Cooperative adaptive cruise control
Naus, G.J.L.; Molengraft, R. van de; Ploeg, J.
2009-01-01
Adaptive Cruise Control (ACC) enables automatic following of a preceding vehicle, based on measurements of the inter-vehicle distance xr,i and the relative velocity ˙ xr,i. Commonly, a radar is used for these measurements, see Figure 1. Decreasing the inter-vehicle distance to a small value of only
1985-09-19
13.2 3.6. 14.0. 1.8. 11111.52 *.6 L 3 n1 i erated ~~~m nc. AFOSR-TR- 798 s AD-A 161 349 ROBUST ADAPTIVE CONTROL * FINAL REPORT PREPARED BY: R~ OBERT L... Centre Block Computes the Norm of the [1I] Solo, V., "Time Series Recursions and Stochastc Regressors. The Rematning Elemerts Imple- Approximation
Adaptive Structural Mode Control Project
National Aeronautics and Space Administration — M4 Engineering proposes the development of an adaptive structural mode control system. The adaptive control system will begin from a "baseline" dynamic model of the...
Efficient adaptive fuzzy control scheme
Papp, Z.; Driessen, B.J.F.
1995-01-01
The paper presents an adaptive nonlinear (state-) feedback control structure, where the nonlinearities are implemented as smooth fuzzy mappings defined as rule sets. The fine tuning and adaption of the controller is realized by an indirect adaptive scheme, which modifies the parameters of the fuzzy
Adaptive filtering prediction and control
Goodwin, Graham C
2009-01-01
Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o
A robust adaptive robot controller
Berghuis, Harry; Ortega, Romeo; Nijmeijer, Henk
1993-01-01
A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may excit
A robust adaptive robot controller
1993-01-01
A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may excite the unmodeled dynamics and amplify the noise level. Third, we derive for the unknown parameter design a relationship between compensator gains and closed-loop convergence rates that is independen...
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Adaptive Extremum Control and Wind Turbine Control
DEFF Research Database (Denmark)
Ma, Xin
1997-01-01
This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...
INDIRECT ACCELERATED ADAPTIVE FUZZY CONTROLLER
Institute of Scientific and Technical Information of China (English)
ZHU Liye; FANG Yuan; ZHANG Weidong
2008-01-01
According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.
Adaptive control with aerospace applications
Gadient, Ross
Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with
Maritime Adaptive Optics Beam Control
2010-09-01
adaptive optics work at the NPS has been applied primarily to vibration control and segment alignment for flexible space telescopes and segmented mirror...a Fourier filter in the form of an iris or aperture stop is placed in the beam to select either the +1 or -1 diffractive order to propagate through...optical components on the table include lenses, mirrors, aperture stops, beamsplitters, and filters which reimage the system pupil plane and
Adaptation is Unnecessary in L1-"Adaptive" Control
2014-01-01
We show in the paper that the, so--called, "new architecture of L_1-Adaptive Control" is, indeed, different from classical model reference adaptive control. Alas, it is not new, since it exactly coincides with a full--state feedback, linear time--invariant proportional plus integral controller (with a decaying additive disturbance).
Adaptive-feedback control algorithm.
Huang, Debin
2006-06-01
This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.
Adaptive Fuzzy Control for CVT Vehicle
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-tuning fuzzy-PI throttle controller, and a hybrid fuzzy-PID CVT ratio and brake controller. The presented adaptive fuzzy control strategy is vehicle model independent, which depends only on the instantaneous vehicle states, but does not depend on vehicle parameters. So it has good robustness against uncertain vehicle parameters and exogenous load disturbance. Simulation results show that the proposed adaptive fuzzy strategy has good adaptability and practicality value.
Adaptive fuzzy controllers based on variable universe
Institute of Scientific and Technical Information of China (English)
李洪兴
1999-01-01
Adaptive fuzzy controllers by means of variable universe are proposed based on interpolation forms of fuzzy control. First, monotonicity of control rules is defined, and it is proved that the monotonicity of interpolation functions of fuzzy control is equivalent to the monotonicity of control rules. This means that there is not any contradiction among the control rules under the condition for the control rules being monotonic. Then structure of the contraction-expansion factor is discussed. At last, three models of adaptive fuzzy control based on variable universe are given which are adaptive fuzzy control model with potential heredity, adaptive fuzzy control model with obvious heredity and adaptive fuzzy control model with successively obvious heredity.
Flight Test Approach to Adaptive Control Research
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Research in digital adaptive flight controllers
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
A robust adaptive controller for robot manipulators
Berghuis, Harry; Ortega, Romeo; Nijmeijer, Henk
1992-01-01
The authors propose a globally convergent adaptive control scheme for robot motion control with the following features: first, the adaptation law processes enhanced robustness with respect to noisy velocity measurements; secondly, the controller does not require the inclusion of high-gain loops that
Adaptive Control of Rigid Body Satellite
Institute of Scientific and Technical Information of China (English)
Thawar T. Arif
2008-01-01
The minimal controller synthesis (MCS) is an extension of the hyperstable model reference adaptive control algorithm. The aim of minimal controller synthesis is to achieve excellent closed-loop control despite the presence of plant parameter variations, external disturbances, dynamic coupling within the plant and plant nonlinearities. The minimal controller synthesis algorithm was successfully applied to the problem of decentralized adaptive schemes. The decentralized minimal controller synthesis adaptive control strategy for controlling the attitude of a rigid body satellite is adopted in this paper. A model reference adaptive control strategy which uses one single three-axis slew is proposed for the purpose of controlling the attitude of a rigid body satellite. The simulation results are excellent and show that the controlled system is robust against disturbances.
Operator versus computer control of adaptive automation
Hilburn, Brian; Molloy, Robert; Wong, Dick; Parasuraman, Raja
1993-01-01
Adaptive automation refers to real-time allocation of functions between the human operator and automated subsystems. The article reports the results of a series of experiments whose aim is to examine the effects of adaptive automation on operator performance during multi-task flight simulation, and to provide an empirical basis for evaluations of different forms of adaptive logic. The combined results of these studies suggest several things. First, it appears that either excessively long, or excessively short, adaptation cycles can limit the effectiveness of adaptive automation in enhancing operator performance of both primary flight and monitoring tasks. Second, occasional brief reversions to manual control can counter some of the monitoring inefficiency typically associated with long cycle automation, and further, that benefits of such reversions can be sustained for some time after return to automated control. Third, no evidence was found that the benefits of such reversions depend on the adaptive logic by which long-cycle adaptive switches are triggered.
Adaptive Method Using Controlled Grid Deformation
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2011-09-01
Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Robust Adaptive Control of Multivariable Nonlinear Systems
2011-03-28
IEEE Transactions on Automatic Control , 42(9): 1200-1221, 1997. 6. D. Li, N. Hovakimyan...limitations of performance,” IEEE Transactions on Automatic Control , vol. 52, no. 7, pp. 1604–1615, 2008. 8. X. Wang, N. Hovakimyan, 1L Adaptive...550-564, 2010. 5. C. Cao, N. Hovakimyan, Stability Margins of 1L Adaptive Control Architecture, IEEE Transactions on Automatic Control , vol. 55,
Flight Approach to Adaptive Control Research
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
ADAPTIVE GENERALIZED PREDICTIVE CONTROL OF SWITCHED SYSTEMS
Institute of Scientific and Technical Information of China (English)
WANG Yi-jing; WANG Long
2005-01-01
The problem of adaptive generalized predictive control which consists of output prediction errors for a class of switched systems is studied. The switching law is determined by the output predictive errors of a finite number of subsystems. For the single subsystem and multiple subsystems cases, it is proved that the given direct algorithm of generalized predictive control guarantees the global convergence of the system. This algorithm overcomes the inherent drawbacks of the slow convergence and large transient errors for the conventional adaptive control.
A robust adaptive controller for robot manipulators
1992-01-01
The authors propose a globally convergent adaptive control scheme for robot motion control with the following features: first, the adaptation law processes enhanced robustness with respect to noisy velocity measurements; secondly, the controller does not require the inclusion of high-gain loops that may excite the unmodeled dynamics and amplify the noise level; thirdly the authors derive for the known parameter design a relationship between compensator gains and closed-loop convergence rates ...
Digital adaptive control laws for VTOL aircraft
Hartmann, G. L.; Stein, G.
1979-01-01
Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.
Stochastic Adaptive Estimation and Control.
1994-10-26
1294-1320. 9. R. Kumar, V. Garg and S.I. Marcus, "On Supervisory Control of Sequential Behaviors," IEEE Transactions on Automatic Control , 37...Systems," IEEE Transactions on Automatic Control , 38, February 1993, 232-247. 11. E. Fernindez-Gaucherand, M. K. Ghosh, and S.I. Marcus, "Controlled
Chaotic satellite attitude control by adaptive approach
Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping
2014-06-01
In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.
Adaptive Feedfoward Feedback Control Framework Project
National Aeronautics and Space Administration — An Adaptive Feedforward and Feedback Control (AFFC) Framework is proposed to suppress the aircraft's structural vibrations and to increase the resilience of the...
Adaptive Fuzzy Attitude Control of Flexible Satellite
Institute of Scientific and Technical Information of China (English)
GUAN Ping; LIU Xiang-dong; CHEN Jia-bin
2005-01-01
The adaptive fuzzy control is applied in the attitude stabilization of flexible satellite. The detailed design procedure of the adaptive fuzzy control system is presented. Two T-S models are used as both controller and identifier. The parameters of the controller could be modified according to the information of the identifier. Simulation results show that the method can effectively cope with the uncertainty of flexible satellite by on-line learning and thus posses the good robustness. With the proposed method, the precise attitude control is accomplished.
Multiple models adaptive feedforward decoupling controller
Institute of Scientific and Technical Information of China (English)
Wang Xin; Li Shaoyuan; Wang Zhongjie
2005-01-01
When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The global convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.
A Novel Robust Adaptive Fuzzy Controller
Institute of Scientific and Technical Information of China (English)
LIU Xiao-hua; WANG Xiu-hong; FEN En-min
2002-01-01
For a class of continuous-time nonlinear system, a novel robust adaptive fuzzy controller is proposed by using of Lyapunov method. It is proven that the control algorithm is globally stable, the output tracking-error can convergence to a domain of zero under the assumptions. As a result, the system controlled has stronger robustness for disturbance and modeling error.
Simple adaptive tracking control for mobile robots
Bobtsov, Alexey; Faronov, Maxim; Kolyubin, Sergey; Pyrkin, Anton
2014-12-01
The problem of simple adaptive and robust control is studied for the case of parametric and dynamic dimension uncertainties: only the maximum possible relative degree of the plant model is known. The control approach "consecutive compensator" is investigated. To illustrate the efficiency of proposed approach an example with the mobile robot motion control using computer vision system is considered.
Stochastic Adaptive Control and Estimation Enhancement.
1991-02-01
Multiple Model Algorithm for Systems with Markovian Switching Coefficients, (Henk A. Blom and Yaakov Bar-Shalom, IEEE Transactions on Automatic Control Vol...environment with a distributed sensor network. 4. An Adaptive Dual Controller for a MIMO-ARMA System, (P. Mookerjee and Y. Bar-Shalom, IEEE Transactions on Automatic Control , Vol
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Adaptive change in corporate control practices.
Alexander, J A
1991-03-01
Multidivisional organizations are not concerned with what structure to adopt but with how they should exercise control within the divisional form to achieve economic efficiencies. Using an information-processing framework, I examined control arrangements between the headquarters and operating divisions of such organizations and how managers adapted control practices to accommodate increasing environmental uncertainty. Also considered were the moderating effects of contextual attributes on such adaptive behavior. Analyses of panel data from 97 multihospital systems suggested that organizations generally practice selective decentralization under conditions of increasing uncertainty but that organizational age, dispersion, and initial control arrangements significantly moderate the direction and magnitude of such changes.
Modelling and (adaptive) control of greenhouse climates
Udink ten Cate, A.J.
1983-01-01
The material presented in this thesis can be grouped around four themes, system concepts, modeling, control and adaptive control. In this summary these themes will be treated separately.System conceptsIn Chapters 1 and 2 an overview of the problem formulation is presented. It is suggested that there
Adaptive Sliding Mode Control for Hydraulic Drives
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2013-01-01
This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback....... The main target is to overcome problems with linear controllers deteriorating performance due to the inherent nonlinear nature of such systems, without requiring extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...
Robust adaptive neural network control with supervisory controller
Institute of Scientific and Technical Information of China (English)
张天平; 梅建东
2004-01-01
The problem of direct adaptive neural network control for a class of uncertain nonlinear systems with unknown constant control gain is studied in this paper. Based on the supervisory control strategy and the approximation capability of multilayer neural networks (MNNs), a novel design scheme of direct adaptive neural network controller is proposed.The adaptive law of the adjustable parameter vector and the matrix of weights in the neural networks and the gain of sliding mode control term to adaptively compensate for the residual and the approximation error of MNNs is determined by using a Lyapunov method. The approach does not require the optimal approximation error to be square-integrable or the supremum of the optimal approximation error to be known. By theoretical analysis, the closed-loop control system is proven to be globally stable in the sense that all signals involved are bounded, with tracking error converging to zero.Simulation results demonstrate the effectiveness of the approach.
Adaptive Control Algorithm of the Synchronous Generator
Directory of Open Access Journals (Sweden)
Shevchenko Victor
2017-01-01
Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.
Neuronal control of adaptive thermogenesis
Directory of Open Access Journals (Sweden)
Xiaoyong eYang
2015-09-01
Full Text Available The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT, dysfunction of which lie at the core of obesity and associated metabolic disorders. In contrast, brown adipose tissue (BAT burns fat and dissipates chemical energy as heat. The development and activation of brown-like adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system (CNS drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Dynamics and Control of Adaptive Shells with Curvature Transformations
1995-01-01
Adaptive structures with controllable geometries and shapes are rather useful in many engineering applications, such as adaptive wings, variable focus mirrors, adaptive machines, micro-electromechanical systems, etc. Dynamics and feedback control effectiveness of adaptive shells whose curvatures are actively controlled and continuously changed are evaluated. An adaptive piezoelectric laminated cylindrical shell composite with continuous curvature changes is studied, and its natural frequencie...
Hybrid adaptive control of a dragonfly model
Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro
2012-02-01
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.
Robust Adaptive Control of Hypnosis During Anesthesia
2007-11-02
1 of 4 ROBUST ADAPTIVE CONTROL OF HYPNOSIS DURING ANESTHESIA Pascal Grieder1, Andrea Gentilini1, Manfred Morari1, Thomas W. Schnider2 1ETH Zentrum...A closed-loop controller for hypnosis was designed and validated on humans at our laboratory. The controller aims at regulat- ing the Bispectral Index...BIS) - a surro- gate measure of hypnosis derived from the electroencephalogram of the patient - with the volatile anesthetic isoflurane administered
Model-Free Adaptive Heating Process Control
Ivana LUKÁČOVÁ; Piteľ, Ján
2009-01-01
The aim of this paper is to analyze the dynamic behaviour of a Model-Free Adaptive (MFA) heating process control. The MFA controller is designed as three layer neural network with proportional element. The method of backward propagation of errors was used for neural network training. Visualization and training of the artificial neural network was executed by Netlab in Matlab environment. Simulation of the MFA heating process control with outdoor temperature compensation has proved better resu...
Adaptive Piezoelectric Absorber for Active Vibration Control
Directory of Open Access Journals (Sweden)
Sven Herold
2016-02-01
Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Adaptive control of solar energy collector systems
Lemos, João M; Igreja, José M
2014-01-01
This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts
Adaptive control of an unmanned aerial vehicle
Nguen, V. F.; Putov, A. V.; Nguen, T. T.
2017-01-01
The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.
Institute of Scientific and Technical Information of China (English)
Akira Inoue; Ming-Cong Deng
2006-01-01
This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.
Adaptive Control with Approximated Policy Search Approach
Directory of Open Access Journals (Sweden)
Agus Naba
2010-05-01
Full Text Available Most of existing adaptive control schemes are designed to minimize error between plant state and goal state despite the fact that executing actions that are predicted to result in smaller errors only can mislead to non-goal states. We develop an adaptive control scheme that involves manipulating a controller of a general type to improve its performance as measured by an evaluation function. The developed method is closely related to a theory of Reinforcement Learning (RL but imposes a practical assumption made for faster learning. We assume that a value function of RL can be approximated by a function of Euclidean distance from a goal state and an action executed at the state. And, we propose to use it for the gradient search as an evaluation function. Simulation results provided through application of the proposed scheme to a pole-balancing problem using a linear state feedback controller and fuzzy controller verify the scheme’s efficacy.
Evolving Systems and Adaptive Key Component Control
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Coordinated intelligent adaptive control of legged robots
McLauchlan, Lifford; Mehrübeoğlu, Mehrübe
2006-05-01
In planetary or hazardous environment exploration, there will be unforseen environmental circumstances which can not be planned. To overcome telerobotic control issues due to communication delays, autonomous robot control becomes necessary. Autonomously controlled landers and instrumentation can be used in exploration, such as lunar and martian missions. However, wheeled robots have difficulty in exploring uneven terrain; thus, legged robots can be used in such situations. This research develops intelligent and adaptive control of mobile robots to perform functions such as environmental exploration in coordination and obstacle avoidance. The coordinated control is demonstrated in simulations.
Real Time & Power Efficient Adaptive - Robust Control
Ioan Gliga, Lavinius; Constantin Mihai, Cosmin; Lupu, Ciprian; Popescu, Dumitru
2017-01-01
A design procedure for a control system suited for dynamic variable processes is presented in this paper. The proposed adaptive - robust control strategy considers both adaptive control advantages and robust control benefits. It estimates the degradation of the system’s performances due to the dynamic variation in the process and it then utilizes it to determine when the system must be adapted with a redesign of the robust controller. A single integral criterion is used for the identification of the process, and for the design of the control algorithm, which is expressed in direct form, through a cost function defined in the space of the parameters of both the process and the controller. For the minimization of this nonlinear function, an adequate mathematical programming minimization method is used. The theoretical approach presented in this paper was validated for a closed loop control system, simulated in an application developed in C. Because of the reduced number of operations, this method is suitable for implementation on fast processes. Due to its effectiveness, it increases the idle time of the CPU, thereby saving electrical energy.
Predictive Control of Speededness in Adaptive Testing
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
An asymptotically optimal nonparametric adaptive controller
Institute of Scientific and Technical Information of China (English)
郭雷; 谢亮亮
2000-01-01
For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a kernel estimation-based nonparametric adaptive controller is constructed based on truncated certainty equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are established without resorting to any external excitations.
Adaptive Control of Nonlinear Flexible Systems
1993-01-18
disturbances. The following example illustrates the need for a robust state-feedback law and the sensi- tivity of the exact - linearization based control law... exact linearization , one can bring an input-output approach to a particular case of certainty- equivalence based adaptive control design. We now...are available for this model, exact linearization can be performed. Let C(s) be the compensator that is being used so far in the previous three
Multivariable adaptive control of bio process
Energy Technology Data Exchange (ETDEWEB)
Maher, M.; Bahhou, B.; Roux, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Maher, M. [Faculte des Sciences, Rabat (Morocco). Lab. de Physique
1995-12-31
This paper presents a multivariable adaptive control of a continuous-flow fermentation process for the alcohol production. The linear quadratic control strategy is used for the regulation of substrate and ethanol concentrations in the bioreactor. The control inputs are the dilution rate and the influent substrate concentration. A robust identification algorithm is used for the on-line estimation of linear MIMO model`s parameters. Experimental results of a pilot-plant fermenter application are reported and show the control performances. (authors) 8 refs.
Robust and Adaptive Control With Aerospace Applications
Lavretsky, Eugene
2013-01-01
Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features ...
Adaptive pitch control of wind turbine
Energy Technology Data Exchange (ETDEWEB)
Kjaer Joergensen, H.
1993-12-31
The wind turbines used in Denmark today to produce electric power are mostly stall-controlled turbines up to 300-400 kW. The quality of the produced electrical power from small stall-controlled wind turbines is poor compared to the electrical power from the utility grid. The main goal of this report is to describe another way of generating electric power by wind turbines. The produced power is regulated by controlling the pitch of the rotor blades. Only medium wind speeds ranging from 14 m{sup 3} to 20 m{sup 3} are considered. The regulation problem is to keep the power at the nominal value and to minimize variations in the produced power and variations in the torques acting upon the turbine. Furthermore fluctuations in the displacement of the nacelle have to be controlled so the natural frequency of the nacelle is not excited. The regulation problem is solved for the 750 kW wind turbine, Windane 40, owned by ELKRAFT. A control model is developed for use in the control design procedure and a simulation model is developed to test the designed controllers. Several controllers are designed. A continuous-time PID-controller (Proportional Integrating Differentiating) is designed because this controller is used in practical pitch-control today - this controller is used as a reference of performance. A LQG-controller (Least Quadratic Gaussian) and a GSP-controller (General Stochastic Poleplacement) are designed to test some conventional controllers used to solve many other regulation problems. Finally an AGSP-controller (Adaptive General Stochastic Poleplacement) is designed to test a controller that is able to change the control law according to the wind speed. The controllers are tested at different wind conditions. All controllers are compared to a wind turbine with fixed pitch angle (stall-control). Simulation studies show that all controllers give better results than the fixed pitch-controlled system. (EG) (14 refs.)
Improvement of Adaptive Cruise Control Performance
Directory of Open Access Journals (Sweden)
Nakagami Takashi
2010-01-01
Full Text Available This paper describes the Adaptive Cruise Control system (ACC, a system which reduces the driving burden on the driver. The ACC system primarily supports four driving modes on the road and controls the acceleration and deceleration of the vehicle in order to maintain a set speed or to avoid a crash. This paper proposes more accurate methods of detecting the preceding vehicle by radar while cornering, with consideration for the vehicle sideslip angle, and also of controlling the distance between vehicles. By making full use of the proposed identification logic for preceding vehicles and path estimation logic, an improvement in driving stability was achieved.
An adaptive strategy for controlling chaotic system
Institute of Scientific and Technical Information of China (English)
曹一家; 张红先
2003-01-01
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems : Duffing oscillator and Rǒssler chaos.
ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
LI ZHI; HAN CHONG-ZHAO
2001-01-01
A novel adaptive control and identification on-line method is proposed for a class of chaotic system with uncertain parameters. We prove that, using the presented method, a controller and identifier is developed which can remove chaos in nonlinear systems and make the system asymptotically stabilizing to an arbitrarily desired smooth orbit. And at the same time, estimates to uncertain parameters converge to their true values. The advantage of our method over the existing result is that the controller and identifier is directly constructed by analytic formula without knowing unknown bounds about uncertain parameters in advance. A computer simulation example is given to validate the proposed approach.
Adaptive rate control on wireless transcoder
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To guarantee the real-time transmission of a video stream,based on the stochastic optimal control method,a frame layer adaptive rate control algorithm for the wireless transcoder is proposed,which is capable of dynamically determining the transcoder's objective bit rate,according to the bandwidth variation of the wireless channel and the bufier occupancy. Then the transient performance,steady performance,and computational complexity of the algorithm are analyzed.Finally,the experiment results demonstrate that the algorithm can improve the synthetic performance of rate control through the compromise between the end-to-end delay and the playout quality.
An adaptive strategy for controlling chaotic system.
Cao, Yi-Jia; Hang, Hong-Xian
2003-01-01
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rössler chaos.
An adaptive strategy for controlling chaotic system
Institute of Scientific and Technical Information of China (English)
曹一家; 张红先
2003-01-01
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rossler chaos.
Adaptive tracking control of chaotic systems
Institute of Scientific and Technical Information of China (English)
卢钊; 卢和
2004-01-01
It is important to develop control techniques able to control not only known chaos but also chaotic systems with unknown parameters. This paper proposes a novel adaptive tracking control approach for identifying the unknown parameters and controlling the chaos, which is not closely related to the particular chaotic system to be controlled. The global uniform boundedness of estimated parameters and the asymptotical stability of the tracking errors are proved by Lyapunov stability theory and LaSalle-Yoshizawa theorem. The suggested method enables stabilization of chaotic motion to a steady state ad well as tracking of any desired trajectory to be achieved in a systematic way. Computer simulation on a complex chaotic system illustrtes the effectiveness of the proposed control method.
L1 adaptive control with sliding-mode based adaptive law
Institute of Scientific and Technical Information of China (English)
Jie LUO; Chengyu CAO
2015-01-01
This paper presents an adaptive control scheme with an integration of sliding mode control into the L1 adaptive control architecture, which provides good tracking performance as well as robustness against matched uncertainties. Sliding mode control is used as an adaptive law in the L1 adaptive control architecture, which is considered as a virtual control of error dynamics between estimated states and real states. Low-pass filtering mechanism in the control law design prevents a discontinuous signal in the adaptive law from appearing in actual control signal while maintaining control accuracy. By using sliding mode control as a virtual control of error dynamics and introducing the low-pass filtered control signal, the chattering effect is eliminated. The performance bounds between the close-loop adaptive system and the closed-loop reference system are characterized in this paper. Numerical simulation is provided to demonstrate the performance of the presented adaptive control scheme.
Adaptive Control for a Spacecraft Robotic Manipulator
1993-12-16
research relied on restrictive assumptions or approximations including linearization of robot dynamics , decoupling assumption for joint motors and...slow variation of the inertia matrix [Ref. 1] [Ref. 2][Ref. 3] (Ref. 4]. Later research resulted in the linear parameterization of robot dynamics allowing...the adaptive controller to fully account for the non-linear, time- varying and coupled nature of robot dynamics [Ref. 5] [Ref. 61 [Ref. 7
Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller
Directory of Open Access Journals (Sweden)
Muzaffer Metin
2014-01-01
Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.
Durham adaptive optics real-time controller.
Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy
2010-11-10
The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.
Adaptive Fuzzy Knowledge Based Controller for Autonomous Robot Motion Control
Directory of Open Access Journals (Sweden)
Mbaitiga Zacharie
2010-01-01
Full Text Available Problem statement: Research into robot motion control offers research opportunities that will change scientists and engineers for year to come. Autonomous robots are increasingly evident in many aspects of industry and everyday life and a robust robot motion control can be used for homeland security and many consumer applications. This study discussed the adaptive fuzzy knowledge based controller for robot motion control in indoor and outdoor environment. Approach: The proposed method consisted of two components: the process monitor that detects changes in the process characteristics and the adaptation mechanism that used information passed to it by the process monitor to update the controller parameters. Results: Experimental evaluation had been done in both indoor and outdoor environment where the robot communicates with the base station through its Wireless fidelity antenna and the performance monitor used a set of five performance criteria to access the fuzzy knowledge based controller. Conclusion: The proposed method had been found to be robust.
Application of Adaptive Fuzzy PID Leveling Controller
Directory of Open Access Journals (Sweden)
Ke Zhang
2013-05-01
Full Text Available Aiming at the levelling precision, speed and stability of suspended access platform, this paper put forward a new adaptive fuzzy PID control levelling algorithm by fuzzy theory. The method is aided design by using the SIMULINK toolbox of MATLAB, and setting the membership function and the fuzzy-PID control rule. The levelling algorithm can real-time adjust the three parameters of PID according to the fuzzy rules due to the current state. It is experimented, which is verified the algorithm have better stability and dynamic performance.
When is a Parameterized Controller Suitable for Adaptive Control?
2014-01-01
In this paper we investigate when a parameterized controller, designed for a plant depending on unknown parameters, admits a realization which is independent of the parameters. It is argued that adaptation is unnecessary for this class of parameterized controllers. We prove that standard model reference controllers (state and output--feedback) for linear time invariant systems with a filter at the plant input admit a parameter independent realization. Although the addition of such a filter is...
Neural Control Adaptation to Motor Noise Manipulation
Directory of Open Access Journals (Sweden)
Christopher J Hasson
2016-03-01
Full Text Available Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in twelve young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g. delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability.
Extinction controlled adaptive phase-mask coronagraph
Bourget, P; Mawet, D; Haguenauer, P
2012-01-01
Context. Phase-mask coronagraphy is advantageous in terms of inner working angle and discovery space. It is however still plagued by drawbacks such as sensitivity to tip-tilt errors and chromatism. A nulling stellar coronagraph based on the adaptive phase-mask concept using polarization interferometry is presented in this paper. Aims. Our concept aims at dynamically and achromatically optimizing the nulling efficiency of the coronagraph, making it more immune to fast low-order aberrations (tip-tilt errors, focus, ...). Methods. We performed numerical simulations to demonstrate the value of the proposed method. The active control system will correct for the detrimental effects of image instabilities on the destructive interference. The mask adaptability both in size, phase and amplitude also compensates for manufacturing errors of the mask itself, and potentially for chromatic effects. Liquid-crystal properties are used to provide variable transmission of an annulus around the phase mask, but also to achieve t...
Temperature uniformity control in RTP using multivariable adaptive control
Energy Technology Data Exchange (ETDEWEB)
Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.
1995-12-31
In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.
Adaptive control of force microscope cantilever dynamics
Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.
2007-09-01
Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).
A Methodology for Investigating Adaptive Postural Control
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of
Adaptive Control and Synchronization of the Shallow Water Model
Directory of Open Access Journals (Sweden)
P. Sangapate
2012-01-01
Full Text Available The shallow water model is one of the important models in dynamical systems. This paper investigates the adaptive chaos control and synchronization of the shallow water model. First, adaptive control laws are designed to stabilize the shallow water model. Then adaptive control laws are derived to chaos synchronization of the shallow water model. The sufficient conditions for the adaptive control and synchronization have been analyzed theoretically, and the results are proved using a Barbalat's Lemma.
Longitudinal Control Strategy for Vehicle Adaptive Cruise Control Systems
Institute of Scientific and Technical Information of China (English)
WU Li-jun; LIU Zhao-du; MA Yue-feng
2007-01-01
A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented.The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance.Based on this,two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected.By switching among four control modes,the desired velocity profile is designed to deal with different running situations.A velocity controller,which includes a PID controller for throttle openness and a neural network controller for brake application,is developed to achieve the desired velocity profile.The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Adaptive sliding mode control and its application in chaos control
Directory of Open Access Journals (Sweden)
Liqun Shen
2014-12-01
Full Text Available The sliding motion of sliding mode control system is studied in this paper. Using the measure concept, two new quantities about the sliding motion are introduced, and a new relationship about the sliding motion is derived with the new quantities. According to this relationship, an adaptive law of the magnitude of the controller’s switching part is proposed, which can minimize the chattering phenomenon according to the predefined robust margin. To verify the effectiveness of the proposed control scheme, it is applied to Rössler system with uncertain disturbances. Simulation results show that the proposed control method can stabilize Rössler system with the magnitude of the controller’s switching part adjusted adaptively with the disturbances.
Adaptive quality control for multimedia communications
Directory of Open Access Journals (Sweden)
Santichai Chuaywong
2008-01-01
Full Text Available Multimedia communications are communications with several types of media, such as audio, video and data. The current Internet has some levels of capability to support multimedia communications, unfortunately, the QoS (Quality of Service is still challenging. A large number of QoS mechanisms has been proposed; however, the main concern is for low levels, e.g. layer 2 (Data Link or 3 (Transport. In this paper, mechanisms for control the quality of audio and video are proposed. G.723.1 and MPEG-4 are used as the audio and video codec respectively. The proposed algorithm for adaptive quality control of audio communication is based on forward error correction (FEC. In the case of video communication, the proposed algorithm adapts the value of key frame interval, which is an encoding parameter of MPEG-4. We evaluated our proposed algorithms by computer simulation. We have shown that, in most cases, the proposed scheme gained a higher throughput compared to other schemes.
Control adaptable utilizando Redes Neuronales Artificiales Polinomiales
Directory of Open Access Journals (Sweden)
E. Gómez
2000-01-01
Full Text Available Existen en la literatura de Control Adaptable, diferentes procedimientos en los que es posible identificar un sistema lineal. El problema fundamental es que una cantidad importante de fenómenos de la vida real son de tipo no lineal y no es tan sencillo el modelar este tipo de dinámicas. En este trabajo se presenta una forma de identificar sistemas no lineales utilizando las propiedades de las Redes Neuronales Artificiales y las técnicas de Algoritmo Genético en la optimización de su arquitectura. Adicionalmente se presenta una técnica novedosa de control adaptable para cancelar la dinámica no lineal del sistema y colocar los polos en el punto de operación deseado. Se presenta el comportamiento del algoritmo para el caso lineal yno lineal y finalmente se analiza la importancia teórica y operacional de estas técnicas.
Adaptive powertrain control for plugin hybrid electric vehicles
Energy Technology Data Exchange (ETDEWEB)
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.
Fei, Juntao; Zhou, Jian
2012-12-01
In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.
Biofeedback systems and adaptive control hemodialysis treatment
Directory of Open Access Journals (Sweden)
Azar Ahmad
2008-01-01
Full Text Available On-line monitoring devices to control functions such as volume, body temperature, and ultrafiltration, were considered more toys than real tools for routine clinical application. However, bio-feedback blood volume controlled hemodialysis (HD is now possible in routine dialysis, allowing the delivery of a more physiologically acceptable treatment. This system has proved to reduce the incidence of intra-HD hypotension episodes significantly. Ionic dialysance and the patient′s plasma conductivity can be calculated easily from on-line measurements at two different steps of dialysate conductivity. A bio-feedback system has been devised to calculate the patient′s plasma conductivity and modulate the conductivity of the dialysate continuously in order to achieve a desired end-dialysis patient plasma conductivity corresponding to a desired end-dialysis plasma sodium concentration. Another bio-feedback system can control the body tempe-rature by measuring it at the arterial and venous lines of the extra-corporeal circuit, and then modulating the dialysate temperature in order to stabilize the patients′ temperature at constant values that result in improved intra-HD cardiovascular stability. The module can also be used to quantify vascular access recirculation. Finally, the simultaneous computer control of ultrafiltration has proven the most effective means for automatic blood pressure stabilization during hemo-dialysis treatment. The application of fuzzy logic in the blood-pressure-guided biofeedback con-trol of ultrafiltration during hemodialysis is able to minimize HD-induced hypotension. In con-clusion, online monitoring and adaptive control of the patient during the dialysis session using the bio-feedback systems is expected to render the process of renal replacement therapy more physiological and less eventful.
Adaptive Dynamic Surface Control for Generator Excitation Control System
Directory of Open Access Journals (Sweden)
Zhang Xiu-yu
2014-01-01
Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.
Control of tunneling by adapted signals
Ivlev, B I
2000-01-01
Process of quantum tunneling of particles in various physical systems can be effectively controlled even by a weak and slow varying in time electromagnetic signal if to adapt specially its shape to a particular system. During an under-barrier motion of a particle such signal provides a "coherent" assistance of tunneling by the multi-quanta absorption resulting in a strong enhancement of the tunneling probability. The semiclassical approach based on trajectories in the complex time is developed for tunneling in a non-stationary field. Enhancement of tunneling occurs when a singularity of the signal coincides in position at the complex time plane with a singularity of the classical Newtonian trajectory of the particle. The developed theory is also applicable to the over-barrier reflection of particles and to reflection of classical waves (electromagnetic, hydrodynamic, etc.) from a spatially-smooth medium.
Application of Adaptive Techniques to Problems in Control and Communication.
1982-01-01
IEEE Transactions on Automatic Control in 1982. (2...signals in the adaptive system. These results will appear in the IEEE Transactions on Automatic Control . A brief comparison of the two schemes described...Model Reference Adaptive Control in the Presence of Bounded Disturbances" S&IS Report No. 8103, March 1981 (to appear in IEEE Transactions on Automatic Control )
Adaptive output feedback control of aircraft flexible modes
Ponnusamy, Sangeeth Saagar; Bordeneuve-Guibé, Joël
2012-01-01
The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. Th...
Adaptive Control of Robot Manipulators With Uncertain Kinematics and Dynamics
Wang, Hanlei
2014-01-01
In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservat...
Adaptation in the fuzzy self-organising controller
DEFF Research Database (Denmark)
Jantzen, Jan; Poulsen, Niels Kjølstad
2003-01-01
This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....
System Dynamics and Adaptive Control for MEMS Gyroscope Sensor
Directory of Open Access Journals (Sweden)
Juntao Fei
2011-01-01
Full Text Available This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the proposed adaptive control strategy. Numerical simulation is investigated to verify the effectiveness of the proposed control scheme.
The Durham adaptive optics real-time controller
Basden, Alastair; Myers, Richard; Younger, Eddy
2010-01-01
The Durham adaptive optics real-time controller was initially a proof of concept design for a generic adaptive optics control system. It has since been developed into a modern and powerful CPU based real-time control system, capable of using hardware acceleration (including FPGAs and GPUs), based primarily around commercial off the shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8~m class telescope adaptive optics systems. Here we give details of this controller and the concepts behind it, and report on performance including latency and jitter, which is less than 10~$\\mu$s for small adaptive optics systems.
Cascade adaptive control of uncertain unified chaotic systems
Institute of Scientific and Technical Information of China (English)
Wei Wei; Li Dong-Hai; Wang Jing
2011-01-01
The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point.Since an adaptive controller based on dynamic compensation mechanism is employed, the exact model of the unified chaotic system is not necessarily required.By choosing appropriate controller parameters, chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.
DEFF Research Database (Denmark)
Ravn, Ole
1998-01-01
The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...
Switching Control System Based on Robust Model Reference Adaptive Control
Institute of Scientific and Technical Information of China (English)
HU Qiong; FEI Qing; MA Hongbin; WU Qinghe; GENG Qingbo
2016-01-01
For conventional adaptive control,time-varying parametric uncertainty and unmodeled dynamics are ticklish problems,which will lead to undesirable performance or even instability and nonrobust behavior,respectively.In this study,a class of discrete-time switched systems with unmodeled dynamics is taken into consideration.Moreover,nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper,and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance.For robustness against unmodeled dynamics and uncertainty,robust model reference aclaptive control (RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems.Meanwhile,two different switching laws are presented for switched systems and nonlinear systems,respectively.Thereby,the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems.Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes.Furthermore,as to the proposed scheme for nonlinear systems,its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.
System Dynamics and Adaptive Control for MEMS Gyroscope Sensor
Juntao Fei; Hongfei Ding
2010-01-01
This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the propo...
System Dynamics and Adaptive Control for MEMS Gyroscope Sensor
Juntao Fei; Hongfei Ding
2011-01-01
This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the propo...
Multiple-Model Adaptive Switching Control for Uncertain Multivariable Systems
Baldi, Simone; Battistelli, Giorgio; Mari, Daniele; Mosca, Edoardo; Tesi, Pietro
2011-01-01
This paper addresses the problem of controlling an uncertain multi-input multi-output (MIMO) system by means of adaptive switching control schemes. In particular, the paper aims at extending the approach of multiple-model unfalsified adaptive switched control, so far restricted to single-input singl
Adaptive Linear Parameter Varying Control for Aeroservoelastic Suppression Project
National Aeronautics and Space Administration — Adaptive control offers an opportunity to fulfill aircraft safety objectives though automated vehicle recovery while maintaining performance and stability...
Adaptive Linear Parameter Varying Control for Aeroservoelastic Suppression Project
National Aeronautics and Space Administration — Adaptive control offers an opportunity to fulfill present and future aircraft safety objectives though automated vehicle recovery while maintaining performance and...
Nonlinear Direct Robust Adaptive Control Using Lyapunov Method
Directory of Open Access Journals (Sweden)
Chunbo Xiu
2013-07-01
Full Text Available The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.
Adaptive Clutch Engaging Process Control for Automatic Mechanical Transmission
Institute of Scientific and Technical Information of China (English)
LIU Hai-ou; CHEN Hui-yan; DING Hua-rong; HE Zhong-bo
2005-01-01
Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forward. It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase. The adaptive control system and its reference model are discussed profoundly.Taking the adaptability to different starting gears and different road conditions as examples, some proving field test records are shown to illustrate the main clutch adaptive control strategy at starting phase. Proving field test gives acceptable results.
Adaptive robust controller based on integral sliding mode concept
Taleb, M.; Plestan, F.
2016-09-01
This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.
Channel adaptive rate control for energy optimization
Institute of Scientific and Technical Information of China (English)
BLANCH Carolina; POLLIN Sofie; LAFRUIT Gauthier; EBERLE Wolfgang
2006-01-01
Low energy consumption is one of the main challenges for wireless video transmission on battery limited devices. The energy invested at the lower layers of the protocol stack involved in data communication, such as link and physical layer, represent an important part of the total energy consumption. This communication energy highly depends on the channel conditions and on the transmission data rate. Traditionally, video coding is unaware of varying channel conditions. In this paper, we propose a cross-layer approach in which the rate control mechanism of the video codec becomes channel-aware and steers the instantaneous output rate according to the channel conditions to reduce the communication energy. Our results show that energy savings of up to30% can be obtained with a reduction of barely 0.1 dB on the average video quality. The impact of feedback delays is shown to be small. In addition, this adaptive mechanism has low complexity, which makes it suitable for real-time applications.
Neural Control of Chronic Stress Adaptation
Directory of Open Access Journals (Sweden)
James eHerman
2013-08-01
Full Text Available Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process.
Dynamics and Control of Adaptive Shells with Curvature Transformations
Directory of Open Access Journals (Sweden)
H.S. Tzou
1995-01-01
Full Text Available Adaptive structures with controllable geometries and shapes are rather useful in many engineering applications, such as adaptive wings, variable focus mirrors, adaptive machines, micro-electromechanical systems, etc. Dynamics and feedback control effectiveness of adaptive shells whose curvatures are actively controlled and continuously changed are evaluated. An adaptive piezoelectric laminated cylindrical shell composite with continuous curvature changes is studied, and its natural frequencies and controlled damping ratios are evaluated. The curvature change of the adaptive shell starts from an open shallow shell (30° and ends with a deep cylindrical shell (360°. Dynamic characteristics and control effectiveness (via the proportional velocity feedback of this series of shells are investigated and compared at every 30° curvature change. Analytical solutions suggest that the lower modes are sensitive to curvature changes and the higher modes are relatively insensitive.
Model Based Adaptive Piecewise Linear Controller for Complicated Control Systems
Directory of Open Access Journals (Sweden)
Tain-Sou Tsay
2014-01-01
Full Text Available A model based adaptive piecewise linear control scheme for industry processes with specifications on peak overshoots and rise times is proposed. It is a gain stabilized control technique. Large gain is used for large tracking error to get fast response. Small gain is used between large and small tracking error for good performance. Large gain is used again for small tracking error to cope with large disturbance. Parameters of the three-segment piecewise linear controller are found by an automatic regulating time series which is function of output characteristics of the plant and reference model. The time series will be converged to steady values after the time response of the considered system matching that of the reference model. The proposed control scheme is applied to four numerical examples which have been compensated by PID controllers. Parameters of PID controllers are found by optimization method. It gives an almost command independent response and gives significant improvements for response time and performance.
Adaptive slope compensation for high bandwidth digital current mode controller
DEFF Research Database (Denmark)
Taeed, Fazel; Nymand, Morten
2015-01-01
An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...
Pulse front control with adaptive optics
Sun, B.; Salter, P. S.; Booth, M. J.
2016-03-01
The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.
Adaptive Controller Design for Faulty UAVs via Quantum Information Technology
Directory of Open Access Journals (Sweden)
Fuyang Chen
2012-12-01
Full Text Available In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model reference adaptive principle, an adaptive control law based on the Popov hyperstability theory is designed. This law enable better robustness of the flight control system and tracking control performances. The closed‐loop system’s stability is guaranteed by the Popov hyperstability theory. The simulation results demonstrate that a better dynamic performance of the UAV flight control system with faults and parametric uncertainties can be maintained with the proposed method.
Adaptive Intelligent Ventilation Noise Control Project
National Aeronautics and Space Administration — To address NASA needs for quiet crew volumes in a space habitat, Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...
Adaptive Intelligent Ventilation Noise Control Project
National Aeronautics and Space Administration — To address the NASA need for quiet on-orbit crew quarters (CQ), Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...
Adaptive coordinated control of engine speed and battery charging voltage
Institute of Scientific and Technical Information of China (English)
Jiangyan ZHANG; Xiaohong JIAO
2008-01-01
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.
SOFC temperature evaluation based on an adaptive fuzzy controller
Institute of Scientific and Technical Information of China (English)
Xiao-juan WU; Xin-jian ZHU; Guang-yi CAO; Heng-yong TU
2008-01-01
The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
Does EMG control lead to distinct motor adaptation?
Directory of Open Access Journals (Sweden)
Reva E Johnson
2014-09-01
Full Text Available Powered prostheses are controlled using electromyographic (EMG signals, which may introduce high levels of uncertainty even for simple tasks. According to Bayesian theories, higher uncertainty should influence how the brain adapts motor commands in response to perceived errors. Such adaptation may critically influence how patients interact with their prosthetic devices; however, we do not yet understand adaptation behavior with EMG control. Models of adaptation can offer insights on movement planning and feedback correction, but we first need to establish their validity for EMG control interfaces. Here we created a simplified comparison of prosthesis and able-bodied control by studying adaptation with three control interfaces: joint angle, joint torque, and EMG. Subjects used each of the control interfaces to perform a target-directed task with random visual perturbations. We investigated how control interface and visual uncertainty affected trial-by-trial adaptation. As predicted by Bayesian models, increased errors and decreased visual uncertainty led to faster adaptation. The control interface had no significant effect beyond influencing error sizes. This result suggests that Bayesian models are useful for describing prosthesis control and could facilitate further investigation to characterize the uncertainty faced by prosthesis users. A better understanding of factors affecting movement uncertainty will guide sensory feedback strategies for powered prostheses and clarify what feedback information best improves control.
Adaptive sliding mode control for a class of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Farid, R.; Ibrahim, A.; Zalam, B., E-mail: ramy5475@yahoo.com [Menofia University, Faculty of Electronic Engineering, Department of Industrial Electronics and Control, Menuf, Menofia (Egypt)
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-01
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Systems and Methods for Derivative-Free Adaptive Control
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
Adaptive Controller Design for Continuous Stirred Tank Reactor
Directory of Open Access Journals (Sweden)
K. Prabhu
2014-09-01
Full Text Available Continues Stirred Tank Reactor (CSTR is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of CSTR than PID controller.
Flexible Satellite Attitude Control via Adaptive Fuzzy Linearization
Institute of Scientific and Technical Information of China (English)
GUAN Ping; LIU Xiang-dong; CHEN Jia-bin; LIU Xiao-he
2005-01-01
The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite.The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.
Adaptive fuzzy sliding mode control of Lorenz chaotic system
Institute of Scientific and Technical Information of China (English)
WU Ligang; WANG Changhong
2007-01-01
By using the exponential reaching law technology,a sliding mode controller was designed for Lorenz chaotic system subject to an unknown external disturbance.On this basis,considering the unknown disturbance,an adaptive law was introduced to adaptively estimate the parameters of the disturbance bounds.Furthermore,to eliminate the chattering resulting from the discontinuous switch controller and to guarantee system transient performance,a new adaptive fuzzy sliding mode controller was designed.The results of the simulation show the effectiveness of the proposed control scheme.
A hybrid adaptive control strategy for a smart prosthetic hand.
Chen, Cheng-Hung; Naidu, D Subbaram; Perez-Gracia, Alba; Schoen, Marco P
2009-01-01
This paper presents a hybrid of a soft computing technique of adaptive neuro-fuzzy inference system (ANFIS) and a hard computing technique of adaptive control for a two-dimensional movement of a prosthetic hand with a thumb and index finger. In particular, ANFIS is used for inverse kinematics, and the adaptive control is used for linearized dynamics to minimize tracking error. The simulations of this hybrid controller, when compared with the proportional-integral-derivative (PID) controller showed enhanced performance. Work is in progress to extend this methodology to a five-fingered, three-dimensional prosthetic hand.
Neuro-Adaptive Control of Robot Manipulator Using RBFN
Energy Technology Data Exchange (ETDEWEB)
Kim, J. D. [Cowell SysNet, Seoul (Korea); Lee, M. J.; Choi, Y. K.; Kim, S. S. [Pusan National University, Pusan (Korea)
2001-01-01
This paper investigates the direct adaptive control of nonlinear systems using RBFN(radial basis function networks). The structure of the controller consists of a fixed PD controller and a RBFN controller in parallel. An adaptation law for the parameters of RBFN is developed based on the Lyapunov stability theory to guarantee the stability of the overall control system. The filtered tracking error between the system output and the desired output is shown to be UUB(uniformly ultimately bounded). To evaluate the performance of the controller, the proposed method is applied to the trajectory control of the two-link manipulator. (author). 18 refs., 14 figs., 2 tabs.
Hormesis and adaptive cellular control systems
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Revisionist integral deferred correction with adaptive step-size control
Christlieb, Andrew
2015-03-27
© 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step-size control can be incorporated within a family of parallel time integrators known as revisionist integral deferred correction (RIDC) methods. The RIDC framework allows for various strategies to implement stepsize control, and we report results from exploring a few of them.
Design of Low Complexity Model Reference Adaptive Controllers
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
FBFN-based adaptive repetitive control of nonlinearly parameterized systems
Institute of Scientific and Technical Information of China (English)
Wenli Sun; Hong Cai; Fu Zhao
2013-01-01
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy ba-sis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mecha-nism. Based on the Lyapunov stability theory, an adaptive repeti-tive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the control er singularity problem is solved. The proposed approach does not require an exact structure of the sys-tem dynamics, and the proposed control er is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simula-tion results demonstrate the effectiveness of the proposed method.
Adaptive control for autonomous rendezvous of spacecraft on elliptical orbit
Institute of Scientific and Technical Information of China (English)
Shan Lu; Shijie Xu
2009-01-01
A strategy for spacecraft autonomous rendezvous on an elliptical orbit in situation of no orbit information is developed. Lawden equation is used to describe relative motion of two spacecraft. Then an adaptive gain factor is introduced, and an adaptive control law for autonomous rendezvous on the elliptical orbit is designed using Lyapunov approach. The relative motion is proved to be ultimately bounded under this control law, and the final relative position error can achieve the expected magnitude. Simulation results indicate that the adaptive control law can realize autonomous rendezvous on the elliptical orbit with relative state information only.
Neural Network Inverse Adaptive Controller Based on Davidon Least Square
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
General neural network inverse adaptive controller haa two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system.These defects limit the scope in which the neural network inverse adaptive controller is used.We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence,and then through constructing the pseudo-plant,a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system.The simulation results show the validity of this scheme.
Disturbance Accommodating Adaptive Control with Application to Wind Turbines
Frost, Susan
2012-01-01
Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.
Adaptive Human Control Gains During Precision Grip
Directory of Open Access Journals (Sweden)
Erik D. Engeberg
2013-03-01
Full Text Available Eight human test subjects attempted to track a desired position trajectory with an instrumented manipulandum (MN. The test subjects used the MN with three different levels of stiffness. A transfer function was developed to represent the human application of a precision grip from the data when the test subjects initially displaced the MN so as to learn the position mapping from the MN onto the display. Another transfer function was formed from the data of the remainder of the experiments, after significant displacement of the MN occurred. Both of these transfer functions accurately modelled the system dynamics for a portion of the experiments, but neither was accurate for the duration of the experiments because the human grip dynamics changed while learning the position mapping. Thus, an adaptive system model was developed to describe the learning process of the human test subjects as they displaced the MN in order to gain knowledge of the position mapping. The adaptive system model was subsequently validated following comparison with the human test subject data. An examination of the average absolute error between the position predicted by the adaptive model and the actual experimental data yielded an overall average error of 0.34mm for all three levels of stiffness.
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
Immersion and Invariance Based Nonlinear Adaptive Flight Control
Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.
2010-01-01
In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is co
Adaptive control of mobile robots using a neural network.
de Sousa Júnior, C; Hermerly, E M
2001-06-01
A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results.
Fabri, S.; Kadirkamanathan, V.
1996-01-01
The use of composite adaptive laws for control of the affine class of nonlinear systems having unknown dynamics is proposed. These dynamics are approximated by Gaussian radial basis function neural networks whose parameters are updated by a composite law that is driven by both tracking and estimation errors, combining techniques used in direct and indirect adaptive control. This is motivated by the need to improve the speed of convergence of the unknown parameters, hence resulting in a better...
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Adaptive importance sampling for control and inference
Kappen, Hilbert Johan; Ruiz, Hans Christian
2015-01-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feyman-Kac path integral and can be estimated using Monte Carlo sampling. In this contribution we review path integral control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers...
Stochastic Adaptive Control and Estimation Enhancement
1990-02-01
Aug. 1980. [YI E. Yaz, " Stabilizing Control of Discrete Systems with Jump Markov Parameters,", Proceedings of the 27th IEEE Conference on Decision...Transactions on Automatic Control, Vol. AC-25, No. 4, pp. 703-710, Aug. 1980. [YI] E. Yaz, " Stabilizing Control of Discrete Systems with Jump Markov
Robust direct adaptive fuzzy control for nonlinear MIMO systems
Institute of Scientific and Technical Information of China (English)
ZHANG Huaguang; ZHANG Mingjun
2006-01-01
For a class of nonlinear multi-input multi-output systems with uncertainty, a robust direct adaptive fuzzy control scheme was proposed. The feedback control law and adaptive law for parameters were derived based on Lyapunov design approach. The overall control scheme can guarantee that the tracking error converges in the small neighborhood of origin, and all signals of the closed-loop system are uniformly bounded. The main advantage of the proposed control scheme is that in each subsystem only one parameter vector needs to be adjusted on-line in the adaptive mechanism, and so the on-line computing burden is reduced. In addition, the proposed control scheme is a smooth control with no chattering phenomena. A simulation example was proposed to demonstrate the effectiveness of the proposed control algorithm.
Discrete Time Optimal Adaptive Control for Linear Stochastic Systems
Institute of Scientific and Technical Information of China (English)
JIANG Rui; LUO Guiming
2007-01-01
The least-squares(LS)algorithm has been used for system modeling for a long time. Without any excitation conditions, only the convergence rate of the common LS algorithm can be obtained. This paper analyzed the weighted least-squares(WLS)algorithm and described the good properties of the WLS algorithm. The WLS algorithm was then used for daptive control of linear stochastic systems to show that the linear closed-loop system was globally stable and that the system identification was consistent. Compared to the past optimal adaptive controller,this controller does not impose restricted conditions on the coefficients of the system, such as knowing the first coefficient before the controller. Without any persistent excitation conditions, the analysis shows that, with the regulation of the adaptive control, the closed-loop system was globally stable and the adaptive controller converged to the one-step-ahead optimal controller in some sense.
Novel hybrid adaptive controller for manipulation in complex perturbation environments.
Directory of Open Access Journals (Sweden)
Alex M C Smith
Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Integrated Damage-Adaptive Control System (IDACS) Project
National Aeronautics and Space Administration — SSCI, in collaboration with Boeing Phantom Works, proposes to develop and test an efficient Integrated Damage Adaptive Control System (IDACS). The proposed system is...
High Efficiency Lighting with Integrated Adaptive Control (HELIAC) Project
National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...
Integrated Damage-Adaptive Control System (IDACS) Project
National Aeronautics and Space Administration — SSCI proposes to further develop, implement and test the damage-adaptive control algorithms developed in Phase I within the framework of an Integrated Damage...
High Efficiency Lighting with Integrated Adaptive Control (HELIAC) Project
National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...
Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation
National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...
Variable universe stable adaptive fuzzy control of nonlinear system
Institute of Scientific and Technical Information of China (English)
李洪兴; 苗志宏; 王加银
2002-01-01
A kind of stable adaptive fuzzy control of nonlinear system is implemented using variable universe method. First of all, the basic structure of variable universe adaptive fuzzy controllers is briefly introduced. Then the contraction-expansion factor that is a key tool of variable universe method is defined by means of integral regulation idea, and a kind of adaptive fuzzy controllers is designed by using such a contraction-expansion factor. The simulation on first order nonlinear system is done. Secondly, it is proved that the variable universe adaptive fuzzy control is asymptotically stable by use of Lyapunov theory. The simulation on the second order nonlinear system shows that its simulation effect is also quite good. Finally a useful tool, called symbolic factor, is proposed, which may be of universal significance. It can greatly reduce the settling time and enhance the robustness of the system.
Variable universe adaptive fuzzy control on the quadruple inverted pendulum
Institute of Scientific and Technical Information of China (English)
李洪兴; 苗志宏; 王家银
2002-01-01
This paper focuses on the control problem of the quadruple inverted pendulum by variable universe adaptive fuzzy control.First,the mathematical model on the quadruple inverted pendulum is described and its controllability is versified.Then,an efficient controller on the quadruple inverted pendulum is designed by using variable universe adaptive fuzzy control theory.Finally the simulation of the quadruple inverted pendulum is shown in detail.Besides,the experimental results on the hardware systems,i.e.real object systems,on a single inverted pendulum,a double inverted pendulum and a triple inverted pendulum are briefly introduced.``
Robust adaptive tracking control of robotic systems with uncertainties
Institute of Scientific and Technical Information of China (English)
Yaonan WANG; Jinzhu PENG; Wei SUN; Hongshan YU; Hui ZHANG
2008-01-01
To deal with the uncertainty factors of robotic systems,a robust adaptive tracking controller is Droposed.The knowledge of the uncertainty factors is assumed to be unidentified;the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded,immeasurable disturbances entering the System.The stability of the proposed controller is proven by the Lyapunov method.The proposed controller can easily be implemented and the stability of the closed system can be ensured;the tracking error and adaptation parameter error are uniformly ultimately bounded(UUB).Finally,some simulation examples are utilized to illustrate the control performance.
Controling contagious processes on temporal networks via adaptive rewiring
Belik, Vitaly; Hövel, Philipp
2015-01-01
We consider recurrent contagious processes on a time-varying network. As a control procedure to mitigate the epidemic, we propose an adaptive rewiring mechanism for temporary isolation of infected nodes upon their detection. As a case study, we investigate the network of pig trade in Germany. Based on extensive numerical simulations for a wide range of parameters, we demonstrate that the adaptation mechanism leads to a significant extension of the parameter range, for which most of the index nodes (origins of the epidemic) lead to vanishing epidemics. We find that diseases with detection times around a week and infectious periods up to 3 months can be effectively controlled. Furthermore the performance of adaptation is very heterogeneous with respect to the index node. We identify index nodes that are most responsive to the adaptation strategy and quantify the success of the proposed adaptation scheme in dependence on the infectious period and detection times.
Adaptive Non-linear Control of Hydraulic Actuator Systems
DEFF Research Database (Denmark)
Hansen, Poul Erik; Conrad, Finn
1998-01-01
Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....
Design of a digital adaptive control system for reentry vehicles.
Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.
1972-01-01
The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.
Adaptive Attitude Control of the Crew Launch Vehicle
Muse, Jonathan
2010-01-01
An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.
Synchronization of general complex networks via adaptive control schemes
Indian Academy of Sciences (India)
Ping He; Chun-Guo Jing; Chang-Zhong Chen; Tao Fan; Hassan Saberi Nik
2014-03-01
In this paper, the synchronization problem of general complex networks is investigated by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling etc. exist universally in real-world complex networks. The adaptive synchronization scheme is designed for the complex network with multiple class of coupling terms. A criterion guaranteeing synchronization of such complex networks is established by employing the Lyapunov stability theorem and adaptive control schemes. Finally, an illustrative example with numerical simulation is given to show the feasibility and efficiency of theoretical results.
Adaptive Control of Nonlinear Flexible Systems
1994-05-26
Proceedings of the American Control Conference , pp. 547-551, San Francisco, June 1993. 3 2 1.3 Personnel Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on...Control of Nonlinear Systems Under Matching Conditions," Proceedings of the American Control Conference , pp. 549-555, San Diego, CA, May 1990. [10] I...Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal, "A time-domain ap- proach to model validation," Proceedings
Berkhoff, A.P.; Wesselink, J.M.
2009-01-01
Recent implementations of multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations provide considerably improved performance over traditional adaptive algorithms. The most significant performance improvements are in terms of speed of convergence, the amount
Spectrum management considerations of adaptive power control in satellite networks
Sawitz, P.; Sullivan, T.
1983-01-01
Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.
Adaptive process control using fuzzy logic and genetic algorithms
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Robust adaptive fuzzy control scheme for nonlinear system with uncertainty
Institute of Scientific and Technical Information of China (English)
Mingjun ZHANG; Huaguang ZHANG
2006-01-01
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.
Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan
2009-01-01
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.
Adapting Predictive Feedback Chaos Control for Optimal Convergence Speed
Bick, Christian; Kolodziejski, Christoph
2012-01-01
Stabilizing unstable periodic orbits in a chaotic invariant set not only reveals information about its structure but also leads to various interesting applications. For the successful application of a chaos control scheme, convergence speed is of crucial importance. Here we present a predictive feedback chaos control method that adapts a control parameter online to yield optimal asymptotic convergence speed. We study the adaptive control map both analytically and numerically and prove that it converges at least linearly to a value determined by the spectral radius of the control map at the periodic orbit to be stabilized. The method is easy to implement algorithmically and may find applications for adaptive online control of biological and engineering systems.
Research in Adaptive and Decentralized Stochastic Control.
1986-01-01
2] 0. Hernandez-Lerma and S.I. Marcus, "Identification and Approximation of Queueing Systems," IEEE Transactions on Automatic Control , Vol. AC-29...of Systems Possessing r" Symmetries," IEEE Transactions on Automatic Control , Vol. AC-29, November 1984, pp. 1037-1040. [6] J.W. Grizzle and S.I
Adaptive control of Hammerstein-Wiener nonlinear systems
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
Robust adaptive control for interval time-delay systems
Institute of Scientific and Technical Information of China (English)
Yizhong WANG; Huaguang ZHANG; Jun YANG
2006-01-01
This paper focuses on the robust adaptive control problems for a class of interval time-delay systems and a class of large-scale interconnected systems. The nonlinear uncertainties of the systems under study are bounded by high-order polynomial functions with unknown gains. Firstly, the adaptive feedback controller which can guarantee the stability of the closed-loop system in the sense of uniform ultimate boundedness is proposed. Then the proposed adaptive idea is extended to robust stabilizing designing method for a class of large-scale interconnected systems. Here, another problem we address is to design a decentralized feedback adaptive controller such that the closed-loop system is stable in the sense of uniform ultimate boundedness for all admissible uncertainties and time-delay. Finally, an illustrative example is given to show the validity of the proposed approach.
Dynamic multimedia stream adaptation and rate control for heterogeneous networks
Institute of Scientific and Technical Information of China (English)
SZWABE Andrzej; SCHORR Andreas; HAUCK Franz J.; KASSLER Andreas J.
2006-01-01
Dynamic adaptation of multimedia content is seen as an important feature of next generation networks and pervasive systems enabling terminals and applications to adapt to changes in e.g. context, access network, and available Quality-of-Service(QoS) due to mobility of users, devices or sessions. We present the architecture of a multimedia stream adaptation service which enables communication between terminals having heterogeneous hardware and software capabilities and served by heterogeneous networks. The service runs on special content adaptation nodes which can be placed at any location within the network. The flexible structure of our architecture allows using a variety of different adaptation engines. A generic transcoding engine is used to change the codec of streams. An MPEG-21 Digital Item Adaptation (DIA) based transformation engine allows adjusting the data rate of scalable media streams. An intelligent decision-taking engine implements adaptive flow control which takes into account current network QoS parameters and congestion information. Measurements demonstrate the quality gains achieved through adaptive congestion control mechanisms under conditions typical for a heterogeneous network.
Adaptive robust control of robot manipulators -- Theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Imura, Junichi; Sugie, Toshiharu; Yoshikawa, Tsuneo (Kyoto Univ. (Japan))
1994-10-01
In this paper, a new adaptive robust control scheme for manipulators is proposed that overcomes the drawbacks of conventional adaptive robust control methods. The proposed controller has a simple structure by exploiting the special structure of the manipulator dynamics, and achieves the specified tracking precision without any a priori information on uncertainty. Furthermore, the feedback gain of the proposed method is almost necessary and minimum for the specified precision. To verify the advantages of the method, experimental results are shown for the trajectory control of a 2 DOF direct-drive arm.
ADAPTIVE CONTROL OF FEED LOAD CHANGES IN ALCOHOL FERMENTATION
Directory of Open Access Journals (Sweden)
Folly R.
1997-01-01
Full Text Available A fed-batch alcohol fermentation on a pilot plant scale with a digital supervisory control system was evaluated as an experimental application case study of an adaptive controller. The verification of intrinsically dynamic variations in the characteristics of the fermentation, observed in previous work, showed the necessity of an adaptive control strategy for controller parameter tuning in order to adjust the changes in the specific rates of consumption, growth and product formation during the process. Satisfactory experimental results were obtained for set-point variations and sugar feed concentration load changes in the manipulated inlet flow to the fermenter
Frequency Response Adaptive Control of a Refrigeration Cycle
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1989-01-01
Full Text Available A technique for the adaptation of controller parameters in a single control loop based upon the estimation of frequency response parameters has been presented in an earlier paper. This paper contains an extension and a generalization of the first method and results in a more versatile solution which is applicable to a wider range of process characteristics. The application of this adaptive control technique is illustrated by a laboratory refrigeration cycle in which the evaporator pressure controls the speed of the compressor.
Adaptive Feedfoward Feedback Control Framework Project
National Aeronautics and Space Administration — A novel approach is proposed for the suppression of the aircraft's structural vibration to increase the resilience of the flight control law in the presence of the...
Self-tuning regulators. [adaptive control research
Astrom, K. J.
1975-01-01
The results of a research project are discussed for self-tuning regulators for active control. An algorithm for the self-tuning regulator is described as being stochastic, nonlinear, time variable, and not trivial.
Neural dynamics for mobile robot adaptive control
Oubbati, Mohamed
2006-01-01
In this thesis, we investigate how dynamics in recurrent neural networks can be used to solve some specific mobile robot problems. We have designed a motion control approach based on a novel recurrent neural network. The advantage of this approach is that, no knowledge about the dynamic model is required, and no synaptic weight changing is needed in presence of time varying parameters. Furthermore, this approach allows a single fixed-weight network to act as a dynamic controller for several d...
Robust adaptive control of nonlinearly parameterized systems with unmodeled dynamics
Institute of Scientific and Technical Information of China (English)
LIU Yu-sheng; CHEN Jiang; LI Xing-yuan
2006-01-01
Many physical systems such as biochemical processes and machines with friction are of nonlinearly parameterized systems with uncertainties.How to control such systems effectively is one of the most challenging problems.This paper presents a robust adaptive controller for a significant class of nonlinearly parameterized systems.The controller can be used in cases where there exist parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The design of the controller is based on the control Lyapunov function method.A dynamic signal is introduced and adaptive nonlinear damping terms are used to restrain the effects of unmodeled dynamics,nonlinear uncertainties and unknown bounded disturbances.The backstepping procedure is employed to overcome the complexity in the design.With the proposed method,the estimation of the unknown parameters of the system is not required and there is only one adaptive parameter no matter how high the order of the system is and how many unknown parameters.there are.It is proved theoretically that the proposed robust adaptive control scheme guarantees the stability of nonlinearly parameterized system.Furthermore,all the states approach the equilibrium in arbitrary precision by choosing some design constants appropriately.Simulation results illustrate the effectiveness of the proposed robust adaptive controller.
Adaptive neuro-fuzzy controller of switched reluctance motor
Directory of Open Access Journals (Sweden)
Tahour Ahmed
2007-01-01
Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.
Terminal Sliding Mode Control Using Adaptive Fuzzy-Neural Observer
Directory of Open Access Journals (Sweden)
Dezhi Xu
2013-01-01
Full Text Available We propose a terminal sliding mode control (SMC law based on adaptive fuzzy-neural observer for nonaffine nonlinear uncertain system. First, a novel nonaffine nonlinear approximation algorithm is proposed for observer and controller design. Then, an adaptive fuzzy-neural observer is introduced to identify the simplified model and resolve the problem of the unavailability of the state variables. Moreover, based on the information of the adaptive observer, the terminal SMC law is designed. The Lyapunov synthesis approach is used to guarantee a global uniform ultimate boundedness property of the state estimation error and the asymptotic output tracking of the closed-loop control systems in spite of unknown uncertainties/disturbances, as well as all the other signals in the closed-loop system. Finally, using the designed terminal sliding mode controller, the simulation results on the dynamic model demonstrate the effectiveness of the proposed new control techniques.
Hybrid adaptive ascent flight control for a flexible launch vehicle
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the
Fan, Qinqin; Yan, Xuefeng
2016-01-01
The performance of the differential evolution (DE) algorithm is significantly affected by the choice of mutation strategies and control parameters. Maintaining the search capability of various control parameter combinations throughout the entire evolution process is also a key issue. A self-adaptive DE algorithm with zoning evolution of control parameters and adaptive mutation strategies is proposed in this paper. In the proposed algorithm, the mutation strategies are automatically adjusted with population evolution, and the control parameters evolve in their own zoning to self-adapt and discover near optimal values autonomously. The proposed algorithm is compared with five state-of-the-art DE algorithm variants according to a set of benchmark test functions. Furthermore, seven nonparametric statistical tests are implemented to analyze the experimental results. The results indicate that the overall performance of the proposed algorithm is better than those of the five existing improved algorithms.
A decentralized adaptive robust method for chaos control.
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-09-01
This paper presents a control strategy, which is based on sliding mode control, adaptive control, and fuzzy logic system for controlling the chaotic dynamics. We consider this control paradigm in chaotic systems where the equations of motion are not known. The proposed control strategy is robust against the external noise disturbance and system parameter variations and can be used to convert the chaotic orbits not only to the desired periodic ones but also to any desired chaotic motions. Simulation results of controlling some typical higher order chaotic systems demonstrate the effectiveness of the proposed control method.
Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.
Stochastic Adaptive Control and Estimation Enhancement.
1985-03-19
the desired delta AcKowLEwouEN function locations Stimulating conversations with Dr. B. Witternmark are gratefully ac- f r170) T2 1( 1/ AH0 knowledged...THE COMPARISON OF CONTROLLEa AC-fl2 pp. 752-1106. Oct. 1977 PEDJRNACES141 K. J. Astrom . Introduion to Stocastic Control flinty. New York: Academic...vol. 9, pp. 107-115., 1973 . 1141 J. B. Festoon. R. E. Graham. and ft. C. Shelton. -Identification anid control of linear discrete-time systems," IEEE
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties.
ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS
Directory of Open Access Journals (Sweden)
Vyacheslav K. Mayevski
2014-01-01
Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.
Adaptive gaze control for object detection
De Croon, G.C.H.E.; Postma, E.O.; Van den Herik, H.J.
2011-01-01
We propose a novel gaze-control model for detecting objects in images. The model, named act-detect, uses the information from local image samples in order to shift its gaze towards object locations. The model constitutes two main contributions. The first contribution is that the model’s setup makes
Parameter Identification and Adaptive Control Applied to the Inverted Pendulum
Directory of Open Access Journals (Sweden)
Carlos A. Saldarriaga-Cortés
2012-06-01
Full Text Available This paper presents a methodology to implement an adaptive control of the inverted pendulum system; which uses the recursive square minimum method for the identification of a dynamic digital model of the plant and then, with its estimated parameters, tune in real time a pole placement control. The plant to be used is an unstable and nonlinear system. This fact, combined with the adaptive controller characteristics, allows the obtained results to be extended to a great variety of systems. The results show that the above methodology was implemented satisfactorily in terms of estimation, stability and control of such a system. It was established that adaptive techniques have a proper performance even in systems with complex features such as nonlinearity and instability.
Modeling and Adaptive Control of a Planar Parallel Mechanism
Institute of Scientific and Technical Information of China (English)
敖银辉; 陈新
2004-01-01
Dynamic model and control strategy of parallel mechanism have always been a problem in robotics research. In this paper,different dynamics formulation methods are discussed first, A model of redundant driven parallel mechanism with a planar parallel manipulator is then constructed as an example. A nonlinear adaptive control method is introduced. Matrix pseudo-inversion is used to get a desired actuator torque from a desired end-effector coordinate while the feedback torque is directly calculated in the actuator space. This treatment avoids forward kinematics computation that is very difficult in a parallel mechanism. Experiments with PID together with the descibed adaptive control strategy were carried out for a planar parallel mechanism. The results show that the proposed adaptive controller outperforms conventional PID methods in tracking desired input at a high speed,
Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence
Directory of Open Access Journals (Sweden)
Alejandro Carrasco Elizalde
2008-01-01
Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.
Indirect Adaptive Fuzzy and Impulsive Control of Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Hai-Bo Jiang
2010-01-01
The problem of indirect adaptive fuzzy and impulsive control for a class of nonlinear systems is investigated.Based on the approximation capability of fuzzy systems,a novel adaptive fuzzy and impulsive control strategy with supervisory controller is developed.With the help of a supervisory controller,global stability of the resulting closed-loop system is established in the sense that all signals involved are uniformly bounded.Furthermore,the adaptive compensation term of the upper bound function of the sum of residual and approximation error is adopted to reduce the effects of modeling error.By the generalized Barbalat's lemma,the tracking error between the output of the system and the reference signal is proved to be convergent to zero asymptotically.Simulation results illustrate the effectiveness of the proposed approach.
Design of adaptive switching control for hypersonic aircraft
Directory of Open Access Journals (Sweden)
Xin Jiao
2015-10-01
Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.
ADAPTIVE OUTPUT CONTROL: SUBJECT MATTER, APPLICATION TASKS AND SOLUTIONS
Directory of Open Access Journals (Sweden)
Alexey A. Bobtsov
2013-01-01
Full Text Available The problem of adaptive output control for parametric and functionally uncertain plants is considered. Application examples illustrating the practical use of the discussed theory are given along with the mathematical formulation of the problem. A brief review of adaptive output control methods, by both linear and non-linear systems, is presented and an extensive bibliography, in which the reader will find a detailed description of the specific algorithms and their properties, is represented. A new approach to the output control problem - a method of consecutive compensator - is considered in detail.
An Adaptive Multivariable Control System for Hydroelectric Generating Units
Directory of Open Access Journals (Sweden)
Gunne J. Hegglid
1983-04-01
Full Text Available This paper describes an adaptive multivariable control system for hydroelectric generating units. The system is based on a detailed mathematical model of the synchronous generator, the water turbine, the exiter system and turbine control servo. The models of the water penstock and the connected power system are static. These assumptions are not considered crucial. The system uses a Kalman filter for optimal estimation of the state variables and the parameters of the electric grid equivalent. The multivariable control law is computed from a Riccatti equation and is made adaptive to the generators running condition by means of a least square technique.
Investigation of Adaptive Controllers for Puma Trajectory Tracking
1991-06-01
Tarokh’s and Seraji’s Control Algorithms - Trajectory ] 4-14 vii 0 Imagen Laser Printer (im132) Owner dsims 00 Host wa7 //printer im132 Date Wed Apr...INVESTIGATION OF ADAPTIVE CONTROLLERS FOR PUMA TRAJECTORY TRACKING THESIS Daniel J. Sims Captain, USAF AFIT/GE/ENG/91J-05 Approved for public release...Adaptive Controllers for PUMA Trajectory Tracking. 6. AUTHOR(S) Daniel J. Sims, Capt, USAF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8
Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method
Institute of Scientific and Technical Information of China (English)
Chen Yimei; Han Zhengzhi; Tang Houjun
2006-01-01
The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
Model-free Adaptive Control for Spacecraft Attitude
Institute of Scientific and Technical Information of China (English)
Ran Xie; Ting Song; Peng Shi; Yushan Zhao
2016-01-01
A model⁃free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization. A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters, and the controller performance is better than that of PD controller for the time⁃varying system with disturbance.
Adaptive Power Control for Space Communications
Thompson, Willie L., II; Israel, David J.
2008-01-01
This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).
Adaptive Contingency Control: Wind Turbine Operation Integrated with Blade Condition Monitoring
National Aeronautics and Space Administration — We report here on first steps towards integrating systems health monitoring with adaptive contingency controls. In the scenario considered, the adaptive controller...
Adapting Inspection Data for Computer Numerical Control
Hutchison, E. E.
1986-01-01
Machining time for repetitive tasks reduced. Program converts measurements of stub post locations by coordinate-measuring machine into form used by numerical-control computer. Work time thus reduced by 10 to 15 minutes for each post. Since there are 600 such posts on each injector, time saved per injector is 100 to 150 hours. With modifications this approach applicable to machining of many precise holes on large machine frames and similar objects.
Optimal adaptive control for a class of stochastic systems
Bagchi, Arunabha; Chen, Han-Fu
1997-01-01
We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law w
Cooperative adaptive cruise control: An artificial potential field approach
Semsar-Kazerooni, E.; Verhaegh, J.; Ploeg, J.; Alirezaei, M.
2016-01-01
In this paper, in addition to the main functionality of vehicle following, cooperative adaptive cruise control (CACC) is enabled with additional features of gap closing and collision avoidance. Due to its nonlinear nature, a control objective such as collision avoidance, cannot be addressed using a
Stability of Unfalsified Adaptive Switching Control in Noisy Environments
Battistelli, Giorgio; Mosca, Edoardo; Safonov, Michael G.; Tesi, Pietro
2010-01-01
In recent years, unfalsified adaptive switching control has emerged as a promising technique for the control of uncertain plants only on the basis of plant I/O data. This note analyzes the input-output stability of the resulting switched system in a noisy environment, and discusses the issue of equi
Digital adaptive control laws for the F-8
Hartmann, G. L.; Harvey, C. A.
1976-01-01
NASA is conducting a flight control research program in digital fly-by-wire technology using a modified F-8C aircraft. The first phase of this program used Apollo hardware to demonstrate the practicality of digital fly-by-wire in an actual test vehicle. For the second phase, conventional aircraft sensors and a large floating point digital computer are being utilized to test advanced control laws and redundancy concepts. As part of NASA's research in digital fly-by-wire technology, Honeywell developed digital adaptive flight control laws for flight test in the F-8C. Adaptation of the control laws was to be based on information sensed from conventional aircraft sensors excluding air data. The control laws were constrained to use only existing elevator, rudder, and ailerons as control effectors, each powered by existing actuators. Three adaptive control laws were successfully designed using maximum likelihood estimation, a Liapunov stable model tracker and a self-excited limit cycle concept. The maximum likelihood estimation design was selected as the most promising because of its capability to identify more than surface effectiveness parameters. The adaptive concepts, the control laws and comparisons of predicted performance are described.
Reduced Order Adaptive Controllers for Distributed Parameter Systems
2005-09-01
Adaptation in the Presence of Input Constraints, Submitted to IEEE Transactions on Automatic Control , 2003. J7. E. Lavretsky, N. Hovakimyan, Positive p...Dynamics Using Delayed Outputs and Feedforward Neural Networks, IEEE Transactions on Automatic Control , vol. 48 (9), pp.1606-1610, 2003. J14. N. Hovakimyan
Adaptive active vibration isolation – A control perspective
Directory of Open Access Journals (Sweden)
Landau Ioan Doré
2015-01-01
The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.
Adaptive Feedback Control for Chaos Control and Synchronization for New Chaotic Dynamical System
Directory of Open Access Journals (Sweden)
M. M. El-Dessoky
2012-01-01
Full Text Available This paper investigates the problem of chaos control and synchronization for new chaotic dynamical system and proposes a simple adaptive feedback control method for chaos control and synchronization under a reasonable assumption. In comparison with previous methods, the present control technique is simple both in the form of the controller and its application. Based on Lyapunov's stability theory, adaptive control law is derived such that the trajectory of the new system with unknown parameters is globally stabilized to the origin. In addition, an adaptive control approach is proposed to make the states of two identical systems with unknown parameters asymptotically synchronized. Numerical simulations are shown to verify the analytical results.
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results sh...
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Adaptive neural network consensus based control of robot formations
Guzey, H. M.; Sarangapani, Jagannathan
2013-05-01
In this paper, adaptive consensus based formation control scheme is derived for mobile robots in a pre-defined formation when full dynamics of the robots which include inertia, Corolis, and friction vector are considered. It is shown that dynamic uncertainties of robots can make overall formation unstable when traditional consensus scheme is utilized. In order to estimate the affine nonlinear robot dynamics, a NN based adaptive scheme is utilized. In addition to this adaptive feedback control input, an additional control input is introduced based on the consensus approach to make the robots keep their desired formation. Subsequently, the outer consensus loop is redesigned for reduced communication. Lyapunov theory is used to show the stability of overall system. Simulation results are included at the end.
Robust adaptive output feedback control of nonlinearly parameterized systems
Institute of Scientific and Technical Information of China (English)
LIU Yusheng; LI Xingyuan
2007-01-01
The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.
Adaptive Dynamic Programming for Control Algorithms and Stability
Zhang, Huaguang; Luo, Yanhong; Wang, Ding
2013-01-01
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...
Adaptive Control of Flexible Redundant Manipulators Using Neural Networks
Institute of Scientific and Technical Information of China (English)
SONG Yimin; LI Jianxin; WANG Shiyu; LIU Jianping
2006-01-01
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted.The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors.A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator.The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced.The neuro-identifier and the neurocontroller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC.By adjusting the neuro-identifier and the neuro-controller alternatively,the manipulator was controlled on line for achieving the desired dynamic performance.Finally,a planar 3R redundant manipulator with one smart link was utilized as an illustrative example.The simulation results proved the validity of the control strategy.
An adaptive fuzzy logic controller for robot-manipulator
Directory of Open Access Journals (Sweden)
Tran Thu Ha
2008-11-01
Full Text Available In this paper, an adaptive fuzzy controller is designed for the robot-manipulator. The synthesized controller ensures that 1 the close-loop system is globally stable and 2 the tracking error converges to zero asymptotically and a cost function is minimized. The fuzzy controller is synthesized from a collection of IF-THEN rules. The parameters of the membership functions characterizing the linguistic terms change according to some adaptive law for the purpose of controlling a plant to track a reference trajectory. The proposed control scheme is demonstrated in a typical nonlinear plant two link manipulator. The computer simulation of control is done by the language MATLAB. The results of simulation show that the adaptipresented results are analyzed.
Adaptive control of system with hysteresis using neural networks
Institute of Scientific and Technical Information of China (English)
Li Chuntao; Tan Yonghong
2006-01-01
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme.
An adaptive sliding mode control technology for weld seam tracking
Liu, Jie; Hu, Youmin; Wu, Bo; Zhou, Kaibo; Ge, Mingfeng
2015-03-01
A novel adaptive sliding mode control algorithm is derived to deal with seam tracking control problem of welding robotic manipulator, during the process of large-scale structure component welding. The proposed algorithm does not require the precise dynamic model, and is more practical. Its robustness is verified by the Lyapunov stability theory. The analytical results show that the proposed algorithm enables better high-precision tracking performance with chattering-free than traditional sliding mode control algorithm under various disturbances.
Controlling of Beam Halo-chaos by Adaptation Method
Institute of Scientific and Technical Information of China (English)
FANGJin-qing; GAOYuan; LUOXiao-shu
2003-01-01
In this paper, the parametric adaptation method for controlling the beam halo-chaos in the periodic focusing channels of high-current proton linacs is proposed. The study of proton beam halo-chaos based on controlled beam envelope equation and the Particles-in-Cell simulations for proton beam dynamics show that the proton beam chaotic envelope as well as the beam rsm radius can be controlled to the matched radius using this method.
Adaptive decoupled power control method for inverter connected DG
DEFF Research Database (Denmark)
Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe
2014-01-01
The integration of renewable energy technology is making the power distribution system more flexible, but also introducing challenges for traditional technology. With the nature of intermittent and less inertial, renewable energy-based generations need effective control methods to cooperate...... an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...
Mechanisms of motor adaptation in reactive balance control.
Directory of Open Access Journals (Sweden)
Torrence D J Welch
Full Text Available Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.
Adaptive mechanism-based congestion control for networked systems
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Synchronization of generalized Henon map by using adaptive fuzzy controller
Xue Yue Ju
2003-01-01
In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.
Adaptive control of uncertain time-delay chaotic systems
Institute of Scientific and Technical Information of China (English)
Zhuhong ZHANG
2005-01-01
This work investigates adaptive control of a large class of uncertain me-delay chaotic systems (UTCSs) with unknown general perturbation terms bounded by a polynomial ( unknown gains). Associated with the different cases of known and unknown system matrices, two corresponding adaptive controllers are proposed to stabilize unstable fixed points of the systems by means of Lyapunov stability theory and linear matrix inequalities (LMI) which can be solved easily by convex optimization algorithms. Two examples are used for examining the effectiveness of the proposed methods.
Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control
Directory of Open Access Journals (Sweden)
Simone Baldi
2013-05-01
Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.
A Backstepping Simple Adaptive Control Application to Flexible Space Structures
Institute of Scientific and Technical Information of China (English)
LIU Min; XU Shijie; HAN Chao
2012-01-01
Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems,it is restricted by the almost strictly positive real (ASPR) conditions.In most practical control problems,the ASPR conditions are not satisfied.Therefore,based on the SAC theory,this paper proposes a backstepping simple adaptive control algorithm which suits the system with arbitrary relative degree with no need of parallel feedforward compensator.The proposed control algorithm consists of decomposition of the arbitrary relative degree system into a known subsystem and an unknown ASPR subsystem which are eonneeted in cascade,design of constant outpul feedback controller for the known subsystem,and implementation of backstepping method and SAC of the unknown ASPR subsystem.Inheriting the characteristics of the SAC,this method can be adaptive online for the parameter uncertainties.Then,the application of the proposed controller to large flexible space structure with collocated sensors and actuators is studied,and the simulation results validate the proposed controller.It is a new strategy to apply the classical SAC to high relative degree plants.
Adaptive optimization of agile organization of command and control resource
Institute of Scientific and Technical Information of China (English)
Yang Chunhui; Liu Junxian; Chen Honghui; Luo Xueshan
2009-01-01
Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.
Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control
Institute of Scientific and Technical Information of China (English)
Ran Maopeng; Wang Qing; Hou Delong; Dong Chaoyang
2014-01-01
This paper presents an integrated missile guidance and control law based on adaptive fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear system, in which modeling errors, unmodeled nonlinearities, target maneuvers, etc. are viewed as unknown uncertainties. The adaptive nonlinear control law is designed based on backstepping and sliding mode control techniques. An adaptive fuzzy system is adopted to approximate the coupling nonlinear functions of the system, and for the uncertainties, we utilize an online-adaptive control law to estimate the unknown parameters. The stability analysis of the closed-loop system is also conducted. Simulation results show that, with the application of the adaptive fuzzy sliding mode control, small miss distances and smooth missile trajectories are achieved, and the system is robust against system uncertainties and external disturbances.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Neuromorphic Continuous-Time State Space Pole Placement Adaptive Control
Institute of Scientific and Technical Information of China (English)
卢钊; 孙明伟
2003-01-01
A neuromorphic continuous-time state space pole assignment adaptive controller is proposed, which is particularly appropriate for controlling a large-scale time-variant state-space model due to the parallely distributed nature of neurocomputing. In our approach, Hopfield neural network is exploited to identify the parameters of a continuous-time state-space model, and a dedicated recurrent neural network is designed to compute pole placement feedback control law in real time. Thus the identification and the control computation are incorporated in the closed-loop, adaptive, real-time control system. The merit of this approach is that the neural networks converge to their solutions very quickly and simultaneously.
Adaptive robust control of nonholonomic systems with stochastic disturbances
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper deals with nonholonomic systems in chained form with unknown covariance stochastic disturbances. The objective is to design the almost global adaptive asymptotical controllers in probability u0 and u1 for the systems by using discontinuous control. A switching control law u0 is designed to almost globally asymptotically stabilize the state x0 in both the singular x0 (t0)=0 case and the non-singular x0 (t0)≠0 case. Then the state scaling technique is introduced for the discontinuous feedback into the (x1, x2, …, xn)-subsystem. Thereby, by using backstepping technique the global adaptive asymptotical control law u1 has been presented for (x1, x2, …, xn) -subsystem for both different u0 in non-singular x0 (t0)≠0 case and the singular case x0 (t0)=0. The control algorithm validity is proved by simulation.
Study on Adaptive Control with Neural Network Compensation
Institute of Scientific and Technical Information of China (English)
单剑锋; 黄忠华; 崔占忠
2004-01-01
A scheme of adaptive control based on a recurrent neural network with a neural network compensation is presented for a class of nonlinear systems with a nonlinear prefix. The recurrent neural network is used to identify the unknown nonlinear part and compensate the difference between the real output and the identified model output. The identified model of the controlled object consists of a linear model and the neural network. The generalized minimum variance control method is used to identify pareters, which can deal with the problem of adaptive control of systems with unknown nonlinear part, which can not be controlled by traditional methods. Simulation results show that this algorithm has higher precision, faster convergent speed.
Adaptive control method for nonlinear time-delay processes
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two complex properties,varying time-delay and block-oriented nonlinearity,are very common in chemical engineering processes and not easy to be controlled by routine control methods.Aimed at these two complex properties,a novel adaptive control algorithm the basis of nonlinear OFS(orthonormal functional series) model is proposed.First,the hybrid model which combines OFS and Volterra series is introduced.Then,a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors.Finally,control simulations and experiments on a nonlinear process with varying time-delay are presented.A number of experimental results validate the efficiency and superiority of this algorithm.
Laser vision based adaptive fill control system for TIG welding
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser vision sensing. The system hardware consists of a modular development kit (MDK) as the real-time image capturing system, a computer as the controller, a D/A conversion card as the interface of controlled variable output, and a DC TIG welding system as the controlled device. The system software is developed and the developed feature extraction algorithm and control strategy are of good accuracy and robustness. Experimental results show that the system can implement adaptive fill of melting metal with high stability, reliability and accuracy. The groove is filled well and the quality of the weld formation satisfies the relevant industry criteria.
Model-free adaptive control of advanced power plants
Energy Technology Data Exchange (ETDEWEB)
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Distributed Adaptive Droop Control for DC Distribution Systems
DEFF Research Database (Denmark)
Nasirian, Vahidreza; Davoudi, Ali; Lewis, Frank
2014-01-01
A distributed-adaptive droop mechanism is proposed for secondary/primary control of dc Microgrids. The conventional secondary control, that adjusts the voltage set point for the local droop mechanism, is replaced by a voltage regulator. A current regulator is then added to fine-tune the droop...... controller precisely accounts for the transmission/distribution line impedances. The controller on each converter exchanges data with only its neighbor converters on a sparse communication graph spanned across the Microgrid. Global dynamic model of the Microgrid is derived, with the proposed controller...
Spatial Path Following for AUVs Using Adaptive Neural Network Controllers
Directory of Open Access Journals (Sweden)
Jiajia Zhou
2013-01-01
Full Text Available The spatial path following control problem of autonomous underwater vehicles (AUVs is addressed in this paper. In order to realize AUVs’ spatial path following control under systemic variations and ocean current, three adaptive neural network controllers which are based on the Lyapunov stability theorem are introduced to estimate uncertain parameters of the vehicle’s model and unknown current disturbances. These controllers are designed to guarantee that all the error states in the path following system are asymptotically stable. Simulation results demonstrated that the proposed controller was effective in reducing the path following error and was robust against the disturbances caused by vehicle's uncertainty and ocean currents.
Applications of active adaptive noise control to jet engines
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model.
Dissociable effects of valence and arousal in adaptive executive control.
Directory of Open Access Journals (Sweden)
Christof Kuhbandner
Full Text Available BACKGROUND: Based on introspectionist, semantic, and psychophysiological experimental frameworks, it has long been assumed that all affective states derive from two independent basic dimensions, valence and arousal. However, until now, no study has investigated whether valence and arousal are also dissociable at the level of affect-related changes in cognitive processing. METHODOLOGY/PRINCIPAL FINDINGS: We examined how changes in both valence (negative vs. positive and arousal (low vs. high influence performance in tasks requiring executive control because recent research indicates that two dissociable cognitive components are involved in the regulation of task performance: amount of current control (i.e., strength of filtering goal-irrelevant signals and control adaptation (i.e., strength of maintaining current goals over time. Using a visual pop-out distractor task, we found that control is exclusively modulated by arousal because interference by goal-irrelevant signals was largest in high arousal states, independently of valence. By contrast, control adaptation is exclusively modulated by valence because the increase in control after trials in which goal-irrelevant signals were present was largest in negative states, independent of arousal. A Monte Carlo simulation revealed that differential effects of two experimental factors on control and control adaptation can be dissociated if there is no correlation between empirical interference and conflict-driven modulation of interference, which was the case in the present data. Consequently, the observed effects of valence and arousal on adaptive executive control are indeed dissociable. CONCLUSIONS/SIGNIFICANCE: These findings indicate that affective influences on cognitive processes can be driven by independent effects of variations in valence and arousal, which may resolve several heterogeneous findings observed in previous studies on affect-cognition interactions.
Adaptive Current Control Method for Hybrid Active Power Filter
Chau, Minh Thuyen
2016-09-01
This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.
Adaptive backstepping slide mode control of pneumatic position servo system
Ren, Haipeng; Fan, Juntao
2016-09-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
An adaptive robust controller for time delay maglev transportation systems
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Adaptive backstepping slide mode control of pneumatic position servo system
Ren, Haipeng; Fan, Juntao
2016-06-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
Adaptive Current Control with PI-Fuzzy Compound Controller for Shunt Active Power Filter
Directory of Open Access Journals (Sweden)
Juntao Fei
2013-01-01
Full Text Available An adaptive control technology and PI-fuzzy compound control technology are proposed to control an active power filter (APF. AC side current compensation and DC capacitor voltage tracking control strategy are discussed and analyzed. Model reference adaptive controller for the AC side current compensation is derived and established based on Lyapunov stability theory; proportional and integral (PI fuzzy compound controller is designed for the DC side capacitor voltage control. The adaptive current controller based on PI-fuzzy compound system is compared with the conventional PI controller for active power filter. Simulation results demonstrate the feasibility and satisfactory performance of the proposed control strategies. It is shown that the proposed control method has an excellent dynamic performance such as small current tracking error, reduced total harmonic distortion (THD, and strong robustness in the presence of parameters variation and nonlinear load.
Adaptive Leader-Follower Formation Control for Autonomous Mobile Robots
Guo, Jing; Lin, Zhiyun; Cao, Ming; Yan, Gangfeng
2010-01-01
In this paper, adaptive formation control is addressed for a network of autonomous mobile robots in which there are only two leaders knowing the prescribed reference velocity while the others just play the role of followers. Assuming that each follower has only two neighbors to form a cascade interc
Liquid-crystal intraocular adaptive lens with wireless control
Simonov, A.N.; Vdovine, G.V.; Loktev, M.
2007-01-01
We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.
Evaluating adaptive cruise control strategies in worst-case scenarios
Willigen, W.H. van; Schut, M.C.; Kester, L.J.H.M.
2011-01-01
This paper is concerned with safety in (cooperative) adaptive cruise control systems. In these systems, the speed of the cars is maintained automatically, based on the preferred speed of the driver and the speed of the preceding car. Technologies that are used in these systems, such as radar and rad
Fuzzy adaptive PID control for six rotor eppo UAV
Directory of Open Access Journals (Sweden)
Yongwei LI
2017-02-01
Full Text Available Six rotor eppo drones's load change itself in the job process will reduce the aircraft flight control performance and make the resistance to environmental disturbance being poor. In order to improve the six rotor eppo unmanned aerial vehicle (UAV control performance, the UAV in the process of spraying pesticide is analyzed and the model is constructed, then the eppo UAV time-varying dynamics mathematical model is deduced, and a fuzzy adaptive PID control algorithm is proposed. Fuzzy adaptive PID algorithm has good adaptability and the parameter setting is simple, which improves the system dynamic response and steady state performance, realizing the stability of the six rotor eppo UAV flight. With measured parameters of each sensor input in to the fuzzy adaptive PID algorithm, the corresponding control quality is obtained, and the stable operation of aircraft is realized. Through using Matlab to simulate the flight system and combining the practical experiments, it shows that the dynamic performance and stability of the system is improved effetively.
Identification and adaptive control scheme using fuzzy parameterized linear filters
Papp, Z.
1998-01-01
A nonlinear fuzzy control structure enhanced with supervised learning and/or adaption is presented. Availability of at least a partial process model is assumed. Nonlinear process identification procedure is used to complete the partial model. Based on the identification model the system sensitivity
Adaptive Backstepping Control of Lightweight Tower Wind Turbine
DEFF Research Database (Denmark)
Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik;
2015-01-01
This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...
Adaptive Air-Fuel Ratio Control with MLP Network
Institute of Scientific and Technical Information of China (English)
Shi-Wei Wang; Ding-Li Yu
2005-01-01
This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller.A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC.
Adaptive control of feed load changes in alcohol fermentation
Energy Technology Data Exchange (ETDEWEB)
Folly, R.; Berlim, R.; Salgado, A.; Franca, R.; Valdman, B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica
1997-12-01
A fed-batch alcohol fermentation on a pilot plant scale with a digital supervisory control was evaluated as an experimental application case study of an adaptive controller. The verification of intrinsically dynamic variations in the characteristics of the fermentation, observed in previous work, showed the necessity of an adaptive control strategy for controller parameter tuning in order to adjust the changes in the specific rates of consumption, growth and product formation during the process. Satisfactory experimental results were obtained for set-point variations and sugar feed concentration load changes in the manipulated inlet flow to the fermenter. (author) 5 refs., 10 figs., 2 tabs.; e-mail: Valdman at H2O.EQ.UFRJ.BR
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
Cascaded adaptive control of ocean vehicles with significant actuator dynamics
Directory of Open Access Journals (Sweden)
Thor I. Fossen
1994-04-01
Full Text Available This paper presents a cascade adaptive control scheme for marine vehicles where the non-linear equations of motion include a model of the actuator dynamics. The adaptive controller does not require the parameters of the vehicle dynamics and the actuator time constants to be known a priori. Both the velocity and position tracking errors are shown to converge to zero by applying Barbalat's lemma. Global asymptotic stability is proven for the velocity scheme while the position/attitude controller is only proven to be convergent. Furthermore, all parameter estimates are shown to be bounded. Computer simulations of an ROV speed control system and an autopilot for automatic ship steering are used to illustrate the design methodology.
Variable Neural Adaptive Robust Control: A Switched System Approach
Energy Technology Data Exchange (ETDEWEB)
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.
Adaptive PID control based on orthogonal endocrine neural networks.
Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D
2016-12-01
A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances.
Power Control Imperfection in CDMA Systems with Adaptive Antennas
Wieser, V.; Hrudkay, K.
2002-01-01
This paper deals with a simulation of cellular CDMA system using base station adaptive antennas. The model assumes two tiers area, four types of antennas, lognormal shadowing corresponding to three types of environments and perfect power control or two values of power control error, respectively. The capacity of system in up-link is evaluated by a number of mobile stations with higher signal to interference ratio than threshold with given outage probability.
Adaptive Control on a Class of Uncertain Chaotic Systems
Institute of Scientific and Technical Information of China (English)
LIU Guo-Gang; ZHAO Yi
2005-01-01
@@ By using a simple combination of feedback entrainment control (with an updating feedback strength) and adaptive scheme, for a large class of chaotic systems, it is proven rigorously by using the invariance principle of differential equations that all unknown model parameters can be estimated dynamically and the uncertain system can be controlled to an arbitrary desired smooth orbit. The illustration of the Lorenz system and the corresponding numerical results on the effect of noise are given.
Adaptive Swarm Formation Control for Hybrid Ground and Aerial Assets
Barnes, Laura; Garcia, Richard; Fields, Mary Anne; Valavanis, Kimon
2010-01-01
In this work, a methodology for control and coordination of UAVs and UGVs has been presented. UAVs and UGVs were integrated into a single team and were able to adapt their formation accordingly. Potential field functions together with limiting functions can be successfully utilized to control UGV and UAV swarm formation, obstacle avoidance and the overall swarm movement. A single UAV was also successfully used to pull the UGV swarm into formation. These formations can move as a un...
Model-Free Adaptive Control Algorithm with Data Dropout Compensation
Xuhui Bu; Fashan Yu; Zhongsheng Hou; Hongwei Zhang
2012-01-01
The convergence of model-free adaptive control (MFAC) algorithm can be guaranteed when the system is subject to measurement data dropout. The system output convergent speed gets slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation. The missing data is first estimated using the dynamical linearization method, and then the estimated value is introduced to update control input. The convergence analysis of the proposed MFAC algorithm is given, and the effe...
Adaptive Control of the Chaotic System via Singular System Approach
Directory of Open Access Journals (Sweden)
Yudong Li
2014-01-01
Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.
Robust Adaptive Control via Neural Linearization and Compensation
Directory of Open Access Journals (Sweden)
Roberto Carmona Rodríguez
2012-01-01
Full Text Available We propose a new type of neural adaptive control via dynamic neural networks. For a class of unknown nonlinear systems, a neural identifier-based feedback linearization controller is first used. Dead-zone and projection techniques are applied to assure the stability of neural identification. Then four types of compensator are addressed. The stability of closed-loop system is also proven.
Decentralized adaptive generalized predictive control for structural vibration
Institute of Scientific and Technical Information of China (English)
LU Minyue; GU Zhongquan
2005-01-01
A decentralized generalized predictive control (GPC) algorithm is developed for strongly coupled multi-input multi-output systems with parallel computation. The algorithm is applied to adaptive control of structural vibration. The key steps in this algorithm are to group the actuators and the sensors and then to pair these groups into subsystems. It is important that the on-line identification and the control law design can be a parallel process for all these subsystems. It avoids the high computation cost in ordinary predictive control,and is of great advantage especially for large-scale systems.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of
Adaptive second-order sliding mode control with uncertainty compensation
Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.
2016-09-01
This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.
Experimental implementation of adaptive control for flexible space structures
Mcgraw, Gary A.
1988-01-01
On-going research at The Aerospace Corporation studying the feasibility of applying adaptive control methodologies to the control of flexible space structures is described. A laboratory testbed was established to test system identification and control approaches. The laboratory set-up and controller design approach are discussed. The ARX least squares parameter estimation technique is analyzed in terms of frequency domain transfer function bias error. This analysis approach enables the determination of the effects of sampling rate, sensor type, and data prefiltering on the estimation performance. The ability to identify space structure dynamics over a range of frequencies is shown to be heavily dependent on these factors.
Distributed adaptive droop control for DC distribution systems
DEFF Research Database (Denmark)
Nasirian, Vahidreza; Davoudi, Ali; Lewis, Frank
2016-01-01
Summary form only given: A distributed-adaptive droop mechanism is proposed for secondary/primary control of dc microgrids. The conventional secondary control that adjusts the voltage set point for the local droop mechanism is replaced by a voltage regulator. A current regulator is also added...... sharing. The proposed controller precisely accounts for the transmission/distribution line impedances. The controller on each converter exchanges data with only its neighbor converters on a sparse communication graph spanned across the microgrid. Global dynamic model of the microgrid is derived...
Institute of Scientific and Technical Information of China (English)
朱雅光; 金波; 李伟
2015-01-01
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.
Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller
Institute of Scientific and Technical Information of China (English)
Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu
2008-01-01
A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.
Robust observer-based adaptive fuzzy sliding mode controller
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
A novel adaptive force control method for IPMC manipulation
Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao
2012-07-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
On fractional order composite model reference adaptive control
Wei, Yiheng; Sun, Zhenyuan; Hu, Yangsheng; Wang, Yong
2016-08-01
This paper presents a novel composite model reference adaptive control approach for a class of fractional order linear systems with unknown constant parameters. The method is extended from the model reference adaptive control. The parameter estimation error of our method depends on both the tracking error and the prediction error, whereas the existing method only depends on the tracking error, which makes our method has better transient performance in the sense of generating smooth system output. By the aid of the continuous frequency distributed model, stability of the proposed approach is established in the Lyapunov sense. Furthermore, the convergence property of the model parameters estimation is presented, on the premise that the closed-loop control system is stable. Finally, numerical simulation examples are given to demonstrate the effectiveness of the proposed schemes.
Vibration Adaptive Control of the Flexible Lunar Regolith Sampler
Directory of Open Access Journals (Sweden)
Bao-guo XU
2012-12-01
Full Text Available With respect to the problem of big volume, large weight and high power consumption of lunar sampler nowadays, the paper firstly described a novel flexible mini lunar regolith sampler. Then the vibration model of it is established while drilling. The drilling efficiency can be improved more effectively by controlling the lunar regolith sampler always in the resonance state. But the dynamical modeling of the sampler-regolith system is difficult to obtain and time varies when the sampler is in different depth in the lunar regolith. So we present a method of the vibration frequency fuzzy adaptive control based on the dynamic prediction by using the Levenberg-Marquardt Back Propagation (LMBP neural networks. The LMBP with a FIR filter in series is used to predict the resonant frequency dynamically. And the fuzzy adaptive control is used to calculate the sweeping frequency bandwidth with the input of the amplitude and variation. The simul
A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance
Sreekumar, Muthuswamy
2016-07-01
Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.
Adaptation with disturbance attenuation in nonlinear control systems
Energy Technology Data Exchange (ETDEWEB)
Basar, T. [Univ. of Illinois, Urbana, IL (United States)
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
Adaptive Vibration Control System for MR Damper Faults
Directory of Open Access Journals (Sweden)
Juan C. Tudón-Martínez
2015-01-01
Full Text Available Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.
Beaconless adaptive-optics technique for HEL beam control
Khizhnyak, Anatoliy; Markov, Vladimir
2016-05-01
Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.
A Dynamic Adaptive Layered Multicast Congestion Control Mechanism
Institute of Scientific and Technical Information of China (English)
REN Liyong; LU Xianliang; WEI Qingsong; ZHOU Xu
2003-01-01
To solve the problem that most of existing layered multicast protocols cannot adapt to dynamic network conditions because their layers are coarsely granulated and static, a new congestion control mechanism for dynamic adaptive layered multicast(DALM) is presented. In this mechanism, a novel feedback aggregating algorithm is put forward, which can dynamically determine the number of layers and the rate of each layer, and can efficiently improve network bandwidth utilization ratio.Additionally, because all layers is transmitted in only one group, the intricate and time-consuming internet group management protocol(IGMP) operations, caused by receiver joining a new layer or leaving the topmost subscribed layer, are thoroughly eliminated. And this mechanism also avoids other problems resulted from multiple groups. Simulation results show that DALM is adaptive and TCP friendly.
Adaptive control and constrained control allocation for overactuated ocean surface vessels
Chen, Mou; Jiang, Bin
2013-12-01
In this article, the constrained control allocation is proposed for overactuated ocean surface vessels with parametric uncertainties and unknown external disturbances. The constrained control allocation is transformed into a convex quadratic programming problem and a recurrent neural network is employed to solve it. To complete the control allocation, the control command is derived via the backstepping method. Adaptive tracking control is proposed for the full-state feedback case using the backstepping technique and the Lyapunov synthesis. It is proved that the proposed adaptive tracking control is able to guarantee semi-global uniform ultimate boundedness of all signals in the closed-loop system. Then, the obtained control command is distributed to each actuator of overactuated ocean vessels. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control and the constrained control allocation scheme.
Flexible Joints Robotic Manipulator Control By Adaptive Gain Smooth Sliding Observer-Controller
Directory of Open Access Journals (Sweden)
A. FILIPESCU
2003-12-01
Full Text Available An adaptive gain sliding observer for uncertain parameter nonlinear systems together with an adaptive gain sliding controller is proposed in this paper. It considered nonlinear, SISO affine systems, with uncertainties in steady-state functions and parameters. A further parameter term, adaptively updated, has been introduced in steady state space model of the controlled system, in order to obtain useful information despite fault detection and isolation. By using of the sliding observer with adaptive gain, the robustness to uncertainties is increased and the parameters adaptively updated can provide useful information in fault detection. Also, the state estimation error is bounded accordingly with bound limits of the uncertainties. The both of them, the sliding adaptive observer and sliding controller are designed to fulfill the attractiveness condition of its corresponding switching surface. An application to a single arm with flexible joint robot is presented. In order to alleviate chattering, a parameterized tangent hyperbolic has been used as switching function, instead of pure relay one, to the observer and the controller. Also, the gains of the switching functions, to the sliding observer and sliding controller are adaptively updated depending of estimation error and tracking error, respectively. By the using adaptive gains, the transient and tracking response can be improved.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Directory of Open Access Journals (Sweden)
Jinxiang Dong
2008-07-01
Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.
VFI-based Robotic Arm Control for Natural Adaptive Motion
Directory of Open Access Journals (Sweden)
Woosung Yang
2014-03-01
Full Text Available Since neural oscillator based control methods can generate rhythmic motion without information on system dynamics, they can be a promising alternative to traditional motion planning based control approaches. However, for field application, they still need to be robust against unexpected forces or changes in environments so as to be able to generate “natural motion” like most biological systems. In this study a biologically inspired control algorithm that combines neural oscillators and virtual force is proposed. This work gives the condition with respect to parameters tuning to stably activate the neural oscillators. This is helpful to achieve motion adaptability to environmental changes keeping the motion repeatability. He efficacy and efficiency of the proposed methods are tested in the control of a planar three-linkage robotic arm. It is shown that the proposed controller generates a given circular path stably and repeatedly, even with unexpected contact with a wall. The adaptivity of motion control is also tested in control of a robotic arm with redundant degrees of freedom. The proposed control algorithm works throughout the simulations and experiments.
Adaptive suboptimal second-order sliding mode control for microgrids
Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella
2016-09-01
This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.
Towards feasible and effective predictive wavefront control for adaptive optics
Energy Technology Data Exchange (ETDEWEB)
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
Dynamic Performance of Grid Converters using Adaptive DC Voltage Control
DEFF Research Database (Denmark)
Trintis, Ionut; Sun, Bo; Guerrero, Josep M.;
2014-01-01
This paper investigates a controller that ensures minimum operating dc-link voltage of a back-to-back converter system. The dc-link voltage adapts its reference based on the system state, reference given by an outer loop to the dc-link voltage controller. The operating dc-link voltage should...... be kept as low as possible to increase the power conversion efficiency and increase the reliability of converters. The dynamic performance of the proposed controller is investigated by simulations and experiments....
Visuomotor control of human adaptive locomotion: Understanding the anticipatory nature
Directory of Open Access Journals (Sweden)
Takahiro eHiguchi
2013-05-01
Full Text Available To maintain balance during locomotion, the central nervous system (CNS accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties. Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities.
Adaptive Sliding Mode Control Based on Uncertainty and Disturbance Estimator
Directory of Open Access Journals (Sweden)
Yue Zhu
2014-01-01
Full Text Available This paper presents an original adaptive sliding mode control strategy for a class of nonlinear systems on the basis of uncertainty and disturbance estimator. The nonlinear systems can be with parametric uncertainties as well as unmatched uncertainties and external disturbances. The novel adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, discontinuous sign function does not exist in the proposed adaptive sliding mode controller, and it is not replaced by saturation function or similar approximation functions as well. Therefore, chattering is avoided in essence, and the chattering avoidance is not at the cost of reducing the robustness of the closed-loop systems. Secondly, the uncertainties do not need to satisfy matching condition and the bounds of uncertainties are not required to be unknown. Thirdly, it is proved that the closed-loop systems have robustness to parameter uncertainties as well as unmatched model uncertainties and external disturbances. The robust stability is analyzed from a second-order linear time invariant system to a nonlinear system gradually. Simulation on a pendulum system with motor dynamics verifies the effectiveness of the proposed method.
A Proposal of Adaptive PID Controller Based on Reinforcement Learning
Institute of Scientific and Technical Information of China (English)
WANG Xue-song; CHENG Yu-hu; SUN Wei
2007-01-01
Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency,a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.
SECONDARY VOLTAGE CONTROL BASED ON ADAPTIVE NEURAL PI CONTROLLERS
Directory of Open Access Journals (Sweden)
RUBEN TAPIA
2010-01-01
Full Text Available Este trabajo tiene como objetivo presentar el desempeño de un controlador basado en redes neuronales Bspline que regula el aporte de potencia reactiva de las máquinas síncronas. Debido a que los sistemas de potencia operan con parámetros no estacionarios y configuración cambiante, es preferible utilizar esquemas de control adaptativos. La tecnología de control debe asegurar su desempeño en términos de condiciones operativas prácticas de los sistemas de potencia, que considere la diversidad de cargas conectadas a la red y maximice la disponibilidad de recursos. La red neuronal Bspline es una herramienta conveniente para implementar el control adaptativo de voltaje, con la posibilidad de llevar a cabo ésta tarea enlínea considerando las no linealidades del sistema. El despacho de potencia reactiva se basa en la premisa de que cada máquina debe aportar en proporción a su capacidad nominal de operación. La aplicabilidad de la propuesta se demuestra mediante simulación en un sistema de potencia multimáquinas.
Directory of Open Access Journals (Sweden)
REZAZADEH, A.
2010-05-01
Full Text Available Nonlinear characteristics of wind turbines and electric generators necessitate complicated and nonlinear control of grid connected Wind Energy Conversion Systems (WECS. This paper proposes a modified self-tuning PID control strategy, using reinforcement learning for WECS control. The controller employs Actor-Critic learning in order to tune PID parameters adaptively. These Actor-Critic learning is a special kind of reinforcement learning that uses a single wavelet neural network to approximate the policy function of the Actor and the value function of the Critic simultaneously. These controllers are used to control a typical WECS in noiseless and noisy condition and results are compared with an adaptive Radial Basis Function (RBF PID control based on reinforcement learning and conventional PID control. Practical emulated results prove the capability and the robustness of the suggested controller versus the other PID controllers to control of the WECS. The ability of presented controller is tested by experimental setup.
Digital control of high performance aircraft using adaptive estimation techniques
Van Landingham, H. F.; Moose, R. L.
1977-01-01
In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.
Adaptive Variable Structure Controller Application to Induction Motor Drive
Directory of Open Access Journals (Sweden)
Prasad. Ch,
2014-07-01
Full Text Available Variable structure control is an adaptive control that gives robust performance of a drive with parameter variation and load torque disturbance. Variable control structure is a robust control scheme based on the concept of changing the structure of the controller in response to the changing state of the system in order to obtain a desired response. The control is nonlinear and can be applied to the linear or nonlinear plant. A high speed switching control action is used to switch between different structures of the controller and the trajectory of the system is forced to move along a chosen switching manifold in the state space. The controller detects the deviation of the actual trajectory from the reference trajectory and corresponding changes the switching strategy to restore the tracking. Prominent characteristics such as invariance, robustness, order reduction, and control chattering are discussed in detail. Methods for coping with chattering are presented. Both linear and nonlinear systems are considered. By using Variable structure controller to control the step change in reference speed and drive system under load torque variations.
Power Control Imperfection in CDMA Systems with Adaptive Antennas
Directory of Open Access Journals (Sweden)
V. Wieser
2002-12-01
Full Text Available This paper deals with a simulation of cellular CDMA system usingbase station adaptive antennas. The model assumes two tiers area, fourtypes of antennas, lognormal shadowing corresponding to three types ofenvironments and perfect power control or two values of power controlerror, respectively. The capacity of system in up-link is evaluated bya number of mobile stations with higher signal to interference ratiothan threshold with given outage probability.
Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems
Junhai Luo; Heng Liu
2014-01-01
This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of th...
Adaptive control of ROVs with actuator dynamics and saturation
Directory of Open Access Journals (Sweden)
Ola-Erik Fjellstad
1992-07-01
Full Text Available A direct model reference adaptive controller (MRAC is derived for an underwater vehicle with significant thruster dynamics and limited thruster power. The reference model decomposition (RMD technique is used to compensate for the thruster dynamics. A reference model adjustment (RMA technique modifying the reference model acceleration is used to avoid thruster saturation. The design methods are simulated for the yawing motion of an underwater vehicle.
Variable universe adaptive fuzzy control on the quadruple inverted pendulum
Institute of Scientific and Technical Information of China (English)
LI; Hongxing(
2002-01-01
［1］Magana,M.E.,Fuzzy-logic control of an inverted pendulum with vision feedback,IEEE Transactions on Education,1998,41(2):165.［2］Chen,C.S.,Chen,W.L.,Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system,IEEE Transactions on Industrial Electronics,1998,45(2):297.［3］Cheng,F.Y.,Zhong,G.M.,Li,Y.S.et al.,Fuzzy control of a double-inverted pendulum,Fuzzy Sets and System,1996,79(3):315-321.［4］Zhang,H.M.,Ma,X.W.,Xu,W.et al.,Design fuzzy controllers complex systems with an application to 3-stage inverted pendulums,Information Sciences,1993,72:271.［5］Zhang,M.L.,Hao,J.K.,Hei,W.D.,Personification intelligence control and triple inverted pendulum,Journal of Aeronautics (in Chinese),1995,16(4):654.［6］Li,H.X.,To see the success of fuzzy logic from mathematical essence of fuzzy control,Fuzzy Systems and Mathematics (in Chinese),1995,9(4):1-14.［7］Li,H.X.,Mathematical essence of fuzzy controls and design of a kind of high precision fuzzy controllers,Control Theory and Application (in Chinese),1997,14(6):868.［8］Li,H.X.,Adaptive fuzzy controllers based on variable universe,Science in China,Ser.E,1999,42(1):10.［9］Li,H.X.,Interpolation mechanism of fuzzy control,Science in China,Ser.E,1998,41(3):312.［10］Li,H.X.,The equivalence between fuzzy logic systems and feedforward neural networks,Science in China,Ser.E,2000,43(1):42.
Adaptive Control of MEMS Gyroscope Based on Global Terminal Sliding Mode Controller
Directory of Open Access Journals (Sweden)
Weifeng Yan
2013-01-01
Full Text Available An adaptive global fast terminal sliding mode control (GFTSM is proposed for tracking control of Micro-Electro-Mechanical Systems (MEMS vibratory gyroscopes under unknown model uncertainties and external disturbances. To improve the convergence rate of reaching the sliding surface, a global fast terminal sliding surface is employed which can integrate the advantages of traditional sliding mode control and terminal sliding mode control. It can be guaranteed that sliding surface and equilibrium point can be reached in a shorter finite time from any initial state. In the presence of unknown upper bound of system nonlinearities, an adaptive global fast terminal sliding mode controller is derived to estimate this unknown upper bound. Simulation results demonstrate that the tracking error can be attenuated efficiently and robustness of the control system can be improved with the proposed adaptive global fast terminal sliding mode control.
Comparison of Adaptive Antenna Arrays Controlled by Gradient Algorithms
Directory of Open Access Journals (Sweden)
Z. Raida
1994-09-01
Full Text Available The paper presents the Simple Kalman filter (SKF that has been designed for the control of digital adaptive antenna arrays. The SKF has been applied to the pilot signal system and the steering vector one. The above systems based on the SKF are compared with adaptive antenna arrays controlled by the classical LMS and the Variable Step Size (VSS LMS algorithms and by the pure Kalman filter. It is shown that the pure Kalman filter is the most convenient for the control of the adaptive arrays because it does not require any a priori information about noise statistics and excels in high rate of convergence and low misadjustment. Extremely high computational requirements are drawback of this filter. Hence, if low computational power of signal processors is at the disposal, the SKF is recommended to be used. Computational requirements of the SKF are of the same order as the classical LMS algorithm exhibits. On the other hand, all the important features of the pure Kalman filter are inherited by the SKF. The paper shows that presented Kalman filters can be regarded as special gradient algorithms. That is why they can be compared with the LMS family.
Robust adaptive control of underwater vehicles: A comparative study
Directory of Open Access Journals (Sweden)
Thor I. Fossen
1996-01-01
Full Text Available Robust adaptive control of underwater vehicles in 6 DOF is analysed in the context of measurement noise. The performance of the adaptive control laws of Sadegh and Harowitz (1990 and Slotine and Benedetto (1990 are compared. Both these schemes require that all states are measured, that is the velocities and positions in surge, sway, heave, roll, pitch and yaw. However, for underwater vehicles it is difficult to measure the linear velocities whereas angular velocity measurements can be obtained by using a 3 axes angular rate sensor. This problem is addressed by designing a nonlinear observer for linear velocity state estimation. The proposed observer requires that the position and the attitude are measured, e.g. by using a hydroacoustic positioning system for linear positions, two gyros for roll and pitch and a compass for yaw. In addition angular rate measurements will be assumed available from a 3-axes rate sensor or a state estimator. It is also assumed that the measurement rate is limited to 2 Hz for all the sensors. Simulation studies with a 3 DOF AUV model are used to demonstrate the convergence and robustness of the adaptive control laws and the velocity state observer.
Directory of Open Access Journals (Sweden)
Mohammad Jannati
2014-05-01
Full Text Available This paper presents a technique for speed sensorless Rotor Flux Oriented Control (RFOC of 3-phase Induction Motor (IM under open-phase fault (unbalanced or faulty IM. The presented RFOC strategy is based on rotational transformation. An adaptive sliding mode control system with an adaptive switching gain is proposed instead of the speed PI controller. Using an adaptive sliding mode control causes the proposed speed sensorless RFOC drive system to become insensitive to uncertainties such as load disturbances and parameter variations. Moreover, with adaptation of the sliding switching gain, calculation of the system uncertainties upper bound is not needed. Finally, simulation results have been presented to confirm the good performance of the proposed method.
Robust Adaptive Reactive Power Control for Doubly Fed Induction Generator
Directory of Open Access Journals (Sweden)
Huabin Wen
2014-01-01
Full Text Available The problem of reactive power control for mains-side inverter (MSI in doubly fed induction generator (DFIG is studied in this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the correctness and benefits of the control scheme.
Adaptive control for an uncertain robotic manipulator with input saturations
Institute of Scientific and Technical Information of China (English)
Trong-Toan TRAN; Shuzhi Sam GE; Wei HE
2016-01-01
In this paper, we address the control problem of an uncertain robotic manipulator with input saturations, unknown input scalings and disturbances. For this purpose, a model reference adaptive control like (MRAC-like) is used to handle the input saturations. The model reference is input to state stable (ISS) and driven by the errors between the required control signals and input saturations. The uncertain parameters are dealt with by using linear-in-the-parameters property of robotic dynamics, while unknown input scalings and disturbances are handled by non-regressor based approach. Our design ensures that all the signals in the closed-loop system are bounded, and the tracking error converges to the compact set which depends on the predetermined bounds of the control inputs. Simulation on a planar elbow manipulator with two joints is provided to illustrate the effectiveness of the proposed controller.
An Adaptive Variable Structure Control Scheme for Underactuated Mechanical Manipulators
Directory of Open Access Journals (Sweden)
Jung Hua Yang
2012-01-01
Full Text Available Mechanical arms have been widely used in the industry for many decades. They have played a dominant role in factory automation. However the control performance, or even system stability, would be deteriorated if some of the actuators fail during the operations. Hence, in this study, an adaptive variable structure scheme is presented to solve this problem. It is shown that, by applying the control mechanism proposed in this paper, the motion of robot systems can maintain asymptotical stability in case of actuators failure. The control algorithms as well as the convergence analysis are theoretically proved based on Lyapunov theory. In addition, to demonstrate the validity of the controller, a number of simulations as well as real-time experiments are also performed for Pendubot robot and Furuta robot systems. The results confirm the applicability of the proposed controller.
Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control.
Liu, Jie
2015-04-01
The non-stationary property of electromyography (EMG) signals in real life settings usually hinders the clinical application of the myoelectric pattern recognition for prosthesis control. The classical EMG pattern recognition approach consists of two separate steps: training and testing, without considering the changes between training and testing data induced by electrode shift, fatigue, impedance changes and psychological factors, and often results in performance degradation. The aim of this study was to develop an adaptive myoelectric pattern recognition system, aiming to retrain the classifier online with the testing data without supervision, providing a self-correction mechanism for suppressing misclassifications. This paper presents an adaptive unsupervised classifier based on support vector machine (SVM) to improve the classification performance. Experimental data from 15 healthy subjects were used to evaluate performance. Preliminary study on intra-session and inter-session EMG data was conducted to verify the performance of the unsupervised adaptive SVM classifier. The unsupervised adaptive SVM classifier outperformed the conventional SVM by 3.3% and 8.0% for the combination of time-domain and autoregressive features in the intra-session and inter-session tests, respectively. The proposed approach is capable of incorporating the useful information in testing data to the classification model by taking into account the overtime changes in the testing data with respect to the training data to retrain the original classifier, therefore providing a self-correction mechanism for suppressing misclassifications.
Model-Free Adaptive Control Algorithm with Data Dropout Compensation
Directory of Open Access Journals (Sweden)
Xuhui Bu
2012-01-01
Full Text Available The convergence of model-free adaptive control (MFAC algorithm can be guaranteed when the system is subject to measurement data dropout. The system output convergent speed gets slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation. The missing data is first estimated using the dynamical linearization method, and then the estimated value is introduced to update control input. The convergence analysis of the proposed MFAC algorithm is given, and the effectiveness is also validated by simulations. It is shown that the proposed algorithm can compensate the effect of the data dropout, and the better output performance can be obtained.
Application of Adaptive Filters to Active Noise Control
Institute of Scientific and Technical Information of China (English)
PEI Bingnan; LI Chuanguang
2001-01-01
A modified LMS algorithm for noise-control is suggested after a mathematical model ofsound-cancellation is established, on the basis of thesound wave interference principle and the physicalmodel of progressive waves in a duct. Its applicationin controlling noise with the frequency range from 100to 800 Hz can be implemented by using the adaptivedigital signal processing technique. The experimentson a pink noise, a broadband noise and a noise takenfrom a tank were made, which show that there existsan attenuation of 11 dB at the frequency of 500 Hzor so, and that the proposed adaptive noise controltechnique is very effective and valid.
Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems
Directory of Open Access Journals (Sweden)
Junhai Luo
2014-01-01
Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.
On flexible CAD of adaptive control and identification algorithms
DEFF Research Database (Denmark)
Christensen, Anders; Ravn, Ole
1988-01-01
SLLAB is a MATLAB-family software package for solving control and identification problems. This paper concerns the planning of a general-purpose subroutine structure for solving identification and adaptive control problems. A general-purpose identification algorithm is suggested, which allows...... a total redesign of the system within each sample. The necessary design parameters are evaluated and a decision vector is defined, from which the identification algorithm can be generated by the program. Using the decision vector, a decision-node tree structure is built up, where the nodes define...
Berkhoff, A.P.; Wesselink, J.M.
2011-01-01
Model errors in multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. In this paper, a combination of high-authority control (HAC) and low-authority control (LAC) is considered for improved perform
On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification
Nguyen, Nhan T.
2011-01-01
This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.
Closed Loop Speed Control of a BLDC Motor Drive Using Adaptive Fuzzy Tuned PI Controller
Directory of Open Access Journals (Sweden)
Sri Latha Eti
2014-11-01
Full Text Available Brushless DC Motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper proposed an improved Adaptive Fuzzy PI controller to control the speed of BLDC motor. This paper provides an overview of different tuning methods of PID Controller applied to control the speed of the transfer function model of the BLDC motor drive and then to the mathematical model of the BLDC motor drive. It is difficult to tune the parameters and get satisfied control characteristics by using normal conventional PI controller. The experimental results verify that Adaptive Fuzzy PI controller has better control performance than the conventional PI controller. The modeling, control and simulation of the BLDC motor have been done using the MATLAB/SIMULINK software. Also, the dynamic characteristics of the BLDC motor (i.e. speed and torque as well as currents and voltages of the inverter components are observed by using the developed model.
Small unmanned helicopter's attitude controller by an on-line adaptive fuzzy control system
Institute of Scientific and Technical Information of China (English)
GAO Tong-yue; RAO Jin-jun; GONG Zhen-bang; LUO Jun
2009-01-01
Since small unmanned helicopter flight attitude control process has strong time-varying characteristics and there are random disturbances, the conventional control methods with unchanged parameters are often unworkable. An on-line adaptive fuzzy control system (AFCS) was designed, in a way that does not depend on a process model of the plant or its approximation in the form of a Jacobian matrix. Neither is it necessary to know the desired response at each instant of time. AFCS implement a simultaneous on-line tuning of fuzzy rules and output scale of fuzzy control system. The two cascade controller design with an inner (attitude controller) and outer controller (navigation controller) of the small unmanned helicopter was proposed. At last, an attitude controller based on AFCS was implemented. The flight experiment showed that the proposed fuzzy logic controller provides quicker response, smaller overshoot, higher precision, robustness and adaptive ability. It satisfies the needs of autonomous flight.
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Design and implementation of adaptive inverse control algorithm for a micro-hand control system
Directory of Open Access Journals (Sweden)
Wan-Cheng Wang
2014-01-01
Full Text Available The Letter proposes an online tuned adaptive inverse position control algorithm for a micro-hand. First, the configuration of the micro-hand is discussed. Next, a kinematic analysis of the micro-hand is investigated and then the relationship between the rotor position of micro-permanent magnet synchronous motor and the tip of the micro-finger is derived. After that, an online tuned adaptive inverse control algorithm, which includes an adaptive inverse model and an adaptive inverse control, is designed. The online tuned adaptive inverse control algorithm has better performance than the proportional–integral control algorithm does. In addition, to avoid damaging the object during the grasping process, an online force control algorithm is proposed here as well. An embedded micro-computer, cRIO-9024, is used to realise the whole position control algorithm and the force control algorithm by using software. As a result, the hardware circuit is very simple. Experimental results show that the proposed system can provide fast transient responses, good load disturbance responses, good tracking responses and satisfactory grasping responses.
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Fuzzy Adaptive PI Controller for DTFC in Electric Vehicle
Directory of Open Access Journals (Sweden)
Medjdoub khessam
2014-12-01
Full Text Available This paper presents a technique to control the electric vehicle (EV speed and torque at any curve. Our propulsion model consist of two permanent magnet synchronous (PMSM motors. The fuzzy adaptive PI controller is used to adjust the different static error constants, as per the speed error. The suggested based on the direct torque fuzzy control (DTFC. A Mamdani type fuzzy direct torque controller is first developed and then rules are modified using stator current membership functions. The computations are ensured by the electronic differential, this driving process permit to steer each driving wheels at any curve separately.Modeling and simulation are carried out using the Matlab/Simulink tool to investigate the performance of the proposed system.
Decentralized adaptive control designs and microstrip antennas for smart structures
Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.
1996-05-01
Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.
Adaptive Control of Electromagnetic Suspension System by HOPF Bifurcation
Directory of Open Access Journals (Sweden)
Aming Hao
2013-01-01
Full Text Available EMS-type maglev system is essentially nonlinear and unstable. It is complicated to design a stable controller for maglev system which is under large-scale disturbance and parameter variance. Theory analysis expresses that this phenomenon corresponds to a HOPF bifurcation in mathematical model. An adaptive control law which adjusts the PID control parameters is given in this paper according to HOPF bifurcation theory. Through identification of the levitated mass, the controller adjusts the feedback coefficient to make the system far from the HOPF bifurcation point and maintain the stability of the maglev system. Simulation result indicates that adjusting proportion gain parameter using this method can extend the state stability range of maglev system and avoid the self-excited vibration efficiently.
A low order adaptive control scheme for hydraulic servo systems
DEFF Research Database (Denmark)
Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller;
2015-01-01
This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure......, active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed...
Sensorless speed control of PMSM via adaptive interconnected observer
Ezzat, Marwa; de Leon, Jesus; Glumineau, Alain
2011-11-01
In this article, a robust sensorless speed observer-controller scheme for a surface permanent magnet synchronous motor (PMSM) is proposed. First-of-all, following preliminary results in the framework of the induction motor that is less sensible to the position estimation error, an adaptive high gain interconnected observer is designed. It is only supplied by the electrical measurement: the motor currents and voltages. This observer estimates the rotor speed and position, the stator resistance and the load torque. A nonlinear backstepping controller is developed. The above observer is associated with this controller and the complete scheme practical stability proof is given. The overall system is tested by simulation in the framework of an industrial benchmark with a trajectory that particularly checks the motor unobservability condition. Some robustness tests have been carried out. The controller-observer scheme shows good performances in spite of the uncertainties and the unknown load torque.
Damping Force Tracking Control of MR Damper System Using a New Direct Adaptive Fuzzy Controller
Directory of Open Access Journals (Sweden)
Xuan Phu Do
2015-01-01
Full Text Available This paper presents a new direct adaptive fuzzy controller and its effectiveness is verified by investigating the damping force tracking control of magnetorheological (MR fluid based damper (MR damper in short system. In the formulation of the proposed controller, a model of interval type 2 fuzzy controller is combined with the direct adaptive control to achieve high performance in vibration control. In addition, H∞ (H infinity tracking technique is used in building a model of the direct adaptive fuzzy controller in which an enhanced iterative algorithm is combined with the fuzzy model. After establishing a closed-loop control structure to achieve high control performance, a cylindrical MR damper is adopted and damping force tracking results are obtained and discussed. In addition, in order to demonstrate the effectiveness of the proposed control strategy, two existing controllers are modified and tested for comparative work. It has been demonstrated from simulation and experiment that the proposed control scheme provides much better control performance in terms of damping force tracking error. This leads to excellent vibration control performance of the semiactive MR damper system associated with the proposed controller.
Adaptive control for solar energy based DC microgrid system development
Zhang, Qinhao
During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.
Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks
DEFF Research Database (Denmark)
Fafoutis, Xenofon; Dragoni, Nicola
2012-01-01
ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever......-changing environmental energy sources. In this paper, we present an improved and extended version of ODMAC and we analyze it by means of an analytical model that can approximate several performance metrics in an arbitrary network topology. The simulations and the analytical experiments show ODMAC's ability to satisfy...... three key properties of EH-WSNs: adaptability of energy consumption, distributed energy-aware load balancing and support for different application-specific requirements....
Controls on Extreme Droughts and Adaptation Strategies in Semiarid Regions
Scanlon, B. R.; Cook, C.; Fernando, D. N.; LeBlanc, M.
2012-12-01
Increasing vulnerability to droughts with reduced per capita water storage, particularly in semiarid regions, underscores the need for predictive understanding of drought controls and development of adaptation strategies for water resources management. In this study we evaluate causes of major droughts in southwest and southcentral US (California and Texas) and southeast Australia (Murray Darling Basin). Impacts of climate cycles (ENSO, PDO, AMO, NAO, IOD) and atmospheric circulation on drought initiation and persistence are examined. Effects of drought on surface water reservoir storage, groundwater storage, irrigation, and crop production are compared. Adaptation strategies being evaluated include water transfers among sectors, particularly from irrigated agriculture to other groups, increasing storage using managed aquifer recharge, water reuse, and development of new water sources (e.g. seawater desalination). It is critical to develop a broad portfolio of water sources to increase resilience to future droughts.
Adaptive dynamic programming with applications in optimal control
Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang
2017-01-01
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...
Fault diagnosis and fault-tolerant control based on adaptive control approach
Shen, Qikun; Shi, Peng
2017-01-01
This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .
ER fluid applications to vibration control devices and an adaptive neural-net controller
Morishita, Shin; Ura, Tamaki
1993-07-01
Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.
Robust adaptive backstepping control for piezoelectric nano-manipulating systems
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2017-01-01
In this paper we present a systematic modeling and control approach for nano-manipulations of a two-dimensional PZT (piezoelectric transducer) actuated servo stage. The major control challenges associated with piezoelectric nano-manipulators typically include the nonlinear dynamics of hysteresis, model uncertainties, and various disturbances. The adverse effects of these complications will result in significant performance loss, unless effectively eliminated. The primary goal of the paper is on the ultra high precision control of such systems by handling various model uncertainties and disturbances simultaneously. To this end, a novel robust adaptive backstepping-like control approach is developed such that parametric uncertainties can be estimated adaptively while the nonlinear dynamics and external disturbances are treated as bounded disturbances for robust elimination. Meanwhile, the L2-gain of the closed-loop system is considered, and an H∞ optimization problem is formulated to improve the tracking accuracy. Numerical simulations and real time experiments are finally conducted, which significantly outperform conventional PID methods and achieve around 1% tracking error for circular contouring tasks.
Adaptive Controller for Drive System PMSG in Wind Turbine
Directory of Open Access Journals (Sweden)
Gnanambal
2014-07-01
Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.
ADEX optimized adaptive controllers and systems from research to industrial practice
Martín-Sánchez, Juan M
2015-01-01
This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...
Application of adaptive fuzzy control technology to pressure control of a pressurizer
Institute of Scientific and Technical Information of China (English)
YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai
2005-01-01
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
Fuzzy Adaptive Control for Trajectory Tracking of Autonomous Underwater Vehicle
Directory of Open Access Journals (Sweden)
Saeed Nakhkoob
2014-01-01
Full Text Available In this paper, the problem of the position and attitude tracking of an autonomous underwater vehicle (AUV in the horizontal plane, under the presence of ocean current disturbances is discussed. The effect of the gradual variation of the parameters is taken into account. The effectiveness of the adaptive controller is compared with a feedback linearization method and fuzzy gain control approach. The proposed strategy has been tested through simulations. Also, the performance of the propos-ed method is compared with other strategies given in some other studies. The boundedness and asymptotic converge-nce properties of the control algorithm and its semi-global stability are analytically proven using Lyapunov stability theory and Barbalat’s lemma.
Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.
Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua
2016-11-14
In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.
Neural adaptive attitude tracking controller for flexible spacecraft
Institute of Scientific and Technical Information of China (English)
XIAO Bing; HU Qing-lei; MA Guang-fu
2010-01-01
In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is employed to approximate the unknown system dynamics with finite combinations of some basis functions,and a robust controller is also designed to attenuate the effect of approximation error,more specially,the knowledge of angular velocity is not required.In the closed-loop system,Lyapunov stability analysis shows that the attitude trajectories asymptotically follow the reference output trajectories.Finally,simulation results are presented for the attitude tracking of a flexible spacecraft to show the excellent performance of the proposed controller and illustrate its robustness in face of external disturbances and unknown dynamics.
Nonlinear vibration with control for flexible and adaptive structures
Wagg, David
2015-01-01
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...
Adaptive chaos control and synchronization in only locally Lipschitz systems
Energy Technology Data Exchange (ETDEWEB)
Lin Wei [Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, School of Mathematical Sciences, Fudan University, Shanghai 200433 (China); CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (China)], E-mail: wlin@fudan.edu.cn
2008-04-28
In the existing results on chaos control and synchronization based on the adaptive controlling technique (ACT), a uniform Lipschitz condition on a given dynamical system is always assumed in advance. However, without this uniform Lipschitz condition, the ACT might be failed in both theoretical analysis and in numerical experiment. This Letter shows how to utilize the ACT to get a rigorous control for the system which is not uniformly Lipschitz but only locally Lipschitz, and even for the system which has unbounded trajectories. In fact, the ACT is proved to possess some limitation, which is actually induced by the nonlinear degree of the original system. Consequently, a piecewise ACT is proposed so as to improve the performance of the existing techniques.
Towards Adaptive Virtual Camera Control In Computer Games
DEFF Research Database (Denmark)
Burelli, Paolo; Yannakakis, Georgios N.
2011-01-01
Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user...... model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platform game, we cluster gaze and camera information to identify camera behaviour profiles and we employ...... machine learning to build predictive models of the virtual camera behaviour. The perfor- mance of the models on unseen data reveals accuracies above 70% for all the player behaviour types identified. The characteristics of the gener- ated models, their limits and their use for creating adaptive automatic...
Comparative Analysis for NN-Based Adaptive Back-stepping Controller and Back-stepping Controller
Margarita Gjonaj; BetimÇiço; ArnisaMyrtellari
2016-01-01
This work primarily addresses the design and implementation of a neural network based controller for the trajectory tracking of a differential drive mobile robot. The proposed control algorithm is an NN-based adaptive controller which tunes the gains of the back-stepping controller online according to the robot reference trajectory and its initial posture. In this method, a neural network is needed to learn the characteristics of the plant dynamics and make use of it to determine the future i...
Chaos control of Lorenz systems using adaptive controller with input saturation
Energy Technology Data Exchange (ETDEWEB)
Yau, H.-T. [Department of Electrical Engineering, Far-East College, No 49 Jung-Haw Road, Hsin-Shih Town, Tainan 744, Taiwan (China)]. E-mail: pan1012@ms52.hinet.net; Chen, C.-L. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: chiehli@mail.ncku.edu.tw
2007-12-15
This paper presents an adaptive sliding mode control scheme for Lorenz chaos subject to saturating input. The state of Lorenz system can be asymptotically driven to an equilibrium point in spite of the presence of input saturation and external disturbance using the proposed control scheme. Numerical simulations demonstrate the effectiveness of its application to chaotic system control. It also shows that the settling time will be decreased, if the saturation bound of control input is relaxed.
Adaptive Quality of Transmission Control in Elastic Optical Network
Cai, Xinran
Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Nonlinear time-series-based adaptive control applications
Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.
1991-01-01
A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.
Naus, G.J.L.; Ploeg, J.; Molengraft, M.J.G. van de; Heemels, W.P.M.H.; Steinbuch, M.
2010-01-01
The combination of different characteristics and situation-dependent behavior cause the design of adaptive cruise control (ACC) systems to be time consuming. This paper presents a systematic approach for the design of a parameterized ACC, based on explicit model predictive control. A unique feature
A current-mode buck DC-DC controller with adaptive on-time control
Energy Technology Data Exchange (ETDEWEB)
Li Yanming; Lai Xinquan; Ye Qiang; Yuan Bing; Chen Fuji [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China); Jia Xinzhang, E-mail: ymli2004@126.co, E-mail: xqlai@mail.xidian.edu.c [Microelectronics Institute, Xidian University, Xi' an 710071 (China)
2009-02-15
A current-mode buck DC-DC controller based on adaptive on-time (AOT) control is presented. The on-time is obtained by the techniques of input feedforward and output feedback, and the adaptive control is achieved by a sample-hold and time-ahead circuit. The AOT current-mode control scheme not only obtains excellent transient response speed, but also achieves the independence of loop stability on output capacitor ESR. In addition, the AOT current-mode control does not have subharmonic oscillation phenomenon seen in fixed frequency peak current-mode control, so there is no need of the slope compensation circuit. The auto-skip pulse frequency modulation (PFM) mode improves the conversion efficiency of light load effectively. The controller has been fabricated with UMC 0.6-mum BCD process successfully and the detailed experimental results are shown.
Directory of Open Access Journals (Sweden)
Baghdad BELABES
2008-12-01
Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.
Reality and limitations in application of adaptive control. Tekio seigyo no jissai to tekiyo genkai
Energy Technology Data Exchange (ETDEWEB)
Tomizuka, M. (Univ. of Calif., Berkeley (United States of America))
1990-08-10
Approximately 20 years have passed since adaptive control transformed from art to science as it sprouted up with a stability theory as a core thereof. In the meantime, many application cases have been reported, and the expectation for the adaptive control is uprising. In this report, the reality and the application limitation of the adaptive control from the standpoint of how to use it are described. Described items are as follows: Discrete type adaptive control based on pole placement - direct method. structure of the controller. adaptive control rule and parameter identification algorithm. problems inapplication - Examination of linearity. Model dimensions. Zero point of the control target. Influence of external disturbance. Adaptive feed forward control. Introduction of integral action. Influence of noise. It is important that the simplification of the whole algorithm and adaptation of the theory are made by fully utilizing the foresighted informations on the control targets by not only simply applying a genearalized theory to practice. 14 refs., 3 figs.
Traffic Signals Control with Adaptive Fuzzy Controller in Urban Road Network
Institute of Scientific and Technical Information of China (English)
LI Yan; FAN Xiao-ping
2008-01-01
An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network.The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level.The control level decides the signal tunings in an intersection with a fuzzy logic controller.The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one.Consequently the system performances are improved.A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections.So the AFC combined with the WCC can be applied in a road network for signal timings.Simulations of the AFC on a real traffic scenario have been conducted.Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.
Neural network payload estimation for adaptive robot control.
Leahy, M R; Johnson, M A; Rogers, S K
1991-01-01
A concept is proposed for utilizing artificial neural networks to enhance the high-speed tracking accuracy of robotic manipulators. Tracking accuracy is a function of the controller's ability to compensate for disturbances produced by dynamical interactions between the links. A model-based control algorithm uses a nominal model of those dynamical interactions to reduce the disturbances. The problem is how to provide accurate dynamics information to the controller in the presence of payload uncertainty and modeling error. Neural network payload estimation uses a series of artificial neural networks to recognize the payload variation associated with a degradation in tracking performance. The network outputs are combined with a knowledge of nominal dynamics to produce a computationally efficient direct form of adaptive control. The concept is validated through experimentation and analysis on the first three links of a PUMA-560 manipulator. A multilayer perceptron architecture with two hidden layers is used. Integration of the principles of neural network pattern recognition and model-based control produces a tracking algorithm with enhanced robustness to incomplete dynamic information. Tracking efficacy and applicability to robust control algorithms are discussed.
Pixelized Device Control Actuators for Large Adaptive Optics
Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter
2009-01-01
A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Energy Technology Data Exchange (ETDEWEB)
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Adaptive Automatic Gauge Control of a Cold Strip Rolling Process
Directory of Open Access Journals (Sweden)
ROMAN, N.
2010-02-01
Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.
Adaptive mode control in few mode fibers and its applications
Ashry, Islam; Lu, Peng; Xu, Yong
2016-10-01
With the development of mode-division-multiplexing (MDM), few mode fibers (FMFs) have found a wide range of applications in optical sensing and communications. However, how to precisely control the mode composition of optical signals in FMFs remains a difficult challenge. In this paper, we present an adaptive mode control method that can selectively excite the linearly polarized (LP) mode within the FMF. The method is based on using optical pulses reflected by a fiber Bragg grating (FBG) for wavefront optimization. Two potential applications are discussed. First, we theoretically demonstrate the feasibility of large scale multiplexing of absorption based fiber optical sensors. Second, we discuss the possibility of using mode dependent loss to reconstruct the spatial distributions of absorptive chemicals diffused within a FMF.
Controllability and reliability issues related to electrorheological material adaptive structures
Energy Technology Data Exchange (ETDEWEB)
Shiang, A.; Coulter, J. [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics--Packard Lab.
1994-12-31
The present investigation focused on the controllability and reliability of an electrorheological (ER) material filled adaptive beam. An AC ER material-filled composite beam was constructed and tested over a period of 500 hours. Attention was focused on changes in fundamental vibration frequencies and modal loss factor over the test period. Controllability in terms of beam vibration response time to both increasing and decreasing field strengths was also studied. Response times at the first two fundamental frequencies of 15 and 35 Hertz were focused on. The results indicated that at 35 Hertz, the structural response time was faster for both switching on and switching off of the electric field. In switching off the electric field, the structure returned to zero-field behavior within three seconds on all occasions. The duration of the electric field application did not affect beam response time.
Development of adaptive sensorimotor control in infant sitting posture.
Chen, Li-Chiou; Jeka, John; Clark, Jane E
2016-03-01
A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24 Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64 cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76 Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities.
Passification based simple adaptive control of quadrotor attitude: Algorithms and testbed results
Tomashevich, Stanislav; Belyavskyi, Andrey; Andrievsky, Boris
2017-01-01
In the paper, the results of the Passification Method with the Implicit Reference Model (IRM) approach are applied for designing the simple adaptive controller for quadrotor attitude. The IRM design technique makes it possible to relax the matching condition, known for habitual MRAC systems, and leads to simple adaptive controllers, ensuring fast tuning the controller gains, high robustness with respect to nonlinearities in the control loop, to the external disturbances and the unmodeled plant dynamics. For experimental evaluation of the adaptive systems performance, the 2DOF laboratory setup has been created. The testbed allows to safely test new control algorithms in the laboratory area with a small space and promptly make changes in cases of failure. The testing results of simple adaptive control of quadrotor attitude are presented, demonstrating efficacy of the applied simple adaptive control method. The experiments demonstrate good performance quality and high adaptation rate of the simple adaptive control system.
Adaptive Control of Space Robot System with an Attitude Controlled Base
1991-08-01
linearly on these parameters, research on adaptive robot control can now take full consideration of the nonlinear, time-varying and coupled robot dynamics . As...Khatib, J.J. Craig, and T. Lozano-Perez. The robotics review. MIT Press, 1989. [8] P. Khosla and T. Kanade. Parameter identification of robot dynamics . In...and W. Li. Applied nonlinear control. New Jersey: Printice Hall, 1991. [13] M.W. Spong and M. Vidyasagar. Robot dynamics and control. John Wiley
Chaos Control and Synchronization of a Novel Chaotic System Based upon Adaptive Control Algorithm
Directory of Open Access Journals (Sweden)
Israr Ahmad
2014-08-01
Full Text Available Controlling chaos is stabilizing one of the unstable periodic orbits either to its equilibrium point or to a stable periodic orbit by means of an appropriate continuous signal injected to the system. On the other hand, chaos synchronization refers to a procedure where two chaotic oscillators (either identical or nonidentical adjust a given property of their motion to a common behavior. This research paper concerns itself with the Adaptive Control and Synchronization of a new chaotic system with unknown parameters. Based on the Lyapunov Direct Method, the Adaptive Control Techniques are designed in such a way that the trajectory of the new chaotic system is globally stabilized to one of its equilibrium points of the uncontrolled system. Moreover, the Adaptive Control Law is also applied to achieve the synchronization state of two identical systems and two different chaotic systems with fully unknown parameters. The parameters identification, chaos control and synchronization of the chaotic system have been carried out simultaneously by the Adaptive Controller. All simulation results are carried out to corroborate the effectiveness and the robustness of the proposed methodology and possible feasibility for synchronizing two chaotic systems by using mathematica 9.
Decentralized adaptive sliding mode control of a space robot actuated by control moment gyroscopes
Institute of Scientific and Technical Information of China (English)
Jia Yinghong; Xu Shijie
2016-01-01
An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane’s equations. The controller for each link or the base is designed sep-arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a ‘‘lumped” matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen-eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov’s method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.
Decentralized adaptive sliding mode control of a space robot actuated by control moment gyroscopes
Directory of Open Access Journals (Sweden)
Jia Yinghong
2016-06-01
Full Text Available An adaptive sliding mode control (ASMC law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF. A cluster of control moment gyroscopes (CMGs is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs are employed to describe the angular displacements, and the equations of motion are derived using Kane’s equations. The controller for each link or the base is designed separately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a “lumped” matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A general amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov’s method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.
Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control
Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.
A theoretical stochastic control framework for adapting radiotherapy to hypoxia
Saberian, Fatemeh; Ghate, Archis; Kim, Minsun
2016-10-01
Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course
Adaptive Sliding Mode Control Using Robust Feedback Compensator for MEMS Gyroscope
Directory of Open Access Journals (Sweden)
Juntao Fei
2013-01-01
Full Text Available An adaptive sliding mode control using robust feedback compensator is presented for a MEMS gyroscope in the presence of external disturbances and parameter uncertainties. An adaptive controller with a robust term is used to improve the robustness of the control system and compensate the system nonlinearities. The proposed robust adaptive control can estimate the angular velocity and all the system parameters including damping and stiffness coefficients in the Lyapunov framework. In addition, standard adaptive control scheme without robust algorithm is compared with the proposed robust adaptive scheme in the aspect of numerical simulation and algorithm derivation. Numerical simulations show that the robust adaptive control has better robustness in the presence of external disturbances than the standard adaptive control.
A robust adaptive load frequency control for micro-grids.
Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav
2016-11-01
The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller.
Research on Power Control of Wind Power Generation Based on Neural Network Adaptive Control
Institute of Scientific and Technical Information of China (English)
Hai-ying DONG; Chuan-hua SUN
2010-01-01
-For the characteristics of wind power generation system is multivariable,nonlinear and random,in this paper the neural network PID adaptive control is adopted.The size of pitch angle is adjusted in time to improve the performance of power control.The PID parameters are corrected by the gradient descent method,and Radial Basis Functinn(RBF)neural network is used as the system identifier in this method.Simulation results shaw that by using neural adaptive PID controller the generator power control can inhibit effectively the speed and affect the output power of generator.The dynamic performance and robustness of the controlled system is good,and the performance of wind power system is improved.
Adaptive Neural Network Control with Control Allocation for A Manned Submersible in Deep Sea
Institute of Scientific and Technical Information of China (English)
YU Jian-cheng; ZHANG Ai-qun; WANG Xiao-hui; WU Bao-ju
2007-01-01
This paper thoroughly studies a control system with control allocation for a manned submersible in deep sea being developed in China. The proposed control system consists of a neural-network-based direct adaptive controller and a dynamic control allocation module. A control energy cost function is used as the optimization criteria of the control allocation module, and weighted pseudo-inverse is used to find the solution of the control allocation problem. In the presence of bounded unknown disturbance and neural networks approximation error, stability of the closed-loop control system of manned submersible is proved with Lyaponov theory. The feasibility and validity of the proposed control system is further verified through experiments conducted on a semi-physical simulation platform for the manned submersible in deep sea.
Microgrid Stability Controller Based on Adaptive Robust Total SMC
Directory of Open Access Journals (Sweden)
Xiaoling Su
2015-03-01
Full Text Available This paper presents a microgrid stability controller (MSC in order to provide existing distributed generation units (DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances. The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing the DGs’ output power. When the microgrid is operating in islanded mode, it provides voltage and frequency support, while guaranteeing seamless transition between the two operation modes. Simulation and experimental results show the effectiveness of the proposed approach.
Adaptive and controllable compliant systems with embedded actuators and sensors
Trease, Brian; Kota, Sridhar
2007-04-01
We present a framework for the design of a compliant system; i.e. the concurrent design of a compliant mechanism with embedded actuators and embedded sensors. Our methods simultaneously synthesize optimal structural topology and placement of actuators and sensors for maximum energy efficiency and adaptive performance, while satisfying various weight and performance constraints. The goal of this research is to lay an algorithmic framework for distributed actuation and sensing within a compliant active structure. Key features of the methodology include (1) the simultaneous optimization of the location, orientation, and size of actuators concurrent with the compliant transmission topology and (2) the concepts of controllability and observability that arise from the consideration of control, and their implementation in compliant systems design. The methods used include genetic algorithms, graph searches for connectivity, and multiple load cases implemented with linear finite element analysis. Actuators, modeled as both force generators and structural compliant elements, are included as topology variables in the optimization. Results are provided for several studies, including: (1) concurrent actuator placement and topology design for a compliant amplifier and (2) a shape-morphing aircraft wing demonstration with three controlled output nodes. Central to this method is the concept of structural orthogonality, which refers to the unique system response for each actuator it contains. Finally, the results from the controllability problem are used to motivate and describe the analogous extension to observability for sensing.
Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.
Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P
2013-04-01
Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.
Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.
2016-10-01
This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.
Directory of Open Access Journals (Sweden)
Taochang Li
2014-01-01
Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.
Theoretical model for ultracold molecule formation via adaptive feedback control
Poschinger, U; Wester, R; Weidemüller, M; Koch, C P; Kosloff, R; Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie
2006-01-01
We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than a factor of 10 compared to unshaped pulses at the same pump-dump delay time, and by 40% compared to unshaped pulses at the respective optimal pump-dump delay time. Since our model yields directly the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments.
Fuzzy adaptive learning control network with sigmoid membership function
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived;and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control
Basin, Michael; Bharath Panathula, Chandrasekhara; Shtessel, Yuri
2016-09-01
This paper presents an adaptive gain algorithm for second-order sliding-mode control (2-SMC), specifically a super-twisting (STW)-like controller, with uniform finite/fixed convergence time, that is robust to perturbations with unknown bounds. It is shown that a second-order sliding mode is established as exact finite-time convergence to the origin if the adaptive gain does not have the ability to get reduced and converge to a small vicinity of the origin if the adaptation algorithm does not overestimate the control gain. The estimate of fixed convergence time of the studied adaptive STW-like controller is derived based on the Lyapunov analysis. The efficacy of the proposed adaptive algorithm is illustrated in a tutorial example, where the adaptive STW-like controller with uniform finite/fixed convergence time is compared to the adaptive STW controller with non-uniform finite convergence time.
Method and apparatus for adaptive force and position control of manipulators
Seraji, Homayoun (Inventor)
1995-01-01
The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.
On Optimization Control Parameters in an Adaptive Error-Control Scheme in Satellite Networks
Directory of Open Access Journals (Sweden)
Ranko Vojinović
2011-09-01
Full Text Available This paper presents a method for optimization of control parameters of an adaptive GBN scheme in error-prone satellite channel. Method is based on the channel model with three state, where channel have the variable noise level.
System identification, adaptive control and formation driving of farm tractors
Rekow, Andrew Karl Wilhelm
Great increases in agricultural productivity and profitability can be gained by increasing the navigational control accuracy of a farm tractor. To maximize accuracy in the presence of environmental uncertainties, a novel technique for on-line parameter identification has been developed. This method combines the Extended Kalman Filter (EKF) and the Least Mean Square (LMS) algorithms and is used to identify key parameters which describe the dynamics of a farm tractor. This algorithm provides a 15:1 improvement in computational efficiency over the traditional EKF, while offering comparable convergence rates and noise rejection properties. Experimental data on a full-sized John Deere tractor shows a 25 percent improvement in lateral accuracy when using then adaptive controller versus a fixed controller over identical trajectories. In addition to parameter identification, farmers require formation driving capability for routine operations. Multiple farm vehicles work cooperatively together to accomplish a common goal. Several formation driving algorithms were developed for these varying requirements. An experimental implementation of a fully autonomous farm vehicle following a human operated lead vehicle demonstrated an accuracy of 10 centimeters in the in-track direction and 10 centimeters in the cross track direction.
Directory of Open Access Journals (Sweden)
Heng Liu
2013-07-01
Full Text Available X–Z inverted pendulum is a new kind of inverted pendulum and it can move with the combination of the vertical and horizontal forces. This paper addresses the control problem of X-Z inverted pendulum in the presents of system uncertainties and external disturbances, and an adaptive fuzzy sliding mode control approach is proposed. The fuzzy system is used to approximate the system uncertainties and the complicated intermediate control functions in the backstepping control design. To update the parameters of the fuzzy system, a proper proportional-integral adaptation law is introduced. Finally, simulation studies are done to show the stabilization of the X-Z inverted pendulum under the proposed method.
An integrated architecture of adaptive neural network control for dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Ke, Liu; Tokar, R.; Mcvey, B.
1994-07-01
In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.
Multiple-model-and-neural-network-based nonlinear multivariable adaptive control
Institute of Scientific and Technical Information of China (English)
Yue FU; Tianyou CHAI
2007-01-01
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.
DEFF Research Database (Denmark)
Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej;
1998-01-01
Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....
Exposure Control Using Adaptive Multi-Stage Item Bundles.
Luecht, Richard M.
This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
Adaptive Neural Control Design For a Class of Nonlinear Time-delay Systems
Institute of Scientific and Technical Information of China (English)
FENG Ling-ling; ZHANG Wei
2014-01-01
This paper proposes an indirect adaptive neural control scheme for a class of nonlinear systems with time delays. Based on the backstepping technique and Lyapunov–Krasovskii functional method are combined to construct the indirect adaptive neural controller. The proposed indirect adaptive neural controller guarantees that the state variables converge to a small neighborhood of the origin and all the signals of the closed-loop system are bounded. Finally, an example is used to show the effectiveness of the proposed control strategy.
Directory of Open Access Journals (Sweden)
Zhi-Lin Zeng
2014-01-01
Full Text Available This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.
Nutrient-dependent/pheromone-controlled adaptive evolution: a model
Directory of Open Access Journals (Sweden)
James Vaughn Kohl
2013-06-01
Full Text Available Background: The prenatal migration of gonadotropin-releasing hormone (GnRH neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods: This model details how chemical ecology drives adaptive evolution via: (1 ecological niche construction, (2 social niche construction, (3 neurogenic niche construction, and (4 socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH and systems biology. Results: Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion: An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively
Yang, Cheng-Hsiung; Wu, Cheng-Lin
2014-01-01
An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results.
Institute of Scientific and Technical Information of China (English)
张家树; 肖先赐; 万继宏
2001-01-01
An adaptive nonlinear feedback-control method is proposed to control continuous-time chaotic dynamical systems,where the adaptive nonlinear controller acts on only one-dimensional error signals between the desired state and the observed chaotic state of a system. The reduced parameter adaptive quadratic predictor used in adaptive feedback cancellation of the nonlinear terms can control the system at any desired state. Computer simulation results on the Lorenz system are shown to demonstrate the effectiveness of this feedback-control method.
Nguyen, Nhan
2013-01-01
This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.
Adaptive control model of water resources regulation in the Yellow River
Institute of Scientific and Technical Information of China (English)
WEI; Jiahua; WANG; Guangqian; WENG; Wenbin; CAI; Zhiguo; C
2004-01-01
According to the principle of procedure control and the characteristic of stochastic of inflow and water demands, this paper deals with the application of adaptive control to a water resources regulation system. The main control objective is to approach the vested target of water resources allocation by controlling the reservoir discharge and water demand. The adaptive control implemented is based on the linear quadratic control approach. Models of water balance, reservoir adjusted model and allocation model are used for the control purposes. The results show the performance of this adaptive scheme and its ability to control the water resources allocation process.
Directory of Open Access Journals (Sweden)
Bousserhane I.K.
2006-01-01
Full Text Available In this paper the position control of a linear induction motor using adaptive fuzzy back stepping design with integral action is proposed. First, the indirect field oriented control for LIM is derived. Then, an integral back stepping design for indirect field oriented control of LIM is proposed to compensate the uncertainties which occur in the control. Finally, the fuzzy integral-back stepping controller is investigated, where a simple fuzzy inference mechanism is used to achieve a position tracking objective under the mechanical parameters uncertainties. The effectiveness of the proposed control scheme is verified by numerical simulation. The numerical validation results of the proposed scheme have presented good performances compared to the conventional integral back stepping control.
Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun
2015-04-01
This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.
Design of an Adaptive Controller for Dive-plane Control of a Torpedo-shaped AUV
Institute of Scientific and Technical Information of China (English)
Jian Cao; Yumin Su; Jinxin Zhao
2011-01-01
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models.To guarantee robustness against parameter uncertainty,an adaptive controller for dive-plane control,based on Lyapunov theory and back-stepping techniques,was proposed.In the closed-loop system,asymptotic tracking of the reference depth and pitch angle trajectories was accomplished.Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.
Adaptive switching control of discrete time nonlinear systems based on multiple models
Institute of Scientific and Technical Information of China (English)
Rui KAN
2004-01-01
We use the approach of "optimal" switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS(Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.
Adaptive chaos control and synchronization for uncertain new chaotic dynamical system
Energy Technology Data Exchange (ETDEWEB)
Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: mtyassen@yahoo.com
2006-01-30
This Letter presents the adaptive control and synchronization problems for uncertain new chaotic dynamical system (Liu system). Based on Lyapunov stability theory, adaptive control law is derived such that the trajectory of Liu system with unknown parameters is globally stabilized to each unstable equilibrium point of the uncontrolled system. In addition, an adaptive control approach is proposed to make the states of two identical Liu systems with unknown parameters asymptotically synchronized. Numerical simulations are shown to verify the results.
Controlling Strong Chaos by Adaptive Coupling Method in the Perturbed Cat Map
Institute of Scientific and Technical Information of China (English)
许海波; 王光瑞; 陈式刚
2001-01-01
The method for controlling Hamiltonian chaos by adaptive integrable mode coupling is extended to controlling strong chaos by adaptive integrable and near-integrable mode coupling. We illustrate this method with a highly chaotic system, the perturbed cat map. All orbits can be effectively controlled to the periodic or quasiperiodic orbits. The method is robust against the presence of weak external noise.
Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power
2011-09-01
Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, 1996. [23] K. J. Astrom and B. Wittenmark, Adaptive Control, Second Edition, Dover...1989. [25] J. J. E. Slotline and W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, 1991. 79 [26] K. J. Astrom and B. Wittenmark
Personal control over the cure of breast cancer : adaptiveness, underlying beliefs and correlates
Henselmans, Inge; Sanderman, Robbert; Helgeson, Vicki S; de Vries, J; Smink, Ans; Ranchor, Adelita V
2010-01-01
OBJECTIVES: Although cognitive adaptation theory suggests that personal control acts as a stress buffer when facing adversity, maladaptive outcomes might occur when control is disconfirmed. The moderating effect of disappointing news on the adaptiveness of personal control over cure in women with br
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
Directory of Open Access Journals (Sweden)
Saifullah Khalid
2016-09-01
Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.
Optimal Control Problem of Feeding Adaptations of Daphnia and Neural Network Simulation
Kmet', Tibor; Kmet'ov, Mria
2010-09-01
A neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints and open final time. The optimal control problem is transcribed into nonlinear programming problem, which is implemented with adaptive critic neural network [9] and recurrent neural network for solving nonlinear proprojection equations [10]. The proposed simulation methods is illustrated by the optimal control problem of feeding adaptation of filter feeders of Daphnia. Results show that adaptive critic based systematic approach and neural network solving of nonlinear equations hold promise for obtaining the optimal control with control and state constraints and open final time.
Directory of Open Access Journals (Sweden)
Tat-Bao-Thien Nguyen
2014-01-01
Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.
Directory of Open Access Journals (Sweden)
Shun-Yuan Wang
2015-03-01
Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.
Adaptive efficient video transmission over the Internet based on congestion control and RS coding
Institute of Scientific and Technical Information of China (English)
黄伟红; 张福炎; 孙正兴
2002-01-01
An approach based on adaptive congestion control and adaptive error recovery with RS (Reed-Solomon) coding method is presented for efficient video transmission over the Internet.Featured by weighted moving average rate control and TCP-fdendliness,AVSP,a novel adaptive video streaming protocol,is designed with adjustable rate control parameters so as to respond quickly to the QoS status fluctuation during video transmission over the Internet.Combined with congestion control policy,an adaptive RS coding error recovery scheme with variable parameters is presented to enhance the robustness of MPEG video transmission over the Intemet with restriction to the total system bandwidth.``
The Model Reference Adaptive Fuzzy Control for the Vehicle Semi-Active Suspension
Institute of Scientific and Technical Information of China (English)
管继富; 侯朝桢; 顾亮; 武云鹏
2003-01-01
The LQG control system is employed as vehicle suspension's optimal target system, which has an adaptive ability to the road conditions and vehicle speed in a limited bandwidth. In order to keep the optimal performances when the suspension parameters change, a model reference adaptive fuzzy control (MRAFC) strategy is presented. The LQG control system serves as the reference model in the MRAFC system. The simulation results indicate that the presented MRAFC system can adapt to the parameters variation of vehicle suspension and track the optimality of the LQG control system, the presented vehicle suspension MRAFC system has the ability to adapt to road conditions and suspension parameters change.
Control of the adaptive immune response by tumor vasculature
Directory of Open Access Journals (Sweden)
Laetitia eMauge
2014-03-01
Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.
Adaptive, Distributed Control of Constrained Multi-Agent Systems
Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
Adaptive Feed-Forward Control of Low Frequency Interior Noise
Kletschkowski, Thomas
2012-01-01
This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes a design methodology for ANC-systems, explains its application and describes tools to be used for ANC-system design. From the research point of view, the book presents new approaches to sound source localization in weakly damped interiors. One is based on the inverse finite element method, the other is based on a sound intensity probe with an active free field. Furthermore, a prototype of an ANC-system able to reach the physical limits of local (feed-forward) ANC is described. This is one example for applied research in ANC-system design. Other examples are given for (i) local ANC in a semi-enclosed subspace of an aircraft cargo hold and (ii) for the combination of audio entertainment with ANC.
Function-valued adaptive dynamics and optimal control theory.
Parvinen, Kalle; Heino, Mikko; Dieckmann, Ulf
2013-09-01
In this article we further develop the theory of adaptive dynamics of function-valued traits. Previous work has concentrated on models for which invasion fitness can be written as an integral in which the integrand for each argument value is a function of the strategy value at that argument value only. For this type of models of direct effect, singular strategies can be found using the calculus of variations, with singular strategies needing to satisfy Euler's equation with environmental feedback. In a broader, more mechanistically oriented class of models, the function-valued strategy affects a process described by differential equations, and fitness can be expressed as an integral in which the integrand for each argument value depends both on the strategy and on process variables at that argument value. In general, the calculus of variations cannot help analyzing this much broader class of models. Here we explain how to find singular strategies in this class of process-mediated models using optimal control theory. In particular, we show that singular strategies need to satisfy Pontryagin's maximum principle with environmental feedback. We demonstrate the utility of this approach by studying the evolution of strategies determining seasonal flowering schedules.
Channel Based Adaptive Rate Control Technique for MANET
Directory of Open Access Journals (Sweden)
R. Bharathiraja
2014-04-01
Full Text Available In Mobile Ad hoc Networks (MANET, most of the existing works does not consider energy efficiency during selecting the appropriate route. Hence in MANET selecting the appropriate route and also maintaining energy efficiency is very important. Hence in order to overcome these issues, in this study we propose Channel Based Adaptive Rate Control technique for MANET. Here the most appropriate links is selected to transmit the node with efficient power consumption. The node broadcasts the information of its outgoing and incoming links in NSET instead of waiting for the feedback informattion from receiver. The number of packets transmitted in a channel access time is maximized by implementing the benefit ratio in rate selection algorithm. This study also introduces node cooperation, in node cooperation the node determines the feasibility of new rate setting determined by rate selection algorithm and it carries out new setting if it is feasible by following help, ack, reject and accept method. By simulation results we show that the proposed approach is power efficient and also increases the trasmission rate.
Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications
Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.
2014-12-01
Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.
The ADAPT design model: towards instructional control of transfer
Jelsma, Otto; Merrienboer, van Jeroen J.G.; Bijlstra, Jim P.
1990-01-01
This paper presents a detailed description of the ADAPT (Apply Delayed Automatization for Positive Transfer) design model. ADAPT is based upon production system models of learning and provides guidelines for developing instructional systems that offer transfer of leamed skills. The model suggests th
Directory of Open Access Journals (Sweden)
Ehsan Maani Miandoab
2013-01-01
Full Text Available Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.
Control on a 2-D Wing Flutter Using an AdaptiveNonlinear Neural Controller
Directory of Open Access Journals (Sweden)
Hayder S. Abd Al-Amir
2011-01-01
Full Text Available An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO. The structure of the controller consists of two models :the modified Elman neural network (MENN and the feed forward multi-layer Perceptron (MLP. The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. The feed forward neural controller is trained off-line and adaptive weights are implemented on-line to find the flap angles, which controls the plunge and pitch motion of the wing. The general back propagation algorithm is used to learn the feed forward neural controller and the neural identifier. The simulation results show the effectiveness of the proposed control algorithm; this is demonstrated by the minimized tracking error to zero approximation with very acceptable settling time even with the existence of bounded external disturbances.
Adaptive Control for Nonlinear Systems with Time-Varying Control Gain
Directory of Open Access Journals (Sweden)
Alejandro Rincon
2012-01-01
Full Text Available We propose a scheme for nonlinear plants with time-varying control gain and time-varying plant coefficients, on the basis of a plant model consisting of a Brunovsky-type model with polynomials as approximators. We develop an adaptive robust control scheme for this plant, under the following assumptions: (i the plant terms involve time-varying but bounded coefficients, being its upper bound unknown; (ii the control gain is unknown, not necessarily bounded, and only its signum is known. To achieve robustness, we use a combination of robustifying control inputs and dead zone-type update laws. We apply this methodology to the speed control of a permanent magnet synchronous motor (PMSM, and we achieve proper tracking results.
Induction machine Direct Torque Control system based on fuzzy adaptive control
Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng
2009-07-01
Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.
Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients.
Ge, Shuzhi Sam; Hong, Fan; Lee, Tong Heng
2004-02-01
In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.
Adaptive fusimotor reflex control in the decerebrate cat.
Murphy, P R
1999-03-06
-efferents occurs that is dependent upon behavioural context. The results are discussed in relation to cutaneous effects on gamma-motoneurones which are suggested to form an adaptive control system.
Adaptive control of bifurcation and chaos in a time-delayed system
Institute of Scientific and Technical Information of China (English)
Li Ning; Yuan Hui-Qun; Sun Hai-Yi; Zhang Qing-Ling
2013-01-01
In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes,the adaptive control idea is introduced,i.e.,the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws,respectively.The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem.The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods.They have the advantages of increased stability,adaptability to the changes of the system parameters,control cost saving,and simplicity.Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods.A comparison of the two adaptive control methods is also made in an experimental study.
Directory of Open Access Journals (Sweden)
Poramate eManoonpong
2013-02-01
Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.
Computational issue in the analysis of adaptive control systems
Kosut, Robert L.
1989-01-01
Adaptive systems under slow parameter adaption can be analyzed by the method of averaging. This provides a means to assess stability (and instability) properties of most adaptive systems, either continuous-time or (more importantly for practice) discrete-time, as well as providing an estimate of the region of attraction. Although the method of averaging is conceptually straightforward, even simple examples are well beyond hand calculations. Specific software tools are proposed which can provide the basis for user-friendly environment to perform the necessary computations involved in the averaging analysis.
Directory of Open Access Journals (Sweden)
Li Jing
2016-01-01
Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.
A novel adaptive sliding mode control with application to MEMS gyroscope.
Fei, Juntao; Batur, Celal
2009-01-01
This paper presents a new adaptive sliding mode controller for MEMS gyroscope; an adaptive tracking controller with a proportional and integral sliding surface is proposed. The adaptive sliding mode control algorithm can estimate the angular velocity and the damping and stiffness coefficients in real time. A proportional and integral sliding surface, instead of a conventional sliding surface is adopted. An adaptive sliding mode controller that incorporates both matched and unmatched uncertainties and disturbances is derived and the stability of the closed-loop system is established. The numerical simulation is presented to verify the effectiveness of the proposed control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as the consistent estimation of gyroscope parameters including angular velocity and large robustness to parameter variations and external disturbances.
Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor
Institute of Scientific and Technical Information of China (English)
XiaoJing Wang; ChangFu Xian; CaoLei Wan; JinBao Zhao; LiWei Xiu; AnCai Yu
2014-01-01
In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance, the design method of backstepping adaptive controller is put forward. The mathematical model of electro-hydraulic servo system of continuous rotary motor is established, and the whole system is decomposed into several lower order subsystems, and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory, an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability, and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor, and the proposed control strategy is feasible.
Patre, Parag; Joshi, Suresh M.
2011-01-01
Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.
Indirect Adaptive Attitude Control for a Ducted Fan Vertical Takeoff and Landing Microaerial Vehicle
Directory of Open Access Journals (Sweden)
Shouzhao Sheng
2015-01-01
Full Text Available The present paper addresses an attitude tracking control problem of a ducted fan microaerial vehicle. The proposed indirect adaptive controller can greatly reduce tracking error in the initial stage of the adaptive learning process by using an error compensation strategy and can achieve good capability to eliminate the adverse effect of measurement noises on the convergence of adjustable parameters. Moreover, the learning rate adaptation strategy is proposed to further minimize the adverse effect of large learning rates on the convergence of adjustable parameters. The experimental tests have illustrated the effectiveness of the proposed adaptive controller.
Improved adaptive fuzzy control for MIMO nonlinear time-delay systems
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper presents an improved observer-based indirect adaptive fuzzy control scheme for multiinput-multioutput (MIMO) nonlinear time-delay systems.The control scheme synthesizes adaptive fuzzy control with adaptive fuzzy identification.An observer is designed to observe the system state,and an identifier is developed to identify the unknown parts of the system.The update laws for parameters utilize two types of errors in the adaptive time-delay fuzzy logic systems,the observation error and the identificat...
Robust Adaptive Fault-Tolerant Tracking Control of Three-Phase Induction Motor
Directory of Open Access Journals (Sweden)
Hossein Tohidi
2014-01-01
Full Text Available This paper deals with the problem of induction motor tracking control against actuator faults and external disturbances using the linear matrix inequalities (LMIs method and the adaptive method. A direct adaptive fault-tolerant tracking controller design method is developed based on Lyapunov stability theory and a constructive algorithm based on linear matrix inequalities for online tuning of adaptive and state feedback gains to stabilize the closed-loop system in order to reduce the fault effect with disturbance attenuation. Simulation results reveal the merits of proposed robust adaptive fault-tolerant tracking control scheme on an induction motor subjected to actuator faults.
Application of single neuron adaptive PID controller during the process of timber drying
Institute of Scientific and Technical Information of China (English)
ZHANG Dong-yan; LIU Ya-qiu; CAO Jun
2003-01-01
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
Directory of Open Access Journals (Sweden)
MOHAMED BAHITA
2012-02-01
Full Text Available In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method.
Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems
Cao, Chengyu (Inventor); Hovakimyan, Naira (Inventor); Xargay, Enric (Inventor)
2014-01-01
Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation.
Optimal Adaptive Control of a Class of Stochastic Systems Using Game Theory
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper attempts to study a optimal adaptive con tr ol problem using game theory, and proposes an important practical result that an adaptive processes is a set of sufficient conditions under which pure strategy is essentially complete, and thus the fact that yield a very useful desirable pu re optimal control rule.Optimal Adaptive Control of a Class of Stochastic Systems Using Game Theory
Adaptive dual-layer super-twisting control and observation
Edwards, Christopher; Shtessel, Yuri
2016-09-01
In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.
A Novel Control-Navigation System- Based Adaptive Optimal Controller & EKF Localization of DDMR
Directory of Open Access Journals (Sweden)
Dalia Kass Hanna
2015-05-01
Full Text Available This paper presents a newly developed approach for Differential Drive Mobile Robot (DDMR. The main goal is to provide a high dynamic system response in the joint space level, the low level control, as well as to enhance the DDMR localization. The proposed approach depends on a Linear Quadratic Regulator (LQR for the low level control and an Adaptive LQR for the high level control. The investigated DDMR is considered highly nonlinear system due to uncertainty exhibited by the mobile robot incorporated with actuators nonlinearity. DDMR’s uncertainty leads to erroneous localization. An Extended Kalman Filter (EKF -based approach with fusion sensors is used to enhance the robot degree of belief for its posture. Intensive simulation results obtained from the developed uncertain model and the proposed approach have shown very good dynamic performance on the low level control and very good convergence to the desired posture of the mobile robot path with the presence of robot uncertainty.
Adaptive observer for speed sensorless PM motor control
DEFF Research Database (Denmark)
Rasmussen, Henrik; Vadstrup, P.; Børsting, H.
2003-01-01
This paper presents an adaptive observer for extimating the rotor position and speed of a permanent magnet synchronous motors (PMSM). The observer compensates for voltage offsets and permanent magnet strength variations. The adaptation structure for estimating the strength of the permanent magnet...... is determined from a Lyapunov stability proof. The observer estimates the stator flux by integration of the measured BEMF signal. In order to verify the applicability of the method the observer has been implemented and tested on a 800 W motor....
Xie, Haibo; Liu, Zhibin; Yang, Huayong
2016-05-01
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.
Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation.
Zhou, Qi; Shi, Peng; Tian, Yang; Wang, Mingyu
2015-10-01
In this paper, an approximation-based adaptive tracking control approach is proposed for a class of multiinput multioutput nonlinear systems. Based on the method of neural network, a novel adaptive controller is designed via backstepping design process. Furthermore, by introducing Nussbaum function, the issue of unknown control directions is handled. In the backstepping design process, the dynamic surface control technique is employed to avoid differentiating certain nonlinear functions repeatedly. Moreover, in order to reduce the number of adaptation laws, we do not use the neural networks to directly approximate the unknown nonlinear functions but the desired control signals. Finally, we provide two examples to illustrate the effectiveness of the proposed approach.
Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure
Directory of Open Access Journals (Sweden)
Ashraf Ahmed Fahmy
2014-03-01
Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation. Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.
An Adaptive Fuzzy Control Approach for the Robust Tracking of a MEMS Gyroscope Sensor
Directory of Open Access Journals (Sweden)
Juntao Fei
2011-11-01
Full Text Available In this paper, a direct adaptive fuzzy control using a supervisory compensator is designed for the robust tracking of a MEMS gyroscope sensor. The parameters of the membership functions are adjusted according to the designed adaptive law for the purpose of tracking a reference trajectory. A fuzzy controller that can approximate the unknown nonlinear function and compensate the system
A Dung Beetle-like Leg and its Adaptive Neural Control
DEFF Research Database (Denmark)
Di Canio, Giuliano; Stoyanov, Stoyan; Larsen, Jørgen Christian;
2016-01-01
also apply adaptive neural control, based on a central pattern generator (CPG) circuit with synaptic plasticity, to autonomously generate a proper stepping frequency of the leg. The controller can also adapt the leg movement to deal with external perturbations within a few steps....
Local Adaptive Control of Solar Photovoltaics and Electric Water Heaters for Real-time Grid Support
DEFF Research Database (Denmark)
Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte
2016-01-01
, such as electric vehicles, electric water heaters (EWHs) etc. An adaptive control using only local measurements for the EWHs and PVs is proposed in this study to alleviate OV as well as UV issues. The adaptive control is designed such that it monitors the voltage at the point of connection and adjusts active...
Frequency Adaptive Repetitive Control of Grid-Tied Three-Phase PV iInverters
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2016-01-01
in the presence of practical time-varying grid frequency. This paper explores frequency adaptive repetitive control strategy for grid-interfaced converters, which employs fractional delay filter to adapt to the change of grid frequency. Case studies with experimental results of three-phase grid-connected...... converter systems are provided to verify the proposed controller....
Aero-Effected Distributed Adaptive Control of Flexible Aircraft Using Active Bleed Project
National Aeronautics and Space Administration — The proposed research focuses on the development of a new adaptive control methodology for active control of wing aerodynamic shape to effect distributed aerodynamic...
Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.
Gao, Hui; Song, Yongduan; Wen, Changyun
2016-08-24
In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in L[₀,∞]. In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.
Adaptive control of call acceptance in WCDMA network
Directory of Open Access Journals (Sweden)
Milan Manojle Šunjevarić
2013-10-01
Full Text Available In this paper, an overview of the algorithms for access control in mobile wireless networks is presented. A review of adaptive control methods of accepting a call in WCDMA networks is discussed, based on the overview of the algorithms used for this purpose, and their comparison. Appropriate comments and conculsions in comparison with the basic characteristics of these algorithms are given. The OVSF codes are explained as well as how the allocation method influences the capacity and probability of blocking.. Introduction We are witnessing a steady increase in the number of demands placed upon modern wireless networks. New applications and an increasing number of users as well as user activities growth in recent years reinforce the need for an efficient use of the spectrum and its proper distribution among different applications and classes of services. Besides humans, the last few years saw different computers, machines, applications, and, in the future, many other devices, RFID applications, and finally networked objects, as a new kind of wireless networks "users". Because of the exceptional rise in the number of users, the demands placed upon modern wireless networks are becoming larger, and spectrum management plays an important role. For these reasons, choosing an appropriate call admission control algorithm is of great importance. Multiple access and resource management in wireless networks Radio resource management of mobile networks is a set of algorithms to manage the use of radio resources with the aim is to maximize the total capacity of wireless systems with equal distribution of resources to users. Management of radio resources in cellular networks is usually located in the base station controller, the base station and the mobile terminal, and is based on decisions made on appropriate measurement and feedback. It is often defined as the maximum volume of traffic load that the system can provide for some of the requirements for the
Directory of Open Access Journals (Sweden)
V. M. Varatharaju
2011-01-01
Full Text Available Problem statement: The tuning methodology for the parameters of adaptive speed controller causes a transient deviation of the response from the set reference following variation in load torque in a permanent-magnet brushless DC (BLDC motor drive system. Approach: This study develops a mathematical model of the BLDC drive system, firstly. Secondly, discusses a design of the closed loop drive system employing the Adaptive-Network-based Fuzzy Interference System (ANFIS. The nonlinear simulation model of the BLDC motors drive system with ANFIS control based is simulated in the MATLAB/SIMULINK platform. Results: The necessitated data for training the ANFIS control is generated by simulation of the system with conventional PI controller. Conclusion: The simulated electromagnetic torque and rotor speed signify the superiority of the proposed technique over the classical method.
Rivera, Daniel E; Pew, Michael D; Collins, Linda M
2007-05-01
The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.
Study of a MEMS Vibratory Gyroscope Using Adaptive Iterative Learning Control
Xiaochun Lu; Juntao Fei
2014-01-01
This paper proposes a framework, namely adaptive iterative learning control (AILC), which is used in the control of a microelectromechanical system (MEMS) gyroscope, to realize high-precision trajectory tracking control. According to the characteristics of the MEMS gyroscope’s model, the proposed AILC algorithm includes an adaptive law of parametric estimation and an iteration control law, which is updated in the iterative domain without any prior knowledge of MEMS gyroscopes. The convergence...
Use of single chip microcomputer in hydraulic digital adaptive control system
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Presents a one-grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theorv and used to control an actual high-order hydraulic system, and the whole hard ware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip-latch, 6116 store, eight-bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.
Adaptive control of chaotic systems based on a single layer neural network
Energy Technology Data Exchange (ETDEWEB)
Shen Liqun [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liqunshen@gmail.com; Wang Mao [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)
2007-08-27
This Letter presents an adaptive neural network control method for the chaos control problem. Based on a single layer neural network, the dynamic about the unstable fixed period point of the chaotic system can be adaptively identified without detailed information about the chaotic system. And the controlled chaotic system can be stabilized on the unstable fixed period orbit. Simulation results of Henon map and Lorenz system verify the effectiveness of the proposed control method.
Energy Technology Data Exchange (ETDEWEB)
Bessa, Wallace M. [Universidade Federal do Rio Grande do Norte, Department of Mechanical Engineering, Campus Universitario Lagoa Nova, 59072-970 Natal, RN (Brazil)], E-mail: wmbessa@ufrnet.br; Paula, Aline S. de [Universidade Federal do Rio de Janeiro, COPPE - Department of Mechanical Engineering, P.O. Box 68.503, 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: alinesp27@gmail.com; Savi, Marcelo A. [Universidade Federal do Rio de Janeiro, COPPE - Department of Mechanical Engineering, P.O. Box 68.503, 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: savi@mecanica.ufrj.br
2009-10-30
Chaos control may be understood as the use of tiny perturbations for the stabilization of unstable periodic orbits embedded in a chaotic attractor. The idea that chaotic behavior may be controlled by small perturbations of physical parameters allows this kind of behavior to be desirable in different applications. In this work, chaos control is performed employing a variable structure controller. The approach is based on the sliding mode control strategy and enhanced by an adaptive fuzzy algorithm to cope with modeling inaccuracies. The convergence properties of the closed-loop system are analytically proven using Lyapunov's direct method and Barbalat's lemma. As an application of the control procedure, a nonlinear pendulum dynamics is investigated. Numerical results are presented in order to demonstrate the control system performance. A comparison between the stabilization of general orbits and unstable periodic orbits embedded in chaotic attractor is carried out showing that the chaos control can confer flexibility to the system by changing the response with low power consumption.
Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok
2014-06-01
This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80-99) and the control algorithm is synthesized based on the {{H}^{\\infty }} tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches.
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
Barkana, Itzhak
2014-12-01
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
Energy Technology Data Exchange (ETDEWEB)
Barkana, Itzhak, E-mail: ibarkana@gmail.com [BARKANA Consulting, Ramat Hasharon (Israel)
2014-12-10
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.
Unmanned Water Craft Identification and Adaptive Control in Low-Speed and Reversing Regions
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Galeazzi, Roberto; Blanke, Mogens
2013-01-01
. With signicant parameter variation, an L1 adaptive controller is employed for heading control. The L1 family of controllers allows for several topologies and an architecture is suggested that suits heading control of a vessel, the requirements of which dier from that of previous L1 literature. The control design...
Energy Technology Data Exchange (ETDEWEB)
Ben Youssef, C.; Dahhou, B.; Roux, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Rols, J.L. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)
1995-12-31
Controlling the process of a fixed bed bioreactor imply solving filtering and adaptative control problems. Estimation processes have been developed for unmeasurable parameters. An adaptative non linear control has been built, instead of conventional approaches trying to linearize the system and apply a linear control system. (D.L.) 10 refs.
Adaptation of postural control to perturbations--a process that initiates long-term motor memory.
Tjernström, F; Fransson, P-A; Hafström, A; Magnusson, M
2002-02-01
The objective was to investigate postural control adaptation during daily repeated posturography with vibratory calf stimulation. The posturography was performed with eyes open and closed daily for 5 days and after 90 days on 12 healthy subjects. The postural control adaptation could be described as two separate processes, a rapid adaptation during the test progress and a long-term habituation between consecutive test days. The adaptive improvements gained during the 5 days consecutive testing, largely remained 90 days later but seemed restricted to the same test situation. The findings suggest that balance rehabilitation should include a variety of repeated exercises, which are sufficiently long to induce habituation.
Long, Lijun; Zhao, Jun
2016-05-02
In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.
Adaptive Neuro-fuzzy Controller Design for Non-affine Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
JIA Li; GE Shu-zhi; QIU Ming-sen
2008-01-01
An adaptive neuro-fuzzy control is investigated for a class of noa-affine nonlinear systems.To do so,rigorous description and quantification of the approximation error of the neuro-fuzzy controller are firstly discussed.Applying this result and Lyapunov stability theory,a novel updating algorithm to adapt the weights,centers,and widths of the neuro-fuzzy controller is presented.Consequently,the proposed design method is able to guaranteg the stability of the closed-loop system and the convergence of the tracking error.Simulation results illustrate the effectiveness of the proposed adaptive neuro-fuzzy control scheme.
Real-Time Discrete Adaptive Control of Robot Arm Based on Digital Signal Processing
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
Temporal adaptation enhances efficient contrast gain control on natural images.
Directory of Open Access Journals (Sweden)
Fabian Sinz
Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.
Learning and Adaptive Hybrid Systems for Nonlinear Control
1991-05-01
6 2.1.1 Single Layer Networks 8 Perceptrons 8 Samuel’s Checker Player 10 ADALINE and MADALINE 12 2.1.2 Multilayer Networks 13 Hebbian Learning 13...was Widrow’s ADALINE and MADALINE [Wid89]. He developed a type of adaptive filter which is still in widespread use today in such items as high speed...time step, and used it for pattern recognition. This "Adaptive Linear Neuron" ( ADALINE ) [Wid89] was then built in actual hardware, where weights were
Directory of Open Access Journals (Sweden)
Zhaoxia Peng
2014-01-01
Full Text Available This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.
Adaptive trajectory tracking control of two-wheeled self-balance robot
Institute of Scientific and Technical Information of China (English)
Qin Yong; Zang Xizhe; Wang Xiaoyu; Li Tian; Zhao Jie
2009-01-01
Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled self-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonholonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.
Wavefront Control for Space Telescope Applications Using Adaptive Optics
2007-12-01
science and chemistry . Although many of the principles behind adaptive optics have been understood for quite some time it hasn’t been until recent... SIMULINK and DSPACE by applying a voltage between +/-5 volts. Figure 11 Baker One Inch Fast Steering Mirror 16 E. POSITION SENSING MODULE
ONLINE CHARACTER RECOGNITION ADAPTIVELY CONTROLLED BY HANDWRITING QUALITY
Hamanaka, M.; Yamada, K.
2004-01-01
Online character recognition which can adapt to handwriting quality is proposed. In character recognition, it is difficult to recognize both clearly and roughly written characters accurately. For Japanese characters, the number of strokes is often slightly varied when characters are written roughly
Data-Driven Optimal Control for Adaptive Optics
Hinnen, K.J.G.
2007-01-01
Adaptive optics (AO) is a technique to actively correct the wavefront distortions introduced in a light beam as it propagates through a turbulent medium. Nowadays, it is commonly applied in ground-based telescopes to counteract the devastating effect of atmospheric turbulence. This thesis focuses on
Controlling the local false discovery rate in the adaptive Lasso
Sampson, J. N.
2013-04-09
The Lasso shrinkage procedure achieved its popularity, in part, by its tendency to shrink estimated coefficients to zero, and its ability to serve as a variable selection procedure. Using data-adaptive weights, the adaptive Lasso modified the original procedure to increase the penalty terms for those variables estimated to be less important by ordinary least squares. Although this modified procedure attained the oracle properties, the resulting models tend to include a large number of "false positives" in practice. Here, we adapt the concept of local false discovery rates (lFDRs) so that it applies to the sequence, λn, of smoothing parameters for the adaptive Lasso. We define the lFDR for a given λn to be the probability that the variable added to the model by decreasing λn to λn-δ is not associated with the outcome, where δ is a small value. We derive the relationship between the lFDR and λn, show lFDR =1 for traditional smoothing parameters, and show how to select λn so as to achieve a desired lFDR. We compare the smoothing parameters chosen to achieve a specified lFDR and those chosen to achieve the oracle properties, as well as their resulting estimates for model coefficients, with both simulation and an example from a genetic study of prostate specific antigen.
Robust Adaptive Neural Sliding Mode Approach for Tracking Control of a MEMS Triaxial Gyroscope
Directory of Open Access Journals (Sweden)
Juntao Fei
2012-05-01
Full Text Available In this paper, a neural network adaptive sliding mode control is proposed for an MEMS triaxial gyroscope with unknown system nonlinearities. An input‐output linearization technique is incorporated into the neural adaptive tracking control to cancel the nonlinearities, and the neural network whose parameters are updated from the Lyapunov approach is used to perform the linearization control law. The sliding mode control is utilized to\tcompensate the neural network’s approximation errors. The stability of the closed‐loop system can be guaranteed with the proposed adaptive neural sliding mode control. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive neural sliding mode control scheme.
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
Liu, Chengju; Chen, Qijun; Wang, Danwei
2011-06-01
This paper deals with the locomotion control of quadruped robots inspired by the biological concept of central pattern generator (CPG). A control architecture is proposed with a 3-D workspace trajectory generator and a motion engine. The workspace trajectory generator generates adaptive workspace trajectories based on CPGs, and the motion engine realizes joint motion imputes. The proposed architecture is able to generate adaptive workspace trajectories online by tuning the parameters of the CPG network to adapt to various terrains. With feedback information, a quadruped robot can walk through various terrains with adaptive joint control signals. A quadruped platform AIBO is used to validate the proposed locomotion control system. The experimental results confirm the effectiveness of the proposed control architecture. A comparison by experiments shows the superiority of the proposed method against the traditional CPG-joint-space control method.
Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3
Frost, Susan A.; Balas, Mark J.; Wright, Alan D.
2009-01-01
Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.
Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network
Directory of Open Access Journals (Sweden)
Yundi Chu
2015-01-01
Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.
Robust adaptive control for uncertain systems with discrete and distributed delays
Institute of Scientific and Technical Information of China (English)
Qing ZHU; Shumin FEI; Tao Li; Tianping ZHANG
2008-01-01
In this paper,a robust adaptive control scheme is proposed for the stabilization of uncertain linear systems with discrete and distributed delays and bounded peturbaturbations.The uncertainty is assumed to be an unknown continuous function with norm-bounded restriction.The perturbation is sector-bounded.Combining with the liner matrix inequality method,neural networks and adaptive control,the control scheme ensures the exponential stability of the closed-loop system for any admissible uncertainty.
Institute of Scientific and Technical Information of China (English)
CHENG Shi-lun; YANG Zhen
2008-01-01
To maximize throughput and to satisfy users' requirements in cognitive radios, a cross-layer optimization problem combining adaptive modulation and power control at the physical layer and truncated automatic repeat request at the medium access control layer is proposed. Simulation results show the combination of power control, adaptive modulation, and truncated automatic repeat request can regulate transmitter powers and increase the total throughput effectively.
Bailing Tian; Wenru Fan; Qun Zong; Jie Wang; Fang Wang
2013-01-01
This paper describes the design of a nonlinear robust adaptive controller for a flexible hypersonic vehicle model which is nonlinear, multivariable, and unstable, and includes uncertain parameters. Firstly, a control-oriented model is derived for controller design. Then, the model analysis is conducted for this model via input-output (I/O) linearized technique. Secondly, the sliding mode manifold is designed based on the homogeneity theory. Then, the adaptive high order sliding mode controlle...
Adaptive stabilization of discrete-time systems using linear periodically time varying controllers
Ortega, Romeo; Albertos, Pedro; Lozano, Rogelio
1988-01-01
A direct adaptive scheme based on the use of linear time-varying periodic controllers is proposed which estimates online the periodic coefficients of the controller. It is shown that adaptive stabilization is attained for all possibly nonstably invertible plants of known order but unknown delay. Although no appeal is made to persistency of excitation arguments, a provision is needed to avoid the singularity of an estimated matrix, this property being required only for the analysis and not the control calculations.
Global Convergence of Adaptive Generalized Predictive Controller Based on Least Squares Algorithm
Institute of Scientific and Technical Information of China (English)
张兴会; 陈增强; 袁著祉
2003-01-01
Some papers on stochastic adaptive control schemes have established convergence algorithm using a leastsquares parameters. With the popular application of GPC, global convergence has become a key problem in automatic control theory. However, now global convergence of GPC has not been established for algorithms in computing a least squares iteration. A generalized model of adaptive generalized predictive control is presented. The global convergebce is also given on the basis of estimating the parameters of GPC by least squares algorithm.
Use of the Analog Neural Networks in the Adaptive Antenna Control Systems
Directory of Open Access Journals (Sweden)
Z. Raida
2002-09-01
Full Text Available In the paper, original control system of adaptive antennas, which isbased on Kalman filter, is presented and compared with earlierapproaches to this problem. The designed control circuit eliminatessome disadvantages of the control circuits based on the classicalKalman neural network and the Wang one, and enables a real timeprocessing of quickly changing signals processed by adaptive antennas.Especially, the dependence of the convergence rate on ratio ofeigenvalues and the risk of instability are significantly reduced.
Directory of Open Access Journals (Sweden)
Xuxi Zhang
2014-01-01
Full Text Available The attitude tracking problem of spacecraft in the presence of unknown disturbance is investigated. By using the adaptive control technique and the Lyapunov stability theory, a chattering-free adaptive sliding mode control law is proposed for the attitude tracking problem of spacecraft with unknown disturbance. Simulation results are employed to demonstrate the effectiveness of the proposed control design technique in this paper.
Design of nonlinear adaptive steam valve controllers for a turbo-generator system
Energy Technology Data Exchange (ETDEWEB)
Bekiaris-Liberis, N.K.; Paraskevopoulos, P.N. [National Technical Univ. of Athens Zographou, Athens (Greece); Boglou, A.K. [Technology Education Inst. of Kavala Agios Loukas, Kavala (Greece); Arvanitis, K.G.; Pasgianos, G.D. [Agricultural Univ. of Athens, Athens (Greece)
2008-07-01
This paper reported on a study that investigated the control of power systems consisting of interconnected networks of transmission lines linking generators and loads. Improving both small and large perturbation stability and dynamic performance is important because power systems have become less stable in the past 15 years due to the use of controllers that have been designed on the basis of linearized synchronous generators and turbine models. The high nonlinear nature of power system models and the resulting disturbances render conventional linear controller design techniques obsolete for use in power systems control. Power system engineers are becoming aware of the role of turbine steam valves in improving the dynamic stability of power systems and damping low frequency oscillations. Advanced nonlinear control strategies are needed since the conventional steam valve control theory cannot guarantee transient stability in cases where operational conditions and parameters vary considerably. A design approach to a nonlinear adaptive control system with unknown parameters was developed and applied to the turbine main steam valve control of a power system. A fourth order machine model was used along with an adaptive backstepping method to construct the Lyapunov function in order to obtain a nonlinear adaptive controller to solve the turbine fast valving nonlinear control problem. The newly designed nonlinear adaptive controller can make the resulting adaptive system asymptotically stable. The proposed controller is accompanied by a dynamic estimator of parameters and includes nonlinear damping terms, which guarantee input-output stability even without the use of the adaptive law. Simulation results showed that the proposed nonlinear adaptive controller performs better than other turbine main steam valve control techniques. It can face large parametric uncertainty and results in a closed-loop system that is able to face large and smaller disturbances, providing a
L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft
DEFF Research Database (Denmark)
Svendsen, Casper H.; Holck, Niels Ole; Galeazzi, Roberto
2012-01-01
This work addresses the issue of designing an adaptive robust control system to govern the steering of a high speed unmanned personal watercraft (PWC) maintaining equal performance across the craft’s envelope of operation. The maneuvering dynamics of a high speed PWC is presented and a strong var......-of-freedom surge-sway-yaw-roll model. An L1 adaptive autopilot is then designed, which allows to achieve fast adaption to system parameters’ changes and robustness of the closed loop system....
Aguirre-Ollinger, Gabriel
2015-01-01
In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque.
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Multivariable direct adaptive decoupling controller using multiple models and a case study
Institute of Scientific and Technical Information of China (English)
WANG Xin; YANG Hui; ZHENG YiHui
2009-01-01
In this paper, a multivariable direct adaptive controller using multiple models without minimum phase assumption is presented to improve the transient response when the parameters of the system jump abruptly. The controller is composed of multiple fixed controller models, a free-running adaptive controller model and a re-initialized adaptive controller model. The fixed controller models are derived from the corresponding fixed system models directly. The adaptive controller models adopt the direct adaptive algorithm to reduce the design calculation. At every instant, the optimal controller is chosen out according to the switching index. The interaction of the system is viewed as the measured disturbance which is eliminated by the choice of the weighing polynomial matrix. The global convergence is obtained. Finally, several simulation examples in a wind tunnel experiment are given to show both effectiveness and practicality of the proposed method. The significance of the proposed method is that it is applicable to a non-minimum phase system, adopting direct adaptive algorithm to overcome the singularity problem during the matrix calculation and realizing decoupling control for a multivariable system.
Explicit MPC design and performance-based tuning of an Adaptive Cruise Control Stop-&-Go
Naus, G.J.L.; Ploeg, J.; Molengraft, M.J.G. van de; Steinbuch, M.
2008-01-01
This paper presents the synthesis, the implementation and the performance-based tuning of an Adaptive Cruise Control (ACC) Stop-&-Go (S&G) design. A Model Predictive Control (MPC) framework is adopted to design the controller. Performance of the controller is evaluated, distinguishing between comfor
Stable Model Reference Adaptive Control in the Presence of Bounded Disturbances,
1981-03-01
IEEE Transactions on Automatic Control , Vol...AC-25, No. 3, June 1980. [2) A. Stephen Morse, "Global Stability of Parameter-Adaptive Control Systems," IEEE Transactions on Automatic Control , Vol...34 IEEE Transactions on Automatic Control , Vol. AC-25, No. 3, June 1980. [41 Benjamin B. Peterson and Kumpati S. Narendra, "Bounded Error
Multiple Model Adaptive Estimation Techniques for Adaptive Model-Based Robot Control
1989-12-01
Proportional Derivative (PD) or Propor- tional Integral Derivative (PID) feedback controller [6]. 1-1 The PD or PID controllers feedback the measured...Unfortunately, as the speed of the trajectory increases or the con- figuration of the robot changes, the PD or PID controllers cannot maintain track along the...desired trajectory. The main reason for poor tracking is that the PD and PID controllers were developed based on a simplified linear dynamics model
Adaptive fault-tolerant control of linear systems with actuator saturation and L2-disturbances
Institute of Scientific and Technical Information of China (English)
Wei GUAN; Guanghong YANG
2009-01-01
This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.
Energy Technology Data Exchange (ETDEWEB)
Do, Hoang Thinh; Ahn, Kyoung Kwan [University of Ulsan, Ulsan (Korea, Republic of)
2013-03-15
A secondary-controlled hydrostatic transmission system (SC-HST), which considered being an energy-saving system, can recuperate most of the lost vehicle kinetic energy in decelerating and braking time and it shows advantage in fuel economy improvement of vehicle. Almost secondary control units (SCU) in SC-HST inherently contain nonlinear characteristics such as dead-zone input. Therefore, it is difficult to obtain precise position or velocity control by conventional linear controllers. This problem limits the application of SC-HST in industry and mobile vehicle. This paper gives a description of SC-HST and proposes an adaptive fuzzy sliding mode controller (AFSMC) for velocity control of SCU. Experiments were carried out in the condition of disturbance load by using both the proposed controller and PID controller for the comparison and evaluation of the effectiveness of the proposed controller. The experimental results showed that the proposed controller was excellent from the standpoints of performance and stability for the velocity control of SC-HST.
Autonomous Neural Network Controller for Adaptive Material Handling
1992-02-28
proportional-integral-differential (PID) control. Although simple, PID controllers have several shortcomings that prevent them from being useful for...controlling robots. These methods are much more complicated than the prevalent PID controllers . They involve one or more optimal criteria and need to
Control of plankton seasonal succession by adaptive grazing
DEFF Research Database (Denmark)
Mariani, Patrizio; Andersen, Ken Haste; Visser, Andre;
2013-01-01
on the effects of adaptive zooplankton grazing behavior on the seasonal succession of temperate plankton communities in an idealized community model consisting of a zooplankton grazer and two phytoplankton species, one motile and the other nonmotile. The grazer can switch between ambush feeding on motile cells...... or feeding-current feeding on nonmotile cells. The feeding-current behavior imposes an additional mortality risk on the grazer, whereas ambush feeding benefits from small-scale fluid turbulence. Grazer–phytoplankton feeding interactions are forced by light and turbulence and the grazer adopts the feeding...... behavior that optimizes its fitness. The adaptive grazing model predicts essential features of the seasonal plankton succession reported from temperate seas, including the vertical distribution and seasonal variation in the relative abundance of motile and nonmotile phytoplankton and the seasonal variation...