WorldWideScience

Sample records for adaptive control system

  1. Adaptive control for chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hua Changchun E-mail: cch@ysu.edu.cn; Guan Xinping

    2004-10-01

    Control problem of chaotic system is investigated via adaptive method. A fairly simple adaptive controller is constructed, which can control chaotic systems to unstable fixed points. The precise mathematical models of chaotic systems need not be known and only the fixed points and the dimensions of chaotic systems are required to be known. Simulations on controlling different chaotic systems are investigated and the results show the validity and feasibility of the proposed controller.

  2. Evolving Systems and Adaptive Key Component Control

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  3. Simple adaptive control system design trades

    NARCIS (Netherlands)

    Mooij, E.

    2017-01-01

    In the design of a Model Reference Adaptive Control system, a reference model serves as the (well-known) basis through which system and user requirements can find their way into the design. By tuning the design parameters, the response of the actual vehicle should track the response of the

  4. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  5. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  6. Direct adaptive control for nonlinear uncertain dynamical systems

    Science.gov (United States)

    Hayakawa, Tomohisa

    In light of the complex and highly uncertain nature of dynamical systems requiring controls, it is not surprising that reliable system models for many high performance engineering and life science applications are unavailable. In the face of such high levels of system uncertainty, robust controllers may unnecessarily sacrifice system performance whereas adaptive controllers are clearly appropriate since they can tolerate far greater system uncertainty levels to improve system performance. In this dissertation, we develop a Lyapunov-based direct adaptive and neural adaptive control framework that addresses parametric uncertainty, unstructured uncertainty, disturbance rejection, amplitude and rate saturation constraints, and digital implementation issues. Specifically, we consider the following research topics; direct adaptive control for nonlinear uncertain systems with exogenous disturbances; robust adaptive control for nonlinear uncertain systems; adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints; adaptive reduced-order dynamic compensation for nonlinear uncertain systems; direct adaptive control for nonlinear matrix second-order dynamical systems with state-dependent uncertainty; adaptive control for nonnegative and compartmental dynamical systems with applications to general anesthesia; direct adaptive control of nonnegative and compartmental dynamical systems with time delay; adaptive control for nonlinear nonnegative and compartmental dynamical systems with applications to clinical pharmacology; neural network adaptive control for nonlinear nonnegative dynamical systems; passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems; neural network adaptive dynamic output feedback control for nonlinear nonnegative systems using tapped delay memory units; Lyapunov-based adaptive control framework for discrete-time nonlinear systems with exogenous disturbances

  7. Robust Adaptive Control of Multivariable Nonlinear Systems

    Science.gov (United States)

    2011-03-28

    On the commercial side, the implementation of L1 adaptive controller on NASA’s subscale generic transport model (GTM) aircraft demonstrated...I. Gregory, L. Valavani, Experimental Validation of 1L Adaptive Control: Rohrs ’ Counterexample in Flight, Submitted to AIAA Journal of Guidance

  8. Biofeedback systems and adaptive control hemodialysis treatment

    Directory of Open Access Journals (Sweden)

    Azar Ahmad

    2008-01-01

    Full Text Available On-line monitoring devices to control functions such as volume, body temperature, and ultrafiltration, were considered more toys than real tools for routine clinical application. However, bio-feedback blood volume controlled hemodialysis (HD is now possible in routine dialysis, allowing the delivery of a more physiologically acceptable treatment. This system has proved to reduce the incidence of intra-HD hypotension episodes significantly. Ionic dialysance and the patient′s plasma conductivity can be calculated easily from on-line measurements at two different steps of dialysate conductivity. A bio-feedback system has been devised to calculate the patient′s plasma conductivity and modulate the conductivity of the dialysate continuously in order to achieve a desired end-dialysis patient plasma conductivity corresponding to a desired end-dialysis plasma sodium concentration. Another bio-feedback system can control the body tempe-rature by measuring it at the arterial and venous lines of the extra-corporeal circuit, and then modulating the dialysate temperature in order to stabilize the patients′ temperature at constant values that result in improved intra-HD cardiovascular stability. The module can also be used to quantify vascular access recirculation. Finally, the simultaneous computer control of ultrafiltration has proven the most effective means for automatic blood pressure stabilization during hemo-dialysis treatment. The application of fuzzy logic in the blood-pressure-guided biofeedback con-trol of ultrafiltration during hemodialysis is able to minimize HD-induced hypotension. In con-clusion, online monitoring and adaptive control of the patient during the dialysis session using the bio-feedback systems is expected to render the process of renal replacement therapy more physiological and less eventful.

  9. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  10. Adaptive Control of the Chaotic System via Singular System Approach

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2014-01-01

    Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.

  11. Systems and Methods for Derivative-Free Adaptive Control

    Science.gov (United States)

    Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  12. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  13. Adaptive Generalized Predictive Control for Mechatronic Systems

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav; Böhm, Josef

    2006-01-01

    Roč. 5, č. 8 (2006), s. 1830-1837 ISSN 1109-2777 R&D Projects: GA ČR GP102/06/P275; GA ČR GA102/05/0271 Institutional research plan: CEZ:AV0Z10750506 Keywords : on-line identification * predictive control * input/output equations of predictions * real-time control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0040149.pdf

  14. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  15. Integrated Damage-Adaptive Control System (IDACS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI, in collaboration with Boeing Phantom Works, proposes to develop and test an efficient Integrated Damage Adaptive Control System (IDACS). The proposed system is...

  16. Developing eco-adaptive cruise control systems.

    Science.gov (United States)

    2014-01-01

    The study demonstrates the feasibility of two eco-driving applications which reduces vehicle fuel consumption and greenhouse gas emissions. In particular, the study develops an eco-drive system that combines eco-cruise control logic with state-of-the...

  17. Adaptive control of chaotic continuous-time systems with delay

    Science.gov (United States)

    Tian, Yu-Chu; Gao, Furong

    1998-06-01

    A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.

  18. Variable neural adaptive robust control: a switched system approach.

    Science.gov (United States)

    Lian, Jianming; Hu, Jianghai; Żak, Stanislaw H

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multiinput multioutput uncertain systems. The controllers incorporate a novel variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. It can determine the network structure online dynamically by adding or removing RBFs according to the tracking performance. The structure variation is systematically considered in the stability analysis of the closed-loop system using a switched system approach with the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  19. Control and adaptation in telecommunication systems mathematical foundations

    CERN Document Server

    Popovskij, Vladimir; Titarenko, Larysa

    2011-01-01

    This book is devoted to mathematical foundations providing synthesis and analysis of control and adaptation algorithms targeting modern telecommunication systems (TCS). The most popular technologies and network management methods are discussed.

  20. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  1. An Adaptive Multivariable Control System for Hydroelectric Generating Units

    Directory of Open Access Journals (Sweden)

    Gunne J. Hegglid

    1983-04-01

    Full Text Available This paper describes an adaptive multivariable control system for hydroelectric generating units. The system is based on a detailed mathematical model of the synchronous generator, the water turbine, the exiter system and turbine control servo. The models of the water penstock and the connected power system are static. These assumptions are not considered crucial. The system uses a Kalman filter for optimal estimation of the state variables and the parameters of the electric grid equivalent. The multivariable control law is computed from a Riccatti equation and is made adaptive to the generators running condition by means of a least square technique.

  2. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  3. Hormesis and adaptive cellular control systems

    Science.gov (United States)

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  4. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  5. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  6. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  7. Adaptive feedback control for a class of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hua Changchun E-mail: cch@ysu.edu.cn; Guan Xinping E-mail: xpguan@ysu.edu.cn; Shi Peng

    2005-02-01

    In this paper, the problem of control for a class of chaotic systems is considered. The nonlinear functions of chaotic systems are not necessarily to satisfy the Lipsichtz conditions, but bounded by a polynomial with the gains unknown. Employing adaptive method, the corresponding controller which renders the closed-loop system asymptotically stable is constructed. The designed controller is robust with respect to certain class of disturbances in the chaotic systems. Simulations on unified chaotic systems and Arneodo chaotic system are performed and the results verify the validity of the proposed techniques.

  8. Optimal adaptive control for a class of stochastic systems

    NARCIS (Netherlands)

    Bagchi, Arunabha; Chen, Han-Fu

    1995-01-01

    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law

  9. Optimal adaptive control for a class of stochastic systems

    NARCIS (Netherlands)

    Bagchi, Arunabha; Chen, Han-Fu

    1997-01-01

    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law

  10. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    NARCIS (Netherlands)

    Klein Wolterink, W.; Heijenk, Geert; Karagiannis, Georgios

    2011-01-01

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system,

  11. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    NARCIS (Netherlands)

    Klein Wolterink, W.; Karagiannis, Georgios; Brogle, Marc; Masip Bruin, Xavier; Braun, Torsten; Heijenk, Gerhard J.

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system,

  12. Neuro adaptive control for aerospace and distributed systems

    Science.gov (United States)

    Das, Abhijit

    Nonlinear and adaptive control is generally considered one of the most effective techniques for stabilizing complex nonlinear systems, where linear control techniques may fail completely. Thousands of research papers are published on either theory or applications of nonlinear and adaptive control. But often one obvious question arises how to implement these techniques in real life model? The best answer that one can think of is to develop simple nonlinear control laws which are easy to implement. Moreover for controlling multi-agent systems, it is often required to distribute the control laws based on limited information available among the agents. This research provides some of these issues in the following way. a) Autopilot design for Aerospace systems: this research developes adaptive backstepping and dynamic inversion methods with internal dynamics stabilization for the quadrotor. Quadrotor helicopter models usually show two main characteristics. First, strong coupling among the system states and second, under-actuation where many states are to be controlled with few control inputs. Due to these unique characteristics, the design of stabilizing control inputs is always challenging for quadrotor models. To confront these problems, first, a dynamic inversion technique with zero dynamics stabilization loop is introduced to a practical quadrotor model, second, an adaptive-backstepping technique is developed to a lagrangian quadrotor model. The stabilizing control laws for both of these techniques are developed using on Lyapunov based method; and b) Coordination of multi-agent systems: coordination among multiple agents is generally done based on balanced or bi-directed communication graph models. If the agents are nonlinear and passive then for a balanced graph model synchronization is possible. But, for other than balanced and bi-directed graph models, it is difficult to synchronize nonlinear systems. Moreover, the performance of synchronization is normally

  13. Computational methods for the verification of adaptive control systems

    Science.gov (United States)

    Prasanth, Ravi K.; Boskovic, Jovan; Mehra, Raman K.

    2004-08-01

    Intelligent and adaptive control systems will significantly challenge current verification and validation (V&V) processes, tools, and methods for flight certification. Although traditional certification practices have produced safe and reliable flight systems, they will not be cost effective for next-generation autonomous unmanned air vehicles (UAVs) due to inherent size and complexity increases from added functionality. Affordable V&V of intelligent control systems is by far the most important challenge in the development of UAVs faced by both commercial and military aerospace industry in the United States. This paper presents a formal modeling framework for a class of adaptive control systems and an associated computational scheme. The class of systems considered include neural network-based flight control systems and vehicle health management systems. This class of systems and indeed all adaptive systems are hybrid systems whose continuum dynamics is nonlinear. Our computational procedure is iterative and each iteration has two sequential steps. The first step is to derive an approximating finite-state automaton whose behaviors contain the behaviors of the hybrid system. The second step is to check if the language accepted by the approximating automaton is empty (emptiness checking). The iterations are terminated if the language accepted is empty; otherwise, the approximation is refined and the iteration is continued. This procedure will never produce an "error-free" certificate when the actual system contains errors which is an important requirement in V&V of safety critical systems.

  14. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  15. Adaptive Neuro-Fuzzy Inference System based DVR Controller Design

    Directory of Open Access Journals (Sweden)

    Brahim FERDI

    2011-06-01

    Full Text Available PI controller is very common in the control of DVRs. However, one disadvantage of this conventional controller is its inability to still working well under a wider range of operating conditions. So, as a solution fuzzy controller is proposed in literature. But, the main problem with the conventional fuzzy controllers is that the parameters associated with the membership functions and the rules depend broadly on the intuition of the experts. To overcome this problem, Adaptive Neuro-Fuzzy Inference System (ANFIS based controller design is proposed. The resulted controller is composed of Sugeno fuzzy controller with two inputs and one output. According to the error and error rate of the control system and the output data, ANFIS generates the appropriate fuzzy controller. The simulation results have proved that the proposed design method gives reliable powerful fuzzy controller with a minimum number of membership functions.

  16. L1 Adaptive Control for a Vertical Rotor Orientation System

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2016-08-01

    Full Text Available Bottom-fixed vertical rotating devices are widely used in industrial and civilian fields. The free upside of the rotor will cause vibration and lead to noise and damage during operation. Meanwhile, parameter uncertainties, nonlinearities and external disturbances will further deteriorate the performance of the rotor. Therefore, in this paper, we present a rotor orientation control system based on an active magnetic bearing with L 1 adaptive control to restrain the influence of the nonlinearity and uncertainty and reduce the vibration amplitude of the vertical rotor. The boundedness and stability of the adaptive system are analyzed via a theoretical derivation. The impact of the adaptive gain is discussed through simulation. An experimental rig based on dSPACE is designed to test the validity of the rotor orientation system. The experimental results show that the relative vibration amplitude of the rotor using the L 1 adaptive controller will be reduced to ∼50% of that in the initial state, which is a 10% greater reduction than can be achieved with the nonadaptive controller. The control approach in this paper is of some significance to solve the orientation control problem in a low-speed vertical rotor with uncertainties and nonlinearities.

  17. Adaptive Control of Artificial Pancreas Systems - A Review

    Directory of Open Access Journals (Sweden)

    Kamuran Turksoy

    2014-01-01

    Full Text Available Artificial pancreas (AP systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.

  18. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  19. Adaptive Wavelet Coding Applied in a Wireless Control System

    Science.gov (United States)

    Gama, Felipe O. S.; O. Salazar, Andrés

    2017-01-01

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus Eb/N0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop. PMID:29236048

  20. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  1. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    , active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure...

  2. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  3. Generalized projective synchronization of chaotic systems via adaptive learning control

    International Nuclear Information System (INIS)

    Yun-Ping, Sun; Jun-Min, Li; Hui-Lin, Wang; Jiang-An, Wang

    2010-01-01

    In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov–Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. (general)

  4. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  5. Adaptive control system having hedge unit and related apparatus and methods

    Science.gov (United States)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  6. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  7. Adaptive control for solar energy based DC microgrid system development

    Science.gov (United States)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  8. Embedded intelligent adaptive PI controller for an electromechanical system.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2016-09-01

    In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    Science.gov (United States)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  10. Adaptive chaos control and synchronization in only locally Lipschitz systems

    International Nuclear Information System (INIS)

    Lin Wei

    2008-01-01

    In the existing results on chaos control and synchronization based on the adaptive controlling technique (ACT), a uniform Lipschitz condition on a given dynamical system is always assumed in advance. However, without this uniform Lipschitz condition, the ACT might be failed in both theoretical analysis and in numerical experiment. This Letter shows how to utilize the ACT to get a rigorous control for the system which is not uniformly Lipschitz but only locally Lipschitz, and even for the system which has unbounded trajectories. In fact, the ACT is proved to possess some limitation, which is actually induced by the nonlinear degree of the original system. Consequently, a piecewise ACT is proposed so as to improve the performance of the existing techniques

  11. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  12. Non-linear and adaptive control of a refrigeration system

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2011-01-01

    are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed......In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... capacities ensures a high energy efficiency. The level of liquid filling is indirectly measured by the superheat. Introduction of variable speed compressors and electronic expansion valves enables the use of more sophisticated control algorithms, giving a higher degree of performance and just as important...

  13. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  14. An adaptive learning control system for large flexible structures

    Science.gov (United States)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  15. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  16. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  17. Adaptive-passive vibration control systems for industrial applications

    Science.gov (United States)

    Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.

    2015-04-01

    Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.

  18. Adaptive and Resilient Flight Control System for a Small Unmanned Aerial System

    OpenAIRE

    Gonzalo Garcia; Shahriar Keshmiri

    2013-01-01

    The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainti...

  19. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  20. Adaptive control of systems in cascade with saturation

    Science.gov (United States)

    Kannan, Suresh K.

    This thesis extends the use of neural-network-based model reference adaptive control to systems that occur as cascades. In general, these systems are not feedback linearizable. The approach taken is that of approximate feedback linearization of upper subsystems whilst treating the lower-subsystem states as virtual actuators. Similarly, lower-subsystems are also feedback linearized. Typically, approximate inverses are used for linearization purposes. Model error arising from the use of an approximate inverse is minimized using a neural-network as an adaptive element. Incorrect adaptation due to (virtual) actuator saturation and dynamics is avoided using the Pseudocontrol Hedging method. Using linear approximate inverses and linear reference models generally result in large desired pseudocontrol for large external commands. Even if the provided external command is feasible (null-controllable), there is no guarantee that the reference model trajectory is feasible. In order to mitigate this, nonlinear reference models based on nested-saturation methods are used to constrain the evolution of the reference model and thus the plant states. The method presented in this thesis lends itself to the inner-outer loop control of air vehicles, where the inner-loop controls attitude dynamics and the outer-loop controls the translational dynamics of the vehicle. The outer-loop treats the closed loop attitude dynamics as an actuator. Adaptation to uncertainty in the attitude, as well as the translational dynamics, is introduced, thus minimizing the effects of model error in all six degrees of freedom and leading to more accurate position tracking. A pole-placement approach is used to choose compensator gains for the tracking error dynamics. This alleviates timescale separation requirements, allowing the outer loop bandwidth to be closer to that of the inner loop, thus increasing position tracking performance. A poor model of the attitude dynamics and a basic kinematics model is

  1. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    Science.gov (United States)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  2. Comparison of Conventional Closed-Loop Controller with an Adaptive Controller for a Disturbed Thermodynamic System

    DEFF Research Database (Denmark)

    Alphinas, Robert A.; Hansen, Hans Henrik; Tambo, Torben

    2017-01-01

    Non-adaptive proportional controllers suffer from the ability to handle a system disturbance leading to a large steady-state error and undesired transient behavior. On the other hand, they are easy to implement and tune. This article examines whether an adaptive controller based on the MIT...... and Lyapunov principle leads to a more robust and accurate regulation. Both controllers have been tested on a thermodynamic system exposed to a disturbance. The experiment shows that the adaptive controller handles the disturbance faster and more accurate....

  3. A Study on Mode Confusions in Adaptive Cruise Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Dae Ryong; Yang, Ji Hyun; Lee, Sang Hun [Kookmin University, Seoul (Korea, Republic of)

    2015-05-15

    Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions.

  4. A Study on Mode Confusions in Adaptive Cruise Control Systems

    International Nuclear Information System (INIS)

    Ahn, Dae Ryong; Yang, Ji Hyun; Lee, Sang Hun

    2015-01-01

    Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions

  5. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Science.gov (United States)

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  6. Integrated Damage-Adaptive Control System (IDACS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to further develop, implement and test the damage-adaptive control algorithms developed in Phase I within the framework of an Integrated Damage...

  7. An improved Direct Adaptive Fuzzy controller for an uncertain DC Motor Speed Control System

    OpenAIRE

    Chunjie Zhou; Shuang Huang; Quan Yin; Duc Cuong Quach

    2013-01-01

    In this paper, we present an improved Direct Adaptive Fuzzy (IDAF) controller applied to general control DC motor speed system. In particular, an IDAF algorithm is designed to control an uncertain DC motor speed to track a given reference signal. In fact, the quality of the control system depends significantly on the amount of fuzzy rules-fuzzy sets and the updating coefficient of the adaptive rule. This can be observed clearly by the system error when the reference input is constant and out ...

  8. Robust Adaptive Control for Nonlinear Uncertain Systems Using Type-2 Fuzzy Neural Network System

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lee

    2011-01-01

    Full Text Available This paper proposes a novel intelligent control scheme using type-2 fuzzy neural network (type-2 FNN system. The control scheme is developed using a type-2 FNN controller and an adaptive compensator. The type-2 FNN combines the type-2 fuzzy logic system (FLS, neural network, and its learning algorithm using the optimal learning algorithm. The properties of type-1 FNN system parallel computation scheme and parameter convergence are easily extended to type-2 FNN systems. In addition, a robust adaptive control scheme which combines the adaptive type-2 FNN controller and compensated controller is proposed for nonlinear uncertain systems. Simulation results are presented to illustrate the effectiveness of our approach.

  9. Control code for laboratory adaptive optics teaching system

    Science.gov (United States)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  10. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  11. Design and Modeling of an Adaptively Controlled Rainwater Harvesting System

    Directory of Open Access Journals (Sweden)

    David Roman

    2017-12-01

    Full Text Available Management of urban stormwater to mitigate Combined Sewer Overflows (CSOs is a priority for many cities; yet, few truly innovative approaches have been proposed to address the problem. Recent advances in information technology are now, however, providing cost-effective opportunities to achieve better performance of conventional stormwater infrastructure through a Continuous Monitoring and Adaptive Control (CMAC approach. The primary objective of this study was to demonstrate that a CMAC approach can be applied to a conventional rainwater harvesting system in New York City to improve performance by minimizing discharge to the combined sewer during rainfall events, reducing water use for irrigation of local vegetation, and optimizing vegetation health. To achieve this objective, a hydrologic and hydraulic model was developed for a planned and designed rainwater harvesting system to explore multiple potential scenarios prior to the system’s actual construction. Model results indicate that the CMAC rainwater harvesting system is expected to provide significant performance improvements over conventional rainwater harvesting systems. The CMAC system is expected to capture and retain 76.6% of roof runoff per year on average, as compared to just 14.8% and 41.3% for conventional moisture and timer based systems, respectively. Similarly, the CMAC system is expected to use 81.4% and 18.0% less harvested rainwater than conventional moisture and timer based irrigation approaches, respectively. The flexibility of the CMAC approach to meet competing objectives is promising for widespread implementation in New York City and other heavily urbanized areas challenged by stormwater management issues.

  12. Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme.

    Science.gov (United States)

    Zhu, Zhen-Cai; Li, Xiang; Shen, Gang; Zhu, Wei-Dong

    2018-01-01

    This paper concerns wire rope tension control of a double-rope winding hoisting system (DRWHS), which consists of a hoisting system employed to realize a transportation function and an electro-hydraulic servo system utilized to adjust wire rope tensions. A dynamic model of the DRWHS is developed in which parameter uncertainties and external disturbances are considered. A comparison between simulation results using the dynamic model and experimental results using a double-rope winding hoisting experimental system is given in order to demonstrate accuracy of the dynamic model. In order to improve the wire rope tension coordination control performance of the DRWHS, a robust nonlinear adaptive backstepping controller (RNABC) combined with a nonlinear disturbance observer (NDO) is proposed. Main features of the proposed combined controller are: (1) using the RNABC to adjust wire rope tensions with consideration of parameter uncertainties, whose parameters are designed online by adaptive laws derived from Lyapunov stability theory to guarantee the control performance and stability of the closed-loop system; and (2) introducing the NDO to deal with uncertain external disturbances. In order to demonstrate feasibility and effectiveness of the proposed controller, experimental studies have been conducted on the DRWHS controlled by an xPC rapid prototyping system. Experimental results verify that the proposed controller exhibits excellent performance on wire rope tension coordination control compared with a conventional proportional-integral (PI) controller and adaptive backstepping controller. Copyright © 2017 ISA. All rights reserved.

  13. Distributed Adaptive Droop Control for DC Distribution Systems

    DEFF Research Database (Denmark)

    Nasirian, Vahidreza; Davoudi, Ali; Lewis, Frank

    2014-01-01

    A distributed-adaptive droop mechanism is proposed for secondary/primary control of dc Microgrids. The conventional secondary control, that adjusts the voltage set point for the local droop mechanism, is replaced by a voltage regulator. A current regulator is then added to fine-tune the droop...... controller precisely accounts for the transmission/distribution line impedances. The controller on each converter exchanges data with only its neighbor converters on a sparse communication graph spanned across the Microgrid. Global dynamic model of the Microgrid is derived, with the proposed controller...

  14. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  15. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    Science.gov (United States)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  16. Damping Force Tracking Control of MR Damper System Using a New Direct Adaptive Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Xuan Phu Do

    2015-01-01

    Full Text Available This paper presents a new direct adaptive fuzzy controller and its effectiveness is verified by investigating the damping force tracking control of magnetorheological (MR fluid based damper (MR damper in short system. In the formulation of the proposed controller, a model of interval type 2 fuzzy controller is combined with the direct adaptive control to achieve high performance in vibration control. In addition, H∞ (H infinity tracking technique is used in building a model of the direct adaptive fuzzy controller in which an enhanced iterative algorithm is combined with the fuzzy model. After establishing a closed-loop control structure to achieve high control performance, a cylindrical MR damper is adopted and damping force tracking results are obtained and discussed. In addition, in order to demonstrate the effectiveness of the proposed control strategy, two existing controllers are modified and tested for comparative work. It has been demonstrated from simulation and experiment that the proposed control scheme provides much better control performance in terms of damping force tracking error. This leads to excellent vibration control performance of the semiactive MR damper system associated with the proposed controller.

  17. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller implement...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown.......The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...

  18. Distributed adaptive droop control for DC distribution systems

    DEFF Research Database (Denmark)

    Nasirian, Vahidreza; Davoudi, Ali; Lewis, Frank

    2016-01-01

    Summary form only given: A distributed-adaptive droop mechanism is proposed for secondary/primary control of dc microgrids. The conventional secondary control that adjusts the voltage set point for the local droop mechanism is replaced by a voltage regulator. A current regulator is also added...... sharing. The proposed controller precisely accounts for the transmission/distribution line impedances. The controller on each converter exchanges data with only its neighbor converters on a sparse communication graph spanned across the microgrid. Global dynamic model of the microgrid is derived...

  19. ADEX optimized adaptive controllers and systems from research to industrial practice

    CERN Document Server

    Martín-Sánchez, Juan M

    2015-01-01

    This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...

  20. Adaptive and Resilient Flight Control System for a Small Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Gonzalo Garcia

    2013-01-01

    Full Text Available The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.

  1. Design of Attitude Control System for UAV Based on Feedback Linearization and Adaptive Control

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available Attitude dynamic model of unmanned aerial vehicles (UAVs is multi-input multioutput (MIMO, strong coupling, and nonlinear. Model uncertainties and external gust disturbances should be considered during designing the attitude control system for UAVs. In this paper, feedback linearization and model reference adaptive control (MRAC are integrated to design the attitude control system for a fixed wing UAV. First of all, the complicated attitude dynamic model is decoupled into three single-input single-output (SISO channels by input-output feedback linearization. Secondly, the reference models are determined, respectively, according to the performance indexes of each channel. Subsequently, the adaptive control law is obtained using MRAC theory. In order to demonstrate the performance of attitude control system, the adaptive control law and the proportional-integral-derivative (PID control law are, respectively, used in the coupling nonlinear simulation model. Simulation results indicate that the system performance indexes including maximum overshoot, settling time (2% error range, and rise time obtained by MRAC are better than those by PID. Moreover, MRAC system has stronger robustness with respect to the model uncertainties and gust disturbance.

  2. A system identification model for adaptive nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1991-01-01

    A system identification model that combines generalized-spline function approximation with a nonlinear control system is described. The complete control system contains three main elements: a nonlinear-inverse-dynamic control law that depends on a comprehensive model of the plant, a state estimator whose outputs drive the control law, and a function approximation scheme that models the system dynamics. The system-identification task, which combines an extended Kalman filter with a function approximator modeled as an artificial neural network, is considered. The results of an application of the identification techniques to a nonlinear transport aircraft model are presented.

  3. Fuzzy controller adaptation

    Science.gov (United States)

    Myravyova, E. A.; Sharipov, M. I.; Radakina, D. S.

    2017-10-01

    During writing this work, the fuzzy controller with a double base of rules was studied, which was applied for the synthesis of the automated control system. A method for fuzzy controller adaptation has been developed. The adaptation allows the fuzzy controller to automatically compensate for parametric interferences that occur at the control object. Specifically, the fuzzy controller controlled the outlet steam temperature in the boiler unit BKZ-75-39 GMA. The software code was written in the programming support environment Unity Pro XL designed for fuzzy controller adaptation.

  4. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    Science.gov (United States)

    2007-04-01

    there is a corresponding need for control components to work reliably in harsh environments and at higher temperatures. The high temperature actuator control...suppliers. The high temperature actuator control module was identified as the critical component for a distributed engine control system, which

  5. Decentralized adaptive control of interconnected nonlinear systems with unknown control directions.

    Science.gov (United States)

    Huang, Jiangshuai; Wang, Qing-Guo

    2018-03-01

    In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Adaptive control of energy storage systems for power smoothing applications

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2017-01-01

    Energy storage systems (ESSs) are desired and widely applied for power smoothing especially in systems with renewable generation and pulsed loads. High-pass-filter (HPF) is commonly applied in those applications in which the HPF extracts the high frequency fluctuating power and uses...... that as the power reference for ESS. The cut-off frequency, as the critical parameter, actually decides the power/energy compensated by ESS. Practically the state-of-charge (SoC) of the ESS has to be limited for safety and life-cycle considerations. In this paper an adaptive cut-off frequency design is proposed...

  7. Control uncertain Genesio-Tesi chaotic system: Adaptive sliding mode approach

    International Nuclear Information System (INIS)

    Dadras, Sara; Momeni, Hamid Reza

    2009-01-01

    An adaptive sliding mode control (ASMC) technique is introduced in this paper for a chaotic dynamical system (Genesio-Tesi system). Using the sliding mode control technique, a sliding surface is determined and the control law is established. An adaptive sliding mode control law is derived to make the states of the Genesio-Tesi system asymptotically track and regulate the desired state. The designed control scheme can control the uncertain chaotic behaviors to a desired state without oscillating very fast and guarantee the property of asymptotical stability. An illustrative simulation result is given to demonstrate the effectiveness of the proposed adaptive sliding mode control design.

  8. Adaptive Fuzzy Containment Control for Uncertain Nonlinear Multiagent Systems

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2014-01-01

    Full Text Available This paper considers the containment control problem for uncertain nonlinear multiagent systems under directed graphs. The followers are governed by nonlinear systems with unknown dynamics while the multiple leaders are neighbors of a subset of the followers. Fuzzy logic systems (FLSs are used to identify the unknown dynamics and a distributed state feedback containment control protocol is proposed. This result is extended to the output feedback case, where observers are designed to estimate the unmeasurable states. Then, an output feedback containment control scheme is presented. The developed state feedback and output feedback containment controllers guarantee that the states of all followers converge to the convex hull spanned by the dynamic leaders. Based on Lyapunov stability theory, it is proved that the containment control errors are uniformly ultimately bounded (UUB. An example is provided to show the effectiveness of the proposed control method.

  9. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chang Weider; Yan Junjuh

    2005-01-01

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p , K i , and K d , are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  10. Adaptation of the control system in view of SPIRAL integration

    International Nuclear Information System (INIS)

    Lecorche, E.

    1998-01-01

    As soon as the collaboration between the SPIRAL project and the Control Group has been defined, the first implementation of the SPIRAL control system started following various directions. Both the global hardware and software architectures has been specified and some practical works have been undertaken such as the Ethernet network installation or the first SPIRAL oriented software design and coding. (authors)

  11. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision...

  12. Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik; Khaliq, Abdul; Saeed-ur-Rehman

    2015-01-01

    This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies

  13. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems

    International Nuclear Information System (INIS)

    Poursamad, Amir; Markazi, Amir H.D.

    2009-01-01

    This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.

  14. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  15. Synchronization of a modified Chua's circuit system via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Yan, J.-J.; Lin, J.-S.; Liao, T.-L.

    2008-01-01

    This study addresses the adaptive synchronization of a modified Chua's circuit system with both unknown system parameters and the nonlinearity in the control input. An adaptive switching surface is newly adopted such that it becomes easy to ensure the stability of the error dynamics in the sliding mode. Based on this adaptive switching surface, an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion, even when the system is undergoing input nonlinearity. This method can also be easily extended to a general class of Chua's circuits. An illustrative example is given to show the applicability of the proposed ASMC design

  16. Adaptive Nonsingular Terminal Sliding Model Control and Its Application to Permanent Magnet Synchronous Motor Drive System

    OpenAIRE

    Liu Yue; Zhou Shuo

    2016-01-01

    To improve the dynamic performance of permanent magnet synchronous motor(PMSM) drive system, a adaptive nonsingular terminal sliding model control((NTSMC) strategy was proposed. The proposed control strategy presents an adaptive variable-rated exponential reaching law which the L1 norm of state variables is introduced. Exponential and constant approach speed can adaptively adjust according to the state variables’ distance to the equilibrium position.The proposed scheme can shorten the reachin...

  17. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  18. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  19. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    Science.gov (United States)

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  1. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    Science.gov (United States)

    Gao, Hui; Song, Yongduan; Wen, Changyun

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  2. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.

    Science.gov (United States)

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2017-06-01

    An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.

  3. Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation.

    Science.gov (United States)

    Zhou, Qi; Shi, Peng; Tian, Yang; Wang, Mingyu

    2015-10-01

    In this paper, an approximation-based adaptive tracking control approach is proposed for a class of multiinput multioutput nonlinear systems. Based on the method of neural network, a novel adaptive controller is designed via backstepping design process. Furthermore, by introducing Nussbaum function, the issue of unknown control directions is handled. In the backstepping design process, the dynamic surface control technique is employed to avoid differentiating certain nonlinear functions repeatedly. Moreover, in order to reduce the number of adaptation laws, we do not use the neural networks to directly approximate the unknown nonlinear functions but the desired control signals. Finally, we provide two examples to illustrate the effectiveness of the proposed approach.

  4. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  5. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  6. Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2013-01-01

    This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts...

  7. Wheeled vehicle deceleration as estimation parameter of adaptive brake control system state

    Directory of Open Access Journals (Sweden)

    Turenko A.

    2012-06-01

    Full Text Available The method of stability estimation of adaptive control system with signal adjustment based on Lyapunov’s direct method that allows to take into account the nonstationarity of the basic system and non-linearity in the form of limitation on control action restriction as well as error control is stated.

  8. Simple adaptive control system design for a quadrotor with an internal PFC

    Science.gov (United States)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro

    2014-12-01

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  9. Simple adaptive control system design for a quadrotor with an internal PFC

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro [Dept. of Mechanical Systems Engineering, Kumamoto University 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan)

    2014-12-10

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  10. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  11. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  12. Adaptive control for evaluation of flexibility benefits in microgrid systems

    International Nuclear Information System (INIS)

    Holjevac, Ninoslav; Capuder, Tomislav; Kuzle, Igor

    2015-01-01

    Aggregating groups of loads and generators at the same location with centralized control is known as the concept of microgrids. However, if those flexible producers and consumers do not have the ability to balance the variability and uncertainty of RES (renewable energy sources) production within them, from the system perspective they are seen as a source of imbalances and potential problems in maintaining the equilibrium of production and consumption. The papers main goal is to quantify the ability of microgrid components to provide flexibility. This flexibility is analysed from two perspectives, defining two operating principles of each microgrid: independently from the distribution grid and connected, interacting and responding to signals from the upstream system. Following on this, the paper presents two relevant cases. In the first part a deterministic model is developed based on MILP (Mixed Integer Linear programming) simulating the microgrid operation over one year period. This model is used to determine the optimal microgrid configuration with respect to the amount of unused energy, thus defining role and capability of different pieces of equipment and their size (RES (renewable energy sources) wind and solar, HS (heat storage), μCHP (micro combined heat and power plants) and EHP (electric heat pumps)). The second part of this paper further expands the model with MPC (Model Predictive Control) approach in order to capture the behaviour of microgrid interaction with the distribution grid, modelling uncertainties of forecasting RES production by stochastic programming. The model is capable to evaluate both the impact of variable energy production and consumption and the impact of energy balancing tariffs depending on the amount of balancing energy needed for the microgrid operation. - Highlights: • Integrated MILP (Mixed Integer Linear programming) formulation for optimal operation of developed microgrid model. • Determining operational flexibility of

  13. Fault-tolerant adaptive control for load-following in static space nuclear power systems

    Science.gov (United States)

    Parlos, Alexander G.; Onbasioglu, Fetiye O.; Peddicord, Kenneth L.; Metzger, John D.

    1992-01-01

    The possible use of a dual-loop model-based adaptive control system for load following in static space nuclear power systems is investigated. The proposed approach has thus far been applied only to a thermoelectric space nuclear power system but is equally applicable to other static space nuclear power systems such as thermionic systems.

  14. AI-based adaptive control and design of autopilot system for ...

    Indian Academy of Sciences (India)

    Artificial Intelligence (AI)-based controllers such as fuzzy logic PD, fuzzy logic PD + I, self-tuning fuzzy logic PID (STF-PID) controller and fuzzy logic-based sliding mode adaptive controller (FLSMAC) are designed for stable autopilot system and are compared with conventional PI controller. The target of throttle, speed and ...

  15. Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

    Science.gov (United States)

    Bai, Jianbo; Li, Yang; Chen, Jianhao

    2018-02-01

    The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

  16. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    Science.gov (United States)

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Adaptive Synchronization for Two Different Stochastic Chaotic Systems with Unknown Parameters via a Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Zengyun Wang

    2013-01-01

    Full Text Available This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems (Lorenz-Chen and Chen-Lu in the presence of the uncertainties and unknown parameters. Numerical simulations are given to demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.

  18. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  19. Adaptive Fuzzy Sliding Mode Tracking Control of Uncertain Underactuated Nonlinear Systems: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Faten Baklouti

    2016-01-01

    Full Text Available The trajectory tracking of underactuated nonlinear system with two degrees of freedom is tackled by an adaptive fuzzy hierarchical sliding mode controller. The proposed control law solves the problem of coupling using a hierarchical structure of the sliding surfaces and chattering by adopting different reaching laws. The unknown system functions are approximated by fuzzy logic systems and free parameters can be updated online by adaptive laws based on Lyapunov theory. Two comparative studies are made in this paper. The first comparison is between three different expressions of reaching laws to compare their abilities to reduce the chattering phenomenon. The second comparison is made between the proposed adaptive fuzzy hierarchical sliding mode controller and two other control laws which keep the coupling in the underactuated system. The tracking performances of each control law are evaluated. Simulation examples including different amplitudes of external disturbances are made.

  20. Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.

    Science.gov (United States)

    Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu

    2015-12-01

    This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.

  1. Adaptive Sliding-Mode Tracking Control for a Class of Nonholonomic Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2013-01-01

    Full Text Available This paper investigates the problem of finite-time tracking control for nonholonomic mechanical systems with affine constraints. The control scheme is provided by flexibly incorporating terminal sliding-mode control with the method of relay switching control and related adaptive technique. The proposed relay switching controller ensures that the output tracking error converges to zero in a finite time. As an application, a boat on a running river is given to show the effectiveness of the control scheme.

  2. Adaptive Sliding Control for a Class of Fractional Commensurate Order Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    2015-01-01

    Full Text Available This paper proposes adaptive sliding mode control design for a class of fractional commensurate order chaotic systems. We firstly introduce a fractional integral sliding manifold for the nominal systems. Secondly we prove the stability of the corresponding fractional sliding dynamics. Then, by introducing a Lyapunov candidate function and using the Mittag-Leffler stability theory we derive the desired sliding control law. Furthermore, we prove that the proposed sliding manifold is also adapted for the fractional systems in the presence of uncertainties and external disturbances. At last, we design a fractional adaptation law for the perturbed fractional systems. To verify the viability and efficiency of the proposed fractional controllers, numerical simulations of fractional Lorenz’s system and Chen’s system are presented.

  3. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    Science.gov (United States)

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  4. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    Science.gov (United States)

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  5. Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system

    International Nuclear Information System (INIS)

    Ghamati, Mina; Balochian, Saeed

    2015-01-01

    In this paper two adaptive sliding mode controls for synchronizing the state trajectories of the Genesio–Tesi system with unknown parameters and external disturbance are proposed. A switching surface is introduced and based on this switching surface, two adaptive sliding mode control schemes are presented to guarantee the occurrence of the sliding motion. The stability and robustness of the two proposed schemes are proved using Lyapunov stability theory. The effectiveness of our introduced schemes is provided by numerical simulations

  6. Adaptive voltage control in power systems modeling, design and applications

    CERN Document Server

    Fusco, Giuseppe

    2006-01-01

    Large-scale power cuts in both North America and Europe emphasised the need to maintain an adequate supply of high-quality electricity. This book offers information on the relatively low-cost of doing so using self-regulating control mechanisms. It is of interest to the practising power/control engineer and to academics needing industrial inputs.

  7. A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-03-01

    Full Text Available This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has two equilibrium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0.20572,L2 = 0 and L3 = −1.20824. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY = 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is also designed via backstepping control method to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk chaotic system and also the adaptive backstepping control results.

  8. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    Science.gov (United States)

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  9. BEAGLEBOARD EMBEDDED SYSTEM FOR ADAPTIVE TRAFFIC LIGHT CONTROL SYSTEM WITH CAMERA SENSOR

    Directory of Open Access Journals (Sweden)

    Muhammad Febrian Rachmadi

    2012-07-01

    Full Text Available Traffic is one of the most important aspects in human daily life because traffic affects smoothness of capital flows, logistics, and other community activities. Without appropriate traffic light control system, possibility of traffic congestion will be very high and hinder people’s life in urban areas. Adaptive traffic light control system can be used to solve traffic congestions in an intersection because it can adaptively change the durations of green light each lane in an intersection depend on traffic density. The proposed adaptive traffic light control system prototype uses Beagleboard-xM, CCTV camera, and AVR microcontrollers. We use computer vision technique to obtain information on traffic density combining Viola-Jones method with Kalman Filter method. To calculate traffic light time of each traffic light in intersection, we use Distributed Constraint Satisfaction Problem (DCSP. From implementations and experiments results, we conclude that BeagleBoard-xM can be used as main engine of adaptive traffic light control system with 91.735% average counting rate. Lalu intas adalah salah satu aspek yang paling penting dalam kehidupan sehari-hari manusia karena lalu lintas memengaruhi kelancaran arus modal, logistik, dan kegiatan masyarakat lainnya. Tanpa sistem kontrol lampu lalu lintas yang memadai, kemungkinan kemacetan lalu lintas akan sangat tinggi dan menghambat kehidupan masyarakat di perkotaan. Sistem kontrol lampu lalu lintas adaptif dapat digunakan untuk memecahkan kemacetan lalu lintas di persimpangan karena dapat mengubah durasi lampu hijau di setiap persimpangan jalan tergantung pada kepadatan lalu lintas. Prototipe sistem kontrol lampu lalu lintas menggunakan BeagleBoard-XM, kamera CCTV, dan mikrokontroler AVR. Peneliti menggunakan teknik computer vision untuk mendapatkan informasi tentang kepadatan lalu lintas dengan menggabungkan metode Viola-Jones dan metode Filter Kalman. Untuk menghitung waktu setiap lampu lalu lintas

  10. Adaptive Control of Telerobotic Systems Worn by Humans

    Science.gov (United States)

    1993-09-27

    corres- ponds to the open loop transfer function that maps the input current I to the extender position X, which is similar in form to the block G...W(s) I AO(s) A0(s) AO(s) AO(s) J E) (3 a2 I a3 ko kOzt ~j X ?f3 3f3 ’X 3 )J.f (78) Equation (78) describes the extender system in the form discussed...memory alloy could greatly reduce the size of the hardware used to produce extender motion. Currently , the extender system is anchored to a fixed

  11. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.

    Science.gov (United States)

    Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi

    2018-01-01

    In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Runtime Assurance Framework Development for Highly Adaptive Flight Control Systems

    Science.gov (United States)

    2015-12-01

    general, power management systems will adjust the fuel flow rate (up or down) to maintain steady, stable combustion when certain critical parameters...traffic jams” as well. 4. Other examples include: Sand pile or avalanche model, genetic algorithms, chaos/fractals, lattice gas model, and epidemic

  13. Terminal Sliding Mode Control with Adaptive Law for Uncertain Nonlinear System

    Directory of Open Access Journals (Sweden)

    Zhanshan Zhao

    2015-01-01

    Full Text Available A novel nonsingular terminal sliding mode controller is proposed for a second-order system with unmodeled dynamics uncertainties and external disturbances. We need not achieve the knowledge for boundaries of uncertainties and external disturbances in advance. The adaptive control gains are obtained to estimate the uncertain parameters and external disturbances which are unknown but bounded. The closed loop system stability is ensured with robustness and adaptation by the Lyapunov stability theorem in finite time. An illustrative example of second-order nonlinear system with unmodeled dynamics and external disturbances is given to demonstrate the effectiveness of the presented scheme.

  14. Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.; Lee, S.M.; Kwon, O.M.

    2007-01-01

    The Letter addresses control problem for adaptive synchronization of the Genesio-Tesi chaotic systems with three uncertain parameters. A new control scheme is proposed to make the states of two Genesio-Tesi systems asymptotically synchronized. Based on the Lyapunov method and linear matrix inequality (LMI) framework, an existence criterion for the control law is derived in terms of LMIs. A numerical simulation is illustrated to show the effectiveness of the proposed chaos synchronization scheme

  15. Direct Adaptive Control of a Class of Nonlinear Discrete-Time Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon

    2004-01-01

    In this paper we deal with direct adaptive control of a specific class of discrete-time SISO systems, where the nonlinearities are convex and an upper bound is known. We use a control law based on a linear combination of a set of globally uniformly bounded basis functions with compact support, wh...

  16. Alignment Condition-Based Robust Adaptive Iterative Learning Control of Uncertain Robot System

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available This paper proposes an adaptive iterative learning control strategy integrated with saturation-based robust control for uncertain robot system in presence of modelling uncertainties, unknown parameter, and external disturbance under alignment condition. An important merit is that it achieves adaptive switching of gain matrix both in conventional PD-type feedforward control and robust adaptive control in the iteration domain simultaneously. The analysis of convergence of proposed control law is based on Lyapunov's direct method under alignment initial condition. Simulation results demonstrate the faster learning rate and better robust performance with proposed algorithm by comparing with other existing robust controllers. The actual experiment on three-DOF robot manipulator shows its better practical effectiveness.

  17. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Speed Sensorless Control of PMSM using Model Reference Adaptive System and RBFN

    OpenAIRE

    Wei Gao; Zhirong Guo

    2013-01-01

    In the speed sensorless vector control system, the amended method of estimating the rotor speed about model reference adaptive system (MRAS) based on radial basis function neural network (RBFN) for PMSM sensorless vector control system was presented. Based on the PI regulator, the radial basis function neural network which is more prominent learning efficiency and performance is combined with MRAS. The reference model and the adjust model are the PMSM itself and the PMSM current, respectively...

  19. Artificial Bee Colony-based Adaptive Position Control of Electrohydraulic Servo Systems with Parameter Uncertainty

    OpenAIRE

    Ayinde, Babajide O.; El-Ferik, Sami

    2017-01-01

    In this paper, a robust adaptive backstepping-based controller is developed for positioning the spool valve of Electro-Hydraulic Servo System (EHSS) with parameter fluctuations. Artificial Bee Colony (ABC) algorithm is utilized to drive the parameters of the proposed controller to a good neighbourhood of the solution space. The optimization problem is formulated such that both the tracking error and control signal are minimized concurrently. The results show that the proposed controller guara...

  20. System identification and adaptive control theory and applications of the neurofuzzy and fuzzy cognitive network models

    CERN Document Server

    Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A

    2014-01-01

    Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model  stems  from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...

  1. Adaptive Nonsingular Terminal Sliding Model Control and Its Application to Permanent Magnet Synchronous Motor Drive System

    Directory of Open Access Journals (Sweden)

    Liu Yue

    2016-01-01

    Full Text Available To improve the dynamic performance of permanent magnet synchronous motor(PMSM drive system, a adaptive nonsingular terminal sliding model control((NTSMC strategy was proposed. The proposed control strategy presents an adaptive variable-rated exponential reaching law which the L1 norm of state variables is introduced. Exponential and constant approach speed can adaptively adjust according to the state variables’ distance to the equilibrium position.The proposed scheme can shorten the reaching time and weaken system chatting. The method was applied to the PMSM speed servo system, and compared with the traditional terminal-sliding-mode regulator and PI regulator. Simulation results show that the proposed control strategy can improve dynamic, steady performance and robustness.

  2. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir

    2009-01-01

    The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system...... consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically...... converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using...

  3. Adaptive PID Controller Using RLS for SISO Stable and Unstable Systems

    Directory of Open Access Journals (Sweden)

    Rania A. Fahmy

    2014-01-01

    Full Text Available The proportional-integral-derivative (PID is still the most common controller and stabilizer used in industry due to its simplicity and ease of implementation. In most of the real applications, the controlled system has parameters which slowly vary or are uncertain. Thus, PID gains must be adapted to cope with such changes. In this paper, adaptive PID (APID controller is proposed using the recursive least square (RLS algorithm. RLS algorithm is used to update the PID gains in real time (as system operates to force the actual system to behave like a desired reference model. Computer simulations are given to demonstrate the effectiveness of the proposed APID controller on SISO stable and unstable systems considering the presence of changes in the systems parameters.

  4. Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems

    International Nuclear Information System (INIS)

    Yan Zhenya; Yu Pei

    2007-01-01

    In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system

  5. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    OpenAIRE

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. T...

  6. Implementation of an Adaptive Controller System from Concept to Flight Test

    Science.gov (United States)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  7. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  8. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    Science.gov (United States)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  9. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.

    Science.gov (United States)

    Chen, Mou; Tao, Gang

    2016-08-01

    In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

  10. Adaptive robust fault tolerant control design for a class of nonlinear uncertain MIMO systems with quantization.

    Science.gov (United States)

    Ao, Wei; Song, Yongdong; Wen, Changyun

    2017-05-01

    In this paper, we investigate the adaptive control problem for a class of nonlinear uncertain MIMO systems with actuator faults and quantization effects. Under some mild conditions, an adaptive robust fault-tolerant control is developed to compensate the affects of uncertainties, actuator failures and errors caused by quantization, and a range of the parameters for these quantizers is established. Furthermore, a Lyapunov-like approach is adopted to demonstrate that the ultimately uniformly bounded output tracking error is guaranteed by the controller, and the signals of the closed-loop system are ensured to be bounded, even in the presence of at most m-q actuators stuck or outage. Finally, numerical simulations are provided to verify and illustrate the effectiveness of the proposed adaptive schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Adaptive Robust Actuator Fault Accommodation for a Class of Uncertain Nonlinear Systems with Unknown Control Gains

    Directory of Open Access Journals (Sweden)

    Yuefei Wu

    2014-01-01

    Full Text Available An adaptive robust fault tolerant control approach is proposed for a class of uncertain nonlinear systems with unknown signs of high-frequency gain and unmeasured states. In the recursive design, neural networks are employed to approximate the unknown nonlinear functions, K-filters are designed to estimate the unmeasured states, and a dynamical signal and Nussbaum gain functions are introduced to handle the unknown sign of the virtual control direction. By incorporating the switching function σ algorithm, the adaptive backstepping scheme developed in this paper does not require the real value of the actuator failure. It is mathematically proved that the proposed adaptive robust fault tolerant control approach can guarantee that all the signals of the closed-loop system are bounded, and the output converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated by the simulation examples.

  12. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  13. Adaptive kanban control mechanism for a single-stage hybrid system

    Science.gov (United States)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  14. Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    The paper addresses control problem for the modified projective synchronization of the Genesio-Tesi chaotic systems with three uncertain parameters. An adaptive control law is derived to make the states of two identical Genesio-Tesi systems asymptotically synchronized up to specific ratios. The stability analysis in the paper is proved using a well-known Lyapunov stability theory. A numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme

  15. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems

    Science.gov (United States)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen

    2010-01-01

    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  16. Analysis technique for controlling system wavefront error with active/adaptive optics

    Science.gov (United States)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  17. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  18. Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-12-01

    Full Text Available This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work.

  19. Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Doaa M. Atia

    2017-05-01

    Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.

  20. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  1. Adaptive output-feedback control for switched stochastic uncertain nonlinear systems with time-varying delay.

    Science.gov (United States)

    Song, Zhibao; Zhai, Junyong

    2018-02-22

    This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Adaptive observer-based control for a class of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hua Changchun E-mail: cch@ysu.edu.cn; Guan Xinping; Li Xiaoli; Shi Peng

    2004-10-01

    In this note, the problem of control for a class of chaotic systems is studied. Only partial information of the systems states is known. First, an adaptive observer is designed to ensure the corresponding error system asymptotically stable. Then, based on the states obtained by the above observer, a nonlinear state feedback controller is constructed for the chaotic system, which, according to the input to state stable (ISS) principal, guarantees the closed-loop chaotic system is asymptotically stable. A numerical example is included to show the effectiveness of the proposed techniques.

  3. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    Science.gov (United States)

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

  4. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Science.gov (United States)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  5. Adaptive Constrained Control for Uncertain Nonlinear Time-Delay System with Application to Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Rong Li

    2018-01-01

    Full Text Available This paper investigates a class of nonlinear time-delayed systems with output prescribed performance constraint. The neural network and DOB (disturbance observer are designed to tackle the uncertainties and external disturbance, and prescribed performance function is constructed for the output prescribed performance constrained problem. Then the robust controller is designed by using adaptive backstepping method, and the stability analysis is considered by using Lyapunov-Krasovskii. Furthermore, the proposed method is employed into the unmanned helicopter system with time-delay aerodynamic uncertainty. Finally, the simulation results illustrate that the proposed robust prescribed performance control system achieved a good control performance.

  6. Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2015-09-01

    Full Text Available First, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1 = 0.0395,L2 = 0 and L3 = −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY =3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.

  7. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2017-04-17

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  8. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan

    2013-01-01

    This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

  9. Central nervous system control of heat acclimation adaptations: an emerging paradigm.

    Science.gov (United States)

    Armstrong, Lawrence E; Stoppani, James

    2002-01-01

    The role of the central nervous system (CNS) in the control of human heat acclimation (HA) and HA adaptations at the ultrastructural and biochemical level are not well described, although empirical evidence demonstrates that the hypothalamus adjusts thermoregulation subsequent to 8-14 days of exercise in a hot environment. Therefore, numerous investigations and concepts are presented in this paper that 1) describe plausible mechanisms for the development and CNS control of physiological adaptations and enhanced performance during heat acclimation, 2) include adaptations of neuron morphology and biochemical pathways, 3) account for situations in which homeostatic control during exercise in heat is inadequate, and 4) describe applications to other phenomena in physiology and medicine. The resulting paradigm incorporates information storage, temperature-sensitive neurons in the brain, and neural plasticity.

  10. Adaptive fuzzy prescribed performance control for MIMO nonlinear systems with unknown control direction and unknown dead-zone inputs.

    Science.gov (United States)

    Shi, Wuxi; Luo, Rui; Li, Baoquan

    2017-01-01

    In this study, an adaptive fuzzy prescribed performance control approach is developed for a class of uncertain multi-input and multi-output (MIMO) nonlinear systems with unknown control direction and unknown dead-zone inputs. The properties of symmetric matrix are exploited to design adaptive fuzzy prescribed performance controller, and a Nussbaum-type function is incorporated in the controller to estimate the unknown control direction. This method has two prominent advantages: it does not require the priori knowledge of control direction and only three parameters need to be updated on-line for this MIMO systems. It is proved that all the signals in the resulting closed-loop system are bounded and that the tracking errors converge to a small residual set with the prescribed performance bounds. The effectiveness of the proposed approach is validated by simulation results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Stable neural-network-based adaptive control for sampled-data nonlinear systems.

    Science.gov (United States)

    Sun, F; Sun, Z; Woo, P Y

    1998-01-01

    For a class of multiinput-multioutput (MIMO) sampled-data nonlinear systems with unknown dynamic nonlinearities, a stable neural-network (NN)-based adaptive control approach which is an integration of an NN approach and the adaptive implementation of the variable structure control with a sector, is developed. The sampled-data nonlinear system is assumed to be controllable and its state vector is available for measurement. The variable structure control with a sector serves two purposes. One is to force the system state to be within the state region in which the NN's are used when the system goes out of neural control; and the other is to provide an additional control until the system tracking error metric is controlled inside the sector within the network approximation region. The proof of a complete stability and a tracking error convergence is given and the setting of the sector and the NN parameters is discussed. It is demonstrated that the asymptotic error of the system can be made dependent only on inherent network approximation errors and the frequency range of unmodeled dynamics. Simulation studies of a two-link manipulator show the effectiveness of the proposed control approach.

  12. Adaptive fuzzy control of underactuated robotic systems with the use of differential flatness theory

    Science.gov (United States)

    Rigatos, Gerasimos G.

    2013-10-01

    An adaptive fuzzy controller is designed for a class of underactuated nonlinear robotic manipulators, under the constraint that the system's model is unknown. The control algorithm aims at satisfying the H∞ tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the robotic system into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in H∞ tracking performance. The efficiency of the proposed adaptive fuzzy control scheme is checked in the case of a 2-DOF planar robotic manipulator that has the structure of a closed-chain mechanism.

  13. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    Science.gov (United States)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  14. Robust Adaptive Control of a Free-Floating Space Robot System in Cartesian Space

    Directory of Open Access Journals (Sweden)

    Fuhai Zhang

    2015-11-01

    Full Text Available This paper presents a novel, robust, adaptive trajectory-tracking control scheme for the free-floating space robot system in Cartesian space. The dynamic equation of the free-floating space robot system in Cartesian space is derived from the augmented variable method. The proposed basic robust adaptive controller is able to deal with parametric and non-parametric uncertainties simultaneously. Another advantage of the control scheme is that the known and unknown external disturbance bounds can be considered using a modification of the parameter-estimation law. In addition, three cases are certified to achieve robustness for both parametric uncertainties and external disturbances. The simulation results show that the control scheme can ensure stable tracking of the desired trajectory of the end-effector.

  15. Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems Via Sliding Mode Observers.

    Science.gov (United States)

    Shen, Qikun; Shi, Peng; Shi, Yan

    2016-12-01

    In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.

  16. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    Science.gov (United States)

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.

  17. Cooperative control of multi-agent systems optimal and adaptive design approaches

    CERN Document Server

    Lewis, Frank L; Hengster-Movric, Kristian; Das, Abhijit

    2014-01-01

    Task complexity, communication constraints, flexibility and energy-saving concerns are all factors that may require a group of autonomous agents to work together in a cooperative manner. Applications involving such complications include mobile robots, wireless sensor networks, unmanned aerial vehicles (UAVs), spacecraft, and so on. In such networked multi-agent scenarios, the restrictions imposed by the communication graph topology can pose severe problems in the design of cooperative feedback control systems.  Cooperative control of multi-agent systems is a challenging topic for both control theorists and practitioners and has been the subject of significant recent research. Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs.  It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design.  B...

  18. A new 3-D jerk chaotic system with two cubic nonlinearities and its adaptive backstepping control

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2017-09-01

    Full Text Available This paper presents a new seven-term 3-D jerk chaotic system with two cubic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0:2974, L2 = 0 and L3 = −3:8974. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the new jerk chaotic system is found as DKY = 2:0763. Next, an adaptive backstepping controller is designed to globally stabilize the new jerk chaotic system with unknown parameters. Moreover, an adaptive backstepping controller is also designed to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations are shown to illustrate all the main results derived in this work.

  19. Adaptive Sliding Mode Control Design of a SCARA Robot Manipulator System Under Parametric Variations

    Directory of Open Access Journals (Sweden)

    F. Adelhed

    2015-12-01

    Full Text Available – The sliding mode control (SMC has yet proven its efficiency through several theoretical researches. Indeed, the robotic field is recognized as one of the main SMC portals on practical implementations. The interest of this work consists in testing the SMC robustness and its reliability versus the parameters variation and model uncertainties. In this paper, an algorithm for trajectory tracking task of robot manipulators based on a SMC has been proposed. Then, aiming to deal with the presence of disturbances and parametric modeling uncertainties, the adopted control law has been extended to an adaptive SMC version based integral sliding surface, where the selection of the parameters adaptation law has been detailed. It has been proven that the adaptive control design can stabilize both position and velocity of the system, where the explicit use of the system dynamic model becomes no longer required. Simulation results performed on a SCARA robot manipulator reveal improving control acting clearly denoted by the introduction of the adaptive control design

  20. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  1. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    Science.gov (United States)

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  2. Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction.

    Science.gov (United States)

    Wen, Yuntong; Ren, Xuemei

    2011-10-01

    This paper investigates a neural network (NN) state observer-based adaptive control for a class of time-varying delays nonlinear systems with unknown control direction. An adaptive neural memoryless observer, in which the knowledge of time-delay is not used, is designed to estimate the system states. Furthermore, by applying the property of the function tanh(2)(ϑ/ε)/ϑ (the function can be defined at ϑ = 0) and introducing a novel type appropriate Lyapunov-Krasovskii functional, an adaptive output feedback controller is constructed via backstepping method which can efficiently avoid the problem of controller singularity and compensate for the time-delay. It is highly proven that the closed-loop systems controller designed by the NN-basis function property, new kind parameter adaptive law and Nussbaum function in detecting the control direction is able to guarantee the semi-global uniform ultimate boundedness of all signals and the tracking error can converge to a small neighborhood of zero. The characteristic of the proposed approach is that it relaxes any restrictive assumptions of Lipschitz condition for the unknown nonlinear continuous functions. And the proposed scheme is suitable for the systems with mismatching conditions and unmeasurable states. Finally, two simulation examples are given to illustrate the effectiveness and applicability of the proposed approach. © 2011 IEEE

  3. Adaptive Boundary Iterative Learning Control for an Euler-Bernoulli Beam System With Input Constraint.

    Science.gov (United States)

    He, Wei; Meng, Tingting; Huang, Deqing; Li, Xuefang

    2017-03-15

    This paper addresses the vibration control and the input constraint for an Euler-Bernoulli beam system under aperiodic distributed disturbance and aperiodic boundary disturbance. Hyperbolic tangent functions and saturation functions are adopted to tackle the input constraint. A restrained adaptive boundary iterative learning control (ABILC) law is proposed based on a time-weighted Lyapunov-Krasovskii-like composite energy function. In order to deal with the uncertainty of a system parameter and reject the external disturbances, three adaptive laws are designed and learned in the iteration domain. All the system states of the closed-loop system are proved to be bounded in each iteration. Along the iteration axis, the displacements asymptotically converge toward zero. Simulation results are provided to illustrate the effectiveness of the proposed ABILC scheme.

  4. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  5. Observer-Based Robust Adaptive Fuzzy Control for MIMO Nonlinear Uncertain Systems with Delayed Output

    Directory of Open Access Journals (Sweden)

    Chiang Cheng Chiang

    2013-01-01

    Full Text Available An observer-based robust adaptive fuzzy control scheme is presented to tackle the problem of the robust stability and the tracking control for a class of multiinput multioutput (MIMO nonlinear uncertain systems with delayed output. Because the nonlinear system functions and the uncertainties of the controlled system including structural uncertainties are supposed to be unknown, fuzzy logic systems are utilized to approximate these nonlinear system functions and the upper bounded functions of the uncertainties. Moreover, the upper bound of uncertainties caused by these fuzzy modeling errors is also estimated. In addition, the state observer based on state variable filters is designed to estimate all states which are not available for measurement in the controlled system. By constructing an appropriate Lyapunov function and using strictly positive-real (SPR stability theorem, the proposed robust adaptive fuzzy controller not only guarantees the robust stability of a class of multivariable nonlinear uncertain systems with delayed output but also maintains a good tracking performance. Finally, some simulation results are illustrated to verify the effectiveness of the proposed control approach.

  6. Decomposed fuzzy systems and their application in direct adaptive fuzzy control.

    Science.gov (United States)

    Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang

    2014-10-01

    In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.

  7. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    Science.gov (United States)

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  8. Adaptive Fuzzy Logic based MPPT Control for PV System Under Partial Shading Condition

    OpenAIRE

    Choudhury, Subhashree; Rout, Pravat Kumar

    2016-01-01

    Partial shading causes power loss, hotspots and threatens the reliability of the Photovoltaic generation system. Moreover characteristic curves exhibit multiple peaks. Conventional MPPT techniques under this condition often fail to give optimum MPP. Focusing on the afore mentioned problem an attempt has been made to design an Adaptive Takagi-Sugeno Fuzzy Inference System based Fuzzy Logic Control MPPT.The mathematical model of PV array is simulated using in MATLAB/Simulink environment.Various...

  9. Nonlinear multiple-input-multiple-output adaptive backstepping control of underwater glider systems

    Directory of Open Access Journals (Sweden)

    Junjun Cao

    2016-12-01

    Full Text Available In this article, an adaptive backstepping control is proposed for multi-input and multi-output nonlinear underwater glider systems. The developed method is established on the basis of the state-space equations, which are simplified from the full glider dynamics through reasonable assumptions. The roll angle, pitch angle, and velocity of the vehicle are considered as control objects, a Lyapunov function consisting of the tracking error of the state vectors is established. According to Lyapunov stability theory, the adaptive control laws are derived to ensure the tracking errors asymptotically converge to zero. The proposed nonlinear MIMO adaptive backstepping control (ABC scheme is tested to control an underwater glider in saw-tooth motion, spiral motion, and multimode motion. The linear quadratic regular (LQR control scheme is described and evaluated with the ABC for the motion control problems. The results demonstrate that both control strategies provide similar levels of robustness while using the proposed ABC scheme leads to the more smooth control efforts with less oscillatory behavior.

  10. Adaptive Sliding Mode Robust Control for Virtual Compound-Axis Servo System

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2013-01-01

    Full Text Available A structure mode of virtual compound-axis servo system is proposed to improve the tracking accuracy of the ordinary optoelectric tracking platform. It is based on the structure and principles of compound-axis servo system. A hybrid position control scheme combining the PD controller and feed-forward controller is used in subsystem to track the tracking error of the main system. This paper analyzes the influences of the equivalent disturbance in main system and proposes an adaptive sliding mode robust control method based on the improved disturbance observer. The sliding mode technique helps this disturbance observer to deal with the uncompensated disturbance in high frequency by making use of the rapid switching control value, which is based on the subtle error of disturbance estimation. Besides, the high-frequency chattering is alleviated effectively in this proposal. The effectiveness of the proposal is confirmed by experiments on optoelectric tracking platform.

  11. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    Science.gov (United States)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  12. Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip

    2015-05-01

    An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.

  13. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Directory of Open Access Journals (Sweden)

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  14. Comparative study of adaptive controller using MIT rules and Lyapunov method for MPPT standalone PV systems

    Science.gov (United States)

    Tariba, N.; Bouknadel, A.; Haddou, A.; Ikken, N.; Omari, Hafsa El; Omari, Hamid El

    2017-01-01

    The Photovoltaic Generator have a nonlinear characteristic function relating the intensity at the voltage I = f (U) and depend on the variation of solar irradiation and temperature, In addition, its point of operation depends directly on the load that it supplies. To fix this drawback, and to extract the maximum power available to the terminal of the generator, an adaptation stage is introduced between the generator and the load to couple the two elements as perfectly as possible. The adaptation stage is associated with a command called MPPT MPPT (Maximum Power Point Tracker) whose is used to force the PVG to operate at the MPP (Maximum Power Point) under variation of climatic conditions and load variation. This paper presents a comparative study between the adaptive controller for PV Systems using MIT rules and Lyapunov method to regulate the PV voltage. The Incremental Conductance (IC) algorithm is used to extract the maximum power from the PVG by calculating the voltage Vref, and the adaptive controller is used to regulate and track quickly the PV voltage. The two methods of the adaptive controller will be compared to prove their performance by using the PSIM tools and experimental test, and the mathematical model of step-up with PVG model will be presented.

  15. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  16. Distributed robust adaptive control of high order nonlinear multi agent systems.

    Science.gov (United States)

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  18. Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2017-11-01

    A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.

  19. Design of adaptive control systems by means of self-adjusting transversal filters

    Science.gov (United States)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  20. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Li, Yuan-Xin; Yang, Guang-Hong

    2018-04-01

    This paper is concerned with the adaptive event-triggered control problem of nonlinear continuous-time systems in strict-feedback form. By using the event-sampled neural network (NN) to approximate the unknown nonlinear function, an adaptive model and an associated event-triggered controller are designed by exploiting the backstepping method. In the proposed method, the feedback signals and the NN weights are aperiodically updated only when the event-triggered condition is violated. A positive lower bound on the minimum intersample time is guaranteed to avoid accumulation point. The closed-loop stability of the resulting nonlinear impulsive dynamical system is rigorously proved via Lyapunov analysis under an adaptive event sampling condition. In comparing with the traditional adaptive backstepping design with a fixed sample period, the event-triggered method samples the state and updates the NN weights only when it is necessary. Therefore, the number of transmissions can be significantly reduced. Finally, two simulation examples are presented to show the effectiveness of the proposed control method.

  2. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  3. Water Quality Control for Shrimp Pond Using Adaptive Neuro Fuzzy Inference System : The First Project

    Science.gov (United States)

    Umam, F.; Budiarto, H.

    2018-01-01

    Shrimp farming becomes the main commodity of society in Madura Island East Java Indonesia. Because of Madura island has a very extreme weather, farmers have difficulty in keeping the balance of pond water. As a consequence of this condition, there are some farmers experienced losses. In this study an adaptive control system was developed using ANFIS method to control pH balance (7.5-8.5), Temperature (25-31°C), water level (70-120 cm) and Dissolved Oxygen (4-7,5 ppm). Each parameter (pH, temperature, level and DO) is controlled separately but can work together. The output of the control system is in the form of pump activation which provides the antidote to the imbalance that occurs in pond water. The system is built with two modes at once, which are automatic mode and manual mode. The manual control interface based on android which is easy to use.

  4. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Directory of Open Access Journals (Sweden)

    Yiyong Gou

    2017-04-01

    Full Text Available A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinearities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equivalent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstepping control technique, a constrained adaptive neural network controller is designed, and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.

  5. Chaos control and generalized projective synchronization of heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive variable structure control

    International Nuclear Information System (INIS)

    Farivar, Faezeh; Aliyari Shoorehdeli, Mahdi; Nekoui, Mohammad Ali; Teshnehlab, Mohammad

    2012-01-01

    Highlights: ► A systematic procedure for GPS of unknown heavy chaotic gyroscope systems. ► Proposed methods are based on Lyapunov stability theory. ► Without calculating Lyapunov exponents and Eigen values of the Jacobian matrix. ► Capable to extend for a variety of chaotic systems. ► Useful for practical applications in the future. - Abstract: This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to

  6. Distributed Adaptive Containment Control for a Class of Nonlinear Multiagent Systems With Input Quantization.

    Science.gov (United States)

    Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu

    2017-05-05

    This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.

  7. Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shieh

    2014-04-01

    Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.

  8. Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity

    Science.gov (United States)

    Frost, S. A.; Balas, M. J.

    2010-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.

  9. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    Science.gov (United States)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design

  10. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    Science.gov (United States)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  11. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    Science.gov (United States)

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive control in an aircraft propulsion system and system integration with flight control; Kokukiyo enigne - tekio seigyo gijutsu oyobi hiko seigyo tono togo

    Energy Technology Data Exchange (ETDEWEB)

    Nagatome, S.; Seo, N.; Negoro, T.; Kaneda, S.; Matsushita, T.; Kono, Y.; Kanbe, K.; Fujiwara, K. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    2000-04-01

    Aircraft engine controllers incorporating computer technology have enabled the highly automated control of the entire engine system, and consequently have been put to practical use as Full-Authority Digital Electronic Control (FADEC). In future such FADEC technology will be evolved and combined into an Integrated Flight and Propulsion Control (IFPC) system which will automatically optimize the whole aircraft propulsion system. In this paper the application of the adaptive control, part of the IFPC technology, is described. (author)

  13. Adaptive estimation for control of uncertain nonlinear systems with applications to target tracking

    Science.gov (United States)

    Madyastha, Venkatesh Kattigari

    2005-08-01

    Design of nonlinear observers has received considerable attention since the early development of methods for linear state estimation. The most popular approach is the extended Kalman filter (EKF), that goes through significant degradation in the presence of nonlinearities, particularly if unmodeled dynamics are coupled to the process and the measurement. For uncertain nonlinear systems, adaptive observers have been introduced to estimate the unknown state variables where no priori information about the unknown parameters is available. While establishing global results, these approaches are applicable only to systems transformable to output feedback form. Over the recent years, neural network (NN) based identification and estimation schemes have been proposed that relax the assumptions on the system at the price of sacrificing on the global nature of the results. However, most of the NN based adaptive observer approaches in the literature require knowledge of the full dimension of the system, therefore may not be suitable for systems with unmodeled dynamics. We first propose a novel approach to nonlinear state estimation from the perspective of augmenting a linear time invariant observer with an adaptive element. The class of nonlinear systems treated here are finite but of otherwise unknown dimension. The objective is to improve the performance of the linear observer when applied to a nonlinear system. The approach relies on the ability of the NNs to approximate the unknown dynamics from finite time histories of available measurements. Next we investigate nonlinear state estimation from the perspective of adaptively augmenting an existing time varying observer, such as an EKF. EKFs find their applications mostly in target tracking problems. The proposed approaches are robust to unmodeled dynamics, including unmodeled disturbances. Lastly, we consider the problem of adaptive estimation in the presence of feedback control for a class of uncertain nonlinear systems

  14. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    DEFF Research Database (Denmark)

    Yang, Z.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2000-01-01

    Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets...... of LTI models are employed to approximate the faulty, reconfigured and nominal nonlinear systems respectively with respect to the on-line information of the operating system, and a set of compensating modules are proposed and designed so as to make the local LTI model approximating to the reconfigured...

  15. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    Science.gov (United States)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external

  16. PID-Type Fuzzy Control for Anti-Lock Brake Systems with Parameter Adaptation

    Science.gov (United States)

    Chen, Chih-Keng; Shih, Ming-Chang

    In this research, a platform is built to accomplish a series of experiments to control the Antilock Brake System (ABS). A commercial ABS module controlled by a controller is installed and tested on the platform. The vehicle and tire models are deduced and simulated by a personal computer for real time control. An adaptive PID-type fuzzy control scheme is used. Two on-off conversion methods: pulse width modulation (PWM) and conditional on-off, are used to control the solenoid valves in the ABS module. With the pressure signal feedbacks in the caliper, vehicle dynamics and wheel speeds are computed during braking. Road surface conditions, vehicle weight and control schemes are varied in the experiments to study braking properties.

  17. Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System via Backstepping Control Method

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-09-01

    Full Text Available A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ≥ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ≥ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system with two nonlinearities has been proposed, and its qualitative properties have been detailed. The novel hyperjerk system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 = −1.39267. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY = 3.1348. Next, an adaptive controller is designed via backstepping control method to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive controller is designed via backstepping control method to achieve global synchronization of the identical novel hyperjerk systems with three unknown parameters. MATLAB simulations are shown to illustrate all the main results derived in this research work on a novel hyperjerk system.

  18. A simplified adaptive neural network prescribed performance controller for uncertain MIMO feedback linearizable systems.

    Science.gov (United States)

    Theodorakopoulos, Achilles; Rovithakis, George A

    2015-03-01

    In this paper, the problem of deriving a continuous, state-feedback controller for a class of multiinput multioutput feedback linearizable systems is considered with special emphasis on controller simplification and reduction of the overall design complexity with respect to the current state of the art. The proposed scheme achieves prescribed bounds on the transient and steady-state performance of the output tracking errors despite the uncertainty in system nonlinearities. Contrary to the current state of the art, however, only a single neural network is utilized to approximate a scalar function that partly incorporates the system nonlinearities. Furthermore, the loss of model controllability problem, typically introduced owing to approximation model singularities, is avoided without attaching additional complexity to the control or adaptive law. Simulations are performed to verify and clarify the theoretical findings.

  19. A Novel Adaptive Observer-Based Control Scheme for Synchronization and Suppression of a Class of Uncertain Chaotic Systems

    International Nuclear Information System (INIS)

    Jing, Wang; Zhen-Yu, Tan; Xi-Kui, Ma; Jin-Feng, Gao

    2009-01-01

    A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme. (general)

  20. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  1. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  2. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  3. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Science.gov (United States)

    Shieh, M.-Y.; Chang, K.-H.; Lia, Y.-S.

    2008-02-01

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  4. The Argonne beamline-B telescope control system: A study of adaptability

    International Nuclear Information System (INIS)

    Fuka, M.A.; Clout, P.N.; Conley, A.P.; Hill, J.O.; Rothrock, R.B.; Trease, L.L.; Zander, M.E.

    1987-01-01

    A beam-expanding telescope to study high-precision H - particle optics and beam sensing was designed by the Accelerator Technology Division at Los Alamos National Laboratory and will be installed on beamline-B at Argonne National Laboratory. The control system for this telescope was developed in a relatively short period of time using experience gained from building the Proton Storage Ring (PSR) control system. The designers modified hardware and software to take advantage of new technology as well as to meet the requirements of the new system. This paper discusses lessons learned in the process of adapting hardware and software from an existing control system to one with rather different requirements

  5. Adaptive Array Antenna Control Methods with Delay Tolerant Networking for the Winter Road Surveillance System

    Directory of Open Access Journals (Sweden)

    Noriki Uchida

    2017-02-01

    Full Text Available It is considered that the road condition in the winter is one of the significant issues for the safety driving by tourists or residents. However, there are many difficulties of the V2V networks such as the transmission range of wireless networks and the noises from the automobilefs bodies. Thus, this paper introduces the Adaptive Array Antenna (AAA controls for the vehicle-to-vehicle (V2V networks based the Delay Tolerant Networking (DTN in the road surveillance system. In the proposed system, the vehicles equip the AAA control systems with IEEE802.11a/b/g based the DTN, and the wireless directions are controlled by the visual recognitions with Kalman filter algorithm to make the longer and stable wireless connections for the efficiency of the DTN. The porotype system is introduced in this paper, and the results are discussed for the future studies.

  6. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    Science.gov (United States)

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Adaptive dynamic surface control for a class of MIMO nonlinear systems with actuator failures

    Science.gov (United States)

    Amezquita S., Kendrick; Yan, Lin; Butt, Waseem A.

    2013-03-01

    In this article, an adaptive dynamic surface control scheme for a class of MIMO nonlinear systems with actuator failures and uncertainties is presented. In the proposed control scheme, the dynamic changes and disturbances induced by actuator failures are detected and isolated by means of radial basis function neural networks, which also compensate system uncertainties that arise from the mismatch between nominal model and real plant. In the presence of unknown actuation functions, the effectiveness of the control scheme is guaranteed by imposing a structural condition on the actuation matrix. Moreover, the singularity problem that arises from the approximation of unknown actuation functions is circumvented, and thus the use parameter projection is avoided. In this work, the nominal plant is transformed into a suitable form via diffeomorphism. Dynamic surface control design technique is used to develop the control laws. The closed-loop signals are proven to be uniformly ultimately bounded through Lyapunov approach, and the output tracking error is shown to be bounded within a residual set which can be made arbitrarily small by appropriately tuning the controller parameters. Finally, the proposed adaptive control scheme effectiveness is verified by simulation of the longitudinal dynamics of a twin otter aircraft undergoing actuator failures.

  8. Adaptive PI controller to voltage regulation in power systems: STATCOM as a case study.

    Science.gov (United States)

    Tavana, Mohammad Reza; Khooban, Mohammad-Hassan; Niknam, Taher

    2017-01-01

    Static synchronous compensator (STATCOM) provides the means to improve quality and reliability of a power system as it has the functional capability to handle dynamic disturbances, such as transient stability and power oscillation damping as well as to providing voltage regulation. In this paper, a robust adaptive PI-based optimal fuzzy control strategy is proposed to control a STATCOM used in distribution systems. The proposed intelligent strategy is based on a combination of a new General Type-II Fuzzy Logic (GT2FL) with a simple heuristic algorithm named Teaching Learning Based Optimization (TLBO) Algorithm. The proposed framework optimally tunes parameters of a Proportional-Integral (PI) controller which, similar to most of other researchers regarding control of STATCOM, are in charge of controlling the device. The proposed controller guaranties robustness and stability against uncertainties caused by external disturbances or ever-changing nature of the power systems. The TLBO optimizes the parameters of the controller as well as the input and output membership functions. To validate the efficiency of the proposed controller, the obtained simulation results are compared with those of the two most recent researches applied in this field, namely, conventional Proportional Integral (PI) controller and Optimal Fuzzy PI (OFPI) controller. Results demonstrate the successfulness and effectiveness of the proposed online-TLBO General Type-2 Fuzzy PI (OGT2FPI) controller and its superiority over conventional approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Adaptive nonlinear flight control

    Science.gov (United States)

    Rysdyk, Rolf Theoduor

    1998-08-01

    Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator

  10. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions.

    Science.gov (United States)

    Li, Yanan; Yang, Chenguang; Ge, Shuzhi Sam; Lee, Tong Heng

    2011-04-01

    In this paper, adaptive neural network (NN) control is investigated for a class of block triangular multiinput-multioutput nonlinear discrete-time systems with each subsystem in pure-feedback form with unknown control directions. These systems are of couplings in every equation of each subsystem, and different subsystems may have different orders. To avoid the noncausal problem in the control design, the system is transformed into a predictor form by rigorous derivation. By exploring the properties of the block triangular form, implicit controls are developed for each subsystem such that the couplings of inputs and states among subsystems have been completely decoupled. The radial basis function NN is employed to approximate the unknown control. Each subsystem achieves a semiglobal uniformly ultimately bounded stability with the proposed control, and simulation results are presented to demonstrate its efficiency.

  11. ADAPTIVE OUTPUT CONTROL OF MULTICHANNEL LINEAR STATIONARY SYSTEMS UNDER PARAMETRIC UNCERTAINTY

    Directory of Open Access Journals (Sweden)

    Aleksei A. Bobtsov

    2014-11-01

    Full Text Available The paper deals with the problem of adaptive control for multi-channel linear stationary plants under parametric uncertainty with arbitrary relative degree of each local subsystem. The synthesized regulator provides stabilization of control plant on condition that for each local subsystem only output variables are measured with known relative degrees, but the order of linear differential equations is unknown. We consider the synthesis of control system for two-channel system for simplification of the synthesis method. The "serial compensator" algorithm is chosen as basic approach with A.L. Fradkov's passification theorem and additional filters containing high gain constants in their structure. Durability of the closed system in the group of pointed types of regulators is analyzed and the necessary and sufficient conditions for exponential convergence properties are considered. We suggest adaptive version of the "serial compensator" method from the practical point of view, where customization of the gain constant is based on the integral type algorithm. We show the results of computer simulation for the third and second order subsystems under parametric uncertainty to illustrate the proposed approach workability. It is shown that the proposed technique makes it possible to synthesize control algorithms for multichannel systems under parametric uncertainty with minimal dynamical order as compared to known foreign and domestic counterparts.

  12. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    Science.gov (United States)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  13. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  14. Adaptive Approximation-Based Regulation Control for a Class of Uncertain Nonlinear Systems Without Feedback Linearizability.

    Science.gov (United States)

    Wang, Ning; Sun, Jing-Chao; Han, Min; Zheng, Zhongjiu; Er, Meng Joo

    2017-09-06

    In this paper, for a general class of uncertain nonlinear (cascade) systems, including unknown dynamics, which are not feedback linearizable and cannot be solved by existing approaches, an innovative adaptive approximation-based regulation control (AARC) scheme is developed. Within the framework of adding a power integrator (API), by deriving adaptive laws for output weights and prediction error compensation pertaining to single-hidden-layer feedforward network (SLFN) from the Lyapunov synthesis, a series of SLFN-based approximators are explicitly constructed to exactly dominate completely unknown dynamics. By the virtue of significant advancements on the API technique, an adaptive API methodology is eventually established in combination with SLFN-based adaptive approximators, and it contributes to a recursive mechanism for the AARC scheme. As a consequence, the output regulation error can asymptotically converge to the origin, and all other signals of the closed-loop system are uniformly ultimately bounded. Simulation studies and comprehensive comparisons with backstepping- and API-based approaches demonstrate that the proposed AARC scheme achieves remarkable performance and superiority in dealing with unknown dynamics.

  15. Adaptive unmanned aerial vechile control

    OpenAIRE

    Bernotaitis, Vilimantas

    2016-01-01

    This thesis analyzes unmanned aerial vehicles and its adaptivity - their structures, operational principles and components. Also analyzing algorithms of adaptive neural networks and their usage in unmanned aerial vehicles. The main objective of this thesis is to analyze structures, control systems of unmanned aerial vehicles and their abilities to adapt to changing environment. This thesis contains analysis of already used solutions and their drawbacks. As research made in this thesis shown t...

  16. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  17. Adaptive Fault-Tolerant Tracking Control of Nonaffine Nonlinear Systems with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Hongcheng Zhou

    2014-01-01

    Full Text Available This paper proposes an adaptive fault-tolerant control scheme for nonaffine nonlinear systems. A model approximation method which is a solution that bridges the gap between affine and nonaffine control systems is developed firstly. A joint estimation approach is based on unscented Kalman filter, in which both failure parameters and states are simultaneously estimated by means of the argument state vector composed of the unknown faults and states. Then, stability analysis is given for the closed-loop system. Finally, the proposed approach is verified using a three-degree-of-freedom simulation of a typical fighter aircraft and the significantly improved system response demonstrates the practical potential of the theoretic results obtained.

  18. Linear-quadratic-Gaussian control for adaptive optics systems using a hybrid model.

    Science.gov (United States)

    Looze, Douglas P

    2009-01-01

    This paper presents a linear-quadratic-Gaussian (LQG) design based on the equivalent discrete-time model of an adaptive optics (AO) system. The design model incorporates deformable mirror dynamics, an asynchronous wavefront sensor and zero-order hold operation, and a continuous-time model of the incident wavefront. Using the structure of the discrete-time model, the dimensions of the Riccati equations to be solved are reduced. The LQG controller is shown to improve AO system performance under several conditions.

  19. Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application

    Science.gov (United States)

    Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.

    2018-01-01

    A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.

  20. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya; Wang, Enrong [School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, 210042 (China)

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  1. Low power proton exchange membrane fuel cell system identification and adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yee-Pien; Wang, Fu-Cheng; Ma, Ying-Wei [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping; Weng, Biing-Jyh [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D. (Taiwan)

    2007-02-10

    This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can be used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties. From a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying parameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the recursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device to excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the unmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy to improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive controller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results. (author)

  2. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  3. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    DEFF Research Database (Denmark)

    Yang, Z.; Izadi-Zamanabadi, R.; Blanke, Mogens

    2000-01-01

    Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets...... of LTI models are employed to approximate the faulty, reconfigured and nominal nonlinear systems respectively with respect to the on-line information of the operating system, and a set of compensating modules are proposed and designed so as to make the local LTI model approximating to the reconfigured...... nonlinear system match the corresponding LTI model approximating to the nominal nonlinear system in some optimal sense. The compensating modules are designed by the Pseudo-Inverse Method based on the local LTI models for the nominal and faulty nonlinear systems. Moreover, these modules should update...

  4. Adaptive neural control of MIMO nonlinear systems with a block-triangular pure-feedback control structure.

    Science.gov (United States)

    Chen, Zhenfeng; Ge, Shuzhi Sam; Zhang, Yun; Li, Yanan

    2014-11-01

    This paper presents adaptive neural tracking control for a class of uncertain multiinput-multioutput (MIMO) nonlinear systems in block-triangular form. All subsystems within these MIMO nonlinear systems are of completely nonaffine pure-feedback form and allowed to have different orders. To deal with the nonaffine appearance of the control variables, the mean value theorem is employed to transform the systems into a block-triangular strict-feedback form with control coefficients being couplings among various inputs and outputs. A systematic procedure is proposed for the design of a new singularity-free adaptive neural tracking control strategy. Such a design procedure can remove the couplings among subsystems and hence avoids the possible circular control construction problem. As a consequence, all the signals in the closed-loop system are guaranteed to be semiglobally uniformly ultimately bounded. Moreover, the outputs of the systems are ensured to converge to a small neighborhood of the desired trajectories. Simulation studies verify the theoretical findings revealed in this paper.

  5. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    Science.gov (United States)

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Controlled aeroelastic response and airfoil shaping using adaptive materials and integrated systems

    Science.gov (United States)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-05-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the adaptive neural control of aeroelastic response (ANCAR) program; the actively controlled response of buffet affected tails (ACROBAT) program; and the Airfoil THUNDER Testing to ascertain charcteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant reductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. The ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using thin-layer composite-unimorph piezoelectric driver and sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  7. Indirect adaptive control of nonlinear systems based on bilinear neuro-fuzzy approximation.

    Science.gov (United States)

    Boutalis, Yiannis; Christodoulou, Manolis; Theodoridis, Dimitrios

    2013-10-01

    In this paper, we investigate the indirect adaptive regulation problem of unknown affine in the control nonlinear systems. The proposed approach consists of choosing an appropriate system approximation model and a proper control law, which will regulate the system under the certainty equivalence principle. The main difference from other relevant works of the literature lies in the proposal of a potent approximation model that is bilinear with respect to the tunable parameters. To deploy the bilinear model, the components of the nonlinear plant are initially approximated by Fuzzy subsystems. Then, using appropriately defined fuzzy rule indicator functions, the initial dynamical fuzzy system is translated to a dynamical neuro-fuzzy model, where the indicator functions are replaced by High Order Neural Networks (HONNS), trained by sampled system data. The fuzzy output partitions of the initial fuzzy components are also estimated based on sampled data. This way, the parameters to be estimated are the weights of the HONNs and the centers of the output partitions, both arranged in matrices of appropriate dimensions and leading to a matrix to matrix bilinear parametric model. Based on the bilinear parametric model and the design of appropriate control law we use a Lyapunov stability analysis to obtain parameter adaptation laws and to regulate the states of the system. The weight updating laws guarantee that both the identification error and the system states reach zero exponentially fast, while keeping all signals in the closed loop bounded. Moreover, introducing a method of "concurrent" parameter hopping, the updating laws are modified so that the existence of the control signal is always assured. The main characteristic of the proposed approach is that the a priori experts information required by the identification scheme is extremely low, limited to the knowledge of the signs of the centers of the fuzzy output partitions. Therefore, the proposed scheme is not

  8. Adaptive Neural Control of Nonaffine Nonlinear Systems without Differential Condition for Nonaffine Function

    Directory of Open Access Journals (Sweden)

    Chaojiao Sun

    2016-01-01

    Full Text Available An adaptive neural control scheme is proposed for nonaffine nonlinear system without using the implicit function theorem or mean value theorem. The differential conditions on nonaffine nonlinear functions are removed. The control-gain function is modeled with the nonaffine function probably being indifferentiable. Furthermore, only a semibounded condition for nonaffine nonlinear function is required in the proposed method, and the basic idea of invariant set theory is then constructively introduced to cope with the difficulty in the control design for nonaffine nonlinear systems. It is rigorously proved that all the closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Finally, simulation examples are provided to demonstrate the effectiveness of the designed method.

  9. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  10. Longitudinal Control of a Platoon of Road Vehicles Equipped with Adaptive Cruise Control System

    Directory of Open Access Journals (Sweden)

    Zeeshan Ali Memon

    2012-07-01

    Full Text Available Automotive vehicle following systems are essential for the design of automated highway system. The problem associated with the automatic vehicle following system is the string stability of the platoon of vehicles, i.e. the problem of uniform velocity and spacing errors propagation. Different control algorithm for the longitudinal control of a platoon are discussed based on different spacing policies, communication link among the vehicles of a platoon, and the performance of a platoon have been analysed in the presence of disturbance (noise and parametric uncertainties. This paper presented the PID (Proportional Integral Derivative feedback control algorithm for the longitudinal control of a platoon in the presence of noise signal and investigates the performance of platoon under the influence of sudden acceleration and braking in severe conditions. This model has been applied on 6 vehicles moving in a platoon. The platoon has been analysed to retain the uniform velocity and safe spacing among the vehicles. The limitations of PID control algorithm have been discussed and the alternate methods have been suggested. Model simulations, in comparison with the literature, are also presented.

  11. Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System approach

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Ehmsen, Mikkel Præstholm; Andersen, John

    2012-01-01

    charger. The advantages of using a HTPEM methanol reformer is that the high quality waste heat can be used as a system heat input to heat and evaporate the input methanol/water mixture which afterwards is catalytically converted into a hydrogen rich gas usable in the high CO tolerant HTPEM fuel cells......This work presents the experimental study and modelling of a methanol reformer system for a high temperature polymer electrolyte membrane (HTPEM) fuel cell stack. The analyzed system is a fully integrated HTPEM fuel cell system with a DC/DC control output able to be used as e.g. a mobile battery...... Temperature Control (CCTC), which changes the fuel cell current in order to control the flow of hydrogen to the burner that adds heat to the reforming process. The method ensures a control strategy that avoids some of the critical events for such a system, which includes too high burner fuel flows...

  12. The system of nonlinear adaptive control for wind turbine with DFIG

    Directory of Open Access Journals (Sweden)

    Mikhail Medvedev

    2014-12-01

    Full Text Available This paper presents a problem solution of the stable voltage generating in the changing terms of environment for the double-fed induction generator (DFIG. For this, in nonlinear multivariable systems, such as mathematical model of DFIG, the method of observer’s synthesis for external, parametric and structural disturbances was used. This allows, on the basis of disturbances approximation, to carry out an evaluation under conditions of uncertainty, leading to disturbances adaptation with a priori unknown structure. The work presents a synthesis method of control system, allowing to solve indicated problem. Stand-alone wind turbine used as a power plant with DFIG. The control system uses the original nonlinear mathematical model of the DFIG in rotating “dq” coordinates, taking into account non-linear changes in the parameters. To confirm the effectiveness of the problem solution, mathematical computer model was developed. The paper also presents the results of full-scale simulation.

  13. Adaptive Backstepping Sliding-Mode Control of the Electronic Throttle System in Modern Automobiles

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available In modern automobiles, electronic throttle is a DC-motor-driven valve that regulates air inflow into the vehicle’s combustion system. The electronic throttle is increasingly being used in order to improve the vehicle drivability, fuel economy, and emissions. Electronic throttle system has the nonlinear dynamical characteristics with the unknown disturbance and parameters. At first, the dynamical nonlinear model of the electronic throttle is built in this paper. Based on the model and using the backstepping design technique, a new adaptive backstepping sliding-mode controller of the electronic throttle is developed. During the backstepping design process, parameter adaptive law is designed to estimate the unknown parameter, and sliding-mode control term is applied to compensate the unknown disturbance. The proposed controller can make the actual angle of the electronic throttle track its set point with the satisfactory performance. Finally, a computer simulation is performed, and simulation results verify that the proposed control method can achieve favorable tracking performance.

  14. Robust Adaptive Sliding Mode Control for Generalized Function Projective Synchronization of Different Chaotic Systems with Unknown Parameters

    Directory of Open Access Journals (Sweden)

    Xiuchun Li

    2013-01-01

    Full Text Available When the parameters of both drive and response systems are all unknown, an adaptive sliding mode controller, strongly robust to exotic perturbations, is designed for realizing generalized function projective synchronization. Sliding mode surface is given and the controlled system is asymptotically stable on this surface with the passage of time. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding controller is designed to ensure the occurrence of the sliding motion. Finally, numerical simulations are presented to verify the effectiveness and robustness of the proposed method even when both drive and response systems are perturbed with external disturbances.

  15. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    Science.gov (United States)

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Adaptive Traffic Control Systems in a medium-sized Scandinavian city

    DEFF Research Database (Denmark)

    Agerholm, Niels; Olesen, Anne Vingaard

    2018-01-01

    Adaptive Traffic Control Systems (ATCS) are aimed at reducing congestion. ATCS adapt to approaching traffic to continuously optimise the traffic flows in question. ATCS have been implemented in many locations, including the Scandinavian countries, with various effects. Due to congestion problems......, ATCS were installed in the eight signalised intersections of a 1.7 km stretch of the ring road in the medium-sized Danish city of Aalborg. To measure the effect of ATCS a with/without study was carried out. GPS data from a car following the traffic, recorded transportation times for buses in service......, and GPS data from a range of cars driving on the ring road formed the basis for the study. The result of ATCS implementation was a significant 17% reduction in transportation time on the ring road in the most congested period, the afternoon peak. Less significant effects were found regarding the morning...

  17. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints.

    Science.gov (United States)

    Meng, Wenchao; Yang, Qinmin; Sun, Youxian

    2015-05-01

    In this paper, adaptive neural control is investigated for a class of unknown multiple-input multiple-output nonlinear systems with time-varying asymmetric output constraints. To ensure constraint satisfaction, we employ a system transformation technique to transform the original constrained (in the sense of the output restrictions) system into an equivalent unconstrained one, whose stability is sufficient to solve the output constraint problem. It is shown that output tracking is achieved without violation of the output constraint. More specifically, we can shape the system performance arbitrarily on transient and steady-state stages with the output evolving in predefined time-varying boundaries all the time. A single neural network, whose weights are tuned online, is used in our design to approximate the unknown functions in the system dynamics, while the singularity problem of the control coefficient matrix is avoided without assumption on the prior knowledge of control input's bound. All the signals in the closed-loop system are proved to be semiglobally uniformly ultimately bounded via Lyapunov synthesis. Finally, the merits of the proposed controller are verified in the simulation environment.

  18. Model and experiments to optimize co-adaptation in a simplified myoelectric control system

    Science.gov (United States)

    Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.

    2018-04-01

    Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this

  19. Performance enhancement of adaptive Active Noise Control systems for FMRI machines.

    Science.gov (United States)

    Kannan, Govind; Milani, Ali A; Panahi, Issa M S; Kehtarnavaz, Nasser

    2010-01-01

    Active Noise Control (ANC) of fMRI acoustic noise using the conventional Filtered-X LMS (FXLMS) approach results in poor cancelation performance and slow convergence due to its broadband nature and the need for high order adaptive filters. High order adaptive filters are needed to effectively model the long acoustic impulse responses. Existing methods to improve the performance of FXLMS based broadband ANC systems are either computationally expensive or need elaborate implementation. In this paper we show a practical method to enhance the performance of FXLMS based algorithms, by deriving a crude estimate of the causalWiener filter and initializing the adaptive filter with the estimated Wiener filter. We observe that very fast convergence to the global minimum can be achieved along with huge gains in the noise cancelation performance. We call this method Wiener initialized FXLMS (WI-FXLMS).We show the effectiveness of the proposed approach for the active noise control of functional MRI acoustic noise and several other realistic noise sources.

  20. Multivariable adaptive predictive control of nonlinear systems application to a multistage wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C.; Roux, G.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1994-12-31

    This paper deals with a multivariable adaptive predictive control scheme via on-line estimation of the specific reaction rates of a multistage bioreactor. Good simulation results demonstrate significant robustness of the estimator and efficiency of the adaptive control law. (authors) 11 refs.

  1. Anti-windup adaptive PID control design for a class of uncertain chaotic systems with input saturation.

    Science.gov (United States)

    Tahoun, A H

    2017-01-01

    In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Adaptive fuzzy control with output feedback for H infinity tracking of SISO nonlinear systems.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2008-08-01

    Observer-based adaptive fuzzy H(infinity) control is proposed to achieve H(infinity) tracking performance for a class of nonlinear systems, which are subject to model uncertainty and external disturbances and in which only a measurement of the output is available. The key ideas in the design of the proposed controller are (i) to transform the nonlinear control problem into a regulation problem through suitable output feedback, (ii) to design a state observer for the estimation of the non-measurable elements of the system's state vector, (iii) to design neuro-fuzzy approximators that receive as inputs the parameters of the reconstructed state vector and give as output an estimation of the system's unknown dynamics, (iv) to use an H(infinity) control term for the compensation of external disturbances and modelling errors, (v) to use Lyapunov stability analysis in order to find the learning law for the neuro-fuzzy approximators, and a supervisory control term for disturbance and modelling error rejection. The control scheme is tested in the cart-pole balancing problem and in a DC-motor model.

  3. Control of a methanol reformer system using an Adaptive Neuro‐Fuzzy Inference System approach

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andersen, John; Ehmsen, Mikkel Præstholm

    This work presents a stoichiometry control strategy for a reformed methanol fuel cell system, which uses a reformer to produce hydrogen for an HTPEM fuel cell. One such system is the Serenus H3-350 battery charger developed by the Danish company Serenegy® which this work is based on. The poster...

  4. An adaptive control strategy of converter based DG to maintain protection coordination in distribution system

    DEFF Research Database (Denmark)

    Su, Chi; Liu, Zhou; Chen, Zhe

    2014-01-01

    of network protection devices. As a protection measure commonly used in distribution network, recloser-fuse coordination could suffer from this impact. Research work has been conducted to deal with this problem by modifying the control strategy of the DG converters during faults. These solutions generally...... reduce the current output from the converters during faults so as to mitigate the influence on protection coordination. However, converter current reduction may not be necessary for all types of faults. This paper proposes a converter control strategy with adaptivity to different fault types and also non......Distributed generation (DG) is increasingly integrated into distribution systems due to its flexible onsite characteristic and low carbon emission. However, DG integration may change the fault current pattern in distribution systems, which may in turn degrade the performance and coordination...

  5. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    Science.gov (United States)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  6. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback.

    Science.gov (United States)

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan

    2017-09-01

    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  7. Two fiber optics communication adapters apply to the control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Wang Dan; Zhang Shuocheng; Jing Lan; Zhang Wei; Ma Yunhai

    2006-01-01

    The authors introduced two kinds of fiber adapters that apply to the engineering HIRFL-CSR. Including design of two adapters, operational principle, and hardware construction, field of application. How to control equipment which have the standard RS232 or RS485 interface at long distance by two adapters. Replace the RS485 bus with the fiber and the 485-Fiber Adapter, solved the problem of communication disturb. The requirements of control in the national great science engineering HIRFL-CSR are fulfilled. (authors)

  8. InSync Adaptive Traffic Control System for the Veterans Memorial Hwy Corridor on Long Island, NY

    Science.gov (United States)

    2012-08-01

    This report documents Rhythm Engineerings adaptive traffic control system field installation performed : by New York State Department of Transportation (NYSDOT) along Veterans Memorial Hwy in Long : Island, NY. This report reviews the reason for t...

  9. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    Science.gov (United States)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  10. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi-sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree-of-freedom dynamic model is developed to formulate the path-tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive-PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  11. Analysis, adaptive control and circuit simulation of a novel finance system with dissaving

    Directory of Open Access Journals (Sweden)

    Tacha Ourania I.

    2016-03-01

    Full Text Available In this paper a novel 3-D nonlinear finance chaotic system consisting of two nonlinearities with negative saving term, which is called ‘dissaving’ is presented. The dynamical analysis of the proposed system confirms its complex dynamic behavior, which is studied by using wellknown simulation tools of nonlinear theory, such as the bifurcation diagram, Lyapunov exponents and phase portraits. Also, some interesting phenomena related with nonlinear theory are observed, such as route to chaos through a period doubling sequence and crisis phenomena. In addition, an interesting scheme of adaptive control of finance system’s behavior is presented. Furthermore, the novel nonlinear finance system is emulated by an electronic circuit and its dynamical behavior is studied by using the electronic simulation package Cadence OrCAD in order to confirm the feasibility of the theoretical model.

  12. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  13. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment.

    Science.gov (United States)

    Hu, Jiwen; Ding, Yajun; Qian, Shengyou; Tang, Xiangde

    2013-01-01

    The control problem in ultrasound therapy is to destroy the tumor tissue while not harming the intervening healthy tissue with a desired temperature elevation. The objective of this research is to present a robust and feasible method to control the temperature distribution and the temperature elevation in treatment region within the prescribed time, which can improve the curative effect and decrease the treatment time for heating large tumor (≥2.0cm in diameter). An adaptive self-tuning-regulator (STR) controller has been introduced into this control method by adding a time factor with a recursive algorithm, and the speed of sound and absorption coefficient of the medium is considered as a function of temperature during heating. The presented control method is tested for a self-focused concave spherical transducer (0.5MHz, 9cm aperture, 8.0cm focal length) through numerical simulations with three control temperatures of 43°C, 50°C and 55°C. The results suggest that this control system has adaptive ability for variable parameters and has a rapid response to the temperature and acoustic power output in the prescribed time for the hyperthermia interest. There is no overshoot during temperature elevation and no oscillation after reaching the desired temperatures. It is found that the same results can be obtained for different frequencies and temperature elevations. This method can obtain an ellipsoid-shaped ablation region, which is meaningful for the treatment of large tumor. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Endou, A.

    1994-01-01

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  15. Analysis, Adaptive Control and Adaptive Synchronization of a Nine-Term Novel 3-D Chaotic System with Four Quadratic Nonlinearities and its Circuit Simulation

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This research work describes a nine-term novel 3-D chaotic system with four quadratic nonlinearities and details its qualitative properties. The phase portraits of the 3-D novel chaotic system simulated using MATLAB, depict the strange chaotic attractor of the system. For the parameter values chosen in this work, the Lyapunov exponents of the novel chaotic system are obtained as L1 = 6.8548, L2 = 0 and L3 = −32.8779. Also, the Kaplan-Yorke dimension of the novel chaotic system is obtained as DKY = 2.2085. Next, an adaptive controller is design to achieve global stabilization of the 3-D novel chaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global chaos synchronization of two identical novel chaotic systems with unknown system parameters. Finally, an electronic circuit realization of the novel chaotic system is presented using SPICE to confirm the feasibility of the theoretical model.

  16. A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems

    Science.gov (United States)

    Gupta, Pramod; Schumann, Johann

    2004-01-01

    High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.

  17. Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures.

    Science.gov (United States)

    Hashemi, Mahnaz; Ghaisari, Jafar; Askari, Javad

    2015-07-01

    This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. NATO Advanced Research Institute on Adaptive Control of Ill-Defined Systems

    CERN Document Server

    Rissland, Edwina; Arbib, Michael

    1984-01-01

    There are some types of complex systems that are built like clockwork, with well-defined parts that interact in well-defined ways, so that the action of the whole can be precisely analyzed and anticipated with accuracy and precision. Some systems are not themselves so well-defined, but they can be modeled in ways that are like trained pilots in well-built planes, or electrolyte balance in healthy humans. But there are many systems for which that is not true; and among them are many whose understanding and control we would value. For example, the model for the trained pilot above fails exactly where the pilot is being most human; that is, where he is exercising the highest levels of judgment, or where he is learning and adapting to new conditions. Again, sometimes the kinds of complexity do not lead to easily analyzable models at all; here we might include most economic systems, in all forms of societies. There are several factors that seem to contribute to systems being hard to model, understand, or control. ...

  20. A comprehensive review of the development of adaptive cruise control systems

    Science.gov (United States)

    Xiao, Lingyun; Gao, Feng

    2010-10-01

    It has been 15 years since the first generation of adaptive cruise control (ACC)-equipped vehicles was available on the market and 7 years since the ISO standard for the first generation of ACC systems was produced. Since the next generation of ACC systems and more advanced driver-assistant systems are at the verge of complete introduction and deployment, it is necessary to summarise the development and research achievements of the first generation of ACC systems in order to provide more useful experiential guidance for the new deployment. From multidimensional perspectives, this paper looks into the related development and research achievements to objectively and comprehensively introduce an ACC system to researchers, automakers, governments and consumers. It attempts to simply explain what an ACC system is and how it operates from a systematic perspective. Then, it clearly draws a broad historical picture of ACC development by splitting the entire history into three different phases. Finally, the most significant research findings-related ACC systems have been reviewed and summarised from the human, traffic and social perspectives respectively.

  1. Adaptive Fault-Tolerant Control for Flight Systems with Input Saturation and Model Mismatch

    Directory of Open Access Journals (Sweden)

    Man Wang

    2013-01-01

    the original reference model may not be appropriate. Under this circumstance, an adaptive reference model which can also provide satisfactory performance is designed. Simulations of a flight control example are given to illustrate the effectiveness of the proposed scheme.

  2. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  3. L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wi......) is used to carry out case studies using Matlab/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodeled dynamics and in the presence of parameter uncertainties and unknown disturbances.......This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind...

  4. Adaptive sequential controller

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Xing, Jian (Seattle, WA); Butler, Nicholas G. (Newberg, OR); Rodriguez, Alonso (Pasadena, CA)

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  5. Adaptive sequential controller

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  6. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  7. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    Science.gov (United States)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost

  8. Adaptive/learning control of large space structures - System identification techniques. [for multi-configuration flexible spacecraft

    Science.gov (United States)

    Thau, F. E.; Montgomery, R. C.

    1980-01-01

    Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.

  9. Fuzzy Adaptive Prescribed Performance Control for a Class of Uncertain Nonlinear Systems with Unknown Dead-Zone Inputs

    Directory of Open Access Journals (Sweden)

    Wei Xiang

    2017-01-01

    Full Text Available This paper proposes a fuzzy adaptive prescribed performance control scheme for a class of uncertain chaotic systems with unknown control gains and unknown dead-zone inputs. Firstly, an error transformation is introduced to transform the original constrained system into an equivalent unconstrained one. Then, based on the error transformation technique and the predefined performance technique, a fuzzy adaptive feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, an illustrative example is given to demonstrate the effectiveness and usefulness of the proposed technique.

  10. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  11. Design of an optimized adaptive optics system with a photo-controlled deformable mirror

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Bonora, Stefano; Lucianetti, Antonio; Jelínková, H.; Mocek, Tomáš

    2016-01-01

    Roč. 28, č. 13 (2016), s. 1422-1425 ISSN 1041-1135 Institutional support: RVO:68378271 Keywords : adaptive optics * closed loop systems * deformable mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  12. An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse

    Directory of Open Access Journals (Sweden)

    Giuseppina Nicolosi

    2017-05-01

    Full Text Available In the recent past home automation has been expanding its objectives towards new solutions both inside the smart home and in its outdoor spaces, where several new technologies are available. This work has developed an approach to integrate intelligent microclimatic greenhouse control into integrated home automation. Microclimatic control of greenhouses is a critical issue in agricultural practices, due to often common sudden daily variation of climatic conditions, and to its potentially detrimental effect on plant growth. A greenhouse is a complex thermodynamic system where indoor temperature and relative humidity have to be closely monitored to facilitate plant growth and production. This work shows an adaptive control system tailored to regulate microclimatic conditions in a greenhouse, by using an innovative combination of soft computing applications. In particular, a neural network solution has been proposed in order to forecast the climatic behavior of greenhouse, while a parallel fuzzy scheme approach is carried out in order to adjust the air speed of fan-coil and its temperature. The proposed combined approach provides a better control of greenhouse climatic conditions due to the system’s capability to base instantaneous solutions both on real measured variables and on forecasted climatic change. Several simulation campaigns were carried out to perform accurate neural network and fuzzy schemes, aimed at obtaining respectively a minimum forecasted error value and a more appropriate fuzzification and de-fuzzification process. A Matlab/Simulink solution implemented with a combined approach and its relevant obtained performance is also shown in present study, demonstrating that through controlled parameters it will be possible to maintain a better level of indoor climatic conditions. In the present work we prove how with a forecast of outside temperature at the next time-instant and rule-based controller monitoring of cooling or heating air

  13. Adaptive tracking control of leader-following linear multi-agent systems with external disturbances

    Science.gov (United States)

    Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen

    2016-10-01

    In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.

  14. Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Gu, Ya-jing; Lei, Peng-fei; Liu, Hong-wei

    2015-11-01

    A new electro-hydraulic pitch system is proposed to smooth the output power and drive-train torque fluctuations for wind turbine. This new pitch system employs a servo-valve-controlled hydraulic motor to enhance pitch control performances. This pitch system is represented by a state-space model with parametric uncertainties and nonlinearities. An adaptive back-stepping pitch angle controller is synthesised based on this state-space model to accurately achieve the desired pitch angle control regardless of such uncertainties and nonlinearities. This pitch angle controller includes a back-stepping procedure and an adaption law to deal with such uncertainties and nonlinearities and hence to improve the final pitch control performances. The proposed pitch system and the designed pitch angle controller have been validated for achievable and efficient power and torque regulation performances by comparative experimental results under various operating conditions.

  15. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  16. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    Science.gov (United States)

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  17. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    Directory of Open Access Journals (Sweden)

    Ali Albattat

    2016-08-01

    Full Text Available The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems. These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  18. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Hwisoo Eom

    2015-06-01

    Full Text Available A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  19. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  20. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    Science.gov (United States)

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  1. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  2. Controller design for a class of nonlinear MIMO coupled system using multiple models and second level adaptation.

    Science.gov (United States)

    Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha

    2017-07-01

    In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. A Semiactive and Adaptive Hybrid Control System for a Tracked Vehicle Hydropneumatic Suspension Based on Disturbance Identification

    Directory of Open Access Journals (Sweden)

    Shousong Han

    2017-01-01

    Full Text Available The riding conditions for a high-speed tracked vehicle are quite complex. To enhance the adaptability of suspension systems to different riding conditions, a semiactive and self-adaptive hybrid control strategy based on disturbance velocity and frequency identification was proposed. A mathematical model of the semiactive, self-adaptive hybrid suspension control system, along with a performance evaluation function, was established. Based on a two-degree-of-freedom (DOF suspension system, the kinematic relations and frequency zero-crossing detection method were defined, and expressions for the disturbance velocity and disturbance frequency of the road were obtained. Optimal scheduling of the semiactive hybrid damping control gain (csky, cground, chybrid and self-adaptive control gain (cv under different disturbances were realized by exploiting the particle swarm multiobjective optimization algorithm. An experimental study using a carefully designed test rig was performed under a number of typical riding conditions of tracked vehicles, and the results showed that the proposed control strategy is capable of accurately recognizing different disturbances, shifting between control modes (semiactive/self-adaptive, and scheduling the damping control gain according to the disturbance identification outcomes; hence, the proposed strategy could achieve a good trade-off between ride comfort and ride safety and efficiently increase the overall performance of the suspension under various riding conditions.

  4. Adaptive Output Neural Network Control for a Class of Stochastic Nonlinear Systems With Dead-Zone Nonlinearities.

    Science.gov (United States)

    Wu, Li-Bing; Yang, Guang-Hong

    2017-03-01

    This paper investigates the problem of adaptive output neural network (NN) control for a class of stochastic nonaffine and nonlinear systems with actuator dead-zone inputs. First, based on the intermediate value theorem, a novel design scheme that converts the nonaffine system into the corresponding affine system is developed. In particular, the priori knowledge of the bound of the derivative of the nonaffine and nonlinear functions is removed; then, by employing NNs to approximate the appropriate nonlinear functions, the corresponding adaptive NN tracking controller with the adjustable parameter updated laws is designed through a backstepping technique. Furthermore, it is shown that all the closed-loop signals are bounded in probability, and the system output tracking error can converge to a small neighborhood in the sense of a mean quartic value. Finally, experimental simulations are provided to demonstrate the efficiency of the proposed adaptive NN tracking control method.

  5. Adaptive Controller Effects on Pilot Behavior

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  6. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given. Then ......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system.......Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given...

  7. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    Science.gov (United States)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  8. Adaptive Second-Order Sliding Mode Control Design for a Class of Nonlinear Systems with Unknown Input

    Directory of Open Access Journals (Sweden)

    You Zheng

    2015-01-01

    Full Text Available An adaptive second-order sliding mode controller is proposed for a class of nonlinear systems with unknown input. The proposed controller continuously drives the sliding variable and its time derivative to zero in the presence of disturbances with unknown boundaries. A Lyapunov approach is used to show finite time stability for the system in the presence of a class of uncertainty. An illustrative simulation example is presented to demonstrate the performance and robustness of the proposed controller.

  9. Almost optimal adaptive LQ control: SISO case

    NARCIS (Netherlands)

    Polderman, Jan W.; Daams, Jasper

    2002-01-01

    In this paper an almost optimal indirect adaptive controller for input/output dynamical systems is proposed. The control part of the adaptive control scheme is based on a modified LQ control law: by adding a time-varying gain to the certainty equivalent control law the conflict between

  10. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    Science.gov (United States)

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  11. ℋ2-optimal control of an adaptive optics system. Pt.I: data-driven modeling of the wavefront disturbance

    NARCIS (Netherlands)

    Hinnen, K.J.G.; Verhaegen, M.; Doelman, N.J.

    2005-01-01

    Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By

  12. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time.

    Science.gov (United States)

    Ge, Shuzhi Sam; Zhang, Jin; Lee, Tong Heng

    2004-08-01

    In this paper, adaptive neural network (NN) control is investigated for a class of multiinput and multioutput (MIMO) nonlinear systems with unknown bounded disturbances in discrete-time domain. The MIMO system under study consists of several subsystems with each subsystem in strict feedback form. The inputs of the MIMO system are in triangular form. First, through a coordinate transformation, the MIMO system is transformed into a sequential decrease cascade form (SDCF). Then, by using high-order neural networks (HONN) as emulators of the desired controls, an effective neural network control scheme with adaptation laws is developed. Through embedded backstepping, stability of the closed-loop system is proved based on Lyapunov synthesis. The output tracking errors are guaranteed to converge to a residue whose size is adjustable. Simulation results show the effectiveness of the proposed control scheme.

  13. Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control

    International Nuclear Information System (INIS)

    Memarzadeh, Milad; Pozzi, Matteo; Kolter, J. Zico

    2016-01-01

    System management includes the selection of maintenance actions depending on the available observations: when a system is made up by components known to be similar, data collected on one is also relevant for the management of others. This is typically the case of wind farms, which are made up by similar turbines. Optimal management of wind farms is an important task due to high cost of turbines' operation and maintenance: in this context, we recently proposed a method for planning and learning at system-level, called PLUS, built upon the Partially Observable Markov Decision Process (POMDP) framework, which treats transition and emission probabilities as random variables, and is therefore suitable for including model uncertainty. PLUS models the components as independent or identical. In this paper, we extend that formulation, allowing for a weaker similarity among components. The proposed approach, called Multiple Uncertain POMDP (MU-POMDP), models the components as POMDPs, and assumes the corresponding parameters as dependent random variables. Through this framework, we can calibrate specific degradation and emission models for each component while, at the same time, process observations at system-level. We compare the performance of the proposed MU-POMDP with PLUS, and discuss its potential and computational complexity. - Highlights: • A computational framework is proposed for adaptive monitoring and control. • It adopts a scheme based on Markov Chain Monte Carlo for inference and learning. • Hierarchical Bayesian modeling is used to allow a system-level flow of information. • Results show potential of significant savings in management of wind farms.

  14. Distributed Adaptive Finite-Time Approach for Formation-Containment Control of Networked Nonlinear Systems Under Directed Topology.

    Science.gov (United States)

    Wang, Yujuan; Song, Yongduan; Ren, Wei

    2017-07-06

    This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.

  15. Self-Directed Learning in Adaptive Training Systems: A Plea for Shared Control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Oprins, Esther; Van Merriënboer, Jeroen

    2018-01-01

    In the field of aviation, air traffic controllers must be able to adapt to and act upon continuing changes in a highly advanced technological work environ- ment. This position paper claims that explicit training of self-directed learning skills (i.e. the ability to: formulate own learning needs, set

  16. Decision-making tool for applying adaptive traffic control systems : final report.

    Science.gov (United States)

    2016-03-01

    Adaptive traffic signal control technologies have been increasingly deployed in real world situations. The objective of this project was to develop a decision-making tool to guide traffic engineers and decision-makers who must decide whether or not a...

  17. Maximum power point tracking in PV systems based on adaptive control and sliding mode control

    Directory of Open Access Journals (Sweden)

    Paula Andrea Ortiz-Valencia

    2015-01-01

    Full Text Available Los sistemas fotovoltaicos (PV son comúnmente controlados utilizando estructuras PI o PID, las cuales no pueden asegurar estabilidad global y un tiempo de establecimiento constante. Por esto, los algoritmos de optimización, e.g. Perturbar y Observar (P&O, son diseñados utilizando el tiempo de establecimiento más alto en el rango de operación, lo cual produce una búsqueda lenta del punto de máxima potencia (MPP para gran parte del rango de operación, introduciendo pérdidas dinámicas de potencia al sistema. Este artículo propone combinar un controlador adaptativo y un controlador de corriente por modos deslizantes (SMCC para garantizar estabilidad global y un tiempo de establecimiento constante para cualquier condición de operación, lo que permite incrementar la potencia generada en comparación con controladores PI y PID. El SMCC permite mitigar las perturbaciones del sistema y garantizar estabilidad global, mientras que el controlador adaptativo define la referencia del SMCC para asegurar un tiempo de estabilización constante. El diseño de la nueva estructura de control se soporta con análisis matemáticos y simulaciones realizadas en Matlab® para validar la robustez del sistema.

  18. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  19. Adaptative control of aero-acoustic instabilities. Application to propulsion systems; Controle adaptatif des instabilites aeroacoustiques. Application aux systemes de propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Mettenleiter, M.

    2000-02-15

    This work treats active adaptive control of aero-acoustic instabilities. In particular, we are interested in an application to solid propellant rockets. The study is part of the research program ASSM coordinated by CNES and ONERA and the aim is to increase the performance of the P230 segmented solid propellant boosters of the Ariane 5 rocket. The work has been carried out in collaboration with other partners of this program. The main objective of this study is the development of control algorithms, able to diminish low frequency instabilities encountered in propulsion systems. First, the instability phenomenon is analyzed in a simplified experimental setup and similarity is shown with instabilities observed in real propulsion systems. This study enables us to conceive adaptive control strategies, which have been tested on three different levels: - In a simplified dynamical simulation; - During an experimental study; - Using full numerical simulations. The three levels of application made it possible to study the behaviour of the different control strategies. We could show that the actuator signal modifies the behaviour of the system on the acoustic level. But as there is a strong interaction between the pressure fluctuations and the hydrodynamic behaviour, the flow structure is also modified by active control. This behaviour corresponds to the simplified model of the phenomenon, which has been used to define the control algorithms. The control action 'at the noise source' makes it possible to distinguish this kind of algorithms from schemes based on the anti-noise principle. After this first part, where we showed the feasibility of control, we particularly considered algorithms which can act in an unknown environment. The information about the system behaviour. which is necessary for convergence of the controller is now obtained in parallel during control. An identification off-line, used at the beginning of the research, is no longer necessary. Self-adaptive

  20. On the stability of adaptation process in active noise control systems.

    Science.gov (United States)

    Ardekani, Iman Tabatabaei; Abdulla, Waleed H

    2011-01-01

    The stability analysis of the adaptation process, performed by the filtered-x least mean square algorithm on weights of active noise controllers, has not been fully investigated. The main contribution of this paper is conducting a theoretical stability analysis for this process without utilizing commonly used simplifying assumptions regarding the secondary electro-acoustic channel. The core of this analysis is based on the root locus theory. The general rules for constructing the root locus plot of the adaptation process are derived by obtaining root locus parameters, including start points, end points, asymptote lines, and breakaway points. The conducted analysis leads to the derivation of a general upper-bound for the adaptation step-size beyond which the mean weight vector of the active noise controller becomes unstable. Also, this analysis yields the optimum step-size for which the adaptive active noise controller has its fastest dynamic performance. The proposed upper-bound and optimum values apply to general secondary electro-acoustic channels, unlike the commonly used ones which apply to only pure delay channels. The results are found to agree very well with those obtained from numerical analyses and computer simulation experiments.

  1. Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp

    Science.gov (United States)

    Davis, L. C.

    2007-06-01

    Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6 km in distance traveled in 600 s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.

  2. Adaptive stochastic disturbance accommodating control

    Science.gov (United States)

    George, Jemin; Singla, Puneet; Crassidis, John L.

    2011-02-01

    This article presents a Kalman filter based adaptive disturbance accommodating stochastic control scheme for linear uncertain systems to minimise the adverse effects of both model uncertainties and external disturbances. Instead of dealing with system uncertainties and external disturbances separately, the disturbance accommodating control scheme lumps the overall effects of these errors in a to-be-determined model-error vector and then utilises a Kalman filter in the feedback loop for simultaneously estimating the system states and the model-error vector from noisy measurements. Since the model-error dynamics is unknown, the process noise covariance associated with the model-error dynamics is used to empirically tune the Kalman filter to yield accurate estimates. A rigorous stochastic stability analysis reveals a lower bound requirement on the assumed system process noise covariance to ensure the stability of the controlled system when the nominal control action on the true plant is unstable. An adaptive law is synthesised for the selection of stabilising system process noise covariance. Simulation results are presented where the proposed control scheme is implemented on a two degree-of-freedom helicopter.

  3. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2017-10-03

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition Q(0)(x,a)≽ 0. To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  4. Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2014-09-01

    Full Text Available In this research work, a six-term 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel jerk system are obtained as L1 = 0.07765,L2 = 0, and L3 = −0.87912. The Kaplan-Yorke dimension of the novel jerk system is obtained as DKY = 2.08833. Next, an adaptive backstepping controller is designed to stabilize the novel jerk chaotic system with two unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve complete chaos synchronization of the identical novel jerk chaotic systems with two unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using Spice is presented in detail to confirm the feasibility of the theoretical model

  5. Robust Decentralized Adaptive Neural Control for a Class of Nonaffine Nonlinear Large-Scale Systems with Unknown Dead Zones

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of robust decentralized adaptive neural stabilization control is investigated for a class of nonaffine nonlinear interconnected large-scale systems with unknown dead zones. In the controller design procedure, radical basis function (RBF neural networks are applied to approximate packaged unknown nonlinearities and then an adaptive neural decentralized controller is systematically derived without requiring any information on the boundedness of dead zone parameters (slopes and break points. It is proven that the developed control scheme can ensure that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded in the sense of mean square. Simulation study is provided to further demonstrate the effectiveness of the developed control scheme.

  6. An Interactive Computer-Aided Instructional Strategy and Assessment Methods for System Identification and Adaptive Control Laboratory

    Science.gov (United States)

    Özbek, Necdet Sinan; Eker, Ilyas

    2015-01-01

    This study describes a set of real-time interactive experiments that address system identification and model reference adaptive control (MRAC) techniques. In constructing laboratory experiments that contribute to efficient teaching, experimental design and instructional strategy are crucial, but a process for doing this has yet to be defined. This…

  7. State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC MicroGrid Applications

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2014-01-01

    This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU), an SoC-based adaptive droop control method is proposed. In this decentralized control method, the droop...... and the system stability is thereby analyzed by using this model. Simulation and experimental results from a 2×2.2 kW parallel converter system are presented in order to validate the proposed approach....

  8. Adaptive robust pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays

    International Nuclear Information System (INIS)

    Nasiri, Reza; Radan, Ahmad

    2011-01-01

    Three leg inverters for photovoltaic systems have a lot of disadvantages, especially when the load is unbalanced. These disadvantages are for example, small utilization of the DC link voltage, the dependency of the modulation factor of the load current and the superposition of a DC component with the output AC voltage. A solution for these problems is the 4-leg inverter. Most papers dealing with 4-leg inverters ignore the effect of digital delays in control loop and suggest classic controllers, such as PI controller. However, the transient performance of the system does not become adjustable by applying classic control techniques. Additionally, adaptive control techniques have not yet been discussed for 4-leg inverters. This paper proposes the pole-placement control strategy via state feedback with integral state, which is a modern control technique, to control the system. Consequently, resulted system becomes highly robust. In addition, it suggests a Self-Tuner Regulator to guarantee the adaptive performance of the final system. Moreover, it proposes a novel model, considering digital delays, for 4-leg inverters. Simulation results show that transient performance of the system becomes accurately adjustable and the 4-leg inverter generates balanced voltage, with sinusoidal waveform, in spite of the presence of RL time variant loads.

  9. Turbine system and adapter

    Energy Technology Data Exchange (ETDEWEB)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  10. Efficient adaptive fuzzy control scheme

    NARCIS (Netherlands)

    Papp, Z.; Driessen, B.J.F.

    1995-01-01

    The paper presents an adaptive nonlinear (state-) feedback control structure, where the nonlinearities are implemented as smooth fuzzy mappings defined as rule sets. The fine tuning and adaption of the controller is realized by an indirect adaptive scheme, which modifies the parameters of the fuzzy

  11. Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters

    International Nuclear Information System (INIS)

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Delgado-Aguilera, Efredy

    2016-01-01

    This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.

  12. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    Science.gov (United States)

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  13. Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Time-Delay Systems with Unknown Dead-Zone Input

    Directory of Open Access Journals (Sweden)

    Chiang-Cheng Chiang

    2013-01-01

    Full Text Available The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the proposed approach.

  14. Adaptive Control via Neural Output Feedback for a Class of Nonlinear Discrete-Time Systems in a Nested Interconnected Form.

    Science.gov (United States)

    Li, Dong-Juan; Li, Da-Peng

    2017-09-14

    In this paper, an adaptive output feedback control is framed for uncertain nonlinear discrete-time systems. The considered systems are a class of multi-input multioutput nonaffine nonlinear systems, and they are in the nested lower triangular form. Furthermore, the unknown dead-zone inputs are nonlinearly embedded into the systems. These properties of the systems will make it very difficult and challenging to construct a stable controller. By introducing a new diffeomorphism coordinate transformation, the controlled system is first transformed into a state-output model. By introducing a group of new variables, an input-output model is finally obtained. Based on the transformed model, the implicit function theorem is used to determine the existence of the ideal controllers and the approximators are employed to approximate the ideal controllers. By using the mean value theorem, the nonaffine functions of systems can become an affine structure but nonaffine terms still exist. The adaptation auxiliary terms are skillfully designed to cancel the effect of the dead-zone input. Based on the Lyapunov difference theorem, the boundedness of all the signals in the closed-loop system can be ensured and the tracking errors are kept in a bounded compact set. The effectiveness of the proposed technique is checked by a simulation study.

  15. Optimizing the data acquisition rate for a remotely controllable structural monitoring system with parallel operation and self-adaptive sampling

    International Nuclear Information System (INIS)

    Sheng, Wenjuan; Guo, Aihuang; Liu, Yang; Azmi, Asrul Izam; Peng, Gang-Ding

    2011-01-01

    We present a novel technique that optimizes the real-time remote monitoring and control of dispersed civil infrastructures. The monitoring system is based on fiber Bragg gating (FBG) sensors, and transfers data via Ethernet. This technique combines parallel operation and self-adaptive sampling to increase the data acquisition rate in remote controllable structural monitoring systems. The compact parallel operation mode is highly efficient at achieving the highest possible data acquisition rate for the FBG sensor based local data acquisition system. Self-adaptive sampling is introduced to continuously coordinate local acquisition and remote control for data acquisition rate optimization. Key issues which impact the operation of the whole system, such as the real-time data acquisition rate, data processing capability, and buffer usage, are investigated. The results show that, by introducing parallel operation and self-adaptive sampling, the data acquisition rate can be increased by several times without affecting the system operating performance on both local data acquisition and remote process control

  16. Adaptive Control Methods for Soft Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...

  17. Controlling hyperchaotic complex systems with unknown parameters based on adaptive passive method

    Science.gov (United States)

    Gamal, M. Mahmoud; Emad, E. Mahmoud; Ayman, A. Arafa

    2013-06-01

    The aim of this paper is to study the control of hyperchaotic complex nonlinear systems with unknown parameters using passive control theory. An approach is stated to design the passive controller and estimate the unknown parameters based on the property of the passive system. The feasibility and effectiveness of the proposed approach is demonstrated through its application to the hyperchaotic complex Lü system, as an example. The estimated values of the unknown parameters are calculated. The analytical form of the complex controller is derived and used in the numerical simulation to control the hyperchaotic attractors of this example. Block diagrams of this example using Matlab/Simulink are constructed after and before the control to ensure the validity of the analytical results. Other examples of hyperchaotic complex nonlinear systems can be similarly treated.

  18. Online fault adaptive control for efficient resource management in Advanced Life Support Systems

    Science.gov (United States)

    Abdelwahed, Sherif; Wu, Jian; Biswas, Gautam; Ramirez, John; Manders, Eric-J

    2005-01-01

    This article presents the design and implementation of a controller scheme for efficient resource management in Advanced Life Support Systems. In the proposed approach, a switching hybrid system model is used to represent the dynamics of the system components and their interactions. The operational specifications for the controller are represented by utility functions, and the corresponding resource management problem is formulated as a safety control problem. The controller is designed as a limited-horizon online supervisory controller that performs a limited forward search on the state-space of the system at each time step, and uses the utility functions to decide on the best action. The feasibility and accuracy of the online algorithm can be assessed at design time. We demonstrate the effectiveness of the scheme by running a set of experiments on the Reverse Osmosis (RO) subsystem of the Water Recovery System (WRS).

  19. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    Science.gov (United States)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  20. Adaptive Control of Chaos in Chua's Circuit

    Directory of Open Access Journals (Sweden)

    Weiping Guo

    2011-01-01

    Full Text Available A feedback control method and an adaptive feedback control method are proposed for Chua's circuit chaos system, which is a simple 3D autonomous system. The asymptotical stability is proven with Lyapunov theory for both of the proposed methods, and the system can be dragged to one of its three unstable equilibrium points respectively. Simulation results show that the proposed methods are valid, and control performance is improved through introducing adaptive technology.

  1. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    OpenAIRE

    Choux, Martin; Blanke, Mogens; Hovland, Geir

    2011-01-01

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasi...

  2. Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks.

    Science.gov (United States)

    Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali

    2015-10-01

    This paper presents a tracking control methodology for a class of uncertain nonlinear systems subject to input saturation constraint and external disturbances. Unlike most previous approaches on saturated systems, which assumed affine nonlinear systems, in this paper, tracking control problem is solved for uncertain nonaffine nonlinear systems with input saturation. To deal with the saturation constraint, an auxiliary system is constructed and a modified tracking error is defined. Then, by employing implicit function theorem, mean value theorem, and modified tracking error, updating rules are derived based on the well-known back-propagation (BP) algorithm, which has been proven to be the most relevant updating rule to control problems. However, most of the previous approaches on BP algorithm suffer from lack of stability analysis. By injecting a damping term to the standard BP algorithm, uniformly ultimately boundedness of all the signals of the closed-loop system is ensured via Lyapunov's direct method. Furthermore, the presented approach employs nonlinear in parameter neural networks. Hence, the proposed scheme is applicable to systems with higher degrees of nonlinearity. Using a high-gain observer to reconstruct the states of the system, an output feedback controller is also presented. Finally, the simulation results performed on a Duffing-Holmes chaotic system, a generalized pendulum-type system, and a numerical system are presented to demonstrate the effectiveness of the suggested state and output feedback control schemes.

  3. Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations

    Science.gov (United States)

    Zhang, Ruikun; Hou, Zhongsheng; Chi, Ronghu; Ji, Honghai

    2015-06-01

    In this work, an adaptive iterative learning control (AILC) scheme is proposed to address a class of nonlinearly parameterised systems with both unknown time-varying delays and input saturations. By incorporating a saturation function, a novel iterative learning control mechanism is constructed with a feedback term in the time domain and a fully saturated adaptive learning term in the iteration domain, which is used to estimate the unknown time-varying system uncertainty. A new time-weighted Lyapunov-Krasovskii-like composite energy function (LKL-CEF) is designed for the convergence analysis where time-weighted inputs, states and estimates of system uncertainty are all considered. Despite the existence of time-varying parametric uncertainties, time-varying delays, input saturations and local Lipschitz nonlinearities, the learning convergence is guaranteed with rigorous mathematical analysis. Simulation results verify the correctness and effectiveness of the proposed method further.

  4. A robust adaptive robot controller

    NARCIS (Netherlands)

    Berghuis, Harry; Berghuis, Harry; Ortega, Romeo; Nijmeijer, Henk

    1993-01-01

    A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may

  5. MASA-CIRCA: Multi-Agent Self-Adaptive Control for Mission-Critical Systems

    National Research Council Canada - National Science Library

    Musliner, David

    2004-01-01

    .... CIRCA is a coarse-grained architecture designed to control autonomous systems which require both intelligent, deliberative planning activity and highly reliable, hard real-time reaction to safety threats...

  6. Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input.

    Science.gov (United States)

    Liu, Yan-Jun; Tong, Shaocheng

    2015-03-01

    In the paper, an adaptive tracking control design is studied for a class of nonlinear discrete-time systems with dead-zone input. The considered systems are of the nonaffine pure-feedback form and the dead-zone input appears nonlinearly in the systems. The contributions of the paper are that: 1) it is for the first time to investigate the control problem for this class of discrete-time systems with dead-zone; 2) there are major difficulties for stabilizing such systems and in order to overcome the difficulties, the systems are transformed into an n-step-ahead predictor but nonaffine function is still existent; and 3) an adaptive compensative term is constructed to compensate for the parameters of the dead-zone. The neural networks are used to approximate the unknown functions in the transformed systems. Based on the Lyapunov theory, it is proven that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of zero. Two simulation examples are provided to verify the effectiveness of the control approach in the paper.

  7. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will

  8. Mathematic Modeling and Performance Analysis of an Adaptive Congestion Control in Intelligent Transportation Systems

    OpenAIRE

    Naja, Rola; Université de Versailles

    2015-01-01

    In this paper, we develop a preventive congestion control mechanism applied at highway entrances and devised for Intelligent Transportation Systems (ITS). The proposed mechanism provides a vehicular admission control, regulates input traffic and performs vehicular traffic shaping. Our congestion control mechanism includes two classes of vehicles and is based on a specific priority ticket pool scheme with queue-length threshold scheduling policy, tailored to vehicular networks. In an attempt t...

  9. Application of Genetic Control with Adaptive Scaling Scheme to Signal Acquisition in Global Navigation Satellite System Receiver

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2012-02-01

    Full Text Available This paper presents a genetic-based control scheme that not only utilizes evolutionary characteristics to find the signal acquisition parameters, but also employs an adaptive scheme to control the search space and avoid the genetic control converging to local optimal value so as to acquire the desired signal precisely and rapidly. Simulations and experiment results show that the proposed method can improve the precision of signal parameters and take less signal acquisition time than traditional serial search methods for global navigation satellite system (GNSS signals.

  10. Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2015-03-01

    Full Text Available A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ⩾ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ⩾ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328, L3 = 0 and L4 = −1.1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY= 3.1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.

  11. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure......-tolerant control for a representative electro hydraulic servo controlled motion system. The thesis extends existing models of hydraulic systems by considering more detailed dynamics in the servo valve and in the friction inside the hydraulic cylinder. It identies the model parameters using experimental data from...... a test bed by analysing both the time response to standard input signals and the variation of the outputs with dierent excitation frequencies. The thesis also presents a model that accurately describes the static and dynamic normal behaviour of the system. Further, in this thesis, a fault detector...

  12. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  13. Characterization and adaptive fuzzy model reference control for a magnetic levitation system

    Directory of Open Access Journals (Sweden)

    J.J. Hernández-Casañas

    2016-09-01

    Full Text Available This paper shows the implementation of a fuzzy controller applied for magnetic levitation, to make this, the characterization of the magnetic actuator was computed by using ANSYS® analysis. The control law was a Mamdani PD implemented with two microcontrollers, to get a smooth control signal, it was used a model reference. A learning scheme was used to update the consequents of the fuzzy rules. Different reference signals and disturbances were applied to the system to show the robustness of the controller. Finally, LabVIEW® was used to plot the results.

  14. Electric load simulator system control based on adaptive particle swarm optimization wavelet neural network with double sliding modes

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2016-08-01

    Full Text Available In this article, an adaptive particle swarm optimization wavelet neural network with double sliding modes controller is proposed to address the complex nonlinearities and uncertainties in the electric load simulator. The adaptive double sliding modes–particle swarm optimization wavelet neural network algorithm with the self-learning structures and parameters is designed as a torque tracking controller, in which a number of hidden nodes are added and pruned by the structure learning algorithm, and the parameters are online adjusted by the adaptive particle swarm optimization at the same time. Moreover, one conventional sliding mode is introduced to track the time-varying reference command, and the other complementary sliding mode is adopted to attenuate the effect of the approximation error. Furthermore, the relative parameters should comply with some estimation laws on the basis of the Lyapunov theory used to guarantee the system stability. Finally, the simulation experiments are carried out on the hardware-in-the-loop platform for the electric load simulator, the performance of the adaptive double sliding modes–particle swarm optimization wavelet neural network with structure learning is verified compared with some similar control methods. In addition, different amplitudes and frequencies of the reference commands are introduced to further evaluate the effectiveness and robustness of the proposed algorithms.

  15. A knowledge-based approach to identification and adaptation in dynamical systems control

    Science.gov (United States)

    Glass, B. J.; Wong, C. M.

    1988-01-01

    Artificial intelligence techniques are applied to the problems of model form and parameter identification of large-scale dynamic systems. The object-oriented knowledge representation is discussed in the context of causal modeling and qualitative reasoning. Structured sets of rules are used for implementing qualitative component simulations, for catching qualitative discrepancies and quantitative bound violations, and for making reconfiguration and control decisions that affect the physical system. These decisions are executed by backward-chaining through a knowledge base of control action tasks. This approach was implemented for two examples: a triple quadrupole mass spectrometer and a two-phase thermal testbed. Results of tests with both of these systems demonstrate that the software replicates some or most of the functionality of a human operator, thereby reducing the need for a human-in-the-loop in the lower levels of control of these complex systems.

  16. Adaptive control system based on lineal control theory for the path-following problem of a car-like mobile robot

    OpenAIRE

    Sánchez López, José Luis; Campoy Cervera, Pascual; Olivares Méndez, Miguel Ángel; Mellado Bataller, Ignacio; Galindo Gallego, David

    2012-01-01

    The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the trajectory following task. The main advantages of the proposed control structure is that well known linear control theory can be applied in calculating the PID controllers to ful l control requirements, while at the same time it is exible to be applied in non-linear changing...

  17. Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems

    Directory of Open Access Journals (Sweden)

    Evangelos Rikos

    2017-07-01

    Full Text Available Future power systems control will require large-scale activation of reserves at distribution level. Despite their high potential, distributed energy resources (DER used for frequency control pose challenges due to unpredictability, grid bottlenecks, etc. To deal with these issues, this study presents a novel strategy of power frequency characteristic dynamic adjustment based on the imbalance state. This way, the concerned operators become aware of the imbalance location but also a more accurate redistribution of responsibilities in terms of reserves activations is achieved. The proposed control is based on the concept of “cells” which are power systems with operating capabilities and responsibilities similar to control areas (CAs, but fostering the use of resources at all voltage levels, particularly distribution grids. Control autonomy of cells allows increased RES hosting. In this study, the power frequency characteristic of a cell is adjusted in real time by means of a fuzzy controller, which curtails part of the reserves, in order to avoid unnecessary deployment throughout a synchronous area, leading to a more localised activation and reducing losses, congestions and reserves exhaustion. Simulation tests in a four-cell reference power system prove that the controller significantly reduces the use of reserves without compromising the overall stability.

  18. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies...

  19. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Adaptive Control Design for Autonomous Operation of Multiple Energy Storage Systems in Power Smoothing Applications

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2018-01-01

    -pass-filter (HPF) structure. It generates the power reference according to the fluctuating power and provides a stabilization effect. The power and energy supplied by ESS are majorly configured by the cut-off frequency and gain of the HPF. Considering the operational limits on ESS state-of-charge (SoC), this paper...... proposes an adaptive cut-off frequency design method to realize communication-less and autonomous operation of a system with multiple distributed ESS. The experimental results demonstrate that the SoCs of all ESS units are kept within safe margins, while the SoC level and power of the paralleled units...... converge to the final state, providing a natural plug-and-play function....

  2. Use of model-based qualitative icons and adaptive windows in workstations for supervisory control systems

    Science.gov (United States)

    Mitchell, Christine M.; Saisi, Donna L.

    1987-01-01

    The effectiveness of an operator interface using qualitative icons and dynamic windows designed and controlled by means of an operator function model is demonstrated, and the simulation system, the Georgia Tech-Multisatellite Operations Control Center, is described. Qualitative icons are used to integrate low-level quantitative data into high-level qualitative error detection mechanisms, and window technology is used for the simultaneous display of multiple data sources that reflect different aspects of the system state. Based on eleven experimental measures, the workstation incorporating the model-based qualitative icons and dynamic operator function window sets was found to perform better than the conventional workstation.

  3. Droop Control with Improved Disturbance Adaption for PV System with Two Power Conversion Stages

    DEFF Research Database (Denmark)

    Liu, Hongpeng; Loh, Poh Chiang; Wang, Xiongfei

    2016-01-01

    issues, an improved droop scheme for a two-stage PV system has been developed in the paper. The developed scheme uses the same control structure in both grid-connected and islanded modes, which together with properly tuned synchronizers, allows mode transfer to be seamlessly triggered. Moreover...... with no or insufficient storage for cushioning climatic changes. In addition, most droop-controlled literatures have assumed a single dc-ac inverter with its input dc source fixed. Front-end dc-dc converter added to a two-stage photovoltaic (PV) system has therefore usually been ignored. To address these unresolved...

  4. Synthesis of a novel adaptive wavelet optimized neural cascaded steam blow-off control system for a nuclear power plant

    International Nuclear Information System (INIS)

    Malik, A.H.; Memon, A.A.; Arshad, F.

    2013-01-01

    Blow-Off System Controller (MIMO AWNN-SBOSC) is designed based on real time dynamic parametric plant data of steam blow-off system with conventional Single-Input Multi-Output Proportional plus Integral plus Derivative Controller (SIMO PIDC). The proposed MIMO AWANN-SBOSC is designed using three Multi-Input Single-Output Adaptive Wavelet Neural Network based Steam Blow-Off System Controllers (MISO AWNN-SBOSC). The hidden layer of each MISO AWNN-SBOSC is formulated using Mother Wavelet Transforms (MWT). Using nonlinear dynamic neural data of designed MIMO AWNN-SBOSC, a Multi-Input Multi-Output Adaptive Wavelet Neural Network based Steam Blow-Off System Model (MIMO AWNN-SBOSM) is developed in cascaded mode. MIMO AWNN-SBOSM is designed using two MISO AWNN-SBOSM. All training, testing and validation of MIMO AWNN-SBOSC and MIMO AWNN-SBOSM are carried out in MA TLAB while all simulation experiments are performed in Visual C. The results of the new design is evaluated against conventional controller based measured data and found robust, fast and much better in performance. (author)

  5. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  6. Extended State Observer Based Adaptive Back-Stepping Sliding Mode Control of Electronic Throttle in Transportation Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Yongfu Li

    2015-01-01

    Full Text Available Considering the high accuracy requirement of information exchange via vehicle-to-vehicle (V2V communications, an extended state observer (ESO is designed to estimate the opening angle change of an electronic throttle (ET, wherein the emphasis is placed on the nonlinear uncertainties of stick-slip friction and spring in the system as well as the existence of external disturbance. In addition, a back-stepping sliding mode controller incorporating an adaptive control law is presented, and the stability and robustness of the system are analyzed using Lyapunov technique. Finally, numerical experiments are conducted using simulation. The results show that, compared with back-stepping control (BSC, the proposed controller achieves superior performance in terms of the steady-state error and rising time.

  7. Start-up current adaptive control for sensorless high-speed brushless DC motors based on inverse system method and internal mode controller

    Directory of Open Access Journals (Sweden)

    Yanzhao He

    2017-02-01

    Full Text Available The start-up current control of the high-speed brushless DC (HS-BLDC motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is proposed based on the adaptive neural network (ANN inverse system and the two degrees of freedom (2-DOF internal model controller (IMC. The HS-BLDC motor is identified by the online least squares support vector machine (OLS-SVM algorithm to regulate the ANN inverse controller parameters in real time. A pseudo linear system is developed by introducing the constructed real-time inverse system into the original HS-BLDC motor system. Based on the characteristics of the pseudo linear system, an extra closed-loop feedback control strategy based on the 2-DOF IMC is proposed to improve the transient response performance and enhance the stability of the control system. The simulation and experimental results show that the proposed control method is effective and perfect start-up current tracking performance is achieved.

  8. Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems.

    Science.gov (United States)

    Patterson, Adrian G; Jackson, Simon A; Taylor, Corinda; Evans, Gary B; Salmond, George P C; Przybilski, Rita; Staals, Raymond H J; Fineran, Peter C

    2016-12-15

    Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in Serratia cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    Science.gov (United States)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  10. AI-based adaptive control and design of autopilot system for ...

    Indian Academy of Sciences (India)

    tle position using electric motor drives is called ETCS (Yadav & Gaur 2014). The UAV with the ETCS can ... various applications of FLSMAC such as manipulators, aircraft, servo drives, hybrid electric vehicles and robot are ..... system of UAV. The principle of SMC is to define a control law to drive the nonlinear state trajectory ...

  11. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  12. Adaptive Augmenting Control and Launch Vehicle Adaptive Control Flight Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at NASA Armstrong are working to further the development of an adaptive augmenting control algorithm (AAC). The AAC was developed to improve the...

  13. Impact on Congestion and Fuel Consumption of a Cooperative Adaptive Cruise Control System with Lane-Level Position Estimation

    Directory of Open Access Journals (Sweden)

    Edgar Talavera

    2018-01-01

    Full Text Available In recent years, vehicular communications systems have evolved and allowed for the improvement of adaptive cruise control (ACC systems to make them cooperative (cooperative adaptive cruise control, CACC. Conventional ACC systems use sensors on the ego-vehicle, such as radar or computer vision, to generate their behavioral decisions. However, by having vehicle-to-X (V2X onboard communications, the need to incorporate perception in the vehicle is drastically reduced. Thus, in this paper a CACC solution is proposed that only uses communications to make its decisions with the help of previous road mapping. At the same time, a method to develop these maps is presented, combining the information of a computer vision system to correct the positions obtained from the navigation system. In addition, the cut-in and cut-out maneuvers for a CACC platoon are taken into account, showing the tests of these situations in real environments with instrumented vehicles. To show the potential of the system in a larger-scale implementation, simulations of the behavior are provided under dense traffic conditions where the positive impact on the reduction of traffic congestion and fuel consumption is appreciated.

  14. Smart wave filtering method of a rectangular panel using Hilbert transformers and its application to an adaptive control system

    International Nuclear Information System (INIS)

    Iwamoto, Hiroyuki; Tanaka, Nobuo; Hill, Simon G

    2010-01-01

    This paper concerns the active vibration control of a rectangular panel using smart sensors from the viewpoint of an active wave control theory. The objective of this paper is to present a new type of filter which enables the measurement of the wave amplitude of a rectangular panel in real time for the application of an adaptive feedforward control system which inactivates vibration modes. Firstly, a novel wave filtering method using smart PVDF sensors is proposed. It is found that the shaping function of smart sensors is a complex function. To realize the smart sensor in a practical situation, a Hilbert transformer is utilized to implement a phase shifter of 90° for broadband frequencies. Then, from the viewpoint of a numerical analysis, the characteristics of the proposed wave filter and the performance of the adaptive feedforward control system using the wave filter are discussed. Finally, experiments implementing the active wave control theory which uses the proposed wave filter are conducted, demonstrating the validity of the proposed method in suppressing the vibration of a rectangular panel

  15. Neural Approximation-Based Adaptive Control for a Class of Nonlinear Nonstrict Feedback Discrete-Time Systems.

    Science.gov (United States)

    Yan-Jun Liu; Shu Li; Shaocheng Tong; Chen, C L Philip

    2017-07-01

    In this paper, an adaptive control approach-based neural approximation is developed for a class of uncertain nonlinear discrete-time (DT) systems. The main characteristic of the considered systems is that they can be viewed as a class of multi-input multioutput systems in the nonstrict feedback structure. The similar control problem of this class of systems has been addressed in the past, but it focused on the continuous-time systems. Due to the complicacies of the system structure, it will become more difficult for the controller design and the stability analysis. To stabilize this class of systems, a new recursive procedure is developed, and the effect caused by the noncausal problem in the nonstrict feedback DT structure can be solved using a semirecurrent neural approximation. Based on the Lyapunov difference approach, it is proved that all the signals of the closed-loop system are semiglobal, ultimately uniformly bounded, and a good tracking performance can be guaranteed. The feasibility of the proposed controllers can be validated by setting a simulation example.

  16. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    Science.gov (United States)

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  17. Thunder - adaptive avalanche airbag system

    OpenAIRE

    Chen, Kan

    2017-01-01

    Skiing plays an important role in outdoor activities. It allows us to regain control of our body, makes us feel alive. However, in some cases, skiing comes with great risk. Avalanche is the worth thing a skier would like to encounter. Thunder is an adaptive avalanche airbag system. Usually, an avalanche airbag product can help you float on the snow in an avalanche circumstance. Thunder are more focusing on the human behavior, making this avalanche airbag system not only an effective safety eq...

  18. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    Science.gov (United States)

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  19. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Science.gov (United States)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  20. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.

    Science.gov (United States)

    Ye, Dan; Chen, Mengmeng; Li, Kui

    2017-11-01

    In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  2. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Vicente Hernández Díaz

    2015-09-01

    Full Text Available The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT and Cyber-Physical Systems (CPS are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container, and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  3. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    Science.gov (United States)

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  4. Development of Tremor Suppression Control System Using Adaptive Filter and Its Application to Meal-assist Robot

    Science.gov (United States)

    Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka

    A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.

  5. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources

    Directory of Open Access Journals (Sweden)

    Otilia Elena Dragomir

    2015-11-01

    Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.

  6. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input.

    Science.gov (United States)

    Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip

    2016-01-01

    In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.

  7. Controlling smart grid adaptivity

    NARCIS (Netherlands)

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption

  8. Adaptive, dynamic, and resilient systems

    CERN Document Server

    Suri, Niranjan

    2015-01-01

    As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r

  9. PREDICTIVE CONTROL OF A BATCH POLYMERIZATION SYSTEM USING A FEEDFORWARD NEURAL NETWORK WITH ONLINE ADAPTATION BY GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. Cancelier

    Full Text Available Abstract This study used a predictive controller based on an empirical nonlinear model comprising a three-layer feedforward neural network for temperature control of the suspension polymerization process. In addition to the offline training technique, an algorithm was also analyzed for online adaptation of its parameters. For the offline training, the network was statically trained and the genetic algorithm technique was used in combination with the least squares method. For online training, the network was trained on a recurring basis and only the technique of genetic algorithms was used. In this case, only the weights and bias of the output layer neuron were modified, starting from the parameters obtained from the offline training. From the experimental results obtained in a pilot plant, a good performance was observed for the proposed control system, with superior performance for the control algorithm with online adaptation of the model, particularly with respect to the presence of off-set for the case of the fixed parameters model.

  10. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Science.gov (United States)

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  11. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Directory of Open Access Journals (Sweden)

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  12. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...

  13. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  14. Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.

    Science.gov (United States)

    Milani, Ali A; Panahi, Issa M; Briggs, Richard

    2007-01-01

    Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.

  15. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    Science.gov (United States)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  16. OUTPUT CONTROL WITH ADAPTIVE-PROPORTIONAL DIFFERENTIAL CONTROLLER

    Directory of Open Access Journals (Sweden)

    O. F. Opeiko

    2016-01-01

    Full Text Available The goal of this articl is to improve acсuracy and stability margine for system with proportional differential (PD-controllers and parameters unsertaity by means of adaptation. The adaptive controller must produce the accuraсy improving by encreasing the proportional gain of controller, when the error is non zero. Consequently, the error decrease, adaptation become less intensive, and the system maintain the stability. The is provided by the correctly constructed Lapunov function. The method of parametric synthesis for adaptive PD-controller is developed based on roots location on complex plane. The numerical example of synthesis is presented with simulation results, which demonstrate the correctness of developed method. The adaptive PD-controller allow accuracy improuving with stability retaining, i. e. the adaptivity is able to replace the integrator by proportional gain tuning. The adaptive PD-controller is especially helpful for systems, working with inputs variability, and when the exponential dynamic is of importance. In cases, when diturbances are restricted, the adaptive PD-controller provides the stability and accuracy, but slowly operation.

  17. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  18. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  19. Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay.

    Science.gov (United States)

    Hwang, Chih-Lyang; Jan, Chau

    2016-02-01

    At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.

  20. Output-Feedback Nonlinear Adaptive Control Strategy of the Single-Phase Grid-Connected Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Abdelmajid Abouloifa

    2018-01-01

    Full Text Available This paper addresses the problem of controlling the single-phase grid connected to the photovoltaic system through a full bridge inverter with LCL-filter. The control aims are threefold: (i imposing the voltage in the output of PV panel to track a reference provided by the MPPT block; (ii regulating the DC-link voltage to guarantee the power exchange between the source and AC grid; (iii ensuring a satisfactory power factor correction (PFC. The problem is dealt with using a cascade nonlinear adaptive controller that is developed making use of sliding-mode technique and observers in order to estimate the state variables and grid parameters, by measuring only the grid current, PV voltage, and the DC bus voltage. The control problem addressed by this work involves several difficulties, including the uncertainty of some parameters of the system and the numerous state variables are inaccessible to measurements. The results are confirmed by simulation under MATLAB∖Simulink∖SimPowerSystems, which show that the proposed regulator is robust with respect to climate changes.

  1. Multiple model adaptive control with mixing

    Science.gov (United States)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  2. Approximation-Based Adaptive Neural Tracking Control of Nonlinear MIMO Unknown Time-Varying Delay Systems With Full State Constraints.

    Science.gov (United States)

    Li, Da-Peng; Li, Dong-Juan; Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip

    2017-10-01

    This paper deals with the tracking control problem for a class of nonlinear multiple input multiple output unknown time-varying delay systems with full state constraints. To overcome the challenges which cause by the appearances of the unknown time-varying delays and full-state constraints simultaneously in the systems, an adaptive control method is presented for such systems for the first time. The appropriate Lyapunov-Krasovskii functions and a separation technique are employed to eliminate the effect of unknown time-varying delays. The barrier Lyapunov functions are employed to prevent the violation of the full state constraints. The singular problems are dealt with by introducing the signal function. Finally, it is proven that the proposed method can both guarantee the good tracking performance of the systems output, all states are remained in the constrained interval and all the closed-loop signals are bounded in the design process based on choosing appropriate design parameters. The practicability of the proposed control technique is demonstrated by a simulation study in this paper.

  3. Monitoring the Performance of a neuro-adaptive Controller

    Science.gov (United States)

    Schumann, Johann; Gupta, Pramod

    2004-11-01

    We present a tool to estimate the performance of the neural network in a neural network based adaptive controller. Using a Bayesian approach, this tool supports verification and validation of the adaptive controller as well as on-line monitoring. In this paper, we discuss our approach and present simulation results using the adaptive controller developed for NASA's IFCS (Intelligent Flight Control System) project.

  4. Thermal room modelling adapted to the test of HVAC control systems; Modele de zone adapte aux essais de regulateurs de systemes de chauffage et de climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Riederer, P.

    2002-01-15

    Room models, currently used for controller tests, assume the room air to be perfectly mixed. A new room model is developed, assuming non-homogeneous room conditions and distinguishing between different sensor positions. From measurement in real test rooms and detailed CFD simulations, a list of convective phenomena is obtained that has to be considered in the development of a model for a room equipped with different HVAC systems. The zonal modelling approach that divides the room air into several sub-volumes is chosen, since it is able to represent the important convective phenomena imposed on the HVAC system. The convective room model is divided into two parts: a zonal model, representing the air at the occupant zone and a second model, providing the conditions at typical sensor positions. Using this approach, the comfort conditions at the occupant zone can be evaluated as well as the impact of different sensor positions. The model is validated for a test room equipped with different HVAC systems. Sensitivity analysis is carried out on the main parameters of the model. Performance assessment and energy consumption are then compared for different sensor positions in a room equipped with different HVAC systems. The results are also compared with those obtained when a well-mixed model is used. A main conclusion of these tests is, that the differences obtained, when changing the position of the controller's sensor, is a function of the HVAC system and controller type. The differences are generally small in terms of thermal comfort but significant in terms of overall energy consumption. For different HVAC systems the cases are listed, in which the use of a simplified model is not recommended. (author)

  5. Robust Adaptive Fuzzy Control of a Class of Uncertain Nonlinear Systems With Unstable Dynamics and Mismatched Disturbances.

    Science.gov (United States)

    Zhai, Ding; An, Liwei; Dong, Jiuxiang; Zhang, Qingling

    2017-10-16

    This paper studies the robust stabilization problem for a class of uncertain nonlinear systems with unstable zero dynamics. The considered zero dynamic is not assumed to be input-to-state practically stable and contains nonlinear uncertainties and mismatched external disturbances. A new robust adaptive fuzzy control method is developed by combining H∞ theory with backstepping technique. First, an ideal C¹ virtual control function is designed, which can guarantee the zero dynamic asymptotically stable with a suboptimal H∞ performance. Then, based on some non-negative functions and backstepping design, the actual controller is constructed for the overall system, which ensures that the tracking error for the ideal virtual control signal converges to a priori accuracy regardless of external disturbances. In this design, an auxiliary signal is introduced to overcome the difficulties from the unavailable virtual reference signal. By exploiting the implicit function theorem, the proposed design technique is directly applied to a special case, where the zero dynamic is partially linear. A two inverted pendulums is used to illustrate the application and effectiveness of the proposed design method.

  6. Energy management of a fuel cell/ultracapacitor hybrid power system using an adaptive optimal-control method

    Science.gov (United States)

    Lin, Wei-Song; Zheng, Chen-Hong

    2011-03-01

    Energy management of a fuel cell/ultracapacitor hybrid power system aims to optimize energy efficiency while satisfying the operational constraints. The current challenges include ensuring that the non-linear dynamics and energy management of a hybrid power system are consistent with state and input constraints imposed by operational limitations. This paper formulates the requirements for energy management of the hybrid power system as a constrained optimal-control problem, and then transforms the problem into an unconstrained form using the penalty-function method. Radial-basis-function networks are organized in an adaptive optimal-control algorithm to synthesize an optimal strategy for energy management. The obtained optimal strategy was verified in an electric vehicle powered by combining a fuel-cell system and an ultracapacitor bank. Driving-cycle tests were conducted to investigate the fuel consumption, fuel-cell peak power, and instantaneous rate of change in fuel-cell power. The results show that the energy efficiency of the electric vehicle is significantly improved relative to that without using the optimal strategy.

  7. Adaptive iterative learning control of a class of nonlinear time-delay systems with unknown backlash-like hysteresis input and control direction.

    Science.gov (United States)

    Wei, Jianming; Zhang, Youan; Sun, Meimei; Geng, Baoliang

    2017-09-01

    This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  9. Flight control with adaptive critic neural network

    Science.gov (United States)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  10. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    Full Text Available This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG. A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  11. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  12. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    Science.gov (United States)

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  13. Hand movements classification for myoelectric control system using adaptive resonance theory.

    Science.gov (United States)

    Jahani Fariman, H; Ahmad, Siti A; Hamiruce Marhaban, M; Alijan Ghasab, M; Chappell, Paul H

    2016-03-01

    This research proposes an exploratory study of a simple, accurate, and computationally efficient movement classification technique for prosthetic hand application. Surface myoelectric signals were acquired from the four muscles, namely, flexor carpi ulnaris, extensor carpi radialis, biceps brachii, and triceps brachii, of four normal-limb subjects. The signals were segmented, and the features were extracted with a new combined time-domain feature extraction method. Fuzzy C-means clustering method and scatter plot were used to evaluate the performance of the proposed multi-feature versus Hudgins' multi-feature. The movements were classified with a hybrid Adaptive Resonance Theory-based neural network. Comparative results indicate that the proposed hybrid classifier not only has good classification accuracy (89.09%) but also a significantly improved computation time.

  14. Voice controlled adaptive manipulator and mobility systems for the severely handicapped

    Science.gov (United States)

    Heer, E.; Wiker, G. A.; Karchak, A., Jr.

    1975-01-01

    Efforts by NASA and the VA to apply available teleoperator/robot technology to rehabilitate amputees and spinal cord injured patients having severe loss of motor, manipulative, and sensory capabilities in the lower and/or upper extremities are summarized. Techniques developed include the control of a wheelchair by voice control or tongue chinswitch. The voice recognition computer and its operation are also described.

  15. Adaptivity in Professional Printing Systems

    NARCIS (Netherlands)

    Verriet, J.H.; Basten, T; Hamberg, R.; Reckers, F.J.; Somers, L.

    2013-01-01

    There is a constant pressure on developers of embedded systems to simultaneously increase system functionality and to decrease development costs. Aviable way to obtain a better system performance with the same physical hardware is adaptivity: a system should be able to adapt itself to dynamically

  16. Enhancing TSM&O strategies through life cycle benefit/cost analysis : life cycle benefit/cost analysis & life cycle assessment of adaptive traffic control systems and ramp metering systems.

    Science.gov (United States)

    2015-05-01

    The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...

  17. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and

  18. Adaptive Intrusion Data System (AIDS)

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  19. Virtual Inertia Adaptive Control of a Doubly Fed Induction Generator (DFIG Wind Power System with Hydrogen Energy Storage

    Directory of Open Access Journals (Sweden)

    Tiejiang Yuan

    2018-04-01

    Full Text Available This paper presents a doubly fed induction generator (DFIG wind power system with hydrogen energy storage, with a focus on its virtual inertia adaptive control. Conventionally, a synchronous generator has a large inertia from its rotating rotor, and thus its kinetic energy can be used to damp out fluctuations from the grid. However, DFIGs do not provide such a mechanism as their rotor is disconnected with the power grid, owing to the use of back-to-back power converters between the two. In this paper, a hydrogen energy storage system is utilized to provide a virtual inertia so as to dampen the disturbances and support the grid’s stability. An analytical model is developed based on experimental data and test results show that: (1 the proposed method is effective in supporting the grid frequency; (2 the maximum power point tracking is achieved by implementing this proposed system; and, (3 the DFIG efficiency is improved. The developed system is technically viable and can be applied to medium and large wind power systems. The hydrogen energy storage is a clean and environmental-friendly technology, and can increase the renewable energy penetration in the power network.

  20. Considerations of open-loop, closed-loop, and adaptive multicyclic control systems

    Science.gov (United States)

    Chopra, I.; Mccloud, J. L., III

    1981-01-01

    Four different types of self-tuning regulators were studied for multicyclic control of helicopter vibration. A numerical simulation of the helicopter is made, using a multivariable frequency-domain model, in terms of transfer function with six input control harmonics and six output harmonics. The model characteristics vary with flight speed. An off-line identification of model characteristics is made, using the least-squared-error method and using a succession of input and output measurements. The on-line identification of model characteristics is made using the Kalman filter solution. The optimal controls are calculated from the minimization of quadratic performance function based on response and multicyclic inputs. The performance of various regulators or controllers is judged from the stability, transient response, convergence time, and amplitude of the steady state.

  1. Neuro- PI controller based model reference adaptive control for ...

    African Journals Online (AJOL)

    The control input to the plant is given by the sum of the output of conventional MRAC and the output of NN. The proposed Neural Network -based Model Reference Adaptive Controller (NN-MRAC) can significantly improve the system behavior and force the system to follow the reference model and minimize the error ...

  2. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  3. Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    Science.gov (United States)

    Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-08-01

    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

  4. Adaptive Control Strategies for Flexible Robotic Arm

    Science.gov (United States)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  5. Improving the Forecast Accuracy of an Ocean Observation and Prediction System by Adaptive Control of the Sensor Network

    Science.gov (United States)

    Talukder, A.; Panangadan, A. V.; Blumberg, A. F.; Herrington, T.; Georgas, N.

    2008-12-01

    The New York Harbor Observation and Prediction System (NYHOPS) is a real-time, estuarine and coastal ocean observing and modeling system for the New York Harbor and surrounding waters. Real-time measurements from in-situ mobile and stationary sensors in the NYHOPS networks are assimilated into marine forecasts in order to reduce the discrepancy with ground truth. The forecasts are obtained from the ECOMSED hydrodynamic model, a shallow water derivative of the Princeton Ocean Model. Currently, all sensors in the NYHOPS system are operated in a fixed mode with uniform sampling rates. This technology infusion effort demonstrates the use of Model Predictive Control (MPC) to autonomously adapt the operation of both mobile and stationary sensors in response to changing events that are -automatically detected from the ECOMSED forecasts. The controller focuses sensing resources on those regions that are expected to be impacted by the detected events. The MPC approach involves formulating the problem of calculating the optimal sensor parameters as a constrained multi-objective optimization problem. We have developed an objective function that takes into account the spatiotemporal relationship of the in-situ sensor locations and the locations of events detected by the model. Experiments in simulation were carried out using data collected during a freshwater flooding event. The location of the resulting freshwater plume was calculated from the corresponding model forecasts and was used by the MPC controller to derive control parameters for the sensing assets. The operational parameters that are controlled include the sampling rates of stationary sensors, paths of unmanned underwater vehicles (UUVs), and data transfer routes between sensors and the central modeling computer. The simulation experiments show that MPC-based sensor control reduces the RMS error in the forecast by a factor of 380% as compared to uniform sampling. The paths of multiple UUVs were simultaneously

  6. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    Science.gov (United States)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  7. Aplicación de algoritmos de control clásico, adaptable y robusto a sistemas dinámicos de parámetros variables;Classic, adaptable and robust control algorithm application, to variant parameter dynamic system.

    Directory of Open Access Journals (Sweden)

    Orlando – Regalón Anias

    2012-11-01

    Full Text Available Existen múltiples sistemas dinámicos cuyos modelos matemáticos se caracterizan por ser de primer orden yparámetros variables con el tiempo. En estos casos las herramientas clásicas no siempre logran un sistema decontrol que sea estable, posea un buen desempeño dinámico y rechace adecuadamente las perturbaciones, cuandoel modelo de la planta se desvía del nominal, para el cual se realizó el diseño.En este trabajo se evalúa elcomportamiento de tres estrategias de control en presencia de variación de parámetros. Estas son: control clásico,control adaptable y control robusto. Se realiza un estudio comparativo de las mismas en cuanto a complejidad deldiseño, costo computacional de la implementación y sensibilidad ante variaciones en los parámetros y/o presencia dedisturbios. Se llega a conclusiones que permiten disponer de criterios para la elección más adecuada, endependencia de los requerimientos dinámicos que la aplicación demande, así como de los medios técnicos de que sedisponga.Many dynamic systems have first order mathematic models, with time variable parameters. In these cases, theclassical tools do not satisfy at all control system stability, good performance and perturbation rejection, when theplant model differs from the nominal one, for which the controller was designed.In this article, three control strategiesare evaluated in parameter variations and disturbance presence. The strategies are the followings: classical control,adaptive control and robust control. A comparative study is carried out, taking into account the design complexity, thecomputational cost and the sensitivity. The obtained conclusions helps to provide the criterion to choose the mostadequate control strategy, according to the necessary dynamic, as well as the available technical means.

  8. AI-based adaptive control and design of autopilot system for ...

    Indian Academy of Sciences (India)

    observed in military and the wide range of applications such as monitoring of traffic, crops and pollutions, crime and border ... The stability in terms of energy of an UAV with automatic throttle and elevator controls has ... 2003) and the dependent variables on throttle position like pollution, fuel consumption, energy efficiency ...

  9. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  10. CMAC-based adaptive backstepping synchronization of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Lin, C.-M.; Peng, Y.-F.; Lin, M.-H.

    2009-01-01

    This study proposes an adaptive backstepping control system for synchronizing uncertain chaotic system by using cerebellar model articulation controller (CMAC). CMAC is a nonlinear network with simple computation, good generalization capability and fast learning property. The proposed CMAC-based adaptive backstepping control (CABC) system uses backstepping method and adaptive cerebellar model articulation controller (ACMAC) for synchronizing uncertain chaotic system. Finally, simulation results for the Genesio system are presented to illustrate the effectiveness of the proposed control system.

  11. Adaptive neural control of aeroelastic response

    Science.gov (United States)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  12. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  13. Direct Adaptive Control Of An Industrial Robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1992-01-01

    Decentralized direct adaptive control scheme for six-jointed industrial robot eliminates part of overall computational burden imposed by centralized controller and degrades performance of robot by reducing sampling rate. Control and controller-adaptation laws based on observed performance of manipulator: no need to model dynamics of robot. Adaptive controllers cope with uncertainties and variations in robot and payload.

  14. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  15. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  16. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  17. STEADY ESTIMATION ALGORITHMS OF THE DYNAMIC SYSTEMS CONDITION ON THE BASIS OF CONCEPTS OF THE ADAPTIVE FILTRATION AND CONTROL

    Directory of Open Access Journals (Sweden)

    H.Z. Igamberdiyev

    2014-07-01

    Full Text Available Dynamic systems condition estimation regularization algorithms in the conditions of signals and hindrances statistical characteristics aprioristic uncertainty are offered. Regular iterative algorithms of strengthening matrix factor elements of the Kalman filter, allowing to adapt the filter to changing hindrance-alarm conditions are developed. Steady adaptive estimation algorithms of a condition vector in the aprioristic uncertainty conditions of covariance matrixes of object noise and the measurements hindrances providing a certain roughness of filtration process in relation to changing statistical characteristics of signals information parameters are offered. Offered practical realization results of the dynamic systems condition estimation algorithms are given at the adaptive management systems synthesis problems solution by technological processes of granulation drying of an ammophos pulp and receiving ammonia.

  18. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    Science.gov (United States)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  19. PSS with SVC Damping Controllers Coordinated Design and Real-Time Implementation in Multi-Machine Power System Using Advanced Adaptive PSO

    Science.gov (United States)

    Narne, Rajendraprasad; Panda, P. C.

    2013-09-01

    This article proposed coordinated tuning and real-time implementation of power system stabilizer (PSS) with static var compensator (SVC) in multi-machine power system. The design of proposed coordinated damping controller is formulated as an optimization problem, and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization. Here, PSS with SVC installed in multi-machine system is examined. The coordinated tuning among the damping controllers is performed on the non-linear power system dynamic model. Finally, the proposed coordinated controller performance is discussed with time-domain simulations. Different loading conditions are employed on the test system to test the robustness of proposed coordinate controller, and the simulation results are compared with four different control schemes. To validate the proposed controller, the test power system is also implemented on real-time (OPAL-RT) simulator, and acceptable results are reported for its verifications.

  20. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  1. Adaptative control with non-minimum phase system. Application to level control in PWR power plant steam generator

    International Nuclear Information System (INIS)

    Bihoreau, C.

    1981-03-01

    This thesis presents the proposal for a water control level method likely to improve performance, especially at low power. Particular problems are analyzed in detail. Finally, computerized simulations are presented; they confirm the algorithm performance [fr

  2. Autonomous Co-operation and Control in Complex Adaptive Logistic Systems - Contributions and Limitations for the Innovation Capability of International Supply Networks

    Science.gov (United States)

    Hülsmann, Michael; Cordes, Philip

    This paper aims to analyze the potential contributions of the organization principle autonomous co-operation and control to the innovation capabilities of logistics systems and their sub-systems like single organizations. Therefore, the concept of Complex Adaptive Logistics Systems (CALS) will be introduced and the essentiality of the heterogeneity of the elements within logistics systems for their innovation capabilities will be emphasized. One possible driver for homogeneity is the so-called dominant logic.

  3. An Adaptive Sound Sensing System : Intelligent Fault sound detection system (Papers Presented at the International Symposium on Safety Control and Risk Management, SCRM)

    OpenAIRE

    Yamasaki, Hiro; Takahashi, Kota

    1989-01-01

    An adaptive sound sensing system incorporated multiple microphone array and real time digital signal processing algorithm is described. The objectives of the system are to receive the useful sound signal from damaged components or faulty system out of var

  4. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  5. A Load Frequency Control in an Off-Grid Sustainable Power System Based on a Parameter Adaptive PID-Type Fuzzy Controller

    Science.gov (United States)

    Ronilaya, Ferdian; Miyauchi, Hajime

    2014-10-01

    This paper presents a new implementation of a parameter adaptive PID-type fuzzy controller (PAPIDfc) for a grid-supporting inverter of battery to alleviate frequency fluctuations in a wind-diesel power system. A variable speed wind turbine that drives a permanent magnet synchronous generator is assumed for demonstrations. The PAPIDfc controller is built from a set of control rules that adopts the droop method and uses only locally measurable frequency signal. The output control signal is determined from the knowledge base and the fuzzy inference. The input-derivative gain and the output-integral gain of the PAPIDfc are tuned online. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB®/SimPowersystems™. Next, to verify the scheme's effectiveness, the simulation results are compared with the results of conventional controllers. The results demonstrate the effectiveness of the PAPIDfc scheme to control a grid-supporting inverter of the battery in the reduction of frequency fluctuations.

  6. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua, E-mail: hua66com@163.com [The Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003 (China); School of Automation, Chongqing University, Chongqing 400044 (China); Hou, Zhiwei; Chen, Zhong [The Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003 (China)

    2015-12-15

    In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.

  7. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    Science.gov (United States)

    Luo, Shaohua; Hou, Zhiwei; Chen, Zhong

    2015-12-01

    In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.

  8. Indirect adaptive control of unknown multi variable nonlinear systems with parametric and dynamic uncertainties using a new neuro-fuzzy system description.

    Science.gov (United States)

    Theodoridis, Dimitrios; Boutalis, Yiannis; Christodoulou, Manolis

    2010-04-01

    The indirect adaptive regulation of unknown nonlinear dynamical systems with multiple inputs and states (MIMS) under the presence of dynamic and parameter uncertainties, is considered in this paper. The method is based on a new neuro-fuzzy dynamical systems description, which uses the fuzzy partitioning of an underlying fuzzy systems outputs and high order neural networks (HONN's) associated with the centers of these partitions. Every high order neural network approximates a group of fuzzy rules associated with each center. The indirect regulation is achieved by first identifying the system around the current operation point, and then using its parameters to device the control law. Weight updating laws for the involved HONN's are provided, which guarantee that, under the presence of both parameter and dynamic uncertainties, both the identification error and the system states reach zero, while keeping all signals in the closed loop bounded. The control signal is constructed to be valid for both square and non square systems by using a pseudoinverse, in Moore-Penrose sense. The existence of the control signal is always assured by employing a novel method of parameter hopping instead of the conventional projection method. The applicability is tested on well known benchmarks.

  9. Aplicación de algoritmos de control clásico, adaptable y robusto a sistemas dinámicos de parámetros variables; Classic, adaptable and robust control algorithm application, to variant parameter dynamic system

    Directory of Open Access Journals (Sweden)

    Orlando Regalón Anias

    2012-11-01

    Full Text Available Existen múltiples sistemas dinámicos cuyos modelos matemáticos se caracterizan por ser de primer orden y parámetros variables con el tiempo. En estos casos las herramientas clásicas no siempre logran un sistema decontrol que sea estable, posea un buen desempeño dinámico y rechace adecuadamente las perturbaciones, cuando el modelo de la planta se desvía del nominal, para el cual se realizó el diseño.En este trabajo se evalúa el comportamiento de tres estrategias de control en presencia de variación de parámetros. Estas son: control clásico, control adaptable y control robusto. Se realiza un estudio comparativo de las mismas en cuanto a complejidad del diseño, costo computacional de la implementación y sensibilidad ante variaciones en los parámetros y/o presencia de disturbios. Se llega a conclusiones que permiten disponer de criterios para la elección más adecuada, en dependencia de los requerimientos dinámicos que la aplicación demande, así como de los medios técnicos de que se disponga.  Many dynamic systems have first order mathematic models, with time variable parameters. In these cases, the classical tools do not satisfy at all control system stability, good performance and perturbation rejection, when the plant model differs from the nominal one, for which the controller was designed.In this article, three control strategies are evaluated in parameter variations and disturbance presence. The strategies are the followings: classical control, adaptive control and robust control. A comparative study is carried out, taking into account the design complexity, the computational cost and the sensitivity. The obtained conclusions helps to provide the criterion to choose the mostadequate control strategy, according to the necessary dynamic, as well as the available technical means.

  10. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  11. Adaptive Controller Design for Faulty UAVs via Quantum Information Technology

    Directory of Open Access Journals (Sweden)

    Fuyang Chen

    2012-12-01

    Full Text Available In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model reference adaptive principle, an adaptive control law based on the Popov hyperstability theory is designed. This law enable better robustness of the flight control system and tracking control performances. The closed-loop system's stability is guaranteed by the Popov hyperstability theory. The simulation results demonstrate that a better dynamic performance of the UAV flight control system with faults and parametric uncertainties can be maintained with the proposed method.

  12. Adaptive Contingency Control: Wind Turbine Operation Integrated with Blade Condition Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — We report here on first steps towards integrating systems health monitoring with adaptive contingency controls. In the scenario considered, the adaptive controller...

  13. Adaptation in the fuzzy self-organising controller

    DEFF Research Database (Denmark)

    Jantzen, Jan; Poulsen, Niels Kjølstad

    2003-01-01

    This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....

  14. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  15. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    Science.gov (United States)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  16. Improvement of adaptive fuzzy control for a photovoltaic/wind/diesel generating system; Taiyoko/furyoku/diesel hatsuden system no saitekigata fuzzy seigyo no kairyo

    Energy Technology Data Exchange (ETDEWEB)

    Nagaike, H.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan).Faculty of Engineering

    1996-10-27

    The photovoltaic/wind/diesel generating system that uses a storage battery as auxiliary power has been proposed to supply power from the system to the independent area. In this system, it is important to generate no insufficient power from the viewpoint of effective energy utilization and minimize the fuel consumption of a diesel generator. Authors have proposed the adaptive fuzzy control that changes the shape of the membership function of input variables according to the parameter indicating the system state. However, a parameter was rapidly changed in the conventional method. This badly influences the control. Therefore, the way to determine the parameter that indicates the state of this system was improved. Assume that an input value is set to the average value between a certain point of time and the {Delta}t time as the method for determining a parameter. If the {Delta}t value is lower, the change in a membership function is more effective. As a result, a greater fuel reduction effect was obtained. 4 refs., 8 figs., 1 tab.

  17. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  18. Adaptive security systems -- Combining expert systems with adaptive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Loveland, R.; Anderson, K. [and others

    1997-09-01

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting.

  19. Adaptive security systems -- Combining expert systems with adaptive technologies

    International Nuclear Information System (INIS)

    Argo, P.; Loveland, R.; Anderson, K.

    1997-01-01

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting

  20. The adaptive synchronization of fractional-order Liu chaotic system ...

    Indian Academy of Sciences (India)

    In this paper, the chaos control and the synchronization of two fractional-order Liu chaotic systems with unknown parameters are studied. According to the Lyapunov stabilization theory and the adaptive control theorem, the adaptive control rule is obtained for the described error dynamic stabilization. Using the adaptive rule ...

  1. Statistical Physics for Adaptive Distributed Control

    Science.gov (United States)

    Wolpert, David H.

    2005-01-01

    A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.

  2. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  3. Linear servomotor probe drive system with real-time self-adaptive position control for the Alcator C-Mod tokamak.

    Science.gov (United States)

    Brunner, D; Kuang, A Q; LaBombard, B; Burke, W

    2017-07-01

    A new servomotor drive system has been developed for the horizontal reciprocating probe on the Alcator C-Mod tokamak. Real-time measurements of plasma temperature and density-through use of a mirror Langmuir probe bias system-combined with a commercial linear servomotor and controller enable self-adaptive position control. Probe surface temperature and its rate of change are computed in real time and used to control probe insertion depth. It is found that a universal trigger threshold can be defined in terms of these two parameters; if the probe is triggered to retract when crossing the trigger threshold, it will reach the same ultimate surface temperature, independent of velocity, acceleration, or scrape-off layer heat flux scale length. In addition to controlling the probe motion, the controller is used to monitor and control all aspects of the integrated probe drive system.

  4. Maritime Adaptive Optics Beam Control

    Science.gov (United States)

    2010-09-01

    Griot Helium Neon Class II laser with output power of 0.5 mW, operating at a wavelength of 633 nm. The science camera is an IDS uEye-2210SE CCD camera...produced by Edmund Optics, Newport/New Focus, Thor Labs, and CVI Melles Griot . Two computer controllers are used for the full experimental system. The

  5. Adaptive super-twisting sliding mode control for a three-phase single-stage grid-connected differential boost inverter based photovoltaic system.

    Science.gov (United States)

    Pati, Akshaya K; Sahoo, N C

    2017-07-01

    This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Improving Interactions between a Power-Assist Robot System and Its Human User in Horizontal Transfer of Objects Using a Novel Adaptive Control Method

    Directory of Open Access Journals (Sweden)

    S. M. Mizanoor Rahman

    2012-01-01

    Full Text Available Power assist systems are usually used for rehabilitation, healthcare, and so forth.This paper puts emphasis on the use of power assist systems for object transfer and thus brings a novelty in the power-assist applications. However, the interactions between the systems and the human users are usually not satisfactory because human features are not included in the control design. In this paper, we present the development of a 1-DOF power assist system for horizontal transfer of objects. We included human features such as weight perception in the system dynamics and control. We then simulated the system using MATLAB/Simulink for transferring objects with it and (i determined the optimum maneuverability conditions for object transfer, (ii determined psychophysical relationships between actual and perceived weights, and (iii analyzed load forces and motion features. We then used the findings to design a novel adaptive control scheme to improve the interactions between the user and the system. We implemented the novel control (simulated the system again using the novel control, the subjects evaluated the system, and the results showed that the novel control reduced the excessive load forces and accelerations and thus improved the human-system interactions in terms of maneuverability, safety, and so forth. Finally, we proposed to use the findings to develop power assist systems for manipulating heavy objects in industries that may improve interactions between the systems and the users.

  7. Operator adaptation to changes in system reliability under adaptable automation.

    Science.gov (United States)

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  8. Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems

    International Nuclear Information System (INIS)

    Aghababa Mohammad Pourmahmood

    2012-01-01

    The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. (general)

  9. ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Directory of Open Access Journals (Sweden)

    Valerii Azarskov

    2011-03-01

    Full Text Available Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results.

  10. Adaptive fuzzy PID control for a quadrotor stabilisation

    Science.gov (United States)

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  11. Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure.

    Science.gov (United States)

    Yazdani, Sahar; Haeri, Mohammad

    2017-11-01

    In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  13. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  14. Optimal model distributions in supervisory adaptive control

    NARCIS (Netherlands)

    Ghosh, D.; Baldi, S.

    2017-01-01

    Several classes of multi-model adaptive control schemes have been proposed in literature: instead of one single parameter-varying controller, in this adaptive methodology multiple fixed-parameter controllers for different operating regimes (i.e. different models) are utilised. Despite advances in

  15. A robust adaptive controller for robot manipulators

    NARCIS (Netherlands)

    Berghuis, Harry; Berghuis, Harry; Ortega, Romeo; Nijmeijer, Henk

    1992-01-01

    The authors propose a globally convergent adaptive control scheme for robot motion control with the following features: first, the adaptation law processes enhanced robustness with respect to noisy velocity measurements; secondly, the controller does not require the inclusion of high-gain loops that

  16. Monitoring the Performance of a Neuro-Adaptive Controller

    Science.gov (United States)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  17. A Methodology for Investigating Adaptive Postural Control

    Science.gov (United States)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  18. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  19. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    Science.gov (United States)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  20. Applications of adaptive filters in active noise control

    Science.gov (United States)

    Darlington, Paul

    The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.

  1. Rate Adaptive OFDMA Communication Systems

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.M.

    2009-01-01

    Due to the varying nature of the wireless channels, adapting the transmission parameters, such as code rate, modulation order and power, in response to the channel variations provides a significant improvement in the system performance. In the OFDM systems, Per-Frame adaptation (PFA) can be employed where the transmission variables are fixed over a given frame and may change from one frame to the other. Subband (tile) loading offers more degrees of adaptation such that each group of carriers (subband) uses the same transmission parameters and different subbands may use different parameters. Changing the code rate for each tile in the same frame, results in transmitting multiple codewords (MCWs) for a single frame. In this thesis a scheme is proposed for adaptively changing the code rate of coded OFDMA systems via changing the puncturing rate within a single codeword (SCW). In the proposed structure, the data is encoded with the lowest available code rate then it is divided among the different tiles where it is punctured adaptively based on some measure of the channel quality for each tile. The proposed scheme is compared against using multiple codewords (MCWs) where the different code rates for the tiles are obtained using separate encoding processes. For bit interleaved coded modulation architecture two novel interleaving methods are proposed, namely the puncturing dependant interleaver (PDI) and interleaved puncturing (IntP), which provide larger interleaving depth. In the PDI method the coded bits with the same rate over different tiles are grouped for interleaving. In IntP structure the interleaving is performed prior to puncturing. The performance of the adaptive puncturing technique is investigated under constant bit rate constraint and variable bit rate. Two different adaptive modulation and coding (AMC) selection methods are examined for variable bit rate adaptive system. The first is a recursive scheme that operates directly on the SNR whereas the second

  2. Nanosatellite Launch Adapter System (NLAS)

    Science.gov (United States)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  3. Adaptive fuzzy system for 3-D vision

    Science.gov (United States)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  4. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid

    International Nuclear Information System (INIS)

    Pavković, Danijel; Lobrović, Mihael; Hrgetić, Mario; Komljenović, Ante

    2016-01-01

    Highlights: • Battery/ultracapacitor storage is considered for a direct-current microgrid. • Microgrid voltage cascade control system with load compensator is designed. • Current references are allocated so that ultracapacitor takes on transient loads. • Adaptive Kalman filter-based estimator is used for indirect load compensation. • Control strategy has been verified on a downscaled hardware-in-the-loop setup. - Abstract: A control system design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional–integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup.

  5. Analysis, Adaptive Control and Anti-Synchronization of a Six-Term Novel Jerk Chaotic System with two Exponential Nonlinearities and its Circuit Simulation

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This research work proposes a six-term novel 3-D jerk chaotic system with two exponential nonlinearities. This work also analyses system’s fundamental properties such as dissipativity, equilibria, Lyapunov exponents and Kaplan-Yorke dimension. The phase portraits of the jerk chaotic system simulated using MATLAB, depict the strange chaotic attractor of the system. For the parameter values and initial conditions chosen in this work, the Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0.24519, L2 = 0 and L3 = −0.84571. Also, the Kaplan-Yorke dimension of the novel jerk chaotic system is obtained as DKY = 2.2899. Next, an adaptive backstepping controller is designed to stabilize the novel jerk chaotic system having two unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global chaos anti-synchronization of two identical novel jerk chaotic systems with two unknown system parameters. Finally, an electronic circuit realization of the novel jerk chaotic system is presented using SPICE to confirm the feasibility of the theoretical model.

  6. Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Omur Can Ozguney

    2017-08-01

    Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.

  7. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2015-12-01

    Full Text Available In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.

  8. Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2014-12-01

    Full Text Available In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with three quadratic nonlinearities has been derived by adding a feedback control to a ten-term 4-D hyperchaotic Lorenz system (Jia, 2007 with three quadratic nonlinearities. The 4-D hyperchaotic Lorenz system (Jia, 2007 has the Lyapunov exponents L1 = 0.3684,L2 = 0.2174,L3 = 0 and L4 =−12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as DKY =3.0452. The 5-D novel hyperchaotic Lorenz system proposed in this work has the Lyapunov exponents L1 = 0.4195,L2 = 0.2430,L3 = 0.0145,L4 = 0 and L5 = −13.0405, and the Kaplan-Yorke dimension of this 5-D system is found as DKY =4.0159. Thus, the novel 5-D hyperchaotic Lorenz system has a maximal Lyapunov exponent (MLE, which is greater than the maximal Lyapunov exponent (MLE of the 4-D hyperchaotic Lorenz system. The 5-D novel hyperchaotic Lorenz system has a unique equilibrium point at the origin, which is a saddle-point and hence unstable. Next, an adaptive controller is designed to stabilize the novel 5-D hyperchaotic Lorenz system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 5-D hyperchaotic Lorenz systems with unknown system parameters. Finally, an electronic circuit realization of the novel 5-D hyperchaotic Lorenz system using SPICE is described in detail to confirm the feasibility of the theoretical model.

  9. Event-Sampled Direct Adaptive NN Output- and State-Feedback Control of Uncertain Strict-Feedback System.

    Science.gov (United States)

    Szanto, Nathan; Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-04-12

    In this paper, a novel event-triggered implementation of a tracking controller for an uncertain strict-feedback system is presented. Neural networks (NNs) are utilized in the backstepping approach to design a control input by approximating unknown dynamics of the strict-feedback nonlinear system with event-sampled inputs. The system state vector is assumed to be unknown and an NN observer is used to estimate the state vector. By using the estimated state vector and backstepping design approach, an event-sampled controller is introduced. As part of the controller design, first, input-to-state-like stability for a continuously sampled controller that has been injected with bounded measurement errors is demonstrated, and subsequently, an event-execution control law is derived, such that the measurement errors are guaranteed to remain bounded. Lyapunov theory is used to demonstrate that the tracking errors, the observer estimation errors, and the NN weight estimation errors for each NN are locally uniformly ultimately bounded in the presence bounded disturbances, NN reconstruction errors, as well as errors introduced by event sampling. Simulation results are provided to illustrate the effectiveness of the proposed controllers.

  10. Adaptive Method Using Controlled Grid Deformation

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  11. Research in Neural Network Based Adaptive Control

    National Research Council Canada - National Science Library

    Calise, Anthony

    2000-01-01

    .... We regard this as a major step towards flight certification of adaptive controllers. The approach is more general in that it permits a broad class of input nonlinearities, including such effects as discrete and bang/bang control...

  12. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  13. Disturbance Accommodating Adaptive Control with Application to Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2012-01-01

    Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.

  14. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    anti-windup compensation. Our analysis on the indirect adaptive scheme reveals that the perturbation terms due to parameter errors do not cause any unbounded signals in the closed-loop. The stability of the adaptive system is established, and the properties of the proposed control scheme are demonstrated through simulations on a UAV model with input magnitude saturation constraints. The robust adaptive control design is further developed to extend our results to rate-saturated systems.

  15. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    Science.gov (United States)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  16. Adaptive process control using fuzzy logic and genetic algorithms

    Science.gov (United States)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  17. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  18. Framework for control system development

    International Nuclear Information System (INIS)

    Cork, C.; Nishimura, Hiroshi

    1992-01-01

    Control systems being developed for the present generation of accelerators will need to adapt to changing machine and operating state conditions. Such systems must also be capable of evolving over the life of the accelerator operation. In this paper we present a framework for the development of adaptive control systems

  19. Neuronal control of adaptive thermogenesis

    Directory of Open Access Journals (Sweden)

    Xiaoyong eYang

    2015-09-01

    Full Text Available The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT, dysfunction of which lie at the core of obesity and associated metabolic disorders. In contrast, brown adipose tissue (BAT burns fat and dissipates chemical energy as heat. The development and activation of brown-like adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system (CNS drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.

  20. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.