germ cell exposures. It is recommended that epigenetic mechanisms, alongside genetic mechanisms, should eventually be considered in environmental toxicity safety assessments and in biomonitoring studies. This will assist in determining the mode of action of toxicants, no observed adverse effect level and identification of biomarkers of toxicity for early detection and risk assessment in toxicology but there are critical areas that remain to be explored before this can be achieved.

  2. "Stress entropic load" as a transgenerational epigenetic response trigger.

    Science.gov (United States)

    Bienertová-Vašků, Julie; Nečesánek, Ivo; Novák, Jan; Vinklárek, Jan; Zlámal, Filip

    2014-03-01

    Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.

  3. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  4. Diabetes Mellitus and Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Bekir Engin Eser

    2016-06-01

    Full Text Available Diabetes Mellitus (DM is an important disease caused by insulin deficiency or insulin receptor resistance and characterized by hyperglycemia. The prevalence rate of DM is increasing rapidly worldwide and its associated complications affect the quality of life of patients adverse­ly. In addition, high medical costs for its treatment bring significant economic load on countries. Epigenetics is the reversible modifications on the genome, which lead to changes in gene expression without any alteration in the DNA sequence. Epigenetic modifications can easily be affected by environmental factors and abnormalities in these modifications have been linked to many diseases including cancer and neurodegenerative disorders. In this review, we will summarize the relationship of DM and its complications with DNA and RNA methylation, which are among the most important modifications.

  5. Epigenetics of the antibody response.

    Science.gov (United States)

    Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-09-01

    Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.

  6. Computational micromodel for epigenetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Karthika Raghavan

    Full Text Available Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  7. Longevity: epigenetic and biomolecular aspects.

    Science.gov (United States)

    Taormina, Giusi; Mirisola, Mario G

    2015-04-01

    Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity. PMID:25883209

  8. Epigenetic mechanisms in gastric cancer.

    Science.gov (United States)

    Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Calcagno, Danielle Queiroz; Wisnieski, Fernanda; Burbano, Rommel Rodriguez; Smith, Marilia Arruda Cardoso

    2012-06-01

    Cancer is considered one of the major health issues worldwide, and gastric cancer accounted for 8% of total cases and 10% of total deaths in 2008. Gastric cancer is considered an age-related disease, and the total number of newly diagnosed cases has been increasing as a result of the higher life expectancy. Therefore, the basic mechanisms underlying gastric tumorigenesis is worth investigation. This review provides an overview of the epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling complex and miRNA, involved in gastric cancer. As the studies in gastric cancer continue, the mapping of an epigenome code is not far for this disease. In conclusion, an epigenetic therapy might appear in the not too distant future.

  9. Epigenetic mechanisms in drug addiction

    OpenAIRE

    Renthal, William; Nestler, Eric J.

    2008-01-01

    Changes in gene expression in brain reward regions are thought to contribute to the pathogenesis and persistence of drug addiction. Recent studies have begun to focus on the molecular mechanisms by which drugs of abuse and related environmental stimuli, such as drug-associated cues or stress, converge on the genome to alter specific gene programs. Increasing evidence suggests that these stable gene expression changes in neurons are mediated in part by epigenetic mechanisms that alter chromati...

  10. Epigenetic Mechanisms of Drug Addiction

    OpenAIRE

    Nestler, Eric J.

    2013-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues,...

  11. Epigenetics of Sleep and Chronobiology

    OpenAIRE

    Qureshi, Irfan A.; Mehler, Mark F.

    2014-01-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are h...

  12. Stemming Epigenetics in Marine Stramenopiles

    OpenAIRE

    Maumus, Florian; Rabinowicz, Pablo; Bowler, Chris; Rivarola, Maximo

    2011-01-01

    Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ...

  13. Reorganization of neuronal circuits in growing visual cortex

    Science.gov (United States)

    Keil, Wolfgang; Loewel, Siegrid; Wolf, Fred; Kaschube, Matthias

    2009-03-01

    The dynamics of reorganization of large cortical circuits is rooted in plasticity of individual synapses, but rules governing the collective behavior of large networks of neurons are only poorly understood. The postnatal brain growth partly evoked by extensive formation of new synaptic connections may expose cortical areas to a 'natural perturbation' sufficiently strong to observe signatures of large scale reorganization. Quantifying large sets of imaging data from juvenile cat visual cortex, we observe a novel mode of reorganization of domains that prefer inputs from one eye or the other. Our theoretical analysis shows that this mode can be explained quantitatively by the so called Zigzag instability, a dynamical reorganization, well-known in the field of pattern formation in physics, by which 2D isotropic Turing patterns respond to an increase in their typical spatial scale with a zigzag-like bending of domains. We point out that this instability has in fact been predicted, albeit implicitly, by most models of visual cortical development that have been proposed so far. We conclude that cortical networks can undergo large scale reorganizations during normal postnatal development.

  14. Clinical implications of epigenetic alterations in human thoracic malignancies: epigenetic alterations in lung cancer.

    Science.gov (United States)

    Shinjo, Keiko; Kondo, Yutaka

    2012-01-01

    Besides known genetic aberrations, epigenetic alterations have emerged as common hallmarks of many cancer types, including lung cancer. Epigenetics is a process involved in gene regulation, mediated via DNA methylation, histone modification, chromatin remodeling, and functional noncoding RNAs, which influences the accessibility of the underlying DNA to transcriptional regulatory factors that activate or repress expression. Studies have shown that epigenetic dysregulation is associated with multiple steps during carcinogenesis. Since epigenetic therapy is now in clinical use in hematopoietic diseases and undergoing trials for lung cancer, a better understanding of epigenetic abnormalities is desired. Recent technologies for high-throughput genome-wide analyses for epigenetic modifications are promising and potent tools for understanding the global dysregulation of cancer epigenetics. In this chapter, studies of epigenetic abnormality and its clinical implication in lung cancers are discussed.

  15. Targeting DNA Methylation for Epigenetic Therapy

    Science.gov (United States)

    Yang, Xiaojing; Lay, Fides; Han, Han; Jones, Peter A.

    2010-01-01

    DNA methylation patterns are established during embryonic development and faithfully copied through somatic cell divisions. Based on our understanding of DNA methylation and other interrelated epigenetic modifications, a comprehensive view of the epigenetic landscape and cancer epigenome is evolving. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. During the last few decades, an increasing number of drugs targeting DNA methylation have been developed in an effort to increase efficacy, stability and to decrease toxicity. The earliest and the most successful epigenetic drug to date, 5-Azacytidine, is currently recommended as the first-line treatment for high risk myelodysplastic syndromes (MDS) patients. Encouraging results from clinical trials have prompted further efforts to elucidate epigenetic alterations in cancer and subsequently develop new epigenetic therapies. This review delineates the latest cancer epigenetic models, recent discovery of hypomethylation agents and their application in the clinic. PMID:20846732

  16. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    Science.gov (United States)

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area.

  17. Global epigenetic changes during somatic cell reprogramming to iPS cells

    Institute of Scientific and Technical Information of China (English)

    Anna Mattout; Alva Biran; Eran Meshorer

    2011-01-01

    Embryonic stem cells (ESCs) exhibit unique chromatin features,including a permissive transcriptional program and an open,decondensed chromatin state.Induced pluripotent stem cells (iPSCs),which are very similar to ESCs,hold great promise for therapy and basic research.However,the mechanisms by which reprogramming occurs and the chromatin organization that underlies the reprogramming process are largely unknown.Here we characterize and compare the epigenetic landscapes of partially and fully reprogrammed iPSCs to mouse embryonic fibroblasts (MEFs) and ESCs,which serves as a standard for pluripotency.Using immunofluorescence and biochemical fractionations,we analyzed the levels and distribution of a battery of histone modifications (H3ac,H4ac,H4KSac,H3Kgac,H3K27ac,H3K4me3,H3K36me2,H3K9me3,H3K27me3,and yH2AX),as well as HP1α and lamin A.We find that fully reprogrammed iPSCs are epigenetically identical to ESCs,and that partially reprogrammed iPSCs are closer to MEFs.Intriguingly,combining both time-course reprogramming experiments and data from the partially reprogrammed iPSCs,we find that heterochromatin reorganization precedes Nanog expression and active histone marking.Together,these data delineate the global epigenetic state of iPSCs in conjunction with their pluripotent state,and demonstrate that heterochromatin precedes euchromatin in reorganization during reprogramming.

  18. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K.; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  19. Environmental epigenetics and allergic diseases: Recent advances

    OpenAIRE

    Kuriakose, Julie S; Miller, Rachel L.

    2010-01-01

    Significant strides in the understanding of the role of epigenetic regulation in asthma and allergy using both epidemiological approaches as well as experimental ones have been made. This review focuses on new research within the last two years. These include advances in determining how environmental agents implicated in airway disease can induce epigenetic changes, how epigenetic regulation can influence T helper cell (Th) differentiation and T regulatory (Treg) cell production, and new disc...

  20. Epigenetic regulatory mechanisms associated with infertility

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Madon, Prochi F; Parikh, Firuza R

    2010-01-01

    Infertility is a complex human condition and is known to be caused by numerous factors including genetic alterations and abnormalities. Increasing evidence from studies has associated perturbed epigenetic mechanisms with spermatogenesis and infertility. However, there has been no consensus...... on whether one or a collective of these altered states is responsible for the onset of infertility. Epigenetic alterations involve changes in factors that regulate gene expression without altering the physical sequence of DNA. Understanding these altered epigenetic states at the genomic level along...... with the phenotype could further determine what possible mechanisms are involved. This paper reviews certain mechanisms of epigenetic regulation with particular emphasis on their possible role in infertility....

  1. Obesity: epigenetic regulation – recent observations.

    Science.gov (United States)

    Remely, Marlene; de la Garza, Ana Laura; Magnet, Ulrich; Aumueller, Eva; Haslberger, Alexander G

    2015-06-01

    Genetic and environmental factors, especially nutrition and lifestyle, have been discussed in the literature for their relevance to epidemic obesity. Gene-environment interactions may need to be understood for an improved understanding of the causes of obesity, and epigenetic mechanisms are of special importance. Consequences of epigenetic mechanisms seem to be particularly important during certain periods of life: prenatal, postnatal and intergenerational, transgenerational inheritance are discussed with relevance to obesity. This review focuses on nutrients, diet and habits influencing intergenerational, transgenerational, prenatal and postnatal epigenetics; on evidence of epigenetic modifiers in adulthood; and on animal models for the study of obesity.

  2. Heritable epigenetic variation among maize inbreds.

    Directory of Open Access Journals (Sweden)

    Steve R Eichten

    2011-11-01

    Full Text Available Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays, an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs. Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic

  3. Epigenetic Therapy in Human Choriocarcinoma

    International Nuclear Information System (INIS)

    Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs) were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies

  4. Expediting Scientific Data Analysis with Reorganization of Data

    Energy Technology Data Exchange (ETDEWEB)

    Byna, Surendra; Wu, Kesheng

    2013-08-19

    Data producers typically optimize the layout of data files to minimize the write time. In most cases, data analysis tasks read these files in access patterns different from the write patterns causing poor read performance. In this paper, we introduce Scientific Data Services (SDS), a framework for bridging the performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns of analysis tasks and enables transparent data reads from the reorganized data. We implemented a HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls to the reorganized data. To demonstrate the effectiveness of SDS, we applied two parallel data organization techniques: a sort-based organization on a plasma physics data and a transpose-based organization on mass spectrometry imaging data. We also extended the HDF5 data access API to allow selection of data based on their values through a query interface, called SDS Query. We evaluated the execution time in accessing various subsets of data through existing HDF5 Read API and SDS Query. We showed that reading the reorganized data using SDS is up to 55X faster than reading the original data.

  5. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Science.gov (United States)

    2010-01-01

    ... that the bank holding company will provide to the shareholders of the reorganizing bank for their shares of stock of the bank; (B) The date as of which the rights of each shareholder to participate in... national bank. (e) Rights of dissenting shareholders. Any shareholder of a bank who has voted against...

  6. Reorganization of AECL and the future marketing program

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Ltd. Engineering Co. has been reorganized to support the new emphasis on foreign sales of CANDU reactors. Much has been learned from reactor sales to Argentina, Korea, and Romania, but Canada needs to sell one 600 MWe reactor a year in order to avoid a decline in its nuclear industry. (LL)

  7. 75 FR 29451 - Agency Reorganization and Delegations of Authority

    Science.gov (United States)

    2010-05-26

    ...; Reorganization Plan No. 7 of 1961, 26 FR 7315, August 12, 1961; Pub. L. 89-56, 70 Stat. 195; 5 CFR Part 2638; Pub... Officer.) (d) Office of the General Counsel. (Ethics Official, Legislative Counsel.) * * * * * (h) Office... workflow, resource allocation (both staff and budgetary), work priorities and similar managerial...

  8. Epigenetics, estradiol, and hippocampal memory consolidation

    OpenAIRE

    Frick, Karyn M.

    2013-01-01

    Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the etiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that regulation of these epigenetic processes by modulatory factors such as environmental enrichment, stress, and hormones substantially influences memory function. Recen...

  9. Epigenetic regulation of pluripotency and differentiation.

    Science.gov (United States)

    Boland, Michael J; Nazor, Kristopher L; Loring, Jeanne F

    2014-07-01

    The precise, temporal order of gene expression during development is critical to ensure proper lineage commitment, cell fate determination, and ultimately, organogenesis. Epigenetic regulation of chromatin structure is fundamental to the activation or repression of genes during embryonic development. In recent years, there has been an explosion of research relating to various modes of epigenetic regulation, such as DNA methylation, post-translational histone tail modifications, noncoding RNA control of chromatin structure, and nucleosome remodeling. Technological advances in genome-wide epigenetic profiling and pluripotent stem cell differentiation have been primary drivers for elucidating the epigenetic control of cellular identity during development and nuclear reprogramming. Not only do epigenetic mechanisms regulate transcriptional states in a cell-type-specific manner but also they establish higher order genomic topology and nuclear architecture. Here, we review the epigenetic control of pluripotency and changes associated with pluripotent stem cell differentiation. We focus on DNA methylation, DNA demethylation, and common histone tail modifications. Finally, we briefly discuss epigenetic heterogeneity among pluripotent stem cell lines and the influence of epigenetic patterns on genome topology.

  10. Epigenetics and its implications for ecotoxicology.

    Science.gov (United States)

    Vandegehuchte, Michiel B; Janssen, Colin R

    2011-05-01

    Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.

  11. Epigenetic variation during the adult lifespan

    DEFF Research Database (Denmark)

    Talens, Rudolf P; Christensen, Kaare; Putter, Hein;

    2012-01-01

    The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18-89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass...

  12. Epigenetics in mammary gland biology and cancer

    Science.gov (United States)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  13. Orchestrating epigenetic roles targeting ocular tumors

    Directory of Open Access Journals (Sweden)

    Wen X

    2016-02-01

    Full Text Available Xuyang Wen*, Linna Lu*, He Zhang, Xianqun Fan Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized. Keywords: ocular tumors, epigenetics, retinoblastoma, uveal melanoma, epigenetic drugs

  14. Epigenetics and environmental impacts in cattle

    Science.gov (United States)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  15. Epigenetic mechanisms in migraine: a promising avenue?

    Science.gov (United States)

    Eising, Else; A Datson, Nicole; van den Maagdenberg, Arn M J M; Ferrari, Michel D

    2013-01-01

    Migraine is a disabling common brain disorder typically characterized by attacks of severe headache and associated with autonomic and neurological symptoms. Its etiology is far from resolved. This review will focus on evidence that epigenetic mechanisms play an important role in disease etiology. Epigenetics comprise both DNA methylation and post-translational modifications of the tails of histone proteins, affecting chromatin structure and gene expression. Besides playing a role in establishing cellular and developmental stage-specific regulation of gene expression, epigenetic processes are also important for programming lasting cellular responses to environmental signals. Epigenetic mechanisms may explain how non-genetic endogenous and exogenous factors such as female sex hormones, stress hormones and inflammation trigger may modulate attack frequency. Developing drugs that specifically target epigenetic mechanisms may open up exciting new avenues for the prophylactic treatment of migraine.

  16. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.;

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  17. Epigenetic targets of polyphenols in cancer.

    Science.gov (United States)

    Yang, Pinglin; He, Xijing; Malhotra, Anshoo

    2014-01-01

    Interest in dietary polyphenols has recently increased greatly owing to their antioxidant capacity and their possible beneficial implications in various pathological states, including cancer. Polyphenols are a group of chemicals found in many fruits, vegetables, and plants and have the ability to remove free radicals from the body. In the last 2 decades, the numbers of reports on the potential health benefits of polyphenols have increased. This review provides the available scientific data that justify importance of polyphenols in correlation with epigenetics to fight against carcinogenesis. Epigenetics involves genetic control by mechanisms other than DNA sequence. These epigenetic mechanisms have ability to switch on or off various important genes influencing the process of cancer. Furthermore, due to the reversible nature of these epigenetic mechanisms, they are influenced by a variety of dietary polyphenols. This review focuses on the dietary polyphenols that significantly affect these epigenetic mechanisms to mitigate carcinogenesis.

  18. Epigenetics and therapeutic targets mediating neuroprotection.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.

  19. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  20. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  1. Epigenetic regulation of skeletal muscle metabolism.

    Science.gov (United States)

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  2. Clinical neurorehabilitation - implications of the Reorganization of Elementary Functions (REF) model

    DEFF Research Database (Denmark)

    Rytter, Hana Malá; Mogensen, Jesper

    The REF (Reorganization of Elementary Functions) model suggests mechanisms of posttraumatic reorganization, and resolves the contradiction between localization and functional recovery. In the process of developing this model, we have reconceptualised the term ‘function’ and introduced a concept...

  3. Why reorganization of firms fails: evidence from Estonia. Summary: Saneerimismenetluse ebaõnnestumise põhjused Eestis

    Directory of Open Access Journals (Sweden)

    Oliver Lukason

    2013-09-01

    Full Text Available Although most countries have firm reorganization option in legislation (either as a separate law or part of insolvency code, the practice of successful reorganizations has remained modest. Reorganization law was introduced in Estonia in late 2008, but only a few firms have been successfully reorganized since. Derived from previous the article studies, what are the reasons for firm reorganization failure. From legal viewpoint, main causes are found to be that firms under reorganization do not submit reorganization plans to court and the preconditions for reorganization lapse. The financial ratios for successful and unsuccessful reorganizations are not significantly different according to independent samples median test. Unsuccessfully reorganized firms perform worse than successful ones in the year before reorganization year, but the opposite phenomenon occurs two and three years before reorganization year.

  4. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes.

    Science.gov (United States)

    Degner-Leisso, Stephanie C; Feeney, Ann J

    2010-12-01

    V(D)J recombination is a crucial component of the adaptive immune response, allowing for the production of a diverse antigen receptor repertoire (Ig and TCR). This review will focus on how epigenetic regulation and 3-dimensional (3D) interactions may control V(D)J recombination at Ig loci. The interplay between transcription factors and post-translational modifications at the Igh, Igκ, and Igλ loci will be highlighted. Furthermore, we propose that the spatial organization and epigenetic boundaries of each Ig loci before and during V(D)J recombination may be influenced in part by the CTCF/cohesin complex. Taken together, the many epigenetic and 3D layers of control ensure that Ig loci are only rearranged at appropriate stages of B cell development.

  5. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  6. Prostate cancer epigenetics and its clinical implications.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy. PMID:27212125

  7. Evolution or adaptation? What do heritable adaptive changes imply?

    Directory of Open Access Journals (Sweden)

    M. Kemal Irmak

    2014-02-01

    Full Text Available Interactions between environmental factors and epigenetic inheritance system produce a great deal of variation from one geographic region to another in human craniofacial morphology, skin color, hair form, stature and body proportions. In this system, while environmental factors produce modifications in the body, they simultaneously induce long-term epigenetic modifications in the germ cells that are inherited to offspring. This kind of heritable changes is called biological adaptation. It was previously reported that biological adaptation is limited to neural crest derivatives such as craniofacial tissues, melanocytes, and structures related to hair form, stature and body proportions. Thus, inheritance of adaptive changes is limited to a number of traits and species-to-species evolution seems unlikely. [J Exp Integr Med 2014; 4(1.000: 13-16

  8. Cancer Control and Prevention by Nutrition and Epigenetic Approaches

    OpenAIRE

    Verma, Mukesh

    2012-01-01

    Significance: Epigenetics involves alterations in gene expression without changing the nucleotide sequence. Because some epigenetic changes can be reversed chemically, epigenetics has tremendous implications for disease intervention and treatment. Recent Advances: After epigenetic components in cancer were characterized, genes and pathways are being characterized in other diseases such as diabetes, obesity, and neurological disorders. Observational, experimental, and clinical studies in diffe...

  9. Epigenetic Regulation of Cholesterol Homeostasis

    Directory of Open Access Journals (Sweden)

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  10. Epigenetic reprogramming in mammalian nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LI Shijie; DU Weihua; LI Ning

    2004-01-01

    Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.

  11. Epigenetic reprogramming in plant sexual reproduction.

    Science.gov (United States)

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

  12. Erwin Schroedinger, Francis Crick and epigenetic stability

    CERN Document Server

    Ogryzko, Vasily

    2007-01-01

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that lead Schroedinger to promote the idea of molecular code-script for explanation of stability of biological order.

  13. Drying induced upright sliding and reorganization of carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingwen [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); De Paula, Raymond [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhang Xiefei [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zheng Lianxi [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Arendt, Paul N [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mueller, Fred M [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhu, Y T [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tu Yi [CVD-First Nano, 1860 Smithtown Avenue, Ronkonkoma, NY 11779 (United States)

    2006-09-28

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns.

  14. Drying induced upright sliding and reorganization of carbon nanotube arrays

    International Nuclear Information System (INIS)

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns

  15. Dynamic Reorganization and Correlation among Lipid Raft Components.

    Science.gov (United States)

    Lozano, Mónica M; Hovis, Jennifer S; Moss, Frank R; Boxer, Steven G

    2016-08-10

    Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.

  16. Workplace Re-organization and Changes in Physiological Stress Markers

    DEFF Research Database (Denmark)

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Kristiansen, Jesper;

    2014-01-01

    The aim of this study was to investigate changes in physiological stress markers as a consequence of workplace reorganization. Moreover, we aimed to investigate changes in the psychosocial work environment (job strain, effortreward imbalance (ERI), in psychological distress (stress symptoms......, perceived stress) and the mediating effect of these factors on changes in physiological stress markers. We used data from a longitudinal study that studied the health consequences of a major reorganization of non-state public offices executed in Denmark on 1 January 2007. Collection of clinical...... and questionnaire data was in 2006 and 2008, and in this sub-study we included 359 participants. To reflect stress reactions of the autonomic nervous system, the endocrine system and the immune system, we included 13 physiological markers. We observed significant change in several physiological stress markers...

  17. Reorganization of a granular medium around a localized transformation

    OpenAIRE

    Merceron, Aymeric; Sauret, Alban; Jop, Pierre

    2016-01-01

    Physical and chemical transformation processes in reactive granular media involve the reorganization of the structure. In this paper, we study experimentally the rearrangements of a two-dimensional (2D) granular packing undergoing a localized transformation. We track the position and evolution of all the disks that constitute the granular packing when either a large intruder shrinks in size or is pulled out of the granular structure. In the two situations the displacements at long time are si...

  18. Interframe hierarchical vector quantization using hashing-based reorganized codebook

    Science.gov (United States)

    Choo, Chang Y.; Cheng, Che H.; Nasrabadi, Nasser M.

    1995-12-01

    Real-time multimedia communication over PSTN (Public Switched Telephone Network) or wireless channel requires video signals to be encoded at the bit rate well below 64 kbits/second. Most of the current works on such very low bit rate video coding are based on H.261 or H.263 scheme. The H.263 encoding scheme, for example, consists mainly of motion estimation and compensation, discrete cosine transform, and run and variable/fixed length coding. Vector quantization (VQ) is an efficient and alternative scheme for coding at very low bit rate. One such VQ code applied to video coding is interframe hierarchical vector quantization (IHVQ). One problem of IHVQ, and VQ in general, is the computational complexity due to codebook search. A number of techniques have been proposed to reduce the search time which include tree-structured VQ, finite-state VQ, cache VQ, and hashing based codebook reorganization. In this paper, we present an IHVQ code with a hashing based scheme to reorganize the codebook so that codebook search time, and thus encoding time, can be significantly reduced. We applied the algorithm to the same test environment as in H.263 and evaluated coding performance. It turned out that the performance of the proposed scheme is significantly better than that of IHVQ without hashed codebook. Also, the performance of the proposed scheme was comparable to and often better than that of the H.263, due mainly to hashing based reorganized codebook.

  19. A molecularly based theory for electron transfer reorganization energy

    International Nuclear Information System (INIS)

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory

  20. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    Science.gov (United States)

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  1. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  2. Epigenetic Modifications in Neurological Diseases: Natural Products as Epigenetic Modulators a Treatment Strategy.

    Science.gov (United States)

    Gangisetty, Omkaram; Murugan, Sengottuvelan

    2016-01-01

    Epigenetic modifications, including DNA methylation, covalent histone modifications, and small noncoding RNAs, play a key role in regulating the gene expression. This regulatory mechanism is important in cellular differentiation and development. Recent advances in the field of epigenetics extended the role of epigenetic mechanisms in controlling key biological processes such as genome imprinting and X-chromosome inactivation. Aberrant epigenetic modifications are associated with the development of many diseases. The role of epigenetic modifications in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington disease, epilepsy, and multiple sclerosis is rapidly emerging. The use of epigenetic modifying drugs to treat these diseases has been the interest in recent years. A number of natural products having diverse mechanism of action are used for drug discovery. For many years, natural compounds have been used to treat various neurodegenerative diseases, but the use of such compounds as epigenetic modulators to reverse or treat neurological diseases are not well studied. In this chapter, we mainly focus on how various epigenetic modifications play a key role in neurodegenerative diseases, their mechanism of action, and how it acts as a potential therapeutic target for epigenetic drugs to treat these diseases will be discussed.

  3. Epigenetic Modifications in Neurological Diseases: Natural Products as Epigenetic Modulators a Treatment Strategy.

    Science.gov (United States)

    Gangisetty, Omkaram; Murugan, Sengottuvelan

    2016-01-01

    Epigenetic modifications, including DNA methylation, covalent histone modifications, and small noncoding RNAs, play a key role in regulating the gene expression. This regulatory mechanism is important in cellular differentiation and development. Recent advances in the field of epigenetics extended the role of epigenetic mechanisms in controlling key biological processes such as genome imprinting and X-chromosome inactivation. Aberrant epigenetic modifications are associated with the development of many diseases. The role of epigenetic modifications in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington disease, epilepsy, and multiple sclerosis is rapidly emerging. The use of epigenetic modifying drugs to treat these diseases has been the interest in recent years. A number of natural products having diverse mechanism of action are used for drug discovery. For many years, natural compounds have been used to treat various neurodegenerative diseases, but the use of such compounds as epigenetic modulators to reverse or treat neurological diseases are not well studied. In this chapter, we mainly focus on how various epigenetic modifications play a key role in neurodegenerative diseases, their mechanism of action, and how it acts as a potential therapeutic target for epigenetic drugs to treat these diseases will be discussed. PMID:27651245

  4. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  5. Epigenetic variation, phenotypic heritability, and evolution

    DEFF Research Database (Denmark)

    Furrow, Robert E.; Christiansen, Freddy Bugge; Feldman, Marcus W.

    2014-01-01

    families. The potential importance of this interaction, recognized in classical studies of the genetic epidemiology of complex diseases and other quantitative characters, has reemerged in studies of the effects of epigenetic modifications, their variation, and their transmission between generations....

  6. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation......, development and maintenance of tissue-specific gene expression. These mechanisms also explain how cells with the same DNA content can differentiate into cells with different functions. Changes in epigenetic processes can lead to changes in gene function, cancer formation and progression, as well as other...

  7. Transgenerational epigenetic inheritance in health and disease.

    Science.gov (United States)

    Whitelaw, Nadia C; Whitelaw, Emma

    2008-06-01

    Over the past century, patterns of phenotypic inheritance have been observed that are not easily rationalised by Mendel's rules of inheritance. Now that we have begun to understand more about non-DNA based, or 'epigenetic', control of phenotype at the molecular level, the idea that the transgenerational inheritance of these epigenetic states could explain non-Mendelian patterns of inheritance has become attractive. There is a growing body of evidence that abnormal epigenetic states, termed epimutations, are associated with disease in humans. For example, in several cases of colorectal cancer, epimutations have been identified that silence the human mismatch repair genes, MLH1 and MSH2. But strong evidence that the abnormal epigenetic states are primary events that occur in the absence of genetic change and are inherited across generations is still absent.

  8. Epigenetic control of GnRH neurons

    Directory of Open Access Journals (Sweden)

    Joseph Raymond Kurian

    2013-05-01

    Full Text Available Epigenetic modifications to the genome, including DNA methylation and histone modifications, occur in response to external stimuli. Reproductive function is highly sensitive to environmental conditions including season, diet, hormonal changes, and exposure to chemical contaminants. GnRH neurons, which play a key role in reproduction, are particularly sensitive to various environmental stimuli. We recently reported that the rhesus monkey GnRH gene exhibits distinct epigenetic differentiation during embryonic development. More recently, we further found that a similar epigenetic phenomenon occurs across puberty. In this article, we highlight recent findings, suggest implications of these findings (or potential mechanisms and then discuss current challenges as well as future work. Consequently, this review will provide background to understand the epigenetic control of GnRH neurons as a link between the environment and reproductive function.

  9. Epigenetic Effects of Di(2-ethylhexyl) Phthalate

    Science.gov (United States)

    Epidemiological and laboratory investigations suggest that, in addition to genetic changes, environmental pollutants can affect human health through altering epigenetic mechanisms including DNA methylation, histone modification, and microRNA expression. There is evidence in anima...

  10. Environmental stress and epigenetic transgenerational inheritance

    OpenAIRE

    Skinner, Michael K.

    2014-01-01

    Previous studies have shown a wide variety of environmental toxicants and abnormal nutrition can promote the epigenetic transgenerational inheritance of disease. More recently a number of studies have indicated environmental stress can also promote epigenetic alterations that are transmitted to subsequent generations to induce pathologies. A recent study by Yao and colleagues demonstrated gestational exposure to restraint stress and forced swimming promoted preterm birth risk and adverse newb...

  11. From Neo-Darwinism to Epigenetic Inheritance

    OpenAIRE

    Axholm, Ida; Ranum, Kasper; Al-Makdisi Razeeghi, Redaa

    2014-01-01

    Transgenerational epigenetic inheritance is at variance with the neo-Darwinian theory of inheritance, and this possibly has important implications for how we view evolution, since it could allow for a kind of inheritance of acquired characteristics. We have applied Imre Lakatos and Thomas Kuhn’s models of scientific change and investigated if they can accurately describe the change in the view on inheritance from neo-Darwinism to a view that includes transgenerational epigenetic inheritance, ...

  12. Epigenetic Mechanisms of Facioscapulohumeral Muscular Dystrophy

    OpenAIRE

    de Greef, Jessica C; Frants, Rune R; van der Maarel, Silvère M.

    2008-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) seems to be caused by a complex epigenetic disease mechanism as a result of contraction of the polymorphic macrosatellite repeat D4Z4 on chromosome 4qter. Currently, the exact mechanism causing the FSHD phenotype is still not elucidated. In this review, we discuss the genetic and epigenetic changes observed in patients with FSHD and the possible disease mechanisms that may be associated with FSHD pathogenesis.

  13. Orchestrating epigenetic roles targeting ocular tumors

    OpenAIRE

    Wen X; Lu L; Zhang H.; Fan X

    2016-01-01

    Xuyang Wen*, Linna Lu*, He Zhang, Xianqun Fan Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the ...

  14. Epigenetics of multiple sclerosis: an updated review.

    Science.gov (United States)

    Küçükali, Cem İsmail; Kürtüncü, Murat; Çoban, Arzu; Çebi, Merve; Tüzün, Erdem

    2015-06-01

    Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized with autoimmune response against myelin proteins and progressive axonal loss. The heterogeneity of the clinical course and low concordance rates in monozygotic twins have indicated the involvement of complex heritable and environmental factors in MS pathogenesis. MS is more often transmitted to the next generation by mothers than fathers suggesting an epigenetic influence. One of the possible reasons of this parent-of-origin effect might be the human leukocyte antigen-DRB1*15 allele, which is the major risk factor for MS and regulated by epigenetic mechanisms such as DNA methylation and histone deacetylation. Moreover, major environmental risk factors for MS, vitamin D deficiency, smoking and Ebstein-Barr virus are all known to exert epigenetic changes. In the last few decades, compelling evidence implicating the role of epigenetics in MS has accumulated. Increased or decreased acetylation, methylation and citrullination of genes regulating the expression of inflammation and myelination factors appear to be particularly involved in the epigenetics of MS. Although much less is known about epigenetic factors causing neurodegeneration, epigenetic mechanisms regulating axonal loss, apoptosis and mitochondrial dysfunction in MS are in the process of identification. Additionally, expression levels of several microRNAs (miRNAs) (e.g., miR-155 and miR-326) are increased in MS brains and potential mechanisms by which these factors might influence MS pathogenesis have been described. Certain miRNAs may also be potentially used as diagnostic biomarkers in MS. Several reagents, especially histone deacetylase inhibitors have been shown to ameliorate the symptoms of experimental allergic encephalomyelitis. Ongoing efforts in this field are expected to result in characterization of epigenetic factors that can be used in prediction of treatment responsive MS patients, diagnostic screening panels

  15. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression

    OpenAIRE

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-01-01

    Organisms can develop adaptive sequence-specific immunity by re-expressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piRNA pathway recruits RNA-dependent RNA polymerase RdRP to foreign sequences to amplify a trans-generational small RNA-induced epigenetic silencing signal (termed RNAe). Here we provide evidence that in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expres...

  16. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  17. Conference scene: Select Biosciences Epigenetics Europe 2010.

    Science.gov (United States)

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts. PMID:22126149

  18. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  19. Epigenetic regulation in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Pranoti Mandrekar

    2011-01-01

    Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively referred to as epigenetic effects are altered by alcohol. Recent studies have pointed to a significant role for epigenetic mechanisms at the nucleosomal level influencing gene expression and disease outcome in ALD. Specifically, epigenetic alterations by alcohol include histone modifications such as changes in acetylation and phosphorylation, hypomethylation of DNA, and alterations in miRNAs. These modifications can be induced by alcohol-induced oxidative stress that results in altered recruitment of transcriptional machinery and abnormal gene expression. Delineating these mechanisms in initiation and progression of ALD is becoming a major area of interest. This review summarizes key epigenetic mechanisms that are dysregulated by alcohol in the liver. Alterations by alcohol in histone and DNA modifications, enzymes related to histone acetylation such as histone acetyltransferases, histone deacetylases and sirtuins, and methylation enzymes such as DNA methyltransferases are discussed. Chromatin modifications and miRNA alterations that result in immune cell dysfunction contributing to inflammatory cytokine production in ALD is reviewed. Finally, the role of alcohol-mediated oxidative stress in epigenetic regulation in ALD is described. A better understanding of these mechanisms is crucial for designing novel epigenetic based therapies to ameliorate ALD.

  20. Gut indigenous microbiota and epigenetics

    Directory of Open Access Journals (Sweden)

    Boris Arkadievich Shenderov

    2012-03-01

    Full Text Available This review introduces and discusses data regarding fundamental and applied investigations in mammalian epigenomics and gut microbiota received over the last 10 years. Analysis of these data enabled the author first to come to the conclusion that the multiple low molecular weight substances of indigenous gut microbiota origin should be considered one of the main endogenous factors actively participating in epigenomic mechanisms that responsible for the mammalian genome reprogramming and post-translated modifications. Gut microecological imbalance coursed by various biogenic and abiogenic agents and factors can produce the different epigenetic abnormalities and the onset and progression of metabolic diseases associated. The author substantiates the necessity to create an international project ‘Human Gut Microbiota and Epigenomics’ that facilitates interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics and metabolomics investigations as well as in diseases prevention and treatment. Some priority scientific and applied directions in the current omic technologies coupled with gnotobiological approaches are suggested that can open a new era in characterizing the role of the symbiotic microbiota small metabolic and signal molecules in the host epigenomics. Although discussed subject is only at an early stage its validation can open novel approaches in drug discovery studies.

  1. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Linard Filli; Martin E Schwab

    2015-01-01

    Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.

  2. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  3. X-linked mental retardation and epigenetics.

    Science.gov (United States)

    Froyen, Guy; Bauters, Marijke; Voet, Thierry; Marynen, Peter

    2006-01-01

    The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications.

  4. Epigenetic Control of Defense Signaling and Priming in Plants

    Science.gov (United States)

    Espinas, Nino A.; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens. PMID:27563304

  5. Epigenetic control of defense signaling and priming in plants

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR. These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements (TEs as critical regulators of interactions in the evolutionary arms race between plants and pathogens.

  6. DNA Methylation, Epigenetics, and Evolution in Vertebrates: Facts and Challenges

    Directory of Open Access Journals (Sweden)

    Annalisa Varriale

    2014-01-01

    Full Text Available DNA methylation is a key epigenetic modification in the vertebrate genomes known to be involved in biological processes such as regulation of gene expression, DNA structure and control of transposable elements. Despite increasing knowledge about DNA methylation, we still lack a complete understanding of its specific functions and correlation with environment and gene expression in diverse organisms. To understand how global DNA methylation levels changed under environmental influence during vertebrate evolution, we analyzed its distribution pattern along the whole genome in mammals, reptiles and fishes showing that it is correlated with temperature, independently on phylogenetic inheritance. Other studies in mammals and plants have evidenced that environmental stimuli can promote epigenetic changes that, in turn, might generate localized changes in DNA sequence resulting in phenotypic effects. All these observations suggest that environment can affect the epigenome of vertebrates by generating hugely different methylation patterns that could, possibly, reflect in phenotypic differences. We are at the first steps towards the understanding of mechanisms that underlie the role of environment in molding the entire genome over evolutionary times. The next challenge will be to map similarities and differences of DNA methylation in vertebrates and to associate them with environmental adaptation and evolution.

  7. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alfred Cortés

    2007-08-01

    Full Text Available The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor-ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host.

  8. Lipid metabolism is associated with developmental epigenetic programming

    Science.gov (United States)

    Marchlewicz, Elizabeth H.; Dolinoy, Dana C.; Tang, Lu; Milewski, Samantha; Jones, Tamara R.; Goodrich, Jaclyn M.; Soni, Tanu; Domino, Steven E.; Song, Peter X. K.; F. Burant, Charles; Padmanabhan, Vasantha

    2016-01-01

    Maternal diet and metabolism impact fetal development. Epigenetic reprogramming facilitates fetal adaptation to these in utero cues. To determine if maternal metabolite levels impact infant DNA methylation globally and at growth and development genes, we followed a clinical birth cohort of 40 mother-infant dyads. Targeted metabolomics and quantitative DNA methylation were analyzed in 1st trimester maternal plasma (M1) and delivery maternal plasma (M2) as well as infant umbilical cord blood plasma (CB). We found very long chain fatty acids, medium chain acylcarnitines, and histidine were: (1) stable in maternal plasma from pregnancy to delivery, (2) significantly correlated between M1, M2, and CB, and (3) in the top 10% of maternal metabolites correlating with infant DNA methylation, suggesting maternal metabolites associated with infant DNA methylation are tightly controlled. Global DNA methylation was highly correlated across M1, M2, and CB. Thus, circulating maternal lipids are associated with developmental epigenetic programming, which in turn may impact lifelong health and disease risk. Further studies are required to determine the causal link between maternal plasma lipids and infant DNA methylation patterns. PMID:27713555

  9. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  10. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs

    OpenAIRE

    Stief, Anna; Brzezinka, Krzysztof; Lämke, Jörn; Bäurle, Isabel

    2014-01-01

    The hypothesis that plants can benefit from a memory of past stress exposure has recently attracted a lot of attention. Here, we discuss two different examples of heat stress memory to elucidate the potential benefits that epigenetic responses may provide at both the level of acclimation of the individual plant and adaptation at a species-wide level. Specifically, we discuss how microRNAs regulate the heat stress memory and thereby increase survival upon a recurring heat stress. Secondly, we ...

  11. Epigenetic aberrations and therapeutic implications in gliomas.

    Science.gov (United States)

    Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-06-01

    Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.

  12. Diet and epigenetics in colon cancer

    Institute of Scientific and Technical Information of China (English)

    Minna Nystr(o)m; Marja Mutanen

    2009-01-01

    Over the past few years, evidence has accumulated indicating that apart from genetic alterations, epigenetic alterations, through e.g. aberrant promoter methylation, play a major role in the initiation and progression of colorectal cancer (CRC). Even in the hereditary colon cancer syndromes, in which the susceptibility is inherited dominantly, cancer develops only as the result of the progressive accumulation of genetic and epigenetic alterations. Diet can both prevent and induce colon carcinogenesis, for instance, through epigenetic changes, which regulate the homeostasis of the intestinal mucosa. Food-derived compounds are constantly present in the intestine and may shift cellular balance toward harmful outcomes, such as increased susceptibility to mutations. There is strong evidence that a major component of cancer risk may involve epigenetic changes in normal cells that increase the probability of cancer after genetic mutation. The recognition of epigenetic changes as a driving force in colorectal neoplasia would open new areas of research in disease epidemiology, risk assessment, and treatment, especially in mutation carriers who already have an inherited predisposition to cancer.(c) 2009 The WJG Press and Baishideng. All rights reserved.

  13. A special issue on ‘epigenetics'

    Institute of Scientific and Technical Information of China (English)

    Wenlin Xu; Minghua Xu

    2012-01-01

    The term epigenetics was coined by Waddington CH in 1940s as a portmanteau of the words genetics and epigenesis to describe the differentiation of cells from their initial totipotent state in embryonic development.With the explosion of knowledge in this field in the recent 10 years,epigenetics is now typically defined as the study of heritable changes in gene expression that are not due to changes in the nucleotide sequence of DNA.The field of epigenetics is revolutionizing our understanding of biology and medicine.Recent studies have been focusing on the mechanisms of epigenetic regulation,including DNA methylation, histone modification,chromatin remodeling,etc.,and on their contributions to development and diseases.In this special issue,nine review articles written by prominent experts in this field are put together,trying to give our readers a broad picture of epigenetics and a summary of most recent research progress in this field.Here is a preview of what you will find in this issue.

  14. Obesity accelerates epigenetic aging of human liver.

    Science.gov (United States)

    Horvath, Steve; Erhart, Wiebke; Brosch, Mario; Ammerpohl, Ole; von Schönfels, Witigo; Ahrens, Markus; Heits, Nils; Bell, Jordana T; Tsai, Pei-Chien; Spector, Tim D; Deloukas, Panos; Siebert, Reiner; Sipos, Bence; Becker, Thomas; Röcken, Christoph; Schafmayer, Clemens; Hampe, Jochen

    2014-10-28

    Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer. PMID:25313081

  15. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  16. Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review

    OpenAIRE

    Kokotilo, K J; Eng, J; Curt, A.

    2009-01-01

    Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is...

  17. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  18. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation

    Directory of Open Access Journals (Sweden)

    Jun eMinagawa

    2013-12-01

    Full Text Available Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short timeframe during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.

  19. Reorganization of cytoskeletal proteins of mouse oocytes mediated by integrins

    Institute of Scientific and Technical Information of China (English)

    YUE; Limin; ZHANG; Lei; HE; Yaping; ZHANG; Jinhu; ZHENG; Ji

    2004-01-01

    To study whether integrins on cell membrane ligate with intracellular cytoskeletal proteins and mediate their reorganization in egg activation, female mice were used for superovulation. The zona-free oocytes were incubated separately with specific ligand of integrins,an active RGD peptide, in vitro for certain period of time. RGE peptide and mouse capacitated sperm were used as controls. Freshly ovulated oocytes and those treated with different factors were immunostained with FITC-labeled anti-actin antibody, then detected with confocal microscope. The results demonstrated that freshly ovulated mouse oocytes, oocytes incubated for 2 h in vitro and those treated with control RGE peptide for 15 min showed hardly visible fluorescene or only thin fluorescence in plasma membrane region. Oocytes coincubated with sperms for 15 min and those treated with active RGD peptide for 10 min, 30 min and 2 hours respectively had strong and thick fluorescence in the plasma membrane and cortical region of oocytes, and some of them showed asymmetrically fluorescent distribution. It is proved that integrins on membrane are ligated directly with cytoskeletal protein. Integrins binding with their ligands regulate reorganization of cytoskelal protein, which may be involved in transmembrane signaling in egg activation.

  20. Congruency of body-related information induces somatosensory reorganization.

    Science.gov (United States)

    Cardini, Flavia; Longo, Matthew R

    2016-04-01

    Chronic pain and impaired tactile sensitivity are frequently associated with "blurred" representations in the somatosensory cortex. The factors that produce such somatosensory blurring, however, remain poorly understood. We manipulated visuo-tactile congruence to investigate its role in promoting somatosensory reorganization. To this aim we used the mirror box illusion that produced in participants the subjective feeling of looking directly at their left hand, though they were seeing the reflection of their right hand. Simultaneous touches were applied to the middle or ring finger of each hand. In one session, the same fingers were touched (for example both middle fingers), producing a congruent percept; in the other session different fingers were touched, producing an incongruent percept. In the somatosensory system, suppressive interactions between adjacent stimuli are an index of intracortical inhibitory function. After each congruent and incongruent session, we recorded somatosensory evoked potential (SEPs) elicited by electrocutaneous stimulation of the left ring and middle fingers, either individually or simultaneously. A somatosensory suppression index (SSI) was calculated as the difference in amplitude between the sum of potentials evoked by the two individually stimulated fingers and the potentials evoked by simultaneous stimulation of both fingers. This SSI can be taken as an index of the strength of inhibitory interactions and consequently can provide a measure of how distinct the representations of the two fingers are. Results showed stronger SSI in the P100 component after congruent than incongruent stimulation, suggesting the key role of congruent sensory information about the body in inducing somatosensory reorganization. PMID:26902158

  1. From network structure to network reorganization: implications for adult neurogenesis

    Science.gov (United States)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  2. Adjusting to global change through clonal growth and epigenetic variation

    Directory of Open Access Journals (Sweden)

    Richard S Dodd

    2016-07-01

    Full Text Available The earth is experiencing major changes in global and regional climates and changes are predicted to accelerate in the future. Many species will be under considerable pressure to evolve, to migrate, or be faced with extinction. Clonal plants would appear to be at a particular disadvantage due to their limited mobility and limited capacity for adaptation. However, they have outlived previous environmental shifts and clonal species have persisted for millenia. Clonal spread offers unique ecological advantages, such as resource sharing, risk sharing, and economies of scale among ramets within genotypes. We suggest that ecological attributes of clonal plants, in tandem with variation in gene regulation through epigenetic mechanisms that facilitate and optimize phenotype variation in response to environmental change may permit them to be well suited to projected conditions.

  3. Epigenetics and Bruxism: Possible Role of Epigenetics in the Etiology of Bruxism.

    Science.gov (United States)

    Čalić, Aleksandra; Peterlin, Borut

    2015-01-01

    Bruxism is defined as a repetitive jaw muscle activity characterized by clenching or grinding of the teeth and/or bracing or thrusting of the mandible. There are two distinct circadian phenotypes for bruxism: sleep bruxism (SB) and awake bruxism, which are considered separate entities due to the putative difference in their etiology and phenotypic variance. The detailed etiology of bruxism so far remains unknown. Recent theories suggest the central regulation of certain pathophysiological or psychological pathways. Current proposed causes of bruxism appear to be a combination of genetic and environmental (G×E) factors, with epigenetics providing a robust framework for investigating G×E interactions, and their involvement in bruxism makes it a suitable candidate for epigenetic research. Both types of bruxism are associated with certain epigenetically determined disorders, such as Rett syndrome (RTT), Prader-Willi syndrome (PWS), and Angelman syndrome (AS), and these associations suggest a mechanistic link between epigenetic deregulation and bruxism. The present article reviews the possible role of epigenetic mechanisms in the etiology of both types of bruxism based on the epigenetic pathways involved in the pathophysiology of RTT, PWS, and AS, and on other epigenetic disruptions associated with risk factors for bruxism, including sleep disorders, altered stress response, and psychopathology. PMID:26523718

  4. Age-associated epigenetic drift: implications, and a case of epigenetic thrift?

    Science.gov (United States)

    Teschendorff, Andrew E; West, James; Beck, Stephan

    2013-10-15

    It is now well established that the genomic landscape of DNA methylation (DNAm) gets altered as a function of age, a process we here call 'epigenetic drift'. The biological, functional, clinical and evolutionary significance of this epigenetic drift, however, remains unclear. We here provide a brief review of epigenetic drift, focusing on the potential implications for ageing, stem cell biology and disease risk prediction. It has been demonstrated that epigenetic drift affects most of the genome, suggesting a global deregulation of DNAm patterns with age. A component of this drift is tissue-specific, allowing remarkably accurate age-predictive models to be constructed. Another component is tissue-independent, targeting stem cell differentiation pathways and affecting stem cells, which may explain the observed decline of stem cell function with age. Age-associated increases in DNAm target developmental genes, overlapping those associated with environmental disease risk factors and with disease itself, notably cancer. In particular, cancers and precursor cancer lesions exhibit aggravated age DNAm signatures. Epigenetic drift is also influenced by genetic factors. Thus, drift emerges as a promising biomarker for premature or biological ageing, and could potentially be used in geriatrics for disease risk prediction. Finally, we propose, in the context of human evolution, that epigenetic drift may represent a case of epigenetic thrift, or bet-hedging. In summary, this review demonstrates the growing importance of the 'ageing epigenome', with potentially far-reaching implications for understanding the effect of age on stem cell function and differentiation, as well as for disease prevention.

  5. Current status and future prospects for epigenetic psychopharmacology

    NARCIS (Netherlands)

    Boks, Marco P; de Jong, Noëlle M; Kas, Martien J H; Vinkers, Christiaan H; Fernandes, Cathy; Kahn, René S; Mill, Jonathan; Ophoff, Roel A

    2012-01-01

    Mounting evidence suggest that epigenetic regulation of brain functions is important in the etiology of psychiatric disorders. These epigenetic regulatory mechanisms, such as DNA methylation and histone acetylation, are influenced by many pharmaceutical compounds including psychiatric drugs. It is t

  6. Epigenetic Mechanisms Facilitating Oligodendrocyte Development, Maturation, and Aging

    NARCIS (Netherlands)

    Copray, Sjef; Huynh, Jimmy Long; Sher, Falak; Casaccia-Bonnefil, Patrizia; Boddeke, Erik

    2009-01-01

    The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodend

  7. Individual epigenetic variation: When, why, and so what?

    Science.gov (United States)

    Epigenetics provides a potential explanation for how environmental factors modify the risk for common diseases among individuals. Interindividual variation in DNA methylation and epigenetic regulation has been reported at specific genomic regions including transposable elements, genomically imprinte...

  8. Epigenetics, cellular memory and gene regulation.

    Science.gov (United States)

    Henikoff, Steven; Greally, John M

    2016-07-25

    The field described as 'epigenetics' has captured the imagination of scientists and the lay public. Advances in our understanding of chromatin and gene regulatory mechanisms have had impact on drug development, fueling excitement in the lay public about the prospects of applying this knowledge to address health issues. However, when describing these scientific advances as 'epigenetic', we encounter the problem that this term means different things to different people, starting within the scientific community and amplified in the popular press. To help researchers understand some of the misconceptions in the field and to communicate the science accurately to each other and the lay audience, here we review the basis for many of the assumptions made about what are currently referred to as epigenetic processes. PMID:27458904

  9. Epigenetic perturbations in aging stem cells.

    Science.gov (United States)

    Krauss, Sara Russo; de Haan, Gerald

    2016-08-01

    Stem cells maintain homeostasis in all regenerating tissues during the lifespan of an organism. Thus, age-related functional decline of such tissues is likely to be at least partially explained by molecular events occurring in the stem cell compartment. Some of these events involve epigenetic changes, which may dictate how an aging genome can lead to differential gene expression programs. Recent technological advances have made it now possible to assess the genome-wide distribution of an ever-increasing number of epigenetic marks. As a result, the hypothesis that there may be a causal role for an altered epigenome contributing to the functional decline of cells, tissues, and organs in aging organisms can now be explored. In this paper, we review recent developments in the field of epigenetic regulation of stem cells, and how this may contribute to aging. PMID:27229519

  10. Evidence of Epigenetic Mechanisms Affecting Carotenoids.

    Science.gov (United States)

    Arango, Jacobo; Beltrán, Jesús; Nuñez, Jonathan; Chavarriaga, Paul

    2016-01-01

    Epigenetic mechanisms are able to regulate plant development by generating non-Mendelian allelic interactions. An example of these are the responses to environmenal stimuli that result in phenotypic variability and transgression amongst important crop traits. The need to predict phenotypes from genotypes to understand the molecular basis of the genotype-by-environment interaction is a research priority. Today, with the recent discoveries in the field of epigenetics, this challenge goes beyond analyzing how DNA sequences change. Here we review examples of epigenetic regulation of genes involved in carotenoid synthesis and degradation, cases in which histone- and/or DNA-methylation, and RNA silencing at the posttranscriptional level affect carotenoids in plants. PMID:27485227

  11. Genetic and epigenetic basis of psoriasis pathogenesis.

    Science.gov (United States)

    Chandra, Aditi; Ray, Aditi; Senapati, Swapan; Chatterjee, Raghunath

    2015-04-01

    Psoriasis is a chronic inflammatory skin disease whose prevalence varies among different populations worldwide. It is a complex multi-factorial disease and the exact etiology is largely unknown. Family based studies have indicated a genetic predisposition; however they cannot fully explain the disease pathogenesis. In addition to genetic susceptibility, environmental as well as gender and age related factors were also been found to be associated. Recently, imbalances in epigenetic networks are indicated to be causative elements in psoriasis. The present knowledge of epigenetic involvement, mainly the DNA methylation, chromatin modifications and miRNA deregulation is surveyed here. An integrated approach considering genetic and epigenetic anomalies in the light of immunological network may explore the pathogenesis of psoriasis.

  12. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  13. Epigenetics: A key paradigm in reproductive health

    Science.gov (United States)

    Bunkar, Neha; Pathak, Neelam; Lohiya, Nirmal Kumar

    2016-01-01

    It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research. PMID:27358824

  14. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2015-02-01

    Full Text Available The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS´s regulation and neurological disorders are mediated via modulation of chromatin structure.Epigenetics, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA, nicotinamide adenine dinucleotide (NAD+ and beta hydroxybutyrate (β-HB, regulates some of these epigenetic modifications, linking in a precise way environment with gene expression.This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of

  15. Plant Epigenetics: From genomes to epigenomes

    Directory of Open Access Journals (Sweden)

    Alain RIVAL

    2010-09-01

    Full Text Available Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. In recent years, this field has attracted increasing attention as more epigenetic mechanisms affecting gene activity are being discovered. Such processes involve a complex interplay between DNA methylation, histone modifications, and non-coding RNAs, notably small interfering RNAs (siRNAs and micro RNAs (miRNAs. Epigenetic regulation is not only important for generating differentiated cell types during plant development, but also in maintaining the stability and integrity of their respective gene expression profiles. Although epigenetic processes are essential for normal development, they can become misdirected which leads to abnormal phenotypes and diseases, especially cancer. Sensing environmental changes and initiating a quick, reversible and appropriate response in terms of modified gene expression is of paramount importance for plants which are sessile autotrophs. Although epigenetic mechanisms help to protect plant cells from the activity of parasitic sequences such as transposable elements, this defense can complicate the genetic engineering process through transcriptional gene silencing. Epigenetic phenomena have economic relevance in the case of somaclonal variation: a genetic and phenotypic variation among clonally propagated plants from a single donor genotype. The success of sequencing projects on model plants has created widespread interest in exploring the epigenome in order to elucidate how plant cell decipher and execute the information stored and encoded in the genome. New high-throughput techniques are making it easier to map DNA methylation patterns on a large scale and results have already provided surprises.

  16. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp

    Directory of Open Access Journals (Sweden)

    De-la-Peña Clelia

    2012-11-01

    Full Text Available Abstract Background The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX transcription factors. Results To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M and temporary immersion in modular Bioreactors (B. No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. Conclusions Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition

  17. Epigenetic Aspects of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Ulrike Schmidt

    2011-01-01

    Full Text Available Development of psychiatric diseases such as posttraumatic stress disorder (PTSD invokes, as with most complex diseases, both genetic and environmental factors. The era of genome-wide high throughput technologies has sparked the initiation of genotype screenings in large cohorts of diseased and control individuals, but had limited success in identification of disease causing genetic variants. It has become evident that these efforts at the genomic level need to be complemented with endeavours in elucidating the proteome, transcriptome and epigenetic profiles. Epigenetics is attractive in particular because there is accumulating evidence that the lasting impact of adverse life events is reflected in certain covalent modifications of the chromatin.

  18. [The alchemy--epigenetic regulation of pluripotency].

    Science.gov (United States)

    Bem, Joanna; Grabowska, Iwona

    2013-01-01

    Embryonic stem cells (ESCs) self renew their population, also they are pluripotent which means they can differentiate into any given cell type. In specific culture conditions they remain undifferentiated. On the cellular level pluripotency is determined by many transcription factors, e.g. Sox2, Nanog, Klf4, Oct4. Epigenetic regulation is also crucial for both self renewal and pluripotency. This review focuses on epigenetic mechanisms, among them DNA methylation, posttranslational histone modifications, ATP dependent chromatin remodeling and miRNAs interactions. These mechanisms affect embryonic stem cells functions keeping them poised for differentiation. PMID:24044279

  19. Obesity accelerates epigenetic aging of human liver

    OpenAIRE

    Horvath, S.; Erhart, W.; Brosch, M; Ammerpohl, O; von Schonfels, W.; Ahrens, M.; Heits, N; Bell, J. T.; Tsai, P.-C.; Spector, T.D.; Deloukas, P.; Siebert, R.; Sipos, B.; Becker, T.; C. Rocken

    2014-01-01

    Because obese people are at an increased risk of many age-related diseases, it is a plausible hypothesis that obesity increases the biological age of some tissues and cell types. However, it has been difficult to detect such an accelerated aging effect because it is unclear how to measure tissue age. Here we use a recently developed biomarker of aging (known as “epigenetic clock”) to study the relationship between epigenetic age and obesity in several human tissues. We report an unexpectedly ...

  20. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Kuldip S Trehan; Kulbir S Gill

    2002-03-01

    We have isolated and purified two parental homodimers and a unique heterodimer of acid phosphatase [coded by Acph-11.05() and Acph-10.95()] from isogenic homozygotes and heterozygotes of Drosophila malerkotliana. and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity.

  1. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation.

  2. Epigenetic dynamics in psychiatric disorders : Environmental programming of neurodevelopmental processes

    NARCIS (Netherlands)

    Kofink, Daniel; Boks, Marco P. M.; Timmers, H. T. Marc; Kas, Martien J.

    2013-01-01

    Epigenetic processes have profound influence on gene translation and play a key role in embryonic development and tissue type specification. Recent advances in our understanding of epigenetics have pointed out that epigenetic alterations also play an important role in neurodevelopment and may increa

  3. Epigenetic dynamics in psychiatric disorders : environmental programming of neurodevelopmental processes

    NARCIS (Netherlands)

    Kofink, Daniel; Boks, Marco P M; Timmers, H T Marc; Kas, Martien J

    2013-01-01

    Epigenetic processes have profound influence on gene translation and play a key role in embryonic development and tissue type specification. Recent advances in our understanding of epigenetics have pointed out that epigenetic alterations also play an important role in neurodevelopment and may increa

  4. Introduction to the Special Section on Epigenetics

    Science.gov (United States)

    Lester, Barry M.; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field…

  5. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Science.gov (United States)

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W; Sanchez, Justin C

    2014-01-01

    Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled. PMID:24498055

  6. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Brain-machine interface (BMI systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings. These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.

  7. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa;

    2013-01-01

    Foetal development of germ cells is a unique biological process orchestrated by cellular specification, migration and niche development in concert with extensive epigenetic and transcriptional programs. Many of these processes take place early in foetal life and are hence very difficult to study....... In this review, we will focus on current knowledge of the epigenetics of CIS cells and relate it to the epigenetic changes occurring in early developing germ cells of mice during specification, migration and colonization. We will focus on DNA methylation and some of the best studied histone modifications like H3......K9me2, H3K27me3 and H3K9ac. We also show that CIS cells contain high levels of H3K27ac, which is known to mark active enhancers. Proper epigenetic reprogramming seems to be a pre-requisite of normal foetal germ cell development and we propose that alterations in these programs may be a pathogenic...

  8. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation.

    Science.gov (United States)

    Herceg, Zdenko; Lambert, Marie-Pierre; van Veldhoven, Karin; Demetriou, Christiana; Vineis, Paolo; Smith, Martyn T; Straif, Kurt; Wild, Christopher P

    2013-09-01

    Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.

  9. Cultural differences in perceptual reorganization in US and Piraha adults.

    Directory of Open Access Journals (Sweden)

    Jennifer M D Yoon

    Full Text Available Visual illusions and other perceptual phenomena can be used as tools to uncover the otherwise hidden constructive processes that give rise to perception. Although many perceptual processes are assumed to be universal, variable susceptibility to certain illusions and perceptual effects across populations suggests a role for factors that vary culturally. One striking phenomenon is seen with two-tone images-photos reduced to two tones: black and white. Deficient recognition is observed in young children under conditions that trigger automatic recognition in adults. Here we show a similar lack of cue-triggered perceptual reorganization in the Pirahã, a hunter-gatherer tribe with limited exposure to modern visual media, suggesting such recognition is experience- and culture-specific.

  10. Glassy protein dynamics and gigantic solvent reorganization energy of plastocyanin

    CERN Document Server

    LeBard, David N

    2007-01-01

    We report the results of Molecular Dynamics simulations of electron transfer activation parameters of plastocyanin metalloprotein involved as electron carrier in natural photosynthesis. We have discovered that slow, non-ergodic conformational fluctuations of the protein, coupled to hydrating water, result in a very broad distribution of donor-acceptor energy gaps far exceeding that observed for commonly studied inorganic and organic donor-acceptor complexes. The Stokes shift is not affected by these fluctuations and can be calculated from solvation models in terms of the response of the solvent dipolar polarization. The non-ergodic character of large-amplitude protein/water mobility breaks the strong link between the Stokes shift and reorganization energy characteristic of equilibrium (ergodic) theories of electron transfer. This mechanism might be responsible for low activation barriers in natural electron transfer proteins characterized by low reaction free energy.

  11. Reorganization of a granular medium around a localized transformation

    Science.gov (United States)

    Merceron, Aymeric; Sauret, Alban; Jop, Pierre

    2016-06-01

    Physical and chemical transformation processes in reactive granular media involve the reorganization of the structure. In this paper, we study experimentally the rearrangements of a two-dimensional (2D) granular packing undergoing a localized transformation. We track the position and evolution of all the disks that constitute the granular packing when either a large intruder shrinks in size or is pulled out of the granular structure. In the two situations the displacements at long time are similar to 2D quasistatic silo flows whereas the short-time dynamic is heterogeneous in both space and time. We observe an avalanchelike behavior with power-law distributed events uncorrelated in time. In addition, the instantaneous evolutions of the local solid fraction exhibit self-similar distributions. The averages and the standard deviations of the solid fraction variations can be rescaled, suggesting a single mechanism of rearrangement.

  12. Protein degradation during reconsolidation as a mechanism for memory reorganization

    Directory of Open Access Journals (Sweden)

    Bong-Kiun Kaang

    2011-02-01

    Full Text Available Memory is a reference formed from a past experience that is used to respond to present situations. However, the world is dynamic and situations change, so it is important to update the memory with new information each time it is reactivated in order to adjust the response in the future. Recent researches indicate that memory may undergo a dynamic process that could work as an updating mechanism. This process which is called reconsolidation involves destabilization of the memory after it is reactivated, followed by restabilization. Recently, it has been demonstrated that the initial destabilization process of reconsolidation requires protein degradation. Using protein degradation inhibition as a method to block reconsolidation, recent researches suggest that reconsolidation, especially the protein degradation-dependent destabilization process is necessary for memory reorganization.

  13. The epigenetics of estrogen: Epigenetic regulation of hormone-induced memory enhancement

    OpenAIRE

    Frick, Karyn M.; Zhao, Zaorui; Fan, Lu

    2011-01-01

    Epigenetic processes have been implicated in everything from cell proliferation to maternal behavior. Epigenetic alterations, including histone alterations and DNA methylation, have also been shown to play critical roles in the formation of some types of memory, and in the modulatory effects that factors, such as stress, drugs of abuse and environmental stimulation, have on the brain and memory function. Recently, we demonstrated that the ability of the sex-steroid hormone 17β-estradiol (E2) ...

  14. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  15. Epigenetics of osteoarticular diseases: recent developments.

    Science.gov (United States)

    Roberts, S B; Wootton, E; De Ferrari, L; Albagha, O M; Salter, D M

    2015-08-01

    A variety of osteoarticular conditions possess an underlying genetic aetiology. Large-scale genome-wide association studies have identified several genetic loci associated with osteoarticular conditions, but were unable to fully account for their estimated heritability. Epigenetic modifications including DNA methylation, histone modification, nucleosome positioning, and microRNA expression may help account for this incomplete heritability. This articles reviews insights from epigenetic studies in osteoarticular diseases, focusing on osteoarthritis, but also examines recent advances in rheumatoid arthritis, osteoporosis, systemic lupus erythematosus (SLE), ankylosing spondylitis, and sarcoma. Genome-wide methylation studies are permitting identification of novel candidate genes and molecular pathways, and the pathogenic mechanisms with altered methylation status are beginning to be elucidated. These findings are gradually translating into improved understanding of disease pathogenesis and clinical applications. Functional studies in osteoarthritis, rheumatoid arthritis, and SLE are now identifying downstream molecular alterations that may confer disease susceptibility. Epigenetic markers are being validated as prognostic and therapeutic disease biomarkers in sarcoma, and clinical trials of hypomethylating agents as treatments for sarcoma are being conducted. In concert with advances in throughput and cost-efficiency of available technologies, future epigenetic research will enable greater characterisation and treatment for both common and rare osteoarticular diseases.

  16. Epigenetics: an emerging player in gastric cancer.

    Science.gov (United States)

    Kang, Changwon; Song, Ji-Joon; Lee, Jaeok; Kim, Mi Young

    2014-06-01

    Cancers, like other diseases, arise from gene mutations and/or altered gene expression, which eventually cause dysregulation of numerous proteins and noncoding RNAs. Changes in gene expression, i.e., upregulation of oncogenes and/or downregulation of tumor suppressor genes, can be generated not only by genetic and environmental factors but also by epigenetic factors, which are inheritable but nongenetic modifications of cellular chromosome components. Identification of the factors that contribute to individual cancers is a prerequisite to a full understanding of cancer mechanisms and the development of customized cancer therapies. The search for genetic and environmental factors has a long history in cancer research, but epigenetic factors only recently began to be associated with cancer formation, progression, and metastasis. Epigenetic alterations of chromatin include DNA methylation and histone modifications, which can affect gene-expression profiles. Recent studies have revealed diverse mechanisms by which chromatin modifiers, including writers, erasers and readers of the aforementioned modifications, contribute to the formation and progression of cancer. Furthermore, functional RNAs, such as microRNAs and long noncoding RNAs, have also been identified as key players in these processes. This review highlights recent findings concerning the epigenetic alterations associated with cancers, especially gastric cancer. PMID:24914365

  17. Epigenetic mechanisms governing the process of neurodegeneration.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-01-01

    Studies elucidating how and why neurodegeneration unfolds suggest that a complex interplay between genetic and environmental factors is responsible for disease pathogenesis. Recent breakthroughs in the field of epigenetics promise to advance our understanding of these mechanisms and to promote the development of useful and effective pre-clinical risk stratification strategies, molecular diagnostic and prognostic methods, and disease-modifying treatments.

  18. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  19. Nonlinear epigenetic variance: review and simulations

    NARCIS (Netherlands)

    K.J. Kan; A. Ploeger; M.E.J. Raijmakers; C.V. Dolan; H.L.J. van der Maas

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addit

  20. Phenotype as Agent for Epigenetic Inheritance

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-07-01

    Full Text Available The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state.

  1. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  2. Epigenetic Modulation in the treatment Atherosclerotic disease

    Directory of Open Access Journals (Sweden)

    Mikaela M Byrne

    2014-10-01

    Full Text Available Cardiovascular disease is the single largest cause of death in the western world and its incidence is on the rise globally. Atherosclerosis, characterised by the development of atheromatus plaque, can trigger luminal narrowing and upon rupture result in myocardial infarction or ischemic stroke. Epigenetic mechanisms are a source of considerable research interest due to the role they play in gene regulation. Epigenetic mechanisms such as DNA methylation and histone acetylation have been identified as potential drug targets in the treatment of cardiovascular disease. miRNAs are known to play a role in gene silencing, which has been widely investigated in cancer. In comparison, the role they play in cardiovascular disease and plaque rupture is not well understood. Nutritional epigenetic modifiers from dietary components, for instance sulforaphane found in broccoli, have been shown to suppress the pro-inflammatory response through transcription factor activation. This review will discuss current and potential epigenetic therapeutics for the treatment of cardiovascular disease, focusing on the use of miRNAs and dietary supplements such as sulforaphane and protocatechuic aldehyde.

  3. Phenotype as Agent for Epigenetic Inheritance.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  4. An Architectural Genetic and Epigenetic Perspective

    OpenAIRE

    Stein, Gary S.; Stein, Janet L.; van Wijnen, Andre; Lian, Jane B.; Zaidi, Sayyed K.; Nickerson, Jeffrey; Montecino, Martin; Young, Daniel

    2010-01-01

    The organization and intranuclear localization of nucleic acids and regulatory proteins contribute to both genetic and epigenetic parameters of biological control. Regulatory machinery in the cell nucleus is functionally compartmentalized in microenvironments (focally organized sites where regulatory factors reside) that provide threshold levels of factors required for transcription, replication, repair and cell survival. The common denominator for nuclear organization of regulatory machinery...

  5. Epigenetic regulation of cystatins in cancer.

    Science.gov (United States)

    Rivenbark, Ashley G; Coleman, William B

    2009-01-01

    Cystatins function as cysteine protease inhibitors, are expressed in numerous cell types, and regulate a number of physiological processes. Four cystatins have been extensively studied: cystatin A, cystatin B, cystatin C, and cystatin M. Aberrant regulation of cystatins occurs in a number of diseases, including cancer and certain neurodegenerative disorders. Recent advances in the understanding of cystatin function suggest that these proteins may regulate promotion or suppression of tumor growth, invasion, and metastasis. Cancer is a disease of abnormal gene expression and cancer cells exhibit aberrant epigenetic events (such as DNA methylation), leading to gene silencing. Cystatins are epigenetically silenced through DNA methylation-dependent mechanisms in several forms of cancer, including breast, pancreatic, brain, and lung. These findings suggest that DNA methylation-dependent epigenetic mechanisms may play an important role in the loss of cystatin gene expression and protein function during neoplastic transformation and/or tumor progression. This review summarizes the biological processes in which cystatins function, focuses on the neoplastic events that involve aberrant regulation of cystatins, and discusses the possible epigenetic regulation of cystatins in cancer.

  6. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  7. The Epigenetic Effects of Prenatal Cadmium Exposure.

    Science.gov (United States)

    Vilahur, Nadia; Vahter, Marie; Broberg, Karin

    2015-06-01

    Prenatal exposure to the highly toxic and common pollutant cadmium has been associated with adverse effects on child health and development. However, the underlying biological mechanisms of cadmium toxicity remain partially unsolved. Epigenetic disruption due to early cadmium exposure has gained attention as a plausible mode of action, since epigenetic signatures respond to environmental stimuli and the fetus undergoes drastic epigenomic rearrangements during embryogenesis. In the current review, we provide a critical examination of the literature addressing prenatal cadmium exposure and epigenetic effects in human, animal, and in vitro studies. We conducted a PubMed search and obtained eight recent studies addressing this topic, focusing almost exclusively on DNA methylation. These studies provide evidence that cadmium alters epigenetic signatures in the DNA of the placenta and of the newborns, and some studies indicated marked sexual differences for cadmium-related DNA methylation changes. Associations between early cadmium exposure and DNA methylation might reflect interference with de novo DNA methyltransferases. More studies, especially those including environmentally relevant doses, are needed to confirm the toxicoepigenomic effects of prenatal cadmium exposure and how that relates to the observed health effects of cadmium in childhood and later life.

  8. Epigenetics and the Social Work Imperative

    Science.gov (United States)

    Combs-Orme, Terri

    2013-01-01

    "Epigenesis" is the biochemical process through which some genes are expressed and others remain silent, and it reinforces and explains the powerful impact that the environment has on human development. Epigenetic effects occur not only through diet, chemical exposure, and high levels of environmental stress, but also through chronic poverty and…

  9. Epigenetic regulation of the mammalian cell.

    Directory of Open Access Journals (Sweden)

    Keith Baverstock

    Full Text Available BACKGROUND: Understanding how mammalian cells are regulated epigenetically to express phenotype is a priority. The cellular phenotypic transition, induced by ionising radiation, from a normal cell to the genomic instability phenotype, where the ability to replicate the genotype accurately is compromised, illustrates important features of epigenetic regulation. Based on this phenomenon and earlier work we propose a model to describe the mammalian cell as a self assembled open system operating in an environment that includes its genotype, neighbouring cells and beyond. Phenotype is represented by high dimensional attractors, evolutionarily conditioned for stability and robustness and contingent on rules of engagement between gene products encoded in the genetic network. METHODOLOGY/FINDINGS: We describe how this system functions and note the indeterminacy and fluidity of its internal workings which place it in the logical reasoning framework of predicative logic. We find that the hypothesis is supported by evidence from cell and molecular biology. CONCLUSIONS: Epigenetic regulation and memory are fundamentally physical, as opposed to chemical, processes and the transition to genomic instability is an important feature of mammalian cells with probable fundamental relevance to speciation and carcinogenesis. A source of evolutionarily selectable variation, in terms of the rules of engagement between gene products, is seen as more likely to have greater prominence than genetic variation in an evolutionary context. As this epigenetic variation is based on attractor states phenotypic changes are not gradual; a phenotypic transition can involve the changed contribution of several gene products in a single step.

  10. Dietary effects on adipocyte metabolism and epigenetics

    Science.gov (United States)

    Obesity risk appears to be perpetuated across generations by way of programmed DNA alterations that occur in utero and that affect gene expression throughout the life span. Studies have demonstrated associations of maternal obesity and epigenetic changes, such as DNA methylation, histone modifica...

  11. Epigenetics as a First Exit Problem

    Science.gov (United States)

    Aurell, E.; Sneppen, K.

    2002-01-01

    We develop a framework to discuss the stability of epigenetic states as first exit problems in dynamical systems with noise. We consider in particular the stability of the lysogenic state of the λ prophage. The formalism defines a quantitative measure of robustness of inherited states.

  12. Epigenetics of inflammation, maternal infection and nutrition

    Science.gov (United States)

    Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk for chronic disease development. A few studies have begun to investigate whether dietary nutrients play...

  13. Phenotype as Agent for Epigenetic Inheritance

    Science.gov (United States)

    Torday, John S.; Miller, William B.

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  14. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis.

    Science.gov (United States)

    Pollock, Emily; Everest, Michelle; Brown, Arthur; Poulter, Michael O

    2014-10-01

    The integrity and stability of interneurons in a cortical network are essential for proper network function. Loss of interneuron synaptic stability and precise organization can lead to disruptions in the excitation/inhibition balance, a characteristic of epilepsy. This study aimed to identify alterations to the GABAergic interneuron network in the piriform cortex (PC: a cortical area believed to be involved in the development of seizures) after kindling-induced seizures. Immunohistochemistry was used to mark perineuronal nets (PNNs: structures in the extracellular matrix that provide synaptic stability and restrict reorganization of inhibitory interneurons) and interneuron nerve terminals in control and kindled tissues. We found that PNNs were significantly decreased around parvalbumin-positive interneurons after the induction of experimental epilepsy. Additionally, we found layer-specific increases in GABA release sites originating from calbindin, calretinin, and parvalbumin interneurons, implying that there is a re-wiring of the interneuronal network. This increase in release sites was matched by an increase in GABAergic post-synaptic densities. We hypothesized that the breakdown of the PNN could be due to the activity of matrix metalloproteinases (MMP) and that the prevention of PNN breakdown may reduce the rewiring of interneuronal circuits and suppress seizures. To test this hypothesis we employed doxycycline, a broad spectrum MMP inhibitor, to stabilize PNNs in kindled rats. We found that doxycycline prevented PNN breakdown, re-organization of the inhibitory innervation, and seizure genesis. Our observations indicate that PNN degradation may be necessary for the development of seizures by facilitating interneuron plasticity and increased GABAergic activity.

  15. A gauge-invariant reorganization of thermal gauge theory

    International Nuclear Information System (INIS)

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in mD/T, mf/T and e2, where mD and mf are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in mD/T and g2, where mD is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 Tc. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  16. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  17. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  18. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Your Rights Under the Energy Reorganization Act A Appendix A to Part 24 Labor Office of the Secretary of Labor PROCEDURES FOR THE HANDLING OF RETALIATION... the Energy Reorganization Act ER10AU07.000...

  19. 78 FR 1197 - Reorganization of Foreign-Trade Zone 32 Under Alternative Site Framework; Miami, FL

    Science.gov (United States)

    2013-01-08

    ... (77 FR 43048-43049, 7/23/2012) and the application, as amended, has been processed pursuant to the FTZ... Foreign-Trade Zones Board Reorganization of Foreign-Trade Zone 32 Under Alternative Site Framework; Miami... reorganization of zones; Whereas, the Greater Miami Foreign-Trade Zone, Inc., grantee of Foreign-Trade Zone...

  20. Epigenetic architecture and miRNA: reciprocal regulators

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Kjems, Jørgen; Clark, Susan

    2010-01-01

    Deregulation of epigenetic and microRNA (miRNA) pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected......RNAs) are considered especially promising in clinical applications, and their biogenesis and function is a subject of active research. In this review, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer....

  1. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li-Li Li; Xing-Sheng Shu; Zhao-Hui Wang; Ya Cao; Qian Tao

    2011-01-01

    Nasopharyngeal carcinoma (NPC) is a malignancy with remarkable ethnic and geographic distribution in southern China and Southeast Asia. Alternative to genetic changes, aberrant epigenetic events disrupt multiple genes involved in cell signaling pathways through DNA methylation of promoter CpG islands and/ or histone modifications. These epigenetic alterations grant cell growth advantage and contribute to the initiation and progression of NPC. In this review, we summariye the epigenetic deregulation of cell signaling in NPC tumorigenesis and highlight the importance of identifying epigenetic cell signaling regulators in NPC research. Developing pharmacologic strategies to reverse the epigenetic-silencing of cell signaling regulators might thus be useful to NPC prevention and therapy.

  2. Epigenetics and etiology of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Beata M. Gruber

    2011-08-01

    Full Text Available Determination of specific gene profile expression is essential for morphological and functional differentiation of cells in the human organism. The human genome consists of 25–30 thousands genes but only some of them are expressed in each cell. Epigenetic modifications such as DNA methylation, histone and chromatin modifications or non-coding RNA functions are also responsible for the unique gene expression patterns. It is suggested that transcriptional gene activation is related to hypomethylation and the transcriptionally non-active sequences are hypermethylated. Covalent histone modifications and DNA methylation are correlated and interacting. Chromatin modeling is regulated not only by specific enzymes but also by protein kinases or phosphatases and coactivators, such as CBP. Such interaction makes the “histone code” which with the chromatin proteins determines gene expression patterns as the response to external agents. Evidence of a major role for epigenetic modifications in neurological disease has come from three converging lines of enquiry: high conservation throughout evolution of the histone residues that are the target for epigenetic modifications; association between mutations in epigenetic components and multisystem disease syndrome in the nervous system; and broad efficacy of small-molecule epigenetic modulators, e.g. histone deacetylase inhibitors, in models of neurological diseases incurable up to now, such as Huntington’s disease, (HD, Parkinson’s disease (PD and Alzheimer’s disease (AD. This article is a survey of the literature concerning the characterization of gene expression patterns correlated with some neurodegenerative diseases. The processes of DNA hypomethylation and histone acetylation are emphasized. The histone deacetylases are indicated as the basis for design of potential drugs.

  3. Understanding neurological disease mechanisms in the era of epigenetics.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-06-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type-specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues.

  4. A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions.

    Directory of Open Access Journals (Sweden)

    Markus Butz

    Full Text Available Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke.

  5. Targeting cancer epigenetics: Linking basic biology to clinical medicine.

    Science.gov (United States)

    Shinjo, Keiko; Kondo, Yutaka

    2015-12-01

    Recent studies provide compelling evidence that epigenetic dysregulation is involved in almost every step of tumor development and progression. Differences in tumor behavior, which ultimately reflects clinical outcome, can be explained by variations in gene expression patterns generated by epigenetic mechanisms, such as DNA methylation. Therefore, epigenetic abnormalities are considered potential biomarkers and therapeutic targets. DNA methylation is stable at certain specific loci in cancer cells and predominantly reflects the characteristic clinicopathological features. Thus, it is an ideal biomarker for cancer screening, classification and prognostic purposes. Epigenetic treatment for cancers is based on the pharmacologic targeting of various core transcriptional programs that sustains cancer cell identity. Therefore, targeting aberrant epigenetic modifiers may be effective for multiple processes compared with using a selective inhibitor of aberrant single signaling pathway. This review provides an overview of the epigenetic alterations in human cancers and discusses about novel therapeutic strategies targeting epigenetic alterations.

  6. Epigenetic modifications as regulatory elements of autophagy in cancer.

    Science.gov (United States)

    Sui, Xinbing; Zhu, Jing; Zhou, Jichun; Wang, Xian; Li, Da; Han, Weidong; Fang, Yong; Pan, Hongming

    2015-05-01

    Epigenetic modifications have been considered as hallmarks of cancer and play an important role in tumor initiation and development. Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, may regulate cell cycle and apoptosis, as well as macroautophagy (hereafter referred to as autophagy). Autophagy, as a crucial cellular homeostatic mechanism, performs a dual role, having pro-survival or pro-death properties. A variety of signaling pathways including epigenetic control have been implicated in the upregulation or downregulation of autophagy. However, the role of epigenetic regulation in autophagy is still less well acknowledged. Recent studies have linked epigenetic control to the autophagic process. Some epigenetic modifiers are also involved in the regulation of autophagy and potentiate the efficacy of traditional therapeutics. Thus, understanding the novel functions of epigenetic control in autophagy may allow us to develop potential therapeutic approaches for cancer treatment.

  7. Epigenetic modulators as therapeutic targets in prostate cancer.

    Science.gov (United States)

    Graça, Inês; Pereira-Silva, Eva; Henrique, Rui; Packham, Graham; Crabb, Simon J; Jerónimo, Carmen

    2016-01-01

    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management. PMID:27651838

  8. [Epigenetics and Nutrition: maternal nutrition impacts on placental development and health of offspring].

    Science.gov (United States)

    Panchenko, Polina E; Lemaire, Marion; Fneich, Sara; Voisin, Sarah; Jouin, Mélanie; Junien, Claudine; Gabory, Anne

    2015-01-01

    The environment, defined broadly by all that is external to the individual, conditions the phenotype during development, particularly the susceptibility to develop non-communicable diseases. This notion, called Developmental Origins of Health and Disease (DOHaD), is based on numerous epidemiological studies as well as animal models. Thus, parental nutrition and obesity can predispose the offspring to develop metabolic and cardiovascular diseases in adulthood. The known underlying mechanisms include an altered development of tissues that adapt to maternal metabolic condition, and a placental dysfunction, which in turn impacts fetal growth and development. Epigenetic mechanisms modulate gene expression without affecting the DNA sequence itself. The main epigenetic marks are DNA methylation and histone post-translational modifications. These marks are erased and set-up during gametogenesis and development in order to ensure cellular identity. Therefore, they can lead to a memorisation of early environment and induce long-term alteration of cell and tissue functions, which will condition the susceptibility to non-communicable diseases. The placenta is a programming agent of adult disease. The environment, such as smoking or psychosocial stress, is able to modify epigenetic processes in placenta, such as small RNA expression and DNA methylation. We showed that placenta is sensitive to maternal obesity and maternal nutrition, in terms of histology, transcription and epigenetic marks. A clear sexual dimorphism is remarkable in the placental response to maternal environment. In adulthood, the phenotype is also different between males and females. Epigenetic mechanisms could underlie this differential response of males and females to the same environment. The DOHaD can no longer be ignored in Biology of Reproduction. The prevention of non-communicable diseases must take this new paradigm into account. Research will allow a better comprehension of the mechanisms of this

  9. Dynamic and task-dependent encoding of speech and voice by phase reorganization of cortical oscillations.

    Science.gov (United States)

    Bonte, Milene; Valente, Giancarlo; Formisano, Elia

    2009-02-11

    Speech and vocal sounds are at the core of human communication. Cortical processing of these sounds critically depends on behavioral demands. However, the neurocomputational mechanisms enabling this adaptive processing remain elusive. Here we examine the task-dependent reorganization of electroencephalographic responses to natural speech sounds (vowels /a/, /i/, /u/) spoken by three speakers (two female, one male) while listeners perform a one-back task on either vowel or speaker identity. We show that dynamic changes of sound-evoked responses and phase patterns of cortical oscillations in the alpha band (8-12 Hz) closely reflect the abstraction and analysis of the sounds along the task-relevant dimension. Vowel categorization leads to a significant temporal realignment of responses to the same vowel, e.g., /a/, independent of who pronounced this vowel, whereas speaker categorization leads to a significant temporal realignment of responses to the same speaker, e.g., speaker 1, independent of which vowel she/he pronounced. This transient and goal-dependent realignment of neuronal responses to physically different external events provides a robust cortical coding mechanism for forming and processing abstract representations of auditory (speech) input. PMID:19211877

  10. A model of epigenetic evolution based on theory of open quantum systems.

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2013-12-01

    We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance.

  11. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  12. Transgenerational epigenetic inheritance in mammals: how good is the evidence?

    Science.gov (United States)

    van Otterdijk, Sanne D; Michels, Karin B

    2016-07-01

    Epigenetics plays an important role in orchestrating key biologic processes. Epigenetic marks, including DNA methylation, histones, chromatin structure, and noncoding RNAs, are modified throughout life in response to environmental and behavioral influences. With each new generation, DNA methylation patterns are erased in gametes and reset after fertilization, probably to prevent these epigenetic marks from being transferred from parents to their offspring. However, some recent animal studies suggest an apparent resistance to complete erasure of epigenetic marks during early development, enabling transgenerational epigenetic inheritance. Whether there are similar mechanisms in humans remains unclear, with the exception of epigenetic imprinting. Nevertheless, a distinctly different mechanism-namely, intrauterine exposure to environmental stressors that may affect establishment of the newly composing epigenetic patterns after fertilization-is often confused with transgenerational epigenetic inheritance. In this review, we delineate the definition of and requirement for transgenerational epigenetic inheritance, differentiate it from the consequences of intrauterine exposure, and discuss the available evidence in both animal models and humans.-Van Otterdijk, S. D., Michels, K. B. Transgenerational epigenetic inheritance in mammals: how good is the evidence?

  13. Transgenerational epigenetic inheritance in mammals: how good is the evidence?

    Science.gov (United States)

    van Otterdijk, Sanne D; Michels, Karin B

    2016-07-01

    Epigenetics plays an important role in orchestrating key biologic processes. Epigenetic marks, including DNA methylation, histones, chromatin structure, and noncoding RNAs, are modified throughout life in response to environmental and behavioral influences. With each new generation, DNA methylation patterns are erased in gametes and reset after fertilization, probably to prevent these epigenetic marks from being transferred from parents to their offspring. However, some recent animal studies suggest an apparent resistance to complete erasure of epigenetic marks during early development, enabling transgenerational epigenetic inheritance. Whether there are similar mechanisms in humans remains unclear, with the exception of epigenetic imprinting. Nevertheless, a distinctly different mechanism-namely, intrauterine exposure to environmental stressors that may affect establishment of the newly composing epigenetic patterns after fertilization-is often confused with transgenerational epigenetic inheritance. In this review, we delineate the definition of and requirement for transgenerational epigenetic inheritance, differentiate it from the consequences of intrauterine exposure, and discuss the available evidence in both animal models and humans.-Van Otterdijk, S. D., Michels, K. B. Transgenerational epigenetic inheritance in mammals: how good is the evidence? PMID:27037350

  14. Epigenetic Modifications of Major Depressive Disorder.

    Science.gov (United States)

    Saavedra, Kathleen; Molina-Márquez, Ana María; Saavedra, Nicolás; Zambrano, Tomás; Salazar, Luis A

    2016-01-01

    Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders. PMID:27527165

  15. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  16. Atherogenic Factors and Their Epigenetic Relationships

    Directory of Open Access Journals (Sweden)

    Ana Z. Fernandez

    2010-01-01

    Full Text Available Hypercholesterolemia, homocysteine, oxidative stress, and hyperglycemia have been recognized as the major risk factors for atherogenesis. Their impact on the physiology and biochemistry of vascular cells has been widely demonstrated for the last century. However, the recent discovery of the role of epigenetics in human disease has opened up a new field in the study of atherogenic factors. Thus, epigenetic tags in endothelial, smooth muscle, and immune cells seem to be differentially affected by similar atherogenic stimuli. This paper summarizes some recent works on expression of histone-modifying enzymes and DNA methylation directly linked to the presence of risk factors that could lead to the development or prevention of the atherosclerotic process.

  17. Epigenetics of the yeast galactose genetic switch

    Indian Academy of Sciences (India)

    Paike Jayadeva Bhat; Revathi S Iyer

    2009-10-01

    The transcriptional activation of enzymes involved in galactose utilization (GAL genes) in Saccharomyces cerevisiae is regulated by a complex interplay between three regulatory proteins encoded by GAL4 (transcriptional activator), GAL3 (signal transducer) and GAL80 (repressor). The relative concentrations of the signal transducer and the repressor are maintained by autoregulation. Cells disabled for autoregulation exhibit phenotypes distinctly different from that of the wild type cells, enabling us to explore the biological significance of autoregulation. The redundancy in signal transduction due to the presence of GAL1 (alternate signal transducer) also makes it a suitable model to understand the phenomenon of epigenetics. In this article we review some of the recent attempts made to understand the importance of epigenetics in the establishment of cellular and transcriptional memory.

  18. Radiation-induced myosin IIA expression stimulates collagen type I matrix reorganization

    International Nuclear Information System (INIS)

    Background and purpose: Extracellular matrix (ECM) reorganization critically contributes to breast cancer (BC) progression and radiotherapy response. We investigated the molecular background and functional consequences of collagen type I (col-I) reorganization by irradiated breast cancer cells (BCC). Materials and methods: Radiation-induced (RI) col-I reorganization was evaluated for MCF-7/6, MCF-7/AZ, T47D and SK-BR-3 BCC. Phase-contrast microscopy and a stressed matrix contraction assay were used for visualization and quantification of col-I reorganization. Cell–matrix interactions were assessed by the inhibition of β1 integrin (neutralizing antibody ‘P5D2’) or focal adhesion kinase (FAK; GSK22560098 small molecule kinase inhibitor). The role of the actomyosin cytoskeleton was explored by western blotting analysis of myosin II expression and activity; and by gene silencing of myosin IIA and pharmacological inhibition of the actomyosin system (blebbistatin, cytochalasin D). BCC death was evaluated by propidium iodide staining. Results: We observed a radiation dose-dependent increase of col-I reorganization by BCC. β1 Integrin/FAK-mediated cell–matrix interactions are essential for RI col-I reorganization. Irradiated BCC are characterized by increased myosin IIA expression and myosin IIA-dependent col-I reorganization. Moreover, RI col-I reorganization by BCC is associated with decreased BCC death, as suggested by pharmacological targeting of the β1 integrin/FAK/myosin IIA pathway. Conclusions: Our data indicate the role of myosin IIA in col-I reorganization by irradiated BCC and reciprocal BCC death

  19. Epigenetics and etiology of neurodegenerative diseases

    OpenAIRE

    Beata M. Gruber

    2011-01-01

    Determination of specific gene profile expression is essential for morphological and functional differentiation of cells in the human organism. The human genome consists of 25–30 thousands genes but only some of them are expressed in each cell. Epigenetic modifications such as DNA methylation, histone and chromatin modifications or non-coding RNA functions are also responsible for the unique gene expression patterns. It is suggested that transcriptional gene activation is related to hypomethy...

  20. Epigenetic Influences on Brain Development and Plasticity

    OpenAIRE

    Fagiolini, Michela; Jensen, Catherine L.; Champagne, Frances A.

    2009-01-01

    A fine interplay exists between sensory experience and innate genetic programs leading to the sculpting of neuronal circuits during early brain development. Recent evidence suggests that the dynamic regulation of gene expression through epigenetic mechanisms is at the interface between environmental stimuli and long-lasting molecular, cellular and complex behavioral phenotypes acquired during periods of developmental plasticity. Understanding these mechanisms may give insight into the formati...

  1. On the road to epigenetic therapy.

    Science.gov (United States)

    Walton, Emma L

    2016-06-01

    In this issue of the Biomedical Journal, we examine how far the explosion of epigenetic studies in recent years has translated to benefits for patients in the clinic, and we highlight an original study suggesting that increased vegetable intake protects against osteoporotic fractures. We also hear several opinions on the use, or perhaps misuse, of Impact Factor and what the future should hold for this publication metric. PMID:27621116

  2. Accelerated epigenetic aging in Down syndrome

    OpenAIRE

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V.; Franceschi, Claudio

    2015-01-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P ...

  3. Noncoding Elements: Evolution and Epigenetic Regulation

    KAUST Repository

    Seridi, Loqmane

    2016-03-09

    When the human genome project was completed, it revealed a surprising result. 98% of the genome did not code for protein of which more than 50% are repeats— later known as ”Junk DNA”. However, comparative genomics unveiled that many noncoding elements are evolutionarily constrained; thus luckily to have a role in genome stability and regulation. Though, their exact functions remained largely unknown. Several large international consortia such as the Functional Annotation of Mammalian Genomes (FANTOM) and the Encyclopedia of DNA Elements (ENCODE) were set to understand the structure and the regulation of the genome. Specifically, these endeavors aim to measure and reveal the transcribed components and functional elements of the genome. One of the most the striking findings of these efforts is that most of the genome is transcribed, including non-conserved noncoding elements and repeat elements. Specifically, we investigated the evolution and epigenetic properties of noncoding elements. 1. We compared genomes of evolutionarily distant species and showed the ubiquity of constrained noncoding elements in metazoa. 2. By integrating multi-omic data (such as transcriptome, nucleosome profiling, histone modifications), I conducted a comprehensive analysis of epigenetic properties (chromatin states) of conserved noncoding elements in insects. We showed that those elements have distinct and protective sequence features, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. 3. I focused on the relationship between enhancers and repetitive elements. Using Cap Analysis of Gene Expression (CAGE) and RNASeq, I compiled a full catalog of active enhancers (a class of noncoding elements) during myogenesis of human primary cells of healthy donors and donors affected by Duchenne muscular dystrophy (DMD). Comparing the two time-courses, a significant change in the epigenetic

  4. Global Reorganization of the Nuclear Landscape in Senescent Cells

    Directory of Open Access Journals (Sweden)

    Tamir Chandra

    2015-02-01

    Full Text Available Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF. However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs, somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.

  5. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    Directory of Open Access Journals (Sweden)

    Poulomi Ray

    Full Text Available Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF, Bone Morphogenetic Protein (BMP and Transforming Growth Factor beta (TGF-β signaling pathways. Rho Kinase (ROCK-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  6. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation

    Science.gov (United States)

    Wassenburg, Jasper A.; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev K.; Sabaoui, Abdellah; Spötl, Christoph; Lohmann, Gerrit; Andreae, Meinrat O.; Immenhauser, Adrian

    2016-08-01

    The North Atlantic Oscillation is the dominant atmospheric pressure mode in the North Atlantic region and affects winter temperature and precipitation in the Mediterranean, northwest Europe, Greenland, and Asia. The index that describes the sea-level pressure difference between Iceland and the Azores is correlated with a dipole precipitation pattern over northwest Europe and northwest Africa. How the North Atlantic Oscillation will develop as the Greenland ice sheet melts is unclear. A potential past analogue is the early Holocene, during which melting ice sheets around the North Atlantic freshened surface waters, affecting the strength of the meridional overturning circulation. Here we present a Holocene rainfall record from northwest Africa based on speleothem δ18O and compare it against a speleothem-based rainfall record from Europe. The two records are positively correlated during the early Holocene, followed by a shift to an anti-correlation, similar to the modern record, during the mid-Holocene. On the basis of our simulations with an Earth system model, we suggest the shift to the anti-correlation reflects a large-scale atmospheric and oceanic reorganization in response to the demise of the Laurentide ice sheet and a strong reduction of meltwater flux to the North Atlantic, pointing to a potential sensitivity of the North Atlantic Oscillation to the melting of ice sheets.

  7. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    Science.gov (United States)

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  8. Enhancing Physical Activity and Brain Reorganization after Stroke

    Directory of Open Access Journals (Sweden)

    Janet H. Carr

    2011-01-01

    Full Text Available It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after discharge. It is evident that many patients are discharged from inpatient rehabilitation severely deconditioned, meaning that their energy levels are too low for active participation in daily life. Physicians, therapists, and nursing staff responsible for rehabilitation practice should address this issue not only during inpatient rehabilitation but also after discharge by promoting and supporting community-based exercise opportunities. During inpatient rehabilitation, group sessions should be frequent and need to include specific aerobic training. Physiotherapy must take advantage of the training aids available, including exercise equipment such as treadmills, and of new developments in computerised feedback systems, robotics, and electromechanical trainers. For illustrative purposes, this paper focuses on the role of physiotherapists, but the necessary changes in practice and in attitude will require cooperation from many others.

  9. Reorganization of the Brain and Heart Rhythm During Autogenic Meditation

    Directory of Open Access Journals (Sweden)

    Dae-Keun eKim

    2014-01-01

    Full Text Available The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower(alpha and higher(above beta band coherence during 3 minute epochs of heart coherent meditation compared to 3 minute epochs of heart noncoherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher(above beta band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state.

  10. Epigenetic Changes in Diabetes and Cardiovascular Risk.

    Science.gov (United States)

    Keating, Samuel T; Plutzky, Jorge; El-Osta, Assam

    2016-05-27

    Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease. PMID:27230637

  11. Epigenetics and cardiovascular risk in childhood.

    Science.gov (United States)

    Martino, Francesco; Magenta, Alessandra; Pannarale, Giuseppe; Martino, Eliana; Zanoni, Cristina; Perla, Francesco M; Puddu, Paolo E; Barillà, Francesco

    2016-08-01

    Cardiovascular disease (CVD) can arise at the early stages of development and growth. Genetic and environmental factors may interact resulting in epigenetic modifications with abnormal phenotypic expression of genetic information without any change in the nucleotide sequence of DNA. Maternal dietary imbalance, inadequate to meet the nutritional needs of the fetus can lead to intrauterine growth retardation, decreased gestational age, low birth weight, excessive post-natal growth and metabolic alterations, with subsequent appearance of CVD risk factors. Fetal exposure to high cholesterol, diabetes and maternal obesity is associated with increased risk and progression of atherosclerosis. Maternal smoking during pregnancy and exposure to various environmental pollutants induce epigenetic alterations of gene expression relevant to the onset or progression of CVD. In children with hypercholesterolemia and/or obesity, oxidative stress activates platelets and monocytes, which release proinflammatory and proatherogenic substances, inducing endothelial dysfunction, decreased Doppler flow-mediated dilation and increased carotid intima-media thickness. Primary prevention of atherosclerosis should be implemented early. It is necessary to identify, through screening, high-risk apparently healthy children and take care of them enforcing healthy lifestyle (mainly consisting of Mediterranean diet and physical activity), prescribing nutraceuticals and eventual medications, if required by a high-risk profile. The key issue is the restoration of endothelial function in the reversible stage of atherosclerosis. Epigenetics may provide new markers for an early identification of children at risk and thereby develop innovative therapies and specific nutritional interventions in critical times. PMID:27367935

  12. Developmental epigenetics of the murine secondary palate.

    Science.gov (United States)

    Seelan, Ratnam S; Mukhopadhyay, Partha; Pisano, M Michele; Greene, Robert M

    2012-01-01

    Orofacial clefts occur with a frequency of 1 to 2 per 1000 live births. Cleft palate, which accounts for 30% of orofacial clefts, is caused by the failure of the secondary palatal processes--medially directed, oral projections of the paired embryonic maxillary processes--to fuse. Both gene mutations and environmental effects contribute to the complex etiology of this disorder. Although much progress has been made in identifying genes whose mutations are associated with cleft palate, little is known about the mechanisms by which the environment adversely influences gene expression during secondary palate development. An increasing body of evidence, however, implicates epigenetic processes as playing a role in adversely influencing orofacial development. Epigenetics refers to inherited changes in phenotype or gene expression caused by processes other than changes in the underlying DNA sequence. Such processes include, but are not limited to, DNA methylation, microRNA effects, and histone modifications that alter chromatin conformation. In this review, we describe our current understanding of the possible role epigenetics may play during development of the secondary palate. Specifically, we present the salient features of the embryonic palatal methylome and profile the expression of numerous microRNAs that regulate protein-encoding genes crucial to normal orofacial ontogeny.

  13. Epigenetic mechanisms in cardiac development and disease

    Institute of Scientific and Technical Information of China (English)

    Marcus Vallaster; Caroline Dacwag Vallaster; Sean M. Wu

    2012-01-01

    During mammalian development,cardiac specification and ultimately lineage commitment to a specific cardiac cell type is accomplished by the action of specific transcription factors (TFs) and their meticulous control on an epigenetic level.In this review,we detail how cardiacspecific TFs function in concert with nucleosome remodeling and histone-modifying enzymes to regulate a diverse network of genes required for processes such as cell growth and proliferation,or epithelial to mesenchymal transition (EMT),for instance.We provide examples of how several cardiac TFs,such as Nkx2.5,WHSC1,Tbx5,and Tbx1,which are associated with developmental and congenital heart defects,are required for the recruitment of histone modifiers,such as Jarid2,p300,and Ash21,and components of ATP-dependent remodeling enzymes like Brg1,Baf60c,and Baf180.Binding of these TFs to their respective sites at cardiac genes coincides with a distinct pattern of histone marks,indicating that the precise regulation of cardiac gene networks is orchestrated by interactions between TFs and epigenetic modifiers.Furthermore,we speculate that an epigenetic signature,comprised of TF occupancy,histone modifications,and overall chromatin organization,is an underlying mechanism that governs cardiac morphogenesis and disease.

  14. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  15. Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Eric J Nestler

    2016-03-01

    Full Text Available There has been increasing interest in the possibility that behavioral experience--in particular, exposure to stress--can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility--and the experimental evidence for and against the existence of such mechanisms--and outlines steps required for future investigations.

  16. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  17. Epigenetic diet: impact on the epigenome and cancer.

    Science.gov (United States)

    Hardy, Tabitha M; Tollefsbol, Trygve O

    2011-08-01

    A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an 'epigenetic diet'. Bioactive nutritional components of an epigenetic diet may be incorporated into one's regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies.

  18. Role of Epigenetics in Biology and Human Diseases.

    Science.gov (United States)

    Moosavi, Azam; Motevalizadeh Ardekani, Ali

    2016-11-01

    For a long time, scientists have tried to describe disorders just by genetic or environmental factors. However, the role of epigenetics in human diseases has been considered from a half of century ago. In the last decade, this subject has attracted many interests, especially in complicated disorders such as behavior plasticity, memory, cancer, autoimmune disease, and addiction as well as neurodegenerative and psychological disorders. This review first explains the history and classification of epigenetic modifications, and then the role of epigenetic in biology and connection between the epigenetics and environment are explained. Furthermore, the role of epigenetics in human diseases is considered by focusing on some diseases with some complicated features, and at the end, we have given the future perspective of this field. The present review article provides concepts with some examples to reveal a broad view of different aspects of epigenetics in biology and human diseases. PMID:27377127

  19. Epigenetic therapy in gastrointestinal cancer: the right combination.

    Science.gov (United States)

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-07-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  20. Epigenetic therapy in gastrointestinal cancer: the right combination

    Science.gov (United States)

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-01-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  1. Epileptogenesis: Can the Science of Epigenetics Give Us Answers?

    OpenAIRE

    Lubin, Farah D.

    2012-01-01

    Epigenetic mechanisms are regulatory processes that control gene expression changes involved in multiple aspects of neuronal function, including central nervous system development, synaptic plasticity, and memory. Recent evidence indicates that dysregulation of epigenetic mechanisms occurs in several human epilepsy syndromes. Despite this discovery of a potential role for epigenetic mechanisms in epilepsy, few studies have fully explored their contribution to the process of epilepsy developme...

  2. Epigenetic differences after prenatal adversity: the Dutch hunger winter

    OpenAIRE

    Tobi, Elmar Wouter

    2013-01-01

    This thesis is a study on the link between early development and adult health. Studies in animal models indicate that so-called epigenetic marks may be influenced by nutrition during development, changing the expression of genes implicated in disease. Epigenetics may therefore link development and disease. To investigate this hypothesis in humans we studied DNA methylation, a key epigenetic mark, in individuals exposed during early gestation to the Dutch Famine and individuals born growth res...

  3. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  4. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  5. Developing epigenetic diagnostics and therapeutics for brain disorders.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-12-01

    Perturbations in epigenetic mechanisms have emerged as cardinal features in the molecular pathology of major classes of brain disorders. We therefore highlight evidence which suggests that specific epigenetic signatures measurable in central - and possibly even in peripheral tissues - have significant value as translatable biomarkers for screening, early diagnosis, and prognostication; developing molecularly targeted medicines; and monitoring disease progression and treatment responses. We also draw attention to existing and novel therapeutic approaches directed at epigenetic factors and mechanisms, including strategies for modulating enzymes that write and erase DNA methylation and histone/chromatin marks; protein-protein interactions responsible for reading epigenetic marks; and non-coding RNA pathways.

  6. Reorganization of chromosome architecture in replicative cellular senescence.

    Science.gov (United States)

    Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A; Sedivy, John M; Neretti, Nicola

    2016-02-01

    Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells. PMID:26989773

  7. Niche adaptation by expansion and reprogramming of general transcription factors

    OpenAIRE

    Turkarslan, Serdar; Reiss, David J; Gibbins, Goodwin; Su, Wan Lin; Pan, Min; Bare, J Christopher; Plaisier, Christopher L.; Baliga, Nitin S

    2011-01-01

    The evolutionary success of an organism depends on its ability to continually adapt to changes in the patterns of constant, periodic, and transient challenges within its environment. This process of ‘niche adaptation' requires reprogramming of the organism's environmental response networks by reorganizing interactions among diverse parts including environmental sensors, signal transducers, and transcriptional and post-transcriptional regulators. Gene duplications have been discovered to be on...

  8. University To Reorganize Business Functions; Raymond Smoot To Head Virginia Tech Foundation

    OpenAIRE

    Hincker, Lawrence

    2003-01-01

    Raymond Smoot, vice president for administration and treasurer, will assume a new role as executive vice president and chief operating officer for the Virginia Tech Foundation. Concurrent with this move, the university business and administrative functions will be reorganized.

  9. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  10. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum

    Science.gov (United States)

    Lu, Ake T.; Hannon, Eilis; Levine, Morgan E.; Hao, Ke; Crimmins, Eileen M.; Lunnon, Katie; Kozlenkov, Alexey; Mill, Jonathan; Dracheva, Stella; Horvath, Steve

    2016-02-01

    DNA methylation (DNAm) levels lend themselves for defining an epigenetic biomarker of aging known as the `epigenetic clock'. Our genome-wide association study (GWAS) of cerebellar epigenetic age acceleration identifies five significant (Pepigenetic tissue age as endophenotype in GWAS.

  11. Is epigenetics an important link between early life events and adult disease?

    Science.gov (United States)

    Epigenetic mechanisms provide one potential explanation for how environmental influences in early life cause long-term changes in chronic disease susceptibility. Whereas epigenetic dysregulation is increasingly implicated in various rare developmental syndromes and cancer, the role of epigenetics in...

  12. A drastic reorganization of industry in the world.What is the driving force

    OpenAIRE

    Shinji Naruo

    2010-01-01

    The purpose of this paper is to show the method and model to analyze the driving force to reorganize the industry. Due to the global economy, many large scale M&A and affiliations are happening in the world. The business alliance and integration are happening in the advanced countries, the transition countries, and the developing countries. There are some factors to impact the reorganization of industry. One is government policy. Another is the market economy. The government has the industria...

  13. М. SCHUMPETER’S INNOVATION PARADIGM AND PRINCIPLES OF ECONOMIC SYSTEM REORGANIZATION

    OpenAIRE

    Kravchenko, M; E. Shergelashvili

    2013-01-01

    The paper is devoted to the principles of the reorganization of the economic system of Ukraine. The principles of the economic system reorganization presented in the paper as a consequence Schumpeter’s theory of economic development. The main idea of the article is that institutions of modern society should systematically promote the establishment, operation and development of a new appropriation form that follows from both the role of innovation as a factor in Schumpeter’s theory of economic...

  14. Reorganization of the interchromosomal network during keratinocyte differentiation.

    Science.gov (United States)

    Sehgal, Nitasha; Seifert, Brandon; Ding, Hu; Chen, Zihe; Stojkovic, Branislav; Bhattacharya, Sambit; Xu, Jinhui; Berezney, Ronald

    2016-06-01

    The well-established human epidermal keratinocyte (HEK) differentiation model was investigated to determine possible alterations in chromosome territory (CT) association during differentiation. The seven human chromosomes (1, 4, 11, 12, 16, 17, and 18) selected for this analysis are representative of the chromosome size and gene density range of the overall human genome as well as including a majority of genes involved in epidermal development and differentiation (CT1, 12, and 17). Induction with calcium chloride (Ca(2+)) resulted in morphological changes characteristic of keratinocyte differentiation. Combined multi-fluorescence in situ hybridization (FISH) and computational image analysis on the undifferentiated (0 h) and differentiated (24 h after Ca(2+) treatment) HEK revealed that (a) increases in CT volumes correspond to overall nuclear volume increases, (b) radial positioning is gene density-dependent at 0 h but neither gene density- nor size-dependent at 24 h, (c) the average number of interchromosomal associations for each CT is gene density-dependent and similar at both time points, and (d) there are striking differences in the single and multiple pairwise interchromosomal association profiles. Probabilistic network models of the overall interchromosomal associations demonstrate major reorganization of the network during differentiation. Only ~40 % of the CT pairwise connections in the networks are common to both 0 and 24 h HEK. We propose that there is a probabilistic chromosome positional code which can be significantly altered during cell differentiation in coordination with reprogramming of gene expression. PMID:26490167

  15. Reorganization energy of the CuA center in purple azurin

    DEFF Research Database (Denmark)

    Farver, Ole; Hwang, Hee Jung; Pecht, Israel

    2007-01-01

    report measurements of reorganization energies of a binuclear CuA center engineered into Pseudomonas aeruginosa azurin that exhibits a reversible transition between a totally delocalized MV state at pH 8.0 and a trapped valence (TV) state at pH 4.0. The reorganization energy of a His120Ala variant of Cu......A azurin that displays a TV state at both the above pH values has also been determined. We found that the MV-to-TV state transition increases the reorganization energy by 0.18 eV, providing evidence that the MV state of the CuA center has lower reorganization energy than its TV counterpart. We have also...... shown that lowering the pH from 8.0 to 4.0 results in a similar (~0.4 eV) decrease in reorganization energy for both blue (type 1) and purple (CuA) azurins, even though the reorganization energies of the two different copper centers are different at a given pH. These results suggest that the MV state...

  16. The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development.

    Science.gov (United States)

    Lendvai, Ágnes; Deutsch, Manuel J; Plösch, Torsten; Ensenauer, Regina

    2016-05-15

    The placental metabolism can adapt to the environment throughout pregnancy to both the demands of the fetus and the signals from the mother. Such adaption processes include epigenetic mechanisms, which alter gene expression and may influence the offspring's health. These mechanisms are linked to the diversity of prenatal environmental exposures, including maternal under- or overnutrition or gestational diabetes. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that contribute to the developmental plasticity of the placenta by regulating lipid and glucose metabolism pathways, including lipogenesis, steroidogenesis, glucose transporters, and placental signaling pathways, thus representing a link between energy metabolism and reproduction. Among the PPAR isoforms, PPARγ appears to be the main modulator of mammalian placentation. Certain fatty acids and lipid-derived moieties are the natural activating PPAR ligands. By controlling the amounts of maternal nutrients that go across to the fetus, the PPARs play an important regulatory role in placenta metabolism, thereby adapting to the maternal nutritional status. As demonstrated in animal studies, maternal nutrition during gestation can exert long-term influences on the PPAR methylation pattern in offspring organs. This review underlines the current state of knowledge on the relationship between environmental factors and the epigenetic regulation of the PPARs in placenta metabolism and offspring development. PMID:26860983

  17. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  18. Functional Reorganization of the Primary Somatosensory Cortex of a Phantom Limb Pain Patient.

    Science.gov (United States)

    Zhao, Jia; Guo, Xiaoli; Xia, Xiaolei; Peng, Weiwei; Wang, Wuchao; Li, Shulin; Zhang, Ya; Hu, Li

    2016-07-01

    Functional reorganization of the somatosensory system was widely observed in phantom limb pain patients. Whereas some studies demonstrated that the primary somatosensory cortex (S1) of the amputated limb was engaged with the regions around it, others showed that phantom limb pain was associated with preserved structure and functional organization in the former brain region. However, according to the law of use and disuse, the sensitivity of S1 of the amputated limb to pain-related context should be enhanced due to the adaptation to the long-lasting phantom limb pain experience. Here, we collected neurophysiological data from a patient with 21-year phantom limb pain using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) techniques. EEG data showed that both laser-evoked potentials (LEPs) and tactile-evoked potentials (TEPs) were clearly presented only when radiant-heat laser pulses and electrical pulses were delivered to the shoulder of the healthy limb, but not of the amputated limb. This observation suggested the functional deficit of somatosensory pathways at the amputated side. FMRI data showed that significant larger brain activations by painful rather than non-painful stimuli in video clips were observed not only at visual-related brain areas and anterior/mid-cingulate cortex, but also at S1 contralateral to the amputated limb. This observation suggested the increased sensitivity of S1 of the amputated limb to the pain-related context. In addition, such increase of sensitivity was significantly larger if the context was associated with the amputated limb of the patient. In summary, our findings provided novel evidence for a possible neuroplasticity of S1 of the amputated limb: in an amputee with long-lasting phantom limb pain, the sensitivity of S1 to pain-related and amputated-limb-related context was greatly enhanced. PMID:27389122

  19. Epigenetic Effects of Diet on Fruit Fly Lifespan: An Investigation to Teach Epigenetics to Biology Students

    Science.gov (United States)

    Billingsley, James; Carlson, Kimberly A.

    2010-01-01

    Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.

  20. Epigenetic estimation of age in humpback whales.

    Science.gov (United States)

    Polanowski, Andrea M; Robbins, Jooke; Chandler, David; Jarman, Simon N

    2014-09-01

    Age is a fundamental aspect of animal ecology, but is difficult to determine in many species. Humpback whales exemplify this as they have a lifespan comparable to humans, mature sexually as early as 4 years and have no reliable visual age indicators after their first year. Current methods for estimating humpback age cannot be applied to all individuals and populations. Assays for human age have recently been developed based on age-induced changes in DNA methylation of specific genes. We used information on age-associated DNA methylation in human and mouse genes to identify homologous gene regions in humpbacks. Humpback skin samples were obtained from individuals with a known year of birth and employed to calibrate relationships between cytosine methylation and age. Seven of 37 cytosines assayed for methylation level in humpback skin had significant age-related profiles. The three most age-informative cytosine markers were selected for a humpback epigenetic age assay. The assay has an R(2) of 0.787 (P = 3.04e-16) and predicts age from skin samples with a standard deviation of 2.991 years. The epigenetic method correctly determined which of parent-offspring pairs is the parent in more than 93% of cases. To demonstrate the potential of this technique, we constructed the first modern age profile of humpback whales off eastern Australia and compared the results to population structure 5 decades earlier. This is the first epigenetic age estimation method for a wild animal species and the approach we took for developing it can be applied to many other nonmodel organisms. PMID:24606053

  1. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.

  2. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. PMID:27102569

  3. Making memories of stressful events: a journey along epigenetic, gene transcription and signaling pathways

    Directory of Open Access Journals (Sweden)

    Johannes M.H.M. eReul

    2014-01-01

    Full Text Available Strong psychologically stressful events are known to have a long-lasting impact on behavior. The consolidation of such, largely adaptive, behavioral responses to stressful events involves changes in gene expression in limbic brain regions such as the hippocampus and amygdala. The underlying molecular mechanisms however were until recently unresolved. More than a decade ago we started to investigate the role of these hormones in signaling and epigenetic mechanisms participating in the effects of stress on gene transcription in hippocampal neurons. We discovered a novel, rapid non-genomic mechanism in which glucocorticoids via glucocorticoid receptors (GRs facilitate signaling of the ERK MAPK signaling pathway to the downstream nuclear kinases MSK1 and Elk-1 in dentate gyrus (DG granule neurons. Activation of this signaling pathway results in serine10 (S10 phosphorylation and lysine14 (K14 acetylation at histone H3 (H3S10p-K14ac, leading to the induction of the immediate early genes c-Fos and Egr-1. In addition, we found a role of the DNA methylation status of gene promoters. A series of studies showed that these molecular mechanisms play a critical role in the long-lasting consolidation of behavioral responses in the forced swim test and Morris water maze. Furthermore, an important role of GABA was found in controlling the epigenetic and gene transcriptional responses to psychological stress. Thus, psychologically stressful events evoke a long-term impact on behavior through changes in hippocampal function brought about by distinct glutamatergic and glucocorticoid-driven changes in epigenetic regulation of gene transcription which are modulated by (local GABAergic interneurons and limbic afferent inputs. These epigenetic processes may play an important role in the etiology of stress-related mental disorders such as major depressive and anxiety disorders like PTSD.

  4. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available BACKGROUND: Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha. METHODOLOGY/PRINCIPAL FINDINGS: To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function. CONCLUSION/SIGNIFICANCE: Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  5. Design and Synthesis of Epigenetic Drugs

    DEFF Research Database (Denmark)

    Leurs, Ulrike

    2014-01-01

    of histone- and DNA-modifying enzymes can lead to the development of diseases such as cancer. The histone demethylases of the KDM4 family have been implicated in a wide range of diseases, and are hence important drug targets. KDM4s belong to the bigger family of 2-OG oxygenases, an enzyme class sharing high......Epigenetics have within the last decade evolved into an exciting new strategy to target diseases linked to changes in the transcriptome of a cell. Both DNA methylation and posttranslational modifications of histone proteins are important regulators of gene expression, and aberrant regulation...

  6. Accelerated epigenetic aging in Down syndrome.

    Science.gov (United States)

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-06-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10(-14)). PMID:25678027

  7. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  8. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  9. Recent advances in the epigenetics and genomics of asthma

    NARCIS (Netherlands)

    Koppelman, Gerard H.; Nawijn, Martijn C.

    2011-01-01

    Purpose of review Epigenetics is the study of heritable changes in gene expression that occur without direct changes in the DNA sequence. Epigenetic mechanisms may explain important observations in asthma, such as the effect of the environment during certain periods in life, transgenerational, and m

  10. Epigenetics and transgenerational inheritance in domesticated farm animals.

    Science.gov (United States)

    Feeney, Amanda; Nilsson, Eric; Skinner, Michael K

    2014-01-01

    Epigenetics provides a molecular mechanism of inheritance that is not solely dependent on DNA sequence and that can account for non-Mendelian inheritance patterns. Epigenetic changes underlie many normal developmental processes, and can lead to disease development as well. While epigenetic effects have been studied in well-characterized rodent models, less research has been done using agriculturally important domestic animal species. This review will present the results of current epigenetic research using farm animal models (cattle, pigs, sheep and chickens). Much of the work has focused on the epigenetic effects that environmental exposures to toxicants, nutrients and infectious agents has on either the exposed animals themselves or on their direct offspring. Only one porcine study examined epigenetic transgenerational effects; namely the effect diet micronutrients fed to male pigs has on liver DNA methylation and muscle mass in grand-offspring (F2 generation). Healthy viable offspring are very important in the farm and husbandry industry and epigenetic differences can be associated with production traits. Therefore further epigenetic research into domestic animal health and how exposure to toxicants or nutritional changes affects future generations is imperative.

  11. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  12. Epigenetic differences after prenatal adversity : the Dutch hunger winter

    NARCIS (Netherlands)

    Tobi, Elmar Wouter

    2013-01-01

    This thesis is a study on the link between early development and adult health. Studies in animal models indicate that so-called epigenetic marks may be influenced by nutrition during development, changing the expression of genes implicated in disease. Epigenetics may therefore link development and d

  13. Detection of epigenetic changes using ANOVA with spatially varying coefficients.

    Science.gov (United States)

    Guanghua, Xiao; Xinlei, Wang; Quincey, LaPlant; Nestler, Eric J; Xie, Yang

    2013-03-13

    Identification of genome-wide epigenetic changes, the stable changes in gene function without a change in DNA sequence, under various conditions plays an important role in biomedical research. High-throughput epigenetic experiments are useful tools to measure genome-wide epigenetic changes, but the measured intensity levels from these high-resolution genome-wide epigenetic profiling data are often spatially correlated with high noise levels. In addition, it is challenging to detect genome-wide epigenetic changes across multiple conditions, so efficient statistical methodology development is needed for this purpose. In this study, we consider ANOVA models with spatially varying coefficients, combined with a hierarchical Bayesian approach, to explicitly model spatial correlation caused by location-dependent biological effects (i.e., epigenetic changes) and borrow strength among neighboring probes to compare epigenetic changes across multiple conditions. Through simulation studies and applications in drug addiction and depression datasets, we find that our approach compares favorably with competing methods; it is more efficient in estimation and more effective in detecting epigenetic changes. In addition, it can provide biologically meaningful results.

  14. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    Science.gov (United States)

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  15. Studies into epigenetic variation and its contribution to cardiovascular disease

    NARCIS (Netherlands)

    Talens, Rudolf Pieter

    2015-01-01

    Epigenetic mechanisms regulate cellular gene expression potential without changing the genetic code. Like the genetic sequence, epigenetic marks are faithfully transmitted during mitosis and are generally stable in differentiated cells, but in contrast with the static genome, the epigenome retains t

  16. Environmental Epigenetics: Potential Application in Human Health Risk Assessment

    Science.gov (United States)

    Although previous studies have shown a significant involvement of epigenetic dysregulation in human diseases, the applicability of epigenetic data in the current human health risk assessment paradigm is unclear. The goals of this study are to compare the relative sensitivities of...

  17. Epigenetics in adipose tissue, obesity, weight loss and diabetes

    Science.gov (United States)

    Given the role that the diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that the environmental factors can cause cell type-dependent epigenetic changes, inc...

  18. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  19. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.

  20. Epigenetic changes in virus-associated human cancers

    Institute of Scientific and Technical Information of China (English)

    Hsin Pai LI; Yu Wei LEU; Yu Sun CHANG

    2005-01-01

    Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection,prognosis, and therapy of cancer.

  1. The Emerging Role of Epigenetics in Inflammation and Immunometabolism

    DEFF Research Database (Denmark)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin;

    2016-01-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2...... diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review...... we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract...

  2. Epigenetic Therapeutics: A New Weapon in the War Against Cancer.

    Science.gov (United States)

    Ahuja, Nita; Sharma, Anup R; Baylin, Stephen B

    2016-01-01

    The past 15 years have seen an explosion of discoveries related to the cellular regulation of phenotypes through epigenetic mechanisms. This regulation provides a software that packages DNA, without changing the primary base sequence, to establish heritable patterns of gene expression. In cancer, many aspects of the epigenome, controlled by DNA methylation, chromatin, and nucleosome positioning, are altered as one means by which tumor cells maintain abnormal states of self-renewal at the expense of normal maturation. Epigenetic and genetic abnormalities thus collaborate in cancer initiation and progression, as exemplified by frequent mutations in genes encoding proteins that control the epigenome. There is growing emphasis on using epigenetic therapies to reprogram neoplastic cells toward a normal state. Many agents targeting epigenetic regulation are under development and entering clinical trials. This review highlights the promise that epigenetic therapy, often in combination with other therapies, will become a potent tool for cancer management over the next decade.

  3. Implication of epigenetics in pancreas development and disease.

    Science.gov (United States)

    Quilichini, Evans; Haumaitre, Cécile

    2015-12-01

    Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes. PMID:26696517

  4. Environmentally Induced Epigenetic Transgenerational Inheritance of Reproductive Disease.

    Science.gov (United States)

    Nilsson, Eric E; Skinner, Michael K

    2015-12-01

    Reproductive disease and fertility issues have dramatically increased in the human population over the last several decades, suggesting environmental impacts. Epigenetics provides a mechanistic link by which an organism can respond to environmental factors. Interestingly, environmentally induced epigenetic alterations in the germ line can promote aberrant gene expression and disease generationally. Environmentally induced epigenetic transgenerational inheritance is defined as germ-line transmission of altered epigenetic information between generations in the absence of continued environmental exposures. This form of nongenetic inheritance has been shown to directly influence fertility and reproductive disease. This review describes the studies in a variety of species that impact reproductive disease and abnormalities. Observations suggest serious attention be paid to the possibility that ancestral exposures to environmental insults promotes transgenerational inheritance of reproductive disease susceptibility. Environmentally induced epigenetic transgenerational inheritance appears to be an important contributing factor to reproductive disease in many organisms, including humans.

  5. Conference Scene: Epigenetic regulation: from mechanism to intervention.

    Science.gov (United States)

    Chatterjee, Aniruddha

    2012-10-01

    The Medical Research Council Clinical Sciences Centre Symposium on Epigenetic Regulation: From Mechanism to Intervention in London, UK, which was held on 20-22 June 2012, attracted 305 participants from around the globe and included 37 speakers and 85 selected poster presentations. The organizing committee, led by Niall Dillon of the Medical Research Council Clinical Sciences Centre (London, UK), consisted of several distinguished researchers in the fields of epigenetics and chromatin organization from across the UK. The meeting covered a diverse range of topics and brought together scientists carrying out fundamental research on epigenetic mechanisms and also researchers who are exploring the role of epigenetics in human diseases and its clinical applications. In addition, the meeting highlighted some emerging aspects in the rapidly evolving field of epigenetics.

  6. Detection of epigenetic aberrations in the development of hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yujing

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.

  7. Prospects for the development of epigenetic drugs for CNS conditions.

    Science.gov (United States)

    Szyf, Moshe

    2015-07-01

    Advances in our understanding of the epigenetic mechanisms that control gene expression in the central nervous system (CNS) and their role in neuropsychiatric disorders are paving the way for a potential new therapeutic approach that is focused on reversing the epigenetic underpinnings of neuropsychiatric conditions. In this article, the complexity of epigenetic processes and the current level of proof for their involvement in CNS disorders are discussed. The preclinical evidence for efficacy of pharmacological approaches that target epigenetics in the CNS and the particular challenges of this approach are also examined. Finally, strategies to address these challenges through the development of improved evidence-based epigenetic therapeutics and through combining pharmacological and behavioural approaches are presented.

  8. Interplay of genetic and epigenetic alterations in hepatocellular carcinoma.

    Science.gov (United States)

    Lee, Sun-Min; Kim-Ha, Jeongsil; Choi, Won-Young; Lee, Jungwoo; Kim, Dawon; Lee, Jinyoung; Choi, Eunji; Kim, Young-Joon

    2016-07-01

    Genetic and epigenetic alterations play prominent roles in hepatocarcinogenesis and their appearance varies depending on etiological factors, race and tumor progression. Intriguingly, distinct patterns of these genetic and epigenetic mutations are coupled not only to affect each other, but to trigger different types of tumorigenesis. The patterns and frequencies of somatic variations vary depending on the nature of the surrounding chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutation. Therefore, genetic mutations and epigenetic alterations in hepatocellular carcinoma appear to be inseparable factors that accelerate tumorigenesis synergistically. We have summarized recent findings on genetic and epigenetic modifications, their influences on each other's alterations and putative roles in liver tumorigenesis.

  9. Epigenetic Regulation of B Lymphocyte Differentiation, Transdifferentiation, and Reprogramming

    Directory of Open Access Journals (Sweden)

    Bruna Barneda-Zahonero

    2012-01-01

    Full Text Available B cell development is a multistep process that is tightly regulated at the transcriptional level. In recent years, investigators have shed light on the transcription factor networks involved in all the differentiation steps comprising B lymphopoiesis. The interplay between transcription factors and the epigenetic machinery involved in establishing the correct genomic landscape characteristic of each cellular state is beginning to be dissected. The participation of “epigenetic regulator-transcription factor” complexes is also crucial for directing cells during reprogramming into pluripotency or lineage conversion. In this context, greater knowledge of epigenetic regulation during B cell development, transdifferentiation, and reprogramming will enable us to understand better how epigenetics can control cell lineage commitment and identity. Herein, we review the current knowledge about the epigenetic events that contribute to B cell development and reprogramming.

  10. Epigenetic Silencing of DKK3 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    André Oberthuer

    2013-04-01

    Full Text Available Medulloblastoma (MB is a malignant pediatric brain tumor arising in the cerebellum consisting of four distinct subgroups: WNT, SHH, Group 3 and Group 4, which exhibit different molecular phenotypes. We studied the expression of Dickkopf (DKK 1–4 family genes, inhibitors of the Wnt signaling cascade, in MB by screening 355 expression profiles derived from four independent datasets. Upregulation of DKK1, DKK2 and DKK4 mRNA was observed in the WNT subgroup, whereas DKK3 was downregulated in 80% MBs across subgroups with respect to the normal cerebellum (p < 0.001. Since copy number aberrations targeting the DKK3 locus (11p15.3 are rare events, we hypothesized that epigenetic factors could play a role in DKK3 regulation. Accordingly, we studied 77 miRNAs predicting to repress DKK3; however, no significant inverse correlation between miRNA/mRNA expression was observed. Moreover, the low methylation levels in the DKK3 promoters (median: 3%, 5% and 5% for promoter 1, 2 and 3, respectively excluded the downregulation of gene expression by methylation. On the other hand, the treatment of MB cells with Trichostatin A (TSA, a potent inhibitor of histone deacetylases (HDAC, was able to restore both DKK3 mRNA and protein. In conclusion, DKK3 downregulation across all MB subgroups may be due to epigenetic mechanisms, in particular, through chromatin condensation.

  11. Genetics: Polymorphisms, Epigenetics, and Something In Between

    Directory of Open Access Journals (Sweden)

    Keith A. Maggert

    2012-01-01

    Full Text Available At its broadest sense, to say that a phenotype is epigenetic suggests that it occurs without changes in DNA sequence, yet is heritable through cell division and occasionally from one organismal generation to the next. Since gene regulatory changes are oftentimes in response to environmental stimuli and may be retained in descendent cells, there is a growing expectation that one's experiences may have consequence for subsequent generations and thus impact evolution by decoupling a selectable phenotype from its underlying heritable genotype. But the risk of this overbroad use of “epigenetic” is a conflation of genuine cases of heritable non-sequence genetic information with trivial modes of gene regulation. A look at the term “epigenetic” and some problems with its increasing prevalence argues for a more reserved and precise set of defining characteristics. Additionally, questions arising about how we define the “sequence independence” aspect of epigenetic inheritance suggest a form of genome evolution resulting from induced polymorphisms at repeated loci (e.g., the rDNA or heterochromatin.

  12. Epigenetic modification of OXT and human sociability.

    Science.gov (United States)

    Haas, Brian W; Filkowski, Megan M; Cochran, R Nick; Denison, Lydia; Ishak, Alexandra; Nishitani, Shota; Smith, Alicia K

    2016-07-01

    Across many mammalian species there exist genetic and biological systems that facilitate the tendency to be social. Oxytocin is a neuropeptide involved in social-approach behaviors in humans and others mammals. Although there exists a large, mounting body of evidence showing that oxytocin signaling genes are associated with human sociability, very little is currently known regarding the way the structural gene for oxytocin (OXT) confers individual differences in human sociability. In this study, we undertook a comprehensive approach to investigate the association between epigenetic modification of OXT via DNA methylation, and overt measures of social processing, including self-report, behavior, and brain function and structure. Genetic data were collected via saliva samples and analyzed to target and quantify DNA methylation across the promoter region of OXT We observed a consistent pattern of results across sociability measures. People that exhibit lower OXT DNA methylation (presumably linked to higher OXT expression) display more secure attachment styles, improved ability to recognize emotional facial expressions, greater superior temporal sulcus activity during two social-cognitive functional MRI tasks, and larger fusiform gyrus gray matter volume than people that exhibit higher OXT DNA methylation. These findings provide empirical evidence that epigenetic modification of OXT is linked to several overt measures of sociability in humans and serve to advance progress in translational social neuroscience research toward a better understanding of the evolutionary and genetic basis of normal and abnormal human sociability. PMID:27325757

  13. Epigenetic inheritance of proteostasis and ageing

    Science.gov (United States)

    Li, Cheryl; Casanueva, Olivia

    2016-01-01

    Abundant evidence shows that the genome is not as static as once thought and that gene expression can be reversibly modulated by the environment. In some cases, these changes can be transmitted to the next generation even if the environment has reverted. Such transgenerational epigenetic inheritance requires that information be stored in the germline in response to exogenous stressors. One of the most elusive questions in the field of epigenetic inheritance is the identity of such inherited factor(s). Answering this question would allow us to understand how the environment can shape human populations for multiple generations and may help to explain the rapid rise in obesity and neurodegenerative diseases in modern society. It will also provide clues on how we might be able to reprogramme the epigenome to prevent transmission of detrimental phenotypes and identify individuals who might be at increased risk of disease. In this article, we aim to review recent developments in this field, focusing on research conducted mostly in the nematode Caenorhabditis elegans and mice, that link environmental modulators with the transgenerational inheritance of phenotypes that affect protein-folding homoeostasis and ageing. PMID:27744335

  14. Epigenetic chromatin silencing: bistability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  15. Molecular genetics and epigenetics of CACTA elements

    KAUST Repository

    Fedoroff, Nina V.

    2013-08-21

    The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition. © Springer Science+Business Media, New York 2013.

  16. Epigenetics and the environment in bioethics.

    Science.gov (United States)

    Dupras, Charles; Ravitsky, Vardit; Williams-Jones, Bryn

    2014-09-01

    A rich literature in public health has demonstrated that health is strongly influenced by a host of environmental factors that can vary according to social, economic, geographic, cultural or physical contexts. Bioethicists should, we argue, recognize this and--where appropriate--work to integrate environmental concerns into their field of study and their ethical deliberations. In this article, we present an argument grounded in scientific research at the molecular level that will be familiar to--and so hopefully more persuasive for--the biomedically-inclined in the bioethics community. Specifically, we argue that the relatively new field of molecular epigenetics provides novel information that should serve as additional justification for expanding the scope of bioethics to include environmental and public health concerns. We begin by presenting two distinct visions of bioethics: the individualistic and rights-oriented and the communitarian and responsibility-oriented. We follow with a description of biochemical characteristics distinguishing epigenetics from genetics, in order to emphasize the very close relationship that exists between the environment and gene expression. This then leads to a discussion of the importance of the environment in determining individual and population health, which, we argue, should shift bioethics towards a Potterian view that promotes a communitarian-based sense of responsibility for the environment, in order to fully account for justice considerations and improve public health.

  17. Epigenetic markers to further understand insulin resistance.

    Science.gov (United States)

    Ling, Charlotte; Rönn, Tina

    2016-11-01

    Epigenetic variation in human adipose tissue has been linked to type 2 diabetes and its related risk factors including age and obesity. Insulin resistance, a key risk factor for type 2 diabetes, may also be associated with altered DNA methylation in visceral and subcutaneous adipose tissue. Furthermore, linking epigenetic variation in target tissues to similar changes in blood cells may identify new blood-based biomarkers. In this issue of Diabetologia, Arner et al studied the transcriptome and methylome in subcutaneous and visceral adipose tissue of 80 obese women who were either insulin-sensitive or -resistant (DOI 10.1007/s00125-016-4074-5 ). While they found differences in gene expression between the two groups, no alterations in DNA methylation were found after correction for multiple testing. Nevertheless, based on nominal p values, their methylation data overlapped with methylation differences identified in adipose tissue of individuals with type 2 diabetes compared with healthy individuals. Differential methylation of these overlapping CpG sites may predispose to diabetes by occurring already in the insulin-resistant state. Furthermore, some methylation changes may contribute to an inflammatory process in adipose tissue since the identified CpG sites were annotated to genes encoding proteins involved in inflammation. Finally, the methylation pattern in circulating leucocytes did not mirror the adipose tissue methylome of these 80 women. Together, identifying novel molecular mechanisms contributing to insulin resistance and type 2 diabetes may help advance the search for new therapeutic alternatives. PMID:27650286

  18. Between the streets and the shelter: everyday reorganization

    OpenAIRE

    Flávia Barbosa de Oliveira; Samira Lima da Costa

    2015-01-01

    The street situation population has been shown as a growing urban phenomenon, becoming an object of interest to public managers and academics. This paper presents the results of a research aimed at understanding the context of street situation residents, under current provisory institutional shelter care, analyzing why the streets have become the home for some people; how the process of development and adaptation of daily activities in this new reality occurred; when and why they decided to l...

  19. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network

    NARCIS (Netherlands)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W.; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, P.; van Strien, Miriam E; Hol, Elly M

    2014-01-01

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostati

  20. Genetic alterations and epigenetic changes in hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Luz Stella Hoyos Giraldo

    2007-02-01

    Full Text Available

    Hepatocarcinogenesis as hepatocellular carcinoma (HCC is associated with background of chronic liver disease usually in association with cirrhosis, marked hepatic fibrosis, hepatitis B virus (HBV and/or hepatitis virus (HCV infection, chronic inflammation, Aflatoxin B1(AFB1 exposure, chronic alcoholism, metabolic disorder of the liver and necroinflamatory liver disease. Hepatocarcinogenesis involve two mechanisms, genetic alterations (with changes in the cell's DNA sequence and epigenetic changes (without changes in the cell's DNA sequence, but changes in the pattern of gene expression that can persist through one or more generations (somatic sense. Hepatocarcinogenesis is associated with activation of oncogenes and decreased expression of tumor suppressor genes (TSG; include those involved in cell cycle control, apoptosis, DNA repair, immortalization and angiogenesis. AFB1 is metabolized in the liver into a potent carcinogen, aflatoxin 8, 9-epoxide, which is detoxified by epoxide hydrolase (EPHX and glutathione S-transferase M1 (GSTM1.

    A failure of detoxification processes can allow to mutagenic metabolite to bind to DNA and inducing P53 mutation. Genetic polymorphism of EPHX and GSTM1 can make individuals more susceptible to AFB1. Epigenetic inactivation of GSTP1 by promoter hypermethylation plays a role in the development of HCC because, it leads that electrophilic metabolite increase DNA damage and mutations. HBV DNA integration into the host chromosomal DNA of hepatocytes has been detected in HBV-related HCC.

    DNA tumor viruses cause cancer mainly by interfering with cell cycle controls, and activating the cell's replication machinery by blocking the action of key TSG. HBx protein is a

  1. MeCP2 dependent heterochromatin reorganization during neural differentiation of a novel Mecp2-deficient embryonic stem cell reporter line.

    Directory of Open Access Journals (Sweden)

    Bianca Bertulat

    Full Text Available The X-linked Mecp2 is a known interpreter of epigenetic information and mutated in Rett syndrome, a complex neurological disease. MeCP2 recruits HDAC complexes to chromatin thereby modulating gene expression and, importantly regulates higher order heterochromatin structure. To address the effects of MeCP2 deficiency on heterochromatin organization during neural differentiation, we developed a versatile model for stem cell in vitro differentiation. Therefore, we modified murine Mecp2 deficient (Mecp2(-/y embryonic stem cells to generate cells exhibiting green fluorescent protein expression upon neural differentiation. Subsequently, we quantitatively analyzed heterochromatin organization during neural differentiation in wild type and in Mecp2 deficient cells. We found that MeCP2 protein levels increase significantly during neural differentiation and accumulate at constitutive heterochromatin. Statistical analysis of Mecp2 wild type neurons revealed a significant clustering of heterochromatin per nuclei with progressing differentiation. In contrast we found Mecp2 deficient neurons and astroglia cells to be significantly impaired in heterochromatin reorganization. Our results (i introduce a new and manageable cellular model to study the molecular effects of Mecp2 deficiency, and (ii support the view of MeCP2 as a central protein in heterochromatin architecture in maturating cells, possibly involved in stabilizing their differentiated state.

  2. Epigenetic upregulation of corticotrophin-releasing hormone mediates postnatal maternal separation-induced memory deficiency.

    Directory of Open Access Journals (Sweden)

    Aiyun Wang

    Full Text Available Accumulating evidences demonstrated that early postnatal maternal separation induced remarkable social and memory defects in the adult rodents. Early-life stress induced long-lasting functional adaptation of neuroendocrine hypothalamic-pituitary-adrenal axis, including neuropeptide corticotrophin-releasing hormone (CRH in the brain. In the present study, a significantly increased hippocampal CRH was observed in the adult rats with postnatal maternal separation, and blockade of CRHR1 signaling significantly attenuated the hippocampal synaptic dysfunction and memory defects in the modeled rats. Postnatal maternal separation enduringly increased histone H3 acetylation and decreased cytosine methylation in Crh promoter region, resulting from the functional adaptation of several transcriptional factors, in the hippocampal CA1 of the modeled rats. Enriched environment reversed the epigenetic upregulation of CRH, and ameliorated the hippocampal synaptic dysfunction and memory defects in the adult rats with postnatal maternal separation. This study provided novel insights into the epigenetic mechanism underlying postnatal maternal separation-induced memory deficiency, and suggested environment enrichment as a potential approach for the treatment of this disorder.

  3. The Epigenetic Switches for Neural Development and Psychiatric Disorders

    Institute of Scientific and Technical Information of China (English)

    Jingwen Lv; Yongjuan Xin; Wenhao Zhou; Zilong Qiu

    2013-01-01

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences,in joint with genetic landscapes.The nature vs.nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain.The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade.Moreover,the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders,such as autism spectrum disorders.The epigenetic study has initiated in the neuroscience field for a relative short period of time.In this review,we will summarize recent discoveries about epigenetic regulation on neural development,synaptic plasticity,learning and memory,as well as neuropsychiatric disorders.Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed,the notion that brain,the most complicated organ of organisms,is profoundly shaped by epigenetic switches is widely accepted.

  4. Understanding type 2 diabetes: from genetics to epigenetics.

    Science.gov (United States)

    Raciti, Gregory Alexander; Longo, Michele; Parrillo, Luca; Ciccarelli, Marco; Mirra, Paola; Ungaro, Paola; Formisano, Pietro; Miele, Claudia; Béguinot, Francesco

    2015-10-01

    The known genetic variability (common DNA polymorphisms) does not account either for the current epidemics of type 2 diabetes or for the family transmission of this disorder. However, clinical, epidemiological and, more recently, experimental evidence indicates that environmental factors have an extraordinary impact on the natural history of type 2 diabetes. Some of these environmental hits are often shared in family groups and proved to be capable to induce epigenetic changes which alter the function of genes affecting major diabetes traits. Thus, epigenetic mechanisms may explain the environmental origin as well as the familial aggregation of type 2 diabetes much easier than common polymorphisms. In the murine model, exposure of parents to environmental hits known to cause epigenetic changes reprograms insulin sensitivity as well as beta-cell function in the progeny, indicating that certain epigenetic changes can be transgenerationally transmitted. Studies from different laboratories revealed that, in humans, lifestyle intervention modulates the epigenome and reverts environmentally induced epigenetic modifications at specific target genes. Finally, specific human epigenotypes have been identified which predict adiposity and type 2 diabetes with much greater power than any polymorphism so far identified. These epigenotypes can be recognized in easily accessible white cells from peripheral blood, indicating that, in the future, epigenetic profiling may enable effective type 2 diabetes prediction. This review discusses recent evidence from the literature supporting the immediate need for further investigation to uncover the power of epigenetics in the prediction, prevention and treatment of type 2 diabetes. PMID:25841587

  5. Hot topics in epigenetic mechanisms of aging: 2011.

    Science.gov (United States)

    Berdasco, María; Esteller, Manel

    2012-04-01

    Aging is a complex process that results in compromised biological functions of the organism and increased susceptibility to disease and death. Although the molecular basis of aging is currently being investigated in many experimental contexts, there is no consensus theory to fully explain the aging process. Epigenetic factors, including DNA methylation, histone modifications, and microRNA expression, may play central roles in controlling changes in gene expression and genomic instability during aging. In this Hot Topic review, we first examine the mechanisms by which these epigenetic factors contribute to aging in diverse eukaryotic species including experimental models of yeasts, worms, and mammals. In a second section, we will emphasize in the mammalian epigenetic alterations and how they may affect human longevity by altering stem cell function and/or somatic cell decline. The field of aging epigenetics is ripe with potential, but is still in its infancy, as new layers of complexity are emerging in the epigenetic network. As an example, we are only beginning to understand the relevance of non-coding genome to organism aging or the existence of an epigenetic memory with transgenerational inheritance. Addressing these topics will be fundamental for exploiting epigenetics phenomena as markers of aging-related diseases or as therapeutic targets.

  6. Sperm is epigenetically programmed to regulate gene transcription in embryos.

    Science.gov (United States)

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M; Zegerman, Philip; Bradshaw, Charles R; Peters, Antoine H F M; Gurdon, John B; Jullien, Jerome

    2016-08-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  7. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review).

    Science.gov (United States)

    Li, Xueyuan; Bao, Xinjie; Wang, Renzhi

    2016-08-01

    Alzheimer's disease (AD) is a worldwide health problem with multiple pathogenic causes including aging, and genetic and environmental factors. As the interfaces between genes and the environment, epigenetic mechanisms, including DNA methylation, histone modification and microRNAs, are also involved in the pathogenesis of AD. Neurogenesis occurs throughout life in the normal adult brain of mammals. The neurogenic process, consisting of the proliferation, differentiation and maturation of neural stem cells (NSC), is regulated via epigenetic mechanisms by controlling the expression of specific sets of genes. In the pathology of AD, due to impairments in epigenetic mechanisms, the generation of neurons from NSCs is damaged, which exacerbates the loss of neurons and the deficits in learning and memory function associated with AD. Based on neurogenesis, a number of therapeutic strategies have shown capability in promoting neuronal generation to compensate for the neurons lost in AD, thereby improving cognitive function through epigenetic modifications. This provides potential for the treatment of AD by stimulating neurogenesis using epigenetic strategies. The present review discusses the epigenetics of AD and adult neurogenesis, and summarizes the neurogenesis-based epigenetic therapies targeted at AD. Such a review may offer information for the guidance of future developments of therapeutic strategies for AD. PMID:27314984

  8. Epigenetic programming and risk: the birthplace of cardiovascular disease?

    Science.gov (United States)

    Vinci, Maria Cristina; Polvani, Gianluca; Pesce, Maurizio

    2013-06-01

    Epigenetics, through control of gene expression circuitries, plays important roles in various physiological processes such as stem cell differentiation and self renewal. This occurs during embryonic development, in different tissues, and in response to environmental stimuli. The language of epigenetic program is based on specific covalent modifications of DNA and chromatin. Thus, in addition to the individual identity, encoded by sequence of the four bases of the DNA, there is a cell type identity characterized by its positioning in the epigenetic "landscape". Aberrant changes in epigenetic marks induced by environmental cues may contribute to the development of abnormal phenotypes associated with different human diseases such as cancer, neurological disorders and inflammation. Most of the epigenetic studies have focused on embryonic development and cancer biology, while little has been done to explore the role of epigenetic mechanisms in the pathogenesis of cardiovascular disease. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodeling and histone modifications play key roles in the pathogenesis of cardiovascular disease through (re)programming of cardiovascular (stem) cells commitment, identity and function. PMID:22773406

  9. A Bayesian model for the analysis of transgenerational epigenetic variation.

    Science.gov (United States)

    Varona, Luis; Munilla, Sebastián; Mouresan, Elena Flavia; González-Rodríguez, Aldemar; Moreno, Carlos; Altarriba, Juan

    2015-01-23

    Epigenetics has become one of the major areas of biological research. However, the degree of phenotypic variability that is explained by epigenetic processes still remains unclear. From a quantitative genetics perspective, the estimation of variance components is achieved by means of the information provided by the resemblance between relatives. In a previous study, this resemblance was described as a function of the epigenetic variance component and a reset coefficient that indicates the rate of dissipation of epigenetic marks across generations. Given these assumptions, we propose a Bayesian mixed model methodology that allows the estimation of epigenetic variance from a genealogical and phenotypic database. The methodology is based on the development of a T: matrix of epigenetic relationships that depends on the reset coefficient. In addition, we present a simple procedure for the calculation of the inverse of this matrix ( T-1: ) and a Gibbs sampler algorithm that obtains posterior estimates of all the unknowns in the model. The new procedure was used with two simulated data sets and with a beef cattle database. In the simulated populations, the results of the analysis provided marginal posterior distributions that included the population parameters in the regions of highest posterior density. In the case of the beef cattle dataset, the posterior estimate of transgenerational epigenetic variability was very low and a model comparison test indicated that a model that did not included it was the most plausible.

  10. Bifurcation in epigenetics: Implications in development, proliferation, and diseases

    Science.gov (United States)

    Jost, Daniel

    2014-01-01

    Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.

  11. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer

    NARCIS (Netherlands)

    Falahi, Fahimeh; van Kruchten, Michel; Martinet, Nadine; Hospers, Geesiena; Rots, Marianne G.

    2014-01-01

    DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys) regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic alteratio

  12. Effect of a reorganized after-hours family practice service on frequent attenders

    DEFF Research Database (Denmark)

    Vedsted, Peter; Olesen, Frede

    1999-01-01

    of this reorganization on the use of services by frequent attenders (FAs). METHODS: From 1990 to 1994, methods of contact and annual costs per attender were analyzed in an ecological time-trend study based on aggregated administrative data collected from the database of the Public Health Insurance, Aarhus County......, Denmark (600,000 inhabitants). The study only included attenders ages 18 and over. FAs were defined as the group that, within each calendar year (12 months), had 4 or more contacts with the after-hours family practice service. RESULTS: FAs made up 9.5% of the attenders and accounted for more than 40......% of the contacts and the aggregate costs. The effect of the reorganization was a 12% decrease in the number of attenders, a 16% decrease in the number of contacts, and a 29% decrease in the costs. Reorganization had a significantly bigger effect on FA attendance than on non-FA attendance, and more than half...

  13. Heterochromatin Reorganization during Early Mouse Development Requires a Single-Stranded Noncoding Transcript

    Directory of Open Access Journals (Sweden)

    Miguel Casanova

    2013-09-01

    Full Text Available The equalization of pericentric heterochromatin from distinct parental origins following fertilization is essential for genome function and development. The recent implication of noncoding transcripts in this process raises questions regarding the connection between RNA and the nuclear organization of distinct chromatin environments. Our study addresses the interrelationship between replication and transcription of the two parental pericentric heterochromatin (PHC domains and their reorganization during early embryonic development. We demonstrate that the replication of PHC is dispensable for its clustering at the late two-cell stage. In contrast, using parthenogenetic embryos, we show that pericentric transcripts are essential for this reorganization independent of the chromatin marks associated with the PHC domains. Finally, our discovery that only reverse pericentric transcripts are required for both the nuclear reorganization of PHC and development beyond the two-cell stage challenges current views on heterochromatin organization.

  14. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Yu-Yuan Li

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is common worldwide.The importance of genetic and epigenetic changes in etiology and pathogenesis of NAFLD has been increasingly recognized.However,the exact mechanism is largely unknown.A large number of single nucleotide polymorphisms (SNPs) related to NAFLD has been documented by candidate gene studies (CGSs).Among these genes,peroxisome proliferatoractivated receptor-y,adiponectin,leptin and tumor necrosis factor-α were frequently reported.Since the introduction of genome-wide association studies (GWASs),there have been significant advances in our understanding of genomic variations of NAFLD.Patatinlike phospholipase domain containing family member A3 (PNPLA3,SNP rs738409,encoding I148M),also termed adiponutrin,has caught most attention.The evidence that PNPLA3 is associated with increased hepatic fat levels and hepatic inflammation has been validated by a series of studies.Epigenetic modification refers to phenotypic changes caused by an adaptive mechanism unrelated to alteration of primary DNA sequences.Epigenetic regulation mainly includes microRNAs (miRs),DNA methylation,histone modifications and ubiquitination,among which miRs are studied most extensively.miRs are small natural single stranded RNA molecules regulating mRNA degradation or translation inhibition,subsequently altering protein expression of target genes.The miR-122,a highly abundant miR accounting for nearly 70% of all miRs in the liver,is significantly under-expressed in NAFLD subjects.Inhibition of miR-122 with an antisense oligonucleotide results in decreased mRNA expression of lipogenic genes and improvement of liver steatosis.The investigation into epigenetic involvement in NAFLD pathogenesis is just at the beginning and needs to be refined.This review summarizes the roles of genetics and epigenetics in the development of NAFLD.The progress made in this field may provide novel diagnostic biomarkers and therapeutic targets for NAFLD management.

  15. Epi-genetics modifications induced by a depleted uranium exposure in the zebra fish

    Energy Technology Data Exchange (ETDEWEB)

    Gombeau, K.; Pereira, S.; Adam-Guillermin, C. [IRSN/PRP-ENV/SERIS/LECO (France); Bourdineaud, J.P. [UMR CNRS 5805 EPOC (France); Ravanat, J.L. [INAC/Scib UMR E3 CEA-UJF (France)

    2014-07-01

    The work presented here integrates in the general framework of assessment of effects of chronic exposure to low doses of radionuclides. This evaluation necessarily involves the study of the mechanisms of toxic action at the cellular or subcellular level, in order to better understand the processes of propagation of effects to the level of the populations or ecosystems. As such, the question of the mechanisms underlying the trans-generational effects and the adaptive capacity of organisms is central, both in humans and in animal species. Epigenetic refer to changes in gene function that do not involve changes in DNA sequence, and which are transmitted in a hereditary manner by mitosis or meiosis. The latter plays a key role in these trans-generational effects. Among these changes, DNA-methylation is one of the most studied epigenetic parameters. This work is part of a PhD, included in the European COMET project (Euratom 7. Framework Program), and focuses on epigenetic modifications induced in zebra fish after a chronic exposure to radionuclides. Male and female fishes were exposed to 2 and 20 μg.L{sup -1} of depleted uranium for 24 days. After 7 and 24 days of exposure, brain, gonads, and eyes were collected in order to study changes in DNA methylation. In addition, genotoxicity was measured by the γH2AX assay. The overall changes in DNA methylation were studied by AFLP-MS and HPLC-MS, in order to know if the exposure to depleted uranium changes the global status of DNA methylation. We have found a decrease in the global level of methylation in the eyes of males after 24 days of exposure, the diminution being much more important and significant at the higher concentration of exposure (11.79 ± 3.62 against 52.43 ± 3.01 for controls) This study will be refined by analyzing the methylation of specific regions of the genome, because it represent the sequences of genes involved in major physiological functions and that may be subject to variations in the methylation

  16. Mirror neurons through the lens of epigenetics.

    Science.gov (United States)

    Ferrari, Pier F; Tramacere, Antonella; Simpson, Elizabeth A; Iriki, Atsushi

    2013-09-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this opinion article, we argue that, in light of recent evidence, this is at best an incomplete and oversimplified view of mirror neurons, where activity is actually variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although associative and genetic accounts fail to consider the complexity of genetic and nongenetic interactions, we propose a new evolutionary developmental biology (evo-devo) perspective, which predicts that environmental differences early in development should produce variations in mirror neuron response patterns, tuning them to the social environment.

  17. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also...... be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying...... the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell...

  18. Genetic and Epigenetic Discoveries in Human Retinoblastoma.

    Science.gov (United States)

    McEvoy, Justina D; Dyer, Michael A

    2015-01-01

    Retinoblastoma is a rare pediatric cancer of the retina. Nearly all retinoblastomas are initiated through the biallelic inactivation of the retinoblastoma tumor susceptibility gene (RB1). Whole-genome sequencing has made it possible to identify secondary genetic lesions following RB1 inactivation. One of the major discoveries from retinoblastoma sequencing studies is that some retinoblastoma tumors have stable genomes. Subsequent epigenetic studies showed that changes in the epigenome contribute to the rapid progression of retinoblastoma following RB1 gene inactivation. In addition, gene amplification and elevated expression of p53 antagonists, MDM2 and MDM4, may also play an important role in retinoblastoma tumorigenesis. The knowledge gained from these recent molecular, cellular, genomic, and epigenomic analyses are now being integrated to identify new therapeutic approaches that can help save lives and vision in children with retinoblastoma, with fewer long-term side effects.

  19. Circadian clock: linking epigenetics to aging.

    Science.gov (United States)

    Orozco-Solis, Ricardo; Sassone-Corsi, Paolo

    2014-06-01

    Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025

  20. Chemical Inhibitors of Epigenetic Methyllysine Reader Proteins.

    Science.gov (United States)

    Milosevich, Natalia; Hof, Fraser

    2016-03-22

    Protein methylation is a common post-translational modification with diverse biological functions. Methyllysine reader proteins are increasingly a focus of epigenetics research and play important roles in regulating many cellular processes. These reader proteins are vital players in development, cell cycle regulation, stress responses, oncogenesis, and other disease pathways. The recent emergence of a small number of chemical inhibitors for methyllysine reader proteins supports the viability of these proteins as targets for drug development. This article introduces the biochemistry and biology of methyllysine reader proteins, provides an overview of functions for those families of readers that have been targeted to date (MBT, PHD, tudor, and chromodomains), and reviews the development of synthetic agents that directly block their methyllysine reading functions. PMID:26650180

  1. Measuring topology of low-intensity DNA methylation sites for high-throughput assessment of epigenetic drug-induced effects in cancer cells

    International Nuclear Information System (INIS)

    Epigenetic anti-cancer drugs with demethylating effects have shown to alter genome organization in mammalian cell nuclei. The interest in the development of novel epigenetic drugs has increased the demand for cell-based assays to evaluate drug performance in pre-clinical studies. An imaging-based cytometrical approach that can measure demethylation effects as changes in the spatial nuclear distributions of methylated cytosine and global DNA in cancer cells is introduced in this paper. The cells were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei. In the preprocessing step the segmentation of nuclei in three-dimensional images (3-D) is followed by an automated assessment of nuclear DAPI/MeC patterns to exclude dissimilar entities. Next, low-intensity MeC (LIM) and low-intensity DNA (LID) sites of similar nuclei are localized and processed to obtain specific nuclear density profiles. These profiles sampled at half of the total nuclear volume yielded two parameters: LIM0.5 and LID0.5. The analysis shows that zebularine and 5-azacytidine-the two tested epigenetic drugs introduce changes in the spatial distribution of low-intensity DNA and MeC signals. LIM0.5 and LID0.5 were significantly different (p < 0.001) in 5-azacytidine treated (n = 660) and zebularine treated (n = 496) vs. untreated (n = 649) DU145 human prostate cancer cells. In the latter case the LIM sites were predominantly found at the nuclear border, whereas treated populations showed different degrees of increase in LIMs towards the interior nuclear space, in which a large portion of heterochromatin is located. The cell-by-cell evaluation of changes in the spatial reorganization of MeC/DAPI signals revealed that zebularine is a more gentle demethylating agent than 5-azacytidine. Measuring changes in the topology of low-intensity sites can potentially be a valuable

  2. Epigenetic effects of ethanol on liver and gastrointestinal injury

    Institute of Scientific and Technical Information of China (English)

    Shivendra D Shukla; Annayya R Aroor

    2006-01-01

    Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.

  3. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW: We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential...... synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN: The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE: Chemoimmunotherapy using epigenetic drugs and CG...

  4. Epigenetic biomarkers in the blood of patients with urological malignancies.

    Science.gov (United States)

    Ellinger, Jörg; Müller, Stefan C; Dietrich, Dimo

    2015-04-01

    In the era of personalized medicine, there is an urgent need for non-invasive biomarkers to optimize the individual treatment of cancer patients. Epigenetic alterations, including DNA methylation and non-coding RNAs, are a hallmark of malignant tumors. The detection of many of these epigenetic conditions is feasible in bodily fluids, that is, blood plasma and serum, and may therefore be used for liquid biopsy. In this review, we summarize and discuss the current state of research on circulating epigenetic alterations (DNA methylation, miRNA and long non-coding RNA) in serum and plasma of patients with bladder cancer, prostate cancer, renal cell carcinoma and testicular germ cell cancer.

  5. Designed azurins show lower reorganization free energies for intraprotein electron transfer

    DEFF Research Database (Denmark)

    Farver, Ole; Marshall, Nicholas M; Wherland, Scot;

    2013-01-01

    Low reorganization free energies are necessary for fast electron transfer (ET) reactions. Hence, rational design of redox proteins with lower reorganization free energies has been a long-standing challenge, promising to yield a deeper understanding of the underlying principles of ET reactivity...... and to enable potential applications in different energy conversion systems. Herein we report studies of the intramolecular ET from pulse radiolytically produced disulfide radicals to Cu(II) in rationally designed azurin mutants. In these mutants, the copper coordination sphere has been fine-tuned to span...

  6. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    Directory of Open Access Journals (Sweden)

    Yongmin eChang

    2014-02-01

    Full Text Available Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research.

  7. Adaptive Lighting

    OpenAIRE

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive LightingAdaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled i...

  8. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs.

    Science.gov (United States)

    Ivanina, Anna V; Nesmelova, Irina; Leamy, Larry; Sokolov, Eugene P; Sokolova, Inna M

    2016-06-01

    Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated by inactivation of the translation initiation factor EIF-2α, suppression of 26S proteasome activity and a dramatic decrease in the activity of Na(+)/K(+)-ATPase. The steady-state levels of adenylates were preserved during H/R exposure and AMP-dependent protein kinase was not activated in either species, indicating

  9. Epigenetic mechanisms underlying learning and the inheritance of learned behaviors.

    Science.gov (United States)

    Dias, Brian G; Maddox, Stephanie A; Klengel, Torsten; Ressler, Kerry J

    2015-02-01

    Gene expression and regulation is an important sculptor of the behavior of organisms. Epigenetic mechanisms regulate gene expression not by altering the genetic alphabet but rather by the addition of chemical modifications to proteins associated with the alphabet or of methyl marks to the alphabet itself. Being dynamic, epigenetic mechanisms of gene regulation serve as an important bridge between environmental stimuli and genotype. In this review, we outline epigenetic mechanisms by which gene expression is regulated in animals and humans. Using fear learning as a framework, we then delineate how such mechanisms underlie learning and stress responsiveness. Finally, we discuss how epigenetic mechanisms might inform us about the transgenerational inheritance of behavioral traits that are being increasingly reported.

  10. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  11. Prenatal and early life influences on epigenetic age in children

    DEFF Research Database (Denmark)

    Simpkin, Andrew J; Hemani, Gibran; Suderman, Matthew;

    2016-01-01

    DNA methylation based biomarkers of aging are highly correlated with actual age. Departures of methylation-estimated age from actual age can be used to define epigenetic measures of child development or age acceleration in adults. Very little is known about genetic or environmental determinants...... of these epigenetic measures of aging. We obtained DNA methylation profiles using Infinium HumanMethylation450 BeadChips across five time points in 1018 mother-child pairs from the Avon Longitudinal Study of Parents and Children. Using the Horvath age estimation method, we calculated epigenetic age for these samples....... Age acceleration (AA) was defined as the residuals from regressing epigenetic age on actual age. AA was tested for associations with cross-sectional clinical variables in children. We identified associations between AA and sex, birth weight, birth by caesarean section and several maternal...

  12. Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-10-01

    There have been considerable advances in uncovering the complex genetic mechanisms that underlie nervous system disease pathogenesis, particularly with the advent of exome and whole genome sequencing techniques. The emerging field of epigenetics is also providing further insights into these mechanisms. Here, we discuss our understanding of the interplay that exists between genetic and epigenetic mechanisms in these disorders, highlighting the nascent field of epigenetic epidemiology-which focuses on analyzing relationships between the epigenome and environmental exposures, development and aging, other health-related phenotypes, and disease states-and next-generation research tools (i.e., those leveraging synthetic and chemical biology and optogenetics) for examining precisely how epigenetic modifications at specific genomic sites affect disease processes.

  13. Role of epigenetic modifications in luminal breast cancer.

    Science.gov (United States)

    Abdel-Hafiz, Hany A; Horwitz, Kathryn B

    2015-08-01

    Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.

  14. Combating the epigenome: epigenetic drugs against non-Hodgkin's lymphoma.

    Science.gov (United States)

    Hassler, Melanie R; Schiefer, Ana-Iris; Egger, Gerda

    2013-08-01

    Non-Hodgkin's lymphomas (NHLs) comprise a large and diverse group of neoplasms of lymphocyte origin with heterogeneous molecular features and clinical manifestations. Current therapies are based on standard chemotherapy, immunotherapy, radiation or stem cell transplantation. The discovery of recurrent mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases, has provided researchers with a rationale to develop novel inhibitors targeting these enzymes. Several clinical and preclinical studies have demonstrated the efficacy of epigenetic drugs in NHL therapy and a few specific inhibitors have already been approved for clinical use. Here, we provide an overview of current NHL classification and a review of the present literature describing epigenetic alterations in NHL, including a summary of different epigenetic drugs, and their use in preclinical and clinical studies.

  15. Cancer type-specific epigenetic changes: gastric cancer.

    Science.gov (United States)

    Calcagno, Danielle Queiroz; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodriguez

    2015-01-01

    Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed.

  16. Genetic and Epigenetic Mechanisms Linking Pain and Psychiatric Disorders.

    Science.gov (United States)

    Swiergiel, Artur H; Juszczak, Grzegorz R; Stankiewicz, Adrian M

    2015-01-01

    The neurophysiological link between neuropathic pain and depression remains unknown despite evident high comorbidity of these two disorders. However, there is convincing evidence that genotype plays a role in both pain and depression. Using various types of genetic analysis - population genetics, cytogenetics and molecular technologies - specific genes have been implicated in mediating almost all aspects of nociception and mood disorders. The current review attempts to identify specific genes and epigenetic mechanisms common to both disorders. It is concluded that external and internal factors (inflammation, stress, gender, etc.) that contribute to the pathologies may do so through epigenetic mechanisms that may affect expression of these particular genes. The possible involvement of epigenetic regulation in pain and psychiatric disorders suggests that treatments targeting epigenetic mechanisms that mediate adverse life events should be considered. PMID:26436761

  17. Twins for epigenetic studies of human aging and development

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Thomassen, Mads;

    2013-01-01

    Most of the complex traits including aging phenotypes are caused by the interaction between genome and environmental conditions and the interface of epigenetics may be a central mechanism. Although modern technologies allow us high-throughput profiling of epigenetic patterns already at genome level......, our understanding of genetic and environmental influences on the epigenetic processes remains limited. Twins are of special interest for genetic studies due to their genetic similarity and rearing-environment sharing. The classical twin design has made a great contribution in dissecting the genetic...... and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable sample of twins is helping to bridge the gap between gene activity and the environments through epigenetic mechanisms unlimited by DNA sequence variations. We propose to extend the classical twin...

  18. Epigenetics and the Developmental Origins of Health and Disease#

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the reproductive and developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). Environmental exposures including paren...

  19. Epigenetics: a new bridge between nutrition and health

    Science.gov (United States)

    Nutrients can reverse or change epigenetic phenomena such as DNA methylation and histone modifications, thereby modifying the expression of critical genes associated with physiologic and pathologic processes, including embryonic development, aging, and carcinogenesis. It appears that nutrients and b...

  20. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Science.gov (United States)

    Srikhanta, Yogitha N; Gorrell, Rebecca J; Steen, Jason A; Gawthorne, Jayde A; Kwok, Terry; Grimmond, Sean M; Robins-Browne, Roy M; Jennings, Michael P

    2011-01-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis. PMID:22162751