Adaptive Coarse Graining, Environment, Strong Decoherence, and Quasiclassical Realms
Gell-Mann, Murray
2013-01-01
Three ideas are introduced that when brought together characterize the realistic quasiclassical realms of our quantum universe as particular kinds of sets of alternative coarse-grained histories defined by quasiclassical variables: (1) Branch dependent adaptive coarse grainings that can be close to maximally refined and can simplify calculation. (2) Narrative coarse grainings that describe how features of the universe change over time and allow the construction of an environment. (3) A notion of strong decoherence that characterizes realistic mechanisms of decoherence.
Adaptive coarse graining, environment, strong decoherence, and quasiclassical realms
Gell-Mann, Murray; Hartle, James B.
2014-05-01
Three ideas are introduced that when brought together characterize the realistic quasiclassical realms of our quantum universe as particular kinds of sets of alternative coarse-grained histories defined by quasiclassical variables: (i) branch-dependent adaptive coarse grainings that can be close to maximally refined and can simplify calculation, (ii) narrative coarse grainings that describe how features of the universe change over time and allow the construction of an environment, and (iii) a notion of strong decoherence that characterizes realistic mechanisms of decoherence.
Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems
Katsoulakis, M A; Vlachos, D G
2003-01-01
In this paper we present a new class of coarse-grained stochastic processes and Monte Carlo simulations, derived directly from microscopic lattice systems and describing mesoscopic length scales. As our primary example, we mainly focus on a microscopic spin-flip model for the adsorption and desorption of molecules between a surface adjacent to a gas phase, although a similar analysis carries over to other processes. The new model can capture large scale structures, while retaining microscopic information on intermolecular forces and particle fluctuations. The requirement of detailed balance is utilized as a systematic design principle to guarantee correct noise fluctuations for the coarse-grained model. We carry out a rigorous asymptotic analysis of the new system using techniques from large deviations and present detailed numerical comparisons of coarse-grained and microscopic Monte Carlo simulations. The coarse-grained stochastic algorithms provide large computational savings without increasing programming ...
A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice.
Liu, Xiao; Seider, Warren D; Sinno, Talid
2013-03-21
A recently introduced method for coarse-graining standard continuous Metropolis Monte Carlo simulations of atomic or molecular fluids onto a rigid lattice of variable scale [X. Liu, W. D. Seider, and T. Sinno, Phys. Rev. E 86, 026708 (2012)] is further analyzed and extended. The coarse-grained Metropolis Monte Carlo technique is demonstrated to be highly consistent with the underlying full-resolution problem using a series of detailed comparisons, including vapor-liquid equilibrium phase envelopes and spatial density distributions for the Lennard-Jones argon and simple point charge water models. In addition, the principal computational bottleneck associated with computing a coarse-grained interaction function for evolving particle positions on the discretized domain is addressed by the introduction of new closure approximations. In particular, it is shown that the coarse-grained potential, which is generally a function of temperature and coarse-graining level, can be computed at multiple temperatures and scales using a single set of free energy calculations. The computational performance of the method relative to standard Monte Carlo simulation is also discussed.
Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.
Shen, Lin; Hu, Hao
2014-06-10
We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.
Systematic hierarchical coarse-graining with the inverse Monte Carlo method
Lyubartsev, Alexander P., E-mail: alexander.lyubartsev@mmk.su.se [Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S 106 91 Stockholm (Sweden); Naômé, Aymeric, E-mail: aymeric.naome@unamur.be [Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S 106 91 Stockholm (Sweden); UCPTS Division, University of Namur, 61 Rue de Bruxelles, B 5000 Namur (Belgium); Vercauteren, Daniel P., E-mail: daniel.vercauteren@unamur.be [UCPTS Division, University of Namur, 61 Rue de Bruxelles, B 5000 Namur (Belgium); Laaksonen, Aatto, E-mail: aatto@mmk.su.se [Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S 106 91 Stockholm (Sweden); Science for Life Laboratory, 17121 Solna (Sweden)
2015-12-28
We outline our coarse-graining strategy for linking micro- and mesoscales of soft matter and biological systems. The method is based on effective pairwise interaction potentials obtained in detailed ab initio or classical atomistic Molecular Dynamics (MD) simulations, which can be used in simulations at less accurate level after scaling up the size. The effective potentials are obtained by applying the inverse Monte Carlo (IMC) method [A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E 52(4), 3730–3737 (1995)] on a chosen subset of degrees of freedom described in terms of radial distribution functions. An in-house software package MagiC is developed to obtain the effective potentials for arbitrary molecular systems. In this work we compute effective potentials to model DNA-protein interactions (bacterial LiaR regulator bound to a 26 base pairs DNA fragment) at physiological salt concentration at a coarse-grained (CG) level. Normally the IMC CG pair-potentials are used directly as look-up tables but here we have fitted them to five Gaussians and a repulsive wall. Results show stable association between DNA and the model protein as well as similar position fluctuation profile.
Systematic hierarchical coarse-graining with the inverse Monte Carlo method
Lyubartsev, Alexander P.; Naômé, Aymeric; Vercauteren, Daniel P.; Laaksonen, Aatto
2015-12-01
We outline our coarse-graining strategy for linking micro- and mesoscales of soft matter and biological systems. The method is based on effective pairwise interaction potentials obtained in detailed ab initio or classical atomistic Molecular Dynamics (MD) simulations, which can be used in simulations at less accurate level after scaling up the size. The effective potentials are obtained by applying the inverse Monte Carlo (IMC) method [A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E 52(4), 3730-3737 (1995)] on a chosen subset of degrees of freedom described in terms of radial distribution functions. An in-house software package MagiC is developed to obtain the effective potentials for arbitrary molecular systems. In this work we compute effective potentials to model DNA-protein interactions (bacterial LiaR regulator bound to a 26 base pairs DNA fragment) at physiological salt concentration at a coarse-grained (CG) level. Normally the IMC CG pair-potentials are used directly as look-up tables but here we have fitted them to five Gaussians and a repulsive wall. Results show stable association between DNA and the model protein as well as similar position fluctuation profile.
Aggregation of alpha-synuclein by a coarse-grained Monte Carlo simulation
Farmer, Barry; Pandey, Ras
Alpha-synuclein, an intrinsic protein abundant in neurons, is believed to be a major cause of neurodegenerative diseases (e.g. Alzheimer, Parkinson's disease). Abnormal aggregation of ASN leads to Lewy bodies with specific morphologies. We investigate the self-organizing structures in a crowded environment of ASN proteins by a coarse-grained Monte Carlo simulation. ASN is a chain of 140 residues. Structure detail of residues is neglected but its specificity is captured via unique knowledge-based residue-residue interactions. Large-scale simulations are performed to analyze a number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) as a function of temperature and protein concentration. Trend in multi-scale structural variations of the protein in a crowded environment is compared with that of a free protein chain.
Sasanka ARE; Markos A.KATSOULAKIS; Anders SZEPESSY
2009-01-01
Kinetic Monte Carlo methods provide a powerful computational tool for the simulation of microscopic processes such as the diffusion of interacting particles on a surface, at a detailed atomistic level. However such algorithms are typically computationally expensive and are restricted to fairly small spatiotemporal scales. One approach towards overcoming this problem was the development of coarse-grained Monte Carlo algorithms. In recent literature, these methods were shown to be capable of efficiently describing much larger length scales while still incorporating information on microscopic interactions and fluctuations. In this paper, a coarse-grained Langevin system of stochastic differential equations as approximations of diffusion of interacting particles is derived, based on these earlier coarse-grained models. The authors demonstrate the asymptotic equivalence of transient and long time behavior of the Langevin approximation and the underlying microscopic process, using asymptotics methods such as large deviations for interacting particles systems, and furthermore, present corresponding numerical simulations, comparing statistical quantities like mean paths, auto correlations and power spectra of the microscopic and the approximating Langevin processes. Finally, it is shown that the Langevin approximations presented here are much more computationally efficient than conventional Kinetic Monte Carlo methods, since in addition to the reduction in the number of spatial degrees of freedom in coarse-grained Monte Carlo methods, the Langevin system of stochastic differential equations allows for multiple particle moves in a single timestep.
A Coarse-Grained DNA Model Parameterized from Atomistic Simulations by Inverse Monte Carlo
Nikolay Korolev
2014-05-01
Full Text Available Computer modeling of very large biomolecular systems, such as long DNA polyelectrolytes or protein-DNA complex-like chromatin cannot reach all-atom resolution in a foreseeable future and this necessitates the development of coarse-grained (CG approximations. DNA is both highly charged and mechanically rigid semi-flexible polymer and adequate DNA modeling requires a correct description of both its structural stiffness and salt-dependent electrostatic forces. Here, we present a novel CG model of DNA that approximates the DNA polymer as a chain of 5-bead units. Each unit represents two DNA base pairs with one central bead for bases and pentose moieties and four others for phosphate groups. Charges, intra- and inter-molecular force field potentials for the CG DNA model were calculated using the inverse Monte Carlo method from all atom molecular dynamic (MD simulations of 22 bp DNA oligonucleotides. The CG model was tested by performing dielectric continuum Langevin MD simulations of a 200 bp double helix DNA in solutions of monovalent salt with explicit ions. Excellent agreement with experimental data was obtained for the dependence of the DNA persistent length on salt concentration in the range 0.1–100 mM. The new CG DNA model is suitable for modeling various biomolecular systems with adequate description of electrostatic and mechanical properties.
Structure and dynamics of Ebola virus matrix protein VP40 by a coarse-grained Monte Carlo simulation
Pandey, Ras; Farmer, Barry
Ebola virus matrix protein VP40 (consisting of 326 residues) plays a critical role in viral assembly and its functions such as regulation of viral transcription, packaging, and budding of mature virions into the plasma membrane of infected cells. How does the protein VP40 go through structural evolution during the viral life cycle remains an open question? Using a coarse-grained Monte Carlo simulation we investigate the structural evolution of VP40 as a function of temperature with the input of a knowledge-based residue-residue interaction. A number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) are analyzed with our large-scale simulations. Our preliminary data show that the structure of the protein evolves through different state with well-defined morphologies which can be identified and quantified via a detailed analysis of structure factor.
Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu
2015-08-15
A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.
Schöberl, Markus; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios
2017-03-01
We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method [1] and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo - Expectation-Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.
Zeidman, Benjamin D.; Lu, Ning; Wu, David T.
2016-05-01
The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.
Sasidevan, V; Sinha, Sitabhra
2016-01-01
The recent trend for acquiring big data assumes that possessing quantitatively more and qualitatively finer data necessarily provides an advantage that may be critical in competitive situations. Using a model complex adaptive system where agents compete for a limited resource using information coarse-grained to different levels, we show that agents having access to more and better data can perform worse than others in certain situations. The relation between information asymmetry and individual payoffs is seen to be complex, depending on the composition of the population of competing agents.
Shen, Chuansheng; Chen, Hanshuang; Hou, Zhonghuai; Xin, Houwen
2011-06-01
Developing an effective coarse-grained (CG) approach is a promising way for studying dynamics on large size networks. In the present work, we have proposed a strength-based CG (s-CG) method to study critical phenomena of the Potts model on weighted complex networks. By merging nodes with close strengths together, the original network is reduced to a CG network with much smaller size, on which the CG Hamiltonian can be well defined. In particular, we make an error analysis and show that our s-CG approach satisfies the condition of statistical consistency, which demands that the equilibrium probability distribution of the CG model matches that of the microscopic counterpart. Extensive numerical simulations are performed on scale-free networks and random networks, without or with strength correlation, showing that this s-CG approach works very well in reproducing the phase diagrams, fluctuations, and finite-size effects of the microscopic model, while the d-CG approach proposed in our recent work [Phys. Rev. E 82, 011107 (2010)] does not.
Geneste, Grégory; Bellaiche, L; Kiat, Jean-Michel
2016-06-17
The radio-frequency dielectric response of the lead-free Ba(Zr_{0.5}Ti_{0.5})O_{3} relaxor ferroelectric is simulated using a coarse-grained Hamiltonian. This concept, taken from real-space renormalization group theories, allows us to depict the collective behavior of correlated local modes gathered in blocks. Free-energy barriers for their thermally activated collective hopping are deduced from this ab initio-based approach, and used as input data for kinetic Monte Carlo simulations. The resulting numerical scheme allows us to simulate the dielectric response for external field frequencies ranging from kHz up to a few tens of MHz for the first time and to demonstrate, e.g., that local (electric or elastic) random fields lead to the dielectric relaxation in the radio-frequency range that has been observed in relaxors.
Geneste, Grégory; Bellaiche, L.; Kiat, Jean-Michel
2016-06-01
The radio-frequency dielectric response of the lead-free Ba (Zr0.5Ti0.5)O3 relaxor ferroelectric is simulated using a coarse-grained Hamiltonian. This concept, taken from real-space renormalization group theories, allows us to depict the collective behavior of correlated local modes gathered in blocks. Free-energy barriers for their thermally activated collective hopping are deduced from this ab initio-based approach, and used as input data for kinetic Monte Carlo simulations. The resulting numerical scheme allows us to simulate the dielectric response for external field frequencies ranging from kHz up to a few tens of MHz for the first time and to demonstrate, e.g., that local (electric or elastic) random fields lead to the dielectric relaxation in the radio-frequency range that has been observed in relaxors.
Coarse Grained Quantum Dynamics
Agon, Cesar; Kasko, Skyler; Lawrence, Albion
2014-01-01
We consider coarse graining a quantum system divided between short distance and long distance degrees of freedom, which are coupled by the Hamiltonian. Observations using purely long distance observables can be described by the reduced density matrix that arises from tracing out the short-distance observables. The dynamics of this density matrix is that of an open quantum system, and is nonlocal in time, on the order of some short time scale. We describe these dynamics in a model system with a simple hierarchy of energy gaps $\\Delta E_{UV} > \\Delta E_{IR}$, in which the coupling between high-and low-energy degrees of freedom is treated to second order in perturbation theory. We then describe the equations of motion under suitable time averaging, reflecting the limited time resolution of actual experiments, and find an expansion of the master equation in powers of $\\Delta E_{IR}/\\Delta E_{UV}$, in which the failure of the system to be Hamiltonian or even Markovian appears at higher orders in this ratio. We com...
Pandey, R. B.; Farmer, B. L.
2014-11-01
Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.
Pandey, R. B.; Farmer, B. L.; Gerstman, Bernard S.
2015-09-01
The self-organizing dynamics of lysozymes (an amyloid protein with 148 residues) with different numbers of protein chains, Nc = 1,5,10, and 15 (concentration 0.004 - 0.063) is studied by a coarse-grained Monte Carlo simulation with knowledge-based residue-residue interactions. The dynamics of an isolated lysozyme (Nc = 1) is ultra-slow (quasi-static) at low temperatures and becomes diffusive asymptotically on raising the temperature. In contrast, the presence of interacting proteins leads to concentration induced protein diffusion at low temperatures and concentration-tempering sub-diffusion at high temperatures. Variation of the radius of gyration of the protein with temperature shows a systematic transition from a globular structure (at low T) to a random coil (high T) conformation when the proteins are isolated. The crossover from globular to random coil becomes sharper upon increasing the protein concentration (i.e. with Nc = 5,10), with larger Rg at higher temperatures and concentration; Rg becomes smaller on adding more protein chains (e.g. Nc = 15) a non-monotonic response to protein concentration. Analysis of the structure factor (S(q)) provides an estimate of the effective dimension (D ≥ 3, globular conformation at low temperature, and D ˜ 1.7, random coil, at high temperatures) of the isolated protein. With many interacting proteins, the morphology of the self-assembly varies with scale, i.e. at the low temperature (T = 0.015), D ˜ 2.9 on the scale comparable to the radius of gyration of the protein, and D ˜ 2.3 at the large scale over the entire sample. The global network of fibrils appears at high temperature (T = 0.021) with D ˜ 1.7 (i.e. a random coil morphology at large scale) involving tenuous distribution of micro-globules (at small scales).
R. B. Pandey
2015-09-01
Full Text Available The self-organizing dynamics of lysozymes (an amyloid protein with 148 residues with different numbers of protein chains, Nc = 1,5,10, and 15 (concentration 0.004 – 0.063 is studied by a coarse-grained Monte Carlo simulation with knowledge-based residue-residue interactions. The dynamics of an isolated lysozyme (Nc = 1 is ultra-slow (quasi-static at low temperatures and becomes diffusive asymptotically on raising the temperature. In contrast, the presence of interacting proteins leads to concentration induced protein diffusion at low temperatures and concentration-tempering sub-diffusion at high temperatures. Variation of the radius of gyration of the protein with temperature shows a systematic transition from a globular structure (at low T to a random coil (high T conformation when the proteins are isolated. The crossover from globular to random coil becomes sharper upon increasing the protein concentration (i.e. with Nc = 5,10, with larger Rg at higher temperatures and concentration; Rg becomes smaller on adding more protein chains (e.g. Nc = 15 a non-monotonic response to protein concentration. Analysis of the structure factor (S(q provides an estimate of the effective dimension (D ≥ 3, globular conformation at low temperature, and D ∼ 1.7, random coil, at high temperatures of the isolated protein. With many interacting proteins, the morphology of the self-assembly varies with scale, i.e. at the low temperature (T = 0.015, D ∼ 2.9 on the scale comparable to the radius of gyration of the protein, and D ∼ 2.3 at the large scale over the entire sample. The global network of fibrils appears at high temperature (T = 0.021 with D ∼ 1.7 (i.e. a random coil morphology at large scale involving tenuous distribution of micro-globules (at small scales.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up
Coarse graining flow of spin foam intertwiners
Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian
2016-12-01
Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.
Pandey, Ras; Farmer, Barry
2008-03-01
A protein chain such as aspartic acid protease is described by a specific sequence of 99 residues each with its own specific characteristics. In a coarse-grained description, the backbone of a protein chain is described by nodes tethered together by peptide bonds where each node (the amino acid group) is characterized by molecular weight and hydrophobicity. A well-developed and somewhat mature computational modeling tool for the polymer chain such as the bond-fluctuation model is used to study such a specific protein chain with its constitutive amino groups and their sequence. The relative magnitude of hydrophobicity is used to develop appropriate interaction potentials for these amino acid groups in explicit solvent. The Metropolis algorithm is used to move each node and solvent constituent. Local energy and mobility of each amino group are analyzed along with global energy, mobility, and conformation of the protein chain. Effect of the solvent interaction and its concentration on these quantities will be presented.
Coarse-graining complex dynamics
Sibani, Paolo
2013-01-01
Continuous Time Random Walks (CTRW) are widely used to coarse-grain the evolution of systems jumping from a metastable sub-set of their configuration space, or trap, to another via rare intermittent events. The multi-scaled behavior typical of complex dynamics is provided by a fat-tailed distribu......Continuous Time Random Walks (CTRW) are widely used to coarse-grain the evolution of systems jumping from a metastable sub-set of their configuration space, or trap, to another via rare intermittent events. The multi-scaled behavior typical of complex dynamics is provided by a fat......-law and logarithmic relaxation behaviors ubiquitous in complex dynamics, together with the sub-diffusive time dependence of the Mean Square Displacement characteristic of single particles moving in a complex environment....
Automatic Coarse Graining of Polymers
Faller, Roland
2003-01-01
Several recently proposed semi--automatic and fully--automatic coarse--graining schemes for polymer simulations are discussed. All these techniques derive effective potentials for multi--atom units or super--atoms from atomistic simulations. These include techniques relying on single chain simulations in vacuum and self--consistent optimizations from the melt like the simplex method and the inverted Boltzmann method. The focus is on matching the polymer structure on different scales. Several ...
Fritsche, Miriam; Pandey, Ras B; Farmer, Barry L; Heermann, Dieter W
2012-01-01
Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014), combination of segmental globules and elongated chains (T* = 0.016,0.017), predominantly elongated chains (T* = 0.019,0.020), as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023). The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c)* = 0.019) where a crossover occurs from a positive (stretching at T* ≤ T(c)*) to negative (contraction at T* ≥ T(c)*) thermal response on increasing T*.
Miriam Fritsche
Full Text Available Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014, combination of segmental globules and elongated chains (T* = 0.016,0.017, predominantly elongated chains (T* = 0.019,0.020, as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023. The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c* = 0.019 where a crossover occurs from a positive (stretching at T* ≤ T(c* to negative (contraction at T* ≥ T(c* thermal response on increasing T*.
Fritsche, Miriam; Heermann, Dieter; Pandey, Ras; Farmer, Barry
2012-02-01
Using a coarse-grained bond fluctuating model, we investigate structure and dynamics of two histones, H2AX (143 residues) and H3.1 (136 residues) as a function of temperature (T). A knowledged based contact matrix is used as an input for a phenomenological residue-residue interaction in a generalized Lennard-Jones potential. Metropolis algorithm is used to execute stochastic movement of each residue. A number of local and global physical quantities are analyzed. Despite unique energy and mobility profiles of its residues in a specific sequence, the histone H3.1 appears to undergo a structural transformation from a random coil to a globular conformation on reducing the temperature. The radius of gyration of the histone H2AX, in contrast, exhibits a non-monotonic dependence on temperature with a maximum at a characteristic temperature (Tc) where crossover occurs from a positive (stretching below Tc) to negative (contraction above Tc) thermal response on increasing T. Multi-scale structures of the proteins are examined by a detailed analysis of their structure functions.
Pandey, R. B.; Farmer, B. L.
2008-03-01
In a coarse-grained description of a protein chain, all of the 20 amino acid residues can be broadly divided into three groups: Hydrophobic (H) , polar (P) , and electrostatic (E) . A protein can be described by nodes tethered in a chain with a node representing an amino acid group. Aspartic acid protease consists of 99 residues in a well-defined sequence of H , P , and E nodes tethered together by fluctuating bonds. The protein chain is placed on a cubic lattice where empty lattice sites constitute an effective solvent medium. The amino groups (nodes) interact with the solvent (S) sites with appropriate attractive (PS) and repulsive (HS) interactions with the solvent and execute their stochastic movement with the Metropolis algorithm. Variations of the root mean square displacements of the center of mass and that of its center node of the protease chain and its gyration radius with the time steps are examined for different solvent strength. The structure of the protease swells on increasing the solvent interaction strength which tends to enhance the relaxation time to reach the diffusive behavior of the chain. Equilibrium radius of gyration increases linearly on increasing the solvent strength: A slow rate of increase in weak solvent regime is followed by a faster swelling in stronger solvent. Variation of the gyration radius with the time steps suggests that the protein chain moves via contraction and expansion in a somewhat quasiperiodic pattern particularly in strong solvent.
Coarse graining flow of spin foam intertwiners
Dittrich, Bianca; Seth, Cameron J; Steinhaus, Sebastian
2016-01-01
Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behaviour on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group $\\text{SU}(2)_k \\times \\text{SU}(2)_k$, which implement the simplicity constraints analogous to 4D Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a 2D topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different ...
Förster, S; Kohl, E; Ivanov, M; Gross, J; Widdra, W; Janke, W
2014-10-28
We report on a combined theoretical and experimental characterization of isolated Poly(3-hexylthiophene) (P3HT) chains weakly adsorbed on a reconstructed Au(001) surface. The local chain conformations of in situ deposited P3HT molecules were investigated by means of scanning tunneling microscopy. For comparison, Monte Carlo simulations of the system were performed up to a maximum chain length of 60 monomer units. The dependence of the end-to-end distance and the radius of gyration on the polymer chain length shows a good agreement between experiment and Monte Carlo simulations using simple updates for short chains.
Operator Spin Foams: holonomy formulation and coarse graining
Bahr, Benjamin
2011-01-01
A dual holonomy version of operator spin foam models is presented, which is particularly adapted to the notion of coarse graining. We discuss how this leads to a natural way of comparing models on different discretization scales, and a notion of renormalization group flow on the partially ordered set of 2-complexes.
Coarse graining of polystyrene sulfonate
Perahia, Dvora; Agrawal, Anupriya; Grest, Gary S.
2015-03-01
Capturing large length scales in soft matter while retaining atomistic properties is imperative to computational studies. Here we develop a new coarse-grained model for polystyrene sulfonate (PSS) that often serves as a model system because of its narrow molecular weight distribution and defined degree of sulfonation. Four beads are used to represent polymer where the backbone, the phenyl group, and the sulfonated group are each represented by a different bead and the fourth one represents counterion, which is sodium in our case. Initial atomistic simulations of PSS melt with sulfonation levels of 2-10%, with a dielectric constant ɛ = 1 revealed a ``locked'' phase where motion of the polymer is limited. Dielectric constant of ɛ = 5 was used to accelerate the dynamics. Bonded interactions were obtained using Boltzmann inversion on the bonded distributions extracted from atomistic simulation. Non-bonded interaction of polystyrene monomer was taken from our previous work and potential of mean force was used as the initial guess for interaction of the ionic beads. This set of potential was subsequently iterated to get a good match with radial distribution functions. This potential and its transferability across dielectric constants and temperatures will be presented. Grant DE-SC007908.
Entropy production in coarse grained Vlasov equations
Morawetz, K. [Grand Accelerateur National d' Ions Lourds (GANIL), LPC-ISMRA, 14 - Caen (France); Walke, R. [Rostock Univ., Fachbereich Physick (Germany)
2000-07-01
The Vlasov equation is analyzed for coarse grained distributions. This coarse graining resembles a finite width of test-particles as used in numerical implementations. It is shown that this coarse grained distribution obeys a kinetic equation similar to the Vlasov equation, but with additional terms. These terms give rise to entropy production indicating dissipative features. The reason is a nonlinear mode coupling due to the finite width of the test-particles. The interchange of coarse graining and dynamical evolution is discussed with the help of an exactly solvable model and practical consequences are worked out. By calculating analytically the stationary solution we can show that a sum of modified Boltzmann-like distributions is approached dependent on the initial distribution. This behavior is independent of degeneracy and only controlled by the width of test-particles. The condition for approaching a stationary solution is derived in that the coarse graining energy given by momentum coarse graining should be smaller than a quarter of the kinetic energy. Observable consequences of this coarse graining are: (i) In the thermodynamics the coarse graining leads to spatial correlations in observables. (ii) Too large radii of nucleus in self-consistent treatments are observed and an explicit correction term appears in the Thomas Fermi equation. (iii) The momentum coarse graining translates into a structure term in the response function and resembles to a certain extent vertex correction correlations or internal structure effects. (iv) The coarse graining which is numerically unavoidable leads to a modified centroid energy and higher damping width of collective modes. The numerical codes should be revised in that a refolding is proposed. (author)
Quasiclassical Coarse Graining and Thermodynamic Entropy
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James
2006-01-01
Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact: Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibriu...
Coarse graining lessons from simple examples
Akritas, P; Yarevsky, E
2001-01-01
We assess Coarse Graining by studying different partitions of the phase space of the Baker transformation and the periodic torus automorphisms. It turns out that the shape of autocorrelation functions for the Baker transformation is more or less reproduced. However, for certain partitions the decay rates turn out to be irrelevant, even decay may stop in a finite time. For the periodic torus automorphisms, Coarse Graining introduces artificial dumping.
Coarse-graining methods for computational biology.
Saunders, Marissa G; Voth, Gregory A
2013-01-01
Connecting the molecular world to biology requires understanding how molecular-scale dynamics propagate upward in scale to define the function of biological structures. To address this challenge, multiscale approaches, including coarse-graining methods, become necessary. We discuss here the theoretical underpinnings and history of coarse-graining and summarize the state of the field, organizing key methodologies based on an emerging paradigm for multiscale theory and modeling of biomolecular systems. This framework involves an integrated, iterative approach to couple information from different scales. The primary steps, which coincide with key areas of method development, include developing first-pass coarse-grained models guided by experimental results, performing numerous large-scale coarse-grained simulations, identifying important interactions that drive emergent behaviors, and finally reconnecting to the molecular scale by performing all-atom molecular dynamics simulations guided by the coarse-grained results. The coarse-grained modeling can then be extended and refined, with the entire loop repeated iteratively if necessary.
Insights on protein-DNA recognition by coarse grain modelling
Poulain, Pierre; Saladin, Adrien; Hartmann, Brigitte; Prévost, Chantal
2008-01-01
Coarse grain modelling of macromolecules is a new approach potentially well adapted to answer numerous issues, ranging from physics to biology. We propose here an original DNA coarse grain model specifically dedicated to protein–DNA docking, a crucial, but still largely unresolved, question in molecular biology. Using a representative set of protein–DNA complexes, we first show that our model is able to predict the interaction surface between the macromolecular partners taken in their bound form. In a second part, the impact of the DNA sequence and electrostatics, together with the DNA and protein conformations on docking is investigated. Our results strongly suggest that the overall DNA structure mainly contributes in discriminating the interaction site on cognate proteins. Direct electrostatic interactions between phosphate groups and amino acids side chains strengthen the binding. Overall, this work demonstrates that coarse grain modelling can reveal itself a precious auxiliary for a general and complete description and understanding of protein–DNA association mechanisms. PMID:18478582
Coarse graining from variationally enhanced sampling applied to the Ginzburg-Landau model.
Invernizzi, Michele; Valsson, Omar; Parrinello, Michele
2017-03-28
A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg-Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard-Jones fluid in the region close to the liquid-vapor critical point. The procedure is general and can be adapted to other coarse-grained models.
Coarse graining from variationally enhanced sampling applied to the Ginzburg–Landau model
Invernizzi, Michele; Valsson, Omar; Parrinello, Michele
2017-01-01
A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg–Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard–Jones fluid in the region close to the liquid–vapor critical point. The procedure is general and can be adapted to other coarse-grained models. PMID:28292890
Coarse-grained Modeling of DNA Curvature
Freeman, Gordon S; Lequieu, Joshua P; Whitmer, Jonathan K; de Pablo, Juan J
2014-01-01
Modeling of DNA-protein interactions is a complex process involving many important time and length scales. This can be facilitated through the use of coarse-grained models which reduce the number of degrees of freedom and allow efficient exploration of binding configurations. It is known that the local structure of DNA can significantly affect its protein-binding properties (i.e. intrinsic curvature in DNA-histone complexes). In a step towards comprehensive DNA-protein modeling, we expand the 3SPN.2 coarse-grained model to include intrinsic shape, and validate the refined model against experimental data including melting temperature, local flexibility, persistence length, and minor groove width profile.
Coarse-grained protein molecular dynamics simulations
Derreumaux, Philippe; Mousseau, Normand
2007-01-01
A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.
The gravitational description of coarse grained microstates
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Boer, Jan de [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018XE Amsterdam (Netherlands); Messamah, Ilies [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018XE Amsterdam (Netherlands)
2006-12-15
In this paper we construct a detailed map from pure and mixed half-BPS states of the D1-D5 system to half-BPS solutions of type IIB supergravity. Using this map, we can see how gravity arises through coarse graining microstates, and we can explicitly confirm the microscopic description of conical defect metrics, the M = 0 BTZ black hole and of small black rings. We find that the entropy associated to the natural geometric stretched horizon typically exceeds that of the mixed state from which the geometry was obtained.
The Gravitational Description of Coarse Grained Microstates
Alday, L F; Messamah, I; Alday, Luis F.; Boer, Jan de; Messamah, Ilies
2006-01-01
In this paper we construct a detailed map from pure and mixed half-BPS states of the D1-D5 system to half-BPS solutions of type IIB supergravity. Using this map, we can see how gravity arises through coarse graining microstates, and we can explicitly confirm the microscopic description of conical defect metrics, the M=0 BTZ black hole and of small black rings. We find that the entropy associated to the natural geometric stretched horizon typically exceeds that of the mixed state from which the geometry was obtained.
An algebraic approach to coarse graining
Markopoulou, F
2000-01-01
We propose that Kreimer's method of Feynman diagram renormalization via a Hopf algebra of rooted trees can be fruitfully employed in the analysis of block spin renormalization or coarse graining of inhomogeneous statistical systems. Examples of such systems include spin foam formulations of non-perturbative quantum gravity as well as lattice gauge and spin systems on irregular lattices and/or with spatially varying couplings. We study three examples which are Z_2 lattice gauge theory on irregular 2-dimensional lattices, Ising/Potts models with varying bond strengths and (1+1)-dimensional spin foam models.
Equilibrium behavior of coarse-grained chaos
Egolf, David A.; Ballard, Christopher C.; Esty, C. Clark
2015-03-01
A wide variety of systems exhibiting spatiotemporal chaos have been shown to be extensive, in that their fractal dimensions grow linearly with volume. Ruelle argued that this extensivity is evidence that these systems can be viewed as a gas of weakly-interacting regions. We have tested this idea by performing large-scale computational studies of spatiotemporal chaos in the 1D complex Ginzburg-Landau equation, and we have found that aspects of the coarse-grained system are well-described not only as a gas, but as an equilibrium gas -- in particular, a Tonks gas (and variants) in the grand canonical ensemble. Furthermore, for small system sizes, the average number of particles in the corresponding Tonks gas exhibits oscillatory, decaying deviations from extensivity in agreement with deviations in the fractal dimension found by Fishman and Egolf. This result not only supports Ruelle's picture but also suggests that the coarse-grained behavior of this far-from-equilibrium system might be understood using equilibrium statistical mechanics.
Coarse grained model of entangled polymer melts
Rakshit, Abhik
A coarse graining procedure aimed at reproducing both the chain structure and dynamics in entangled polymeric melts is presented. The reference, fine scale system is a beadspring-type representation of the melt. This model is used to calibrate the coarse model for a specific monodisperse melt of linear chains. The coarse model is then used to represent the structure and dynamics of various other systems in thermodynamic equilibrium and non-equilibrium. Extensive comparison with equivalent fine scale models is performed to verify the coarse model. The level of coarse graining is selected equal to the number of beads in the entanglement segment, Ne. The coarse model is discrete and contains blobs each representing Ne consecutive beads in the fine scale model. The mapping is defined by the following conditions: the probability of given state of the coarse system is equal to that of all fine system states compatible with the respective coarse state, the dissipation per coarse grained object is similar in the two systems, constraints to the motion of a representative chain exist in the fine phase space and the coarse phase space is adjusted such to capture them. Specifically, the chain inner blobs are constrained to move along the backbone of the coarse grained chain, while the end blobs move in the 3D embedding space. The end blobs continuously re-define the diffusion path for the inner blobs. The input parameters governing the dynamics of the coarse grained system are calibrated based on the fine scale model behavior. These are the characteristic length scale, Ne, and the effective friction coefficient per coarse grained object. Although the coarse model cannot reproduce the whole thermodynamics of the fine system, it ensures that the pair and end-to-end distribution functions, the rate of relaxation of segmental and end-to-end vectors, the Rouse modes and the diffusion dynamics are properly represented. The model intrinsically captures contour length fluctuations and
Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems
Peter Spijker
2010-06-01
Full Text Available Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.
Structure-based coarse-graining in liquid slabs.
Jochum, Mara; Andrienko, Denis; Kremer, Kurt; Peter, Christine
2012-08-14
Structure-based coarse-graining relies on matching the pair correlation functions of a reference (atomistic) and a coarse-grained system. As such, it is designed for systems with uniform density distributions. Here, we demonstrate how it can be generalized for inhomogeneous systems by coarse-graining slabs of liquid water and methanol in vacuum, as well as a single benzene molecule at the water-vacuum interface. Our conclusion is that coarse-graining performed in inhomogeneous systems improves thermodynamic properties and the structure of interfaces without significant alterations to the local structure of the bulk liquid.
Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena
Gorban, Alexander N; Theodoropoulos, Constantinos; Kazantzis, Nikolaos K; Öttinger, Hans Christian
2006-01-01
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. Specific areas of study include dynamical systems, non-equilibrium statistical mechanics, kinetic theory, hydrodynamics and mechanics of continuous media, (bio)chemical kinetics, nonlinear dynamics, nonlinear control, nonlinear estimation, and particulate systems from various branches of engineering. The generic nature and the power of the pertinent conceptual, analytical and computational frameworks helps eliminate some of the traditional language barriers, which often unnecessarily impede scientific progress and the interaction of researchers between disciplines such as physics, chemistry, biology, applied mathematics and engineering. All contributions are authored by ex...
Buchert coarse-graining and the classical energy conditions
Visser, Matt
2015-01-01
So-called "Buchert averaging" is actually a coarse-graining procedure, where fine detail is "smeared out" due to limited spatio-temporal resolution. For technical reasons, (to be explained herein), "averaging" is not really an appropriate term, and I shall consistently describe the process as a "coarse-graining". Because Einstein gravity is nonlinear the coarse-grained Einstein tensor is typically not equal to the Einstein tensor of the coarse-grained spacetime geometry. The discrepancy can be viewed as an "effective" stress-energy, and this "effective" stress-energy often violates the classical energy conditions. To keep otherwise messy technical issues firmly under control, I shall work with conformal-FLRW (CFLRW) cosmologies. These CFLRW-based models are particularly tractable, and are also particularly attractive observationally: the CMB is not distorted. In this CFLRW context one can prove some rigorous theorems regarding the interplay between Buchert coarse-graining, tracelessness of the effective stres...
A coarse-grained spectral signature generator
Lam, K. P.; Austin, J. C.; Day, C. R.
2007-01-01
This paper investigates the method for object fingerprinting in the context of element specific x-ray imaging. In particular, the use of spectral descriptors that are illumination invariant and viewpoint independent for pattern identification was examined in some detail. To improve generating the relevant "signature", the spectral descriptor constructed is enhanced with a differentiator which has built-in noise filtration capability and good localisation properties, thus facilitating the extraction of element specific features at a coarse-grained level. In addition to the demonstrable efficacy in identifying significant image intensity transitions that are associated with the underlying physical process of interest, the method has the distinct advantage of being conceptually simple and computationally efficient. These latter properties allow the descriptor to be further utilised by an intelligent system capable of performing a fine-grained analysis of the extracted pattern signatures. The performance of the spectral descriptor has been studied in terms of the quality of the signature vectors that it generated, quantitatively based on the established framework of Spectral Information Measure (SIM). Early results suggested that such a multiscale approach of image sequence analysis offers a considerable potential for real-time applications.
Local gauge theory and coarse graining
Zapata, Jose A
2012-01-01
Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the homotopy classes of certain maps. When two configurations share this data they are related by a local deformation. The interpretation is that such configurations differ by "microscopic details". In many cases the homotopy type of the relevant maps is trivial for every connection; two important cases in which the homotopy data is composed by a set of integer numbers are: (i) a two dimensional base manifold and structure group U(1), (ii) a four dimensional base manifold and structure group SU(2). These cases are relevant for spin foam models of two dimensional gravity and four dimensional gravity respectively. This result suggests that if spin foam models for two-dimensional and four-dimensional gravity are modified to include all the relevant macroscopic degrees of fr...
A coarse-grained model for PETN crystals
Gee, R; Wu, C; Maiti, A
2006-02-10
Using the energetic material Pentaerythritol Tetranitrate (PETN) as a specific example of molecular crystal, we describe the development of a simple coarse-graining procedure by grouping several atoms or whole functional groups into single charge-neutral beads. As compared to fully atomistic calculations the coarse-grained model speeds up simulations by more than two orders of magnitude. Yet, by adjusting only two parameters in the coarse-grained interaction, the model accurately predicts the lattice constants, sublimation energy, pressure-volume curve up to P=10 GPa, and energetically the most stable facets. Computed surface and desorption energies, bulk modulus, and equilibrium morphology are reported as well.
pH-dependent coarse-grained model of peptides
Enciso, Marta; Site, Luigi Delle
2012-01-01
We propose a coarse-grained modeling strategy for peptides where the effect of changes of the pH can be efficiently described. The idea is based on modeling the effects of the pH value on the main driving interactions using reference data from atomistic simulations and experimental databases and transferring its main physical features to the coarse-grained resolution according the principle of consistency across the scales. After refining the coarse-grained model appropriately this was achieved by finding a unique set of parameters for the coarse-grained model that, when applied to peptides with different sequences and experimental properties, reproduces the experimental and atomistic data of reference. We used the such parametrized model for performing several numerical tests to check the universality of the model. We have tried systems with rather different response to pH variations, showing a highly satisfactory performance of the model.
Non-commutativity from coarse grained classical probabilities
Wetterich, C
2010-01-01
Non-commutative quantum physics at the atom scale can arise from coarse graining of a classical statistical ensemble at the Planck scale. Position and momentum of an isolated particle are classical observables which remain computable in terms of the coarse grained information. However, the commuting classical product of position and momentum observables is no longer defined in the coarse grained system, which is therefore described by incomplete statistics. The microphysical classical statistical ensemble at the Planck scale admits an alternative non-commuting product structure for position and momentum observables which is compatible with the coarse graining. Measurement correlations for isolated atoms are based on this non-commutative product structure. We present an explicit example for these ideas. It also realizes the discreteness of the spin observable within a microphysical classical statistical ensemble.
Coarse-Grained Simulations of Membranes under Tension
Neder, Jörg; Nielaba, Peter; Schmid, Friederike
2010-01-01
We investigate the properties of membranes under tension by Monte-Carlo simulations of a generic coarse-grained model for lipid bilayers. We give a comprising overview of the behavior of several membrane characteristics, such as the area per lipid, the monolayer overlap, the nematic order, and pressure profiles. Both the low-temperature regime, where the membranes are in a gel phase, and the high-temperature regime, where they are in the fluid phase, are considered. In the gel state, the membrane is hardly influenced by tension. In the fluid state, high tensions lead to structural changes in the membrane, which result in different compressibility regimes. The ripple state, which is found at tension zero in the transition regime between the fluid and the gel phase, disappears under tension and gives way to an interdigitated phase. We also study the membrane fluctuations in the fluid phase. In the low tension regime the data can be fitted nicely to a suitably extended elastic theory. At higher tensions the elas...
Shark: Fast Data Analysis Using Coarse-grained Distributed Memory
2013-05-01
Shark : Fast Data Analysis Using Coarse-grained Distributed Memory Clifford Engle Electrical Engineering and Computer Sciences University of...TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Shark : Fast Data Analysis Using Coarse-grained Distributed Memory 5a...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Shark is a
Maiolo, M., E-mail: massimo.maiolo@zhaw.ch [SUPSI, Department of Innovative Technology, Galleria 2, 6928 Manno (Switzerland); ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil (Switzerland); Vancheri, A., E-mail: alberto.vancheri@supsi.ch [SUPSI, Department of Innovative Technology, Galleria 2, 6928 Manno (Switzerland); Krause, R., E-mail: rolf.krause@usi.ch [USI, Institute of Computational Science, Via Buffi 13, 6906 Lugano (Switzerland); Danani, A., E-mail: andrea.danani@supsi.ch [SUPSI, Department of Innovative Technology, Galleria 2, 6928 Manno (Switzerland)
2015-11-01
In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficient orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.
2013-11-01
coarse-grained (CG) simulation techniques, including inverse Monte Carlo schemes, force-matching approaches, and calibrated techniques based on...accessed on 10/30/2013). NO. OF COPIES ORGANIZATION 17 1 DEFENSE TECHNICAL (PDF) INFORMATION CTR DTIC OCA 1 DIRECTOR (PDF) US
Systematic coarse-graining in nucleation theory
Schweizer, M.; Sagis, L.M.C.
2015-01-01
In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys
Energy-conserving coarse-graining of complex molecules.
Español, Pep; Serrano, Mar; Pagonabarraga, Ignacio; Zúñiga, Ignacio
2016-05-25
Coarse-graining (CG) of complex molecules is a method to reach time scales that would be impossible to access through brute force molecular simulations. In this paper, we formulate a coarse-grained model for complex molecules using first principles caculations that ensures energy conservation. Each molecule is described in a coarse way by a thermal blob characterized by the position and momentum of the center of mass of the molecule, together with its internal energy as an additional degree of freedom. This level of description gives rise to an entropy-based framework instead of the usual one based on the configurational free energy (i.e. potential of mean force). The resulting dynamic equations, which account for an appropriate description of heat transfer at the coarse-grained level, have the structure of the dissipative particle dynamics with energy conservation (DPDE) model but with a clear microscopic underpinning. Under suitable approximations, we provide explicit microscopic expressions for each component (entropy, mean force, friction and conductivity coefficients) appearing in the coarse-grained model. These quantities can be computed directly using MD simulations. The proposed non-isothermal coarse-grained model is thermodynamically consistent and opens up a first principles CG strategy for the study of energy transport issues that are not accessible using current isothermal models.
Entropies from Coarse-graining: Convex Polytopes vs. Ellipsoids
Nikos Kalogeropoulos
2015-09-01
Full Text Available We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells in coarse-graining and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky’s theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.
Coarse-graining two-dimensional turbulence via dynamical optimization
Turkington, Bruce; Thalabard, Simon
2015-01-01
A model reduction technique based on an optimization principle is employed to coarse-grain inviscid, incompressible fluid dynamics in two dimensions. In this reduction the spectrally-truncated vorticity equation defines the microdynamics, while the macroscopic state space consists of quasi-equilibrium trial probability densities on the microscopic phase space, which are parameterized by the means and variances of the low modes of the vorticity. A macroscopic path therefore represents a coarse-grained approximation to the evolution of a nonequilibrium ensemble of microscopic solutions. Closure in terms of the vector of resolved variables, namely, the means and variances of the low modes, is achieved by minimizing over all feasible paths the time integral of their mean-squared residual with respect to the Liouville equation. The equations governing the optimal path are deduced from Hamilton-Jacobi theory. The coarse-grained dynamics derived by this optimization technique contains a scale-dependent eddy viscosit...
Systematic coarse-graining in nucleation theory
Schweizer, M., E-mail: marco.schweizer@math.ethz.ch [Department of Materials, Polymer Physics, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: leonard.sagis@wur.nl [Department of Materials, Polymer Physics, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen (Netherlands)
2015-08-21
In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 − 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
Coarse-grain modelling of protein-protein interactions
Baaden, Marc; Marrink, Siewert J.
2013-01-01
Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are separate
7 CFR 457.113 - Coarse grains crop insurance provisions.
2010-01-01
... total production in bushels (tons for corn silage) (see subsection 11(d)) to count from all insurable... production to count for corn will be in bushels for grain and in tons for silage as follows: (1) For... coarse grain production (excluding corn insured or harvested as silage) may be adjusted for...
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.
2013-01-01
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules.
Coarse graining and scaling in dissipative particle dynamics
Füchslin, Rudolf M; Fellermann, Harold; Eriksson, Anders
2009-01-01
Dissipative particle dynamics (DPD) is now a well-established method for simulating soft matter systems. However, its applicability was recently questioned because some investigations showed an upper coarse-graining limit that would prevent the applicability of the method to the whole mesoscopic ...
Martini Coarse-Grained Force Field : Extension to Carbohydrates
Lopez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; Huenenberger, Philippe H.; Marrink, Siewert J.
2009-01-01
We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The
Coarse-graining and scaling in dissipative particle dynamics
Fuechslin, Rudolf; Fellermann, Harold; Eriksson, Anders
2009-01-01
Dissipative particle dynamics (DPD) is now a well-established method for simulating soft matter systems. However, its applicability was recently questioned because some investigations showed an upper coarse-graining limit that would prevent the applicability of the method to the whole mesoscopic...
Mapping Applications to a Coarse Grain Reconfigurable System
Guo, Y.; Smit, Gerardus Johannes Maria; Broersma, Haitze J.; Rosien, M.A.J.; Heysters, P.M.; Omondi, A.; Sedukhin, S.
This paper introduces a method which can be used to map applications written in a high level source language program, like C, to a coarse grain reconfigurable architecture, MONTIUM. The source code is first translated into a control data flow graph. Then after applying graph clustering, scheduling
Coarse-grained numerical bifurcation analysis of lattice Boltzmann models
Leemput, P. Van; Lust, K.W.A.; Kevrekidis, I.G.
2005-01-01
In this paper we study the coarse-grained bifurcation analysis approach proposed by I.G. Kevrekidis and collaborators in PNAS [C. Theodoropoulos, Y.H. Qian, I.G. Kevrekidis, "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example, Proc. Natl. Acad. Sci. 97 (18)
Dileptons in a coarse-grained transport approach
van Hees, H; Weil, J; Bleicher, M
2015-01-01
We calculate dilepton spectra in heavy-ion collisions using a coarse-graining approach to the simulation of the created medium with the UrQMD transport model. This enables the use of dilepton-production rates evaluated in equilibrium quantum-field theory at finite temperatures and chemical potentials.
A nucleotide-level coarse-grained model of RNA
Šulc, Petr; Ouldridge, Thomas E; Doye, Jonathan P K; Louis, Ard A
2014-01-01
We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.
Determination of the scale of coarse graining in earthquake network
Abe, Sumiyoshi
2009-01-01
In a recent paper [S. Abe and N. Suzuki, Europhys. Lett., 65 (2004) 581], the concept of earthquake network has been introduced in order to describe complexity of seismicity. There, the cell size, which is the scale of coarse graining needed for constructing an earthquake network, has remained as a free parameter. Here, a method is presented for determining it based on the scaling behavior of the network. Quite remarkably, both the exponent of the power-law connectivity distribution and the clustering coefficient are found to approach the respective universal values and remain invariant as the cell size becomes larger than a certain value, $l_*$, which depends on the number of events contained in the analysis, in general. This $l_*$ fixes the scale of coarse graining. Universality of the result is demonstrated for all of the networks constructed from the data independently taken from California, Japan and Iran.
A nucleotide-level coarse-grained model of RNA
Šulc, Petr; Ouldridge, Thomas E.; Louis, Ard A. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Romano, Flavio; Doye, Jonathan P. K. [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)
2014-06-21
We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.
Coarse Grained Simulation of Lipid Membrane and Triblock Copolymers
Hatakeyama, Masaomi; Faller, Roland
2008-02-01
We investigated the interaction between DPPC (Dipalmitoyl phosphatidylcholine) bilayer and polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymers using coarse grained simulation. We simulated two systems of DPPC bilayer and PEO-PPO-PEO triblock copolymer containing different mole fractions, and simulated DPPC vesicle with the copolymers. We found different adsorption mechanisms of triblock copolymers depending on concentration. And we also observed docking process between a lipid vesicle and a micelle of the copolymers.
Superplastic behavior of coarse-grained aluminum alloys
Chezan, AR; De Hosson, JTM
2005-01-01
In this paper we concentrate on the superplastic behavior and the microstructural evolution of two coarse-grained Al alloys: Al-4.4w/oMg and Al-4.4w/oMg-0.4w/oCu. The values for the strain rate sensitivity index and activation energy suggest that solute drag on dislocation motion is an important phe
Atomistic and Coarse-grained Simulations of Hexabenzocoronene Crystals
Ziogos, G.; Megariotis, G.; Theodorou, D. N.
2016-08-01
This study concerns atomistic and coarse-grained Molecular Dynamics simulations of pristine hexabenzocoronene (HBC) molecular crystals. HBC is a symmetric graphene flake of nanometric size that falls in the category of polyaromatic hydrocarbons, finding numerous applications in the field of organic electronics. The HBC molecule is simulated in its crystalline phase initially by means of an all-atom representation, where the molecules self- organize into well aligned molecular stacks, which in turn create a perfect monoclinic molecular crystal. The atomistic model reproduces fairly well the structural experimental properties and thus can be used as a reliable starting point for the development of a coarsegrained model following a bottom-up approach. The coarse-grained model is developed by applying Iterative Boltzmann Inversion, a systematic coarse-graining method which reproduces a set of target atomistic radial distribution functions and intramolecular distributions at the coarser level of description. This model allows the simulation of HBC crystals over longer time and length scales. The crystalline phase is analyzed in terms of the Saupe tensor and thermomechanical properties are probed at the atomistic level.
Parametrizing coarse grained models for molecular systems at equilibrium
Kalligiannaki, E.
2016-10-18
Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.
Coarse-graining two-dimensional turbulence via dynamical optimization
Turkington, Bruce; Chen, Qian-Yong; Thalabard, Simon
2016-10-01
A model reduction technique based on an optimization principle is employed to coarse-grain inviscid, incompressible fluid dynamics in two dimensions. In this reduction the spectrally-truncated vorticity equation defines the microdynamics, while the macroscopic state space consists of quasi-equilibrium trial probability densities on the microscopic phase space, which are parameterized by the means and variances of the low modes of the vorticity. A macroscopic path therefore represents a coarse-grained approximation to the evolution of a nonequilibrium ensemble of microscopic solutions. Closure in terms of the vector of resolved variables, namely, the means and variances of the low modes, is achieved by minimizing over all feasible paths the time integral of their mean-squared residual with respect to the Liouville equation. The equations governing the optimal path are deduced from Hamilton-Jacobi theory. The coarse-grained dynamics derived by this optimization technique contains a scale-dependent eddy viscosity, modified nonlinear interactions between the low mode means, and a nonlinear coupling between the mean and variance of each low mode. The predictive skill of this optimal closure is validated quantitatively by comparing it against direct numerical simulations. These tests show that good agreement is achieved without adjusting any closure parameters.
Parametrizing coarse grained models for molecular systems at equilibrium
Kalligiannaki, E.; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plecháč, P.; Harmandaris, V.
2016-10-01
Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.
High capacitance of coarse-grained carbide derived carbon electrodes
Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury
2016-02-01
We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.
Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations
Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory
2008-01-01
We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.
Cao, Zhen; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637 (United States)
2015-12-28
It is essential to be able to systematically construct coarse-grained (CG) models that can efficiently and accurately reproduce key properties of higher-resolution models such as all-atom. To fulfill this goal, a mapping operator is needed to transform the higher-resolution configuration to a CG configuration. Certain mapping operators, however, may lose information related to the underlying electrostatic properties. In this paper, a new mapping operator based on the centers of charge of CG sites is proposed to address this issue. Four example systems are chosen to demonstrate this concept. Within the multiscale coarse-graining framework, CG models that use this mapping operator are found to better reproduce the structural correlations of atomistic models. The present work also demonstrates the flexibility of the mapping operator and the robustness of the force matching method. For instance, important functional groups can be isolated and emphasized in the CG model.
Coarse-graining the calcium dynamics on a stochastic reaction-diffusion lattice model
Shen, Chuansheng
2013-01-01
We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites together into CG cells and deriving CG reaction rates using local mean field approximation, we perform CG kinetic Monte Carlo (kMC) simulations and find the results of CG-kMC simulations are in excellent agreement with that of the microscopic ones. Strikingly, there is an appropriate range of coarse proportion $m$, corresponding to the minimal deviation of the phase transition point compared to the microscopic one. For fixed $m$, the critical point increases monotonously as the system size increases, especially, there exists scaling law between the deviations of the phase transition point and the system size. Moreover, the CG approach provides significantly faster Monte Carlo simulations which are easy to implement and are directly related to the microscopics, so that one can study the system size eff...
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
A system for coarse-grained location-based synchronisation
Coelho, André; Silva, Mário; José, Rui
2010-01-01
This paper describes a system for supporting coarse-grained location-based synchronisation. This type of synchronisation may occur when people need only some awareness about the location of others within the specific context of an on-going activity. We have identified a number of reference scenarios for this type of synchronisation and we have implemented and deployed a prototype to evaluate the type of support provided. The results of the evaluation suggest a good acceptance of the overall concept, indicating that this might be a valuable approach for many of the indicated scenarios, possibly replacing or complementing existing synchronisation practices.
Subsurface Optical Microscopy of Coarse Grain Spinels. Phase 1
2013-12-01
modules normally used by the life sciences using coarse grain magnesium aluminate (MgAl2O4), and aluminum oxy nitride (AlON). The microscope used is a... magnesium aluminate (MgAl2O4), and aluminum oxy nitride (AlON). Presently, the documentation of ceramic internal structures rely on specimen...Pressing LED light-emitting diode LSM Zeiss Pascal software MgAl2O4 magnesium aluminate NIH National Institutes of Health Z1m Zeiss Pascal 5
General coarse-grained red blood cell models: I. Mechanics
FEDOSOV, DMITRY A.; Caswell, Bruce; Karniadakis, George E.
2009-01-01
We present a rigorous procedure to derive coarse-grained red blood cell (RBC) models, which lead to accurate mechanical properties of realistic RBCs. Based on a semi-analytic theory linear and non-linear elastic properties of the RBC membrane can be matched with those obtained in optical tweezers stretching experiments. In addition, we develop a nearly stress-free model which avoids a number of pitfalls of existing RBC models, such as non-biconcave equilibrium shape and dependence of RBC mech...
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia
2015-01-07
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.
MICROTHREAD BASED (MTB) COARSE GRAINED FAULT TOLERANCE SUPERSCALAR PROCESSOR ARCHITECTURE
无
2006-01-01
Fault tolerance in microprocessor systems has become a popular topic of architecture research.Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance.This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.
Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades
Aluie, Hussein
2017-02-01
We formulate a coarse-graining approach to the dynamics of magnetohydrodynamic (MHD) fluids at a continuum of length-scales ℓ. In this methodology, effective equations are derived for the observable velocity and magnetic fields spatially-averaged at an arbitrary scale of resolution. The microscopic equations for the ‘bare’ velocity and magnetic fields are ‘renormalized’ by coarse-graining to yield macroscopic effective equations that contain both a subscale stress and a subscale electromotive force (EMF) generated by nonlinear interaction of eliminated fields and plasma motions. Particular attention is given to the effects of these subscale terms on the balances of the quadratic invariants of ideal incompressible MHD—energy, cross-helicity and magnetic helicity. At large coarse-graining length-scales, the direct dissipation of the invariants by microscopic mechanisms (such as molecular viscosity and Spitzer resistivity) is shown to be negligible. The balance at large scales is dominated instead by the subscale nonlinear terms, which can transfer invariants across scales, and are interpreted in terms of work concepts for energy and in terms of topological flux-linkage for the two helicities. An important application of this approach is to MHD turbulence, where the coarse-graining length ℓ lies in the inertial cascade range. We show that in the case of sufficiently rough velocity and/or magnetic fields, the nonlinear inter-scale transfer need not vanish and can persist to arbitrarily small scales. Although closed expressions are not available for subscale stress and subscale EMF, we derive rigorous upper bounds on the effective dissipation they produce in terms of scaling exponents of the velocity and magnetic fields. These bounds provide exact constraints on phenomenological theories of MHD turbulence in order to allow the nonlinear cascade of energy and cross-helicity. On the other hand, we prove a very strong version of the Woltjer-Taylor conjecture
Coarse-grained modeling of RNA 3D structure.
Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M
2016-07-01
Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.
A coarse grain model for protein-surface interactions
Wei, Shuai; Knotts, Thomas A.
2013-09-01
The interaction of proteins with surfaces is important in numerous applications in many fields—such as biotechnology, proteomics, sensors, and medicine—but fundamental understanding of how protein stability and structure are affected by surfaces remains incomplete. Over the last several years, molecular simulation using coarse grain models has yielded significant insights, but the formalisms used to represent the surface interactions have been rudimentary. We present a new model for protein surface interactions that incorporates the chemical specificity of both the surface and the residues comprising the protein in the context of a one-bead-per-residue, coarse grain approach that maintains computational efficiency. The model is parameterized against experimental adsorption energies for multiple model peptides on different types of surfaces. The validity of the model is established by its ability to quantitatively and qualitatively predict the free energy of adsorption and structural changes for multiple biologically-relevant proteins on different surfaces. The validation, done with proteins not used in parameterization, shows that the model produces remarkable agreement between simulation and experiment.
Multiscale coarse-graining of the protein energy landscape.
Ronald D Hills
2010-06-01
Full Text Available A variety of coarse-grained (CG models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states.
Electronically coarse-grained molecular dynamics using quantum Drude oscillators
Jones, A. P.; Crain, J.; Cipcigan, F. S.; Sokhan, V. P.; Modani, M.; Martyna, G. J.
2013-12-01
Standard molecular dynamics (MD) simulations generally make use of a basic description of intermolecular forces which consists of fixed, pairwise, atom-centred Coulomb, van der Waals and short-range repulsive terms. Important interactions such as many-body polarisation and many-body dispersion which are sensitive to changes in the environment are usually neglected, and their effects treated effectively within mean-field approximations to reproduce a single thermodynamic state point or physical environment. This leads to difficulties in modelling the complex interfaces of interest today where the behaviour may be quite different from the regime of parameterisation. Here, we describe the construction and properties of a Gaussian coarse-grained electronic structure, which naturally generates many-body polarisation and dispersion interactions. The electronic structure arises from a fully quantum mechanical treatment of a set of distributed quantum Drude oscillators (QDOs), harmonic atoms which interact with each other and other moieties via electrostatic (Coulomb) interactions; this coarse-grained approach is capable of describing many-body polarisation and dispersion but not short-range interactions which must be parametrised. We describe how on-the-fly forces due to this exchange-free Gaussian model may be generated with linear scale in the number of atoms in the system using an adiabatic path integral molecular dynamics for quantum Drude oscillators technique (APIMD-QDO). We demonstrate the applicability of the QDO approach to realistic systems via a study of the liquid-vapour interface of water.
Deformation Behaviour of Coarse Grain Alumina under Shock Loading
Gupta, Satish
2013-06-01
To develop better understanding of the shock wave induced deformation behavior of coarse grain alumina ceramics, and for measurement of its Hugoniot Elastic Limit (HEL), in-situ and recovery gas gun experiments have been carried out on coarse grain alumina (grain size ~ 10 μm), prepared in the form of discs (>99.9% TMD) by pressure-less sintering of alpha alumina powder at 1583 K. The HEL value of 1.9 GPa has been determined from the kink in the pressure history recorded using piezoresistance gauge and also from the free surface velocity history of the sample shocked to 9 GPa. The nano-indentation measurements on the alumina samples shocked to 6.5 GPa showed hardness value 15% lower than 21.3 GPa for unshocked alumina, and strong Indentation Size Effect (ISE); the hardness value was still lower and the ISE was stronger for the sample shocked to 12 GPa. The XRD measurements showed reduced particle size and increased microstrains in the shocked alumina fragments. SEM, FESEM and TEM measurements on shock treated samples showed presence of grain localized micro- and nano-scale deformations, micro-cleavages, grain-boundary microcracks, extensive shear induced deformations, and localized micro-fractures, etc. These observations led to the development of a qualitative model for the damage initiation and its subsequent growth mechanisms in shocked alumina. The work performed in collaboration with K.D. Joshi of BARC and A.K. Mukhopadhyay of CGCRI.
Simulating the Entropic Collapse of Coarse-Grained Chromosomes
Shendruk, Tyler N.; Bertrand, Martin; de Haan, Hendrick W.; Harden, James L.; Slater, Gary W.
2015-02-01
Depletion forces play a role in the compaction and de-compation of chromosomal material in simple cells but it remains debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition.
Effective surface coverage of coarse-grained soft matter.
Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto
2014-12-11
The surface coverage of coarse-grained macromolecules bound to a solid substrate is not simply proportional to the two-dimensional number density because macromolecules can overlap. As a function of the overlap probability δ, we have developed analytical formulas and computational models capable of characterizing this nonlinear relationship. For simplicity, we ignore site-site interactions that would be induced by length-scale mismatches between binding sites and the radius of gyration of the incident coarse-grained macromolecular species. The interactions between macromolecules are modeled with a finite bounded potential that allows multiple macromolecules to occupy the same binding site. The softness of the bounded potential is thereby reduced to the single parameter δ. Through variation of this parameter, completely hard (δ = 0) and completely soft (δ = 1) behavior can be bridged. For soft macromolecular interactions (δ > 0), multiple occupancy reduces the fraction of sites ϕ occupied on the substrate. We derive the exact transition probability between sequential configurations and use this probability to predict ϕ and the distribution of occupied sites. Due to the complexity of the exact ϕ expressions and their analytical intractability at the thermodynamic limit, we apply a simplified mean-field (MF) expression for ϕ. The MF model is found to be in excellent agreement with the exact result. Both the exact and MF models are applied to an example dynamical system with multibody interactions governed by a stochastic bounded potential. Both models show agreement with results measured from simulation.
Coarse-grained rigid blob model for soft matter simulations
Chao, Sheng D.; Kress, Joel D.; Redondo, Antonio
2005-06-01
We have developed a coarse-grained multiscale molecular simulation method for soft matter systems that directly incorporates stereochemical information. We divide the material into disjoint groups of atoms or particles that move as separate rigid bodies; we call these groups "rigid blobs," hence the name coarse-grained rigid blob model. The method is enabled by the construction of transferable interblob potentials that approximate the net intermolecular interactions, as obtained from ab initio electronic structure calculations, other all-atom empirical potentials, experimental data, or any combination of the above. We utilize a multipolar expansion to obtain the interblob potential-energy functions. The series, which contains controllable approximations that allow us to estimate the errors, approaches the original intermolecular potential as the number of terms increases. Using a novel numerical algorithm, we can calculate the interblob potentials very efficiently in terms of a few interaction moment tensors. This reduces the labor well beyond what is required in standard molecular-dynamics calculations and allows large-scale simulations for temporal scales commensurate with characteristic times of nano- and mesoscale systems. A detailed derivation of the formulas is presented, followed by illustrative applications to several systems showing that the method can effectively capture realistic microscopic details and can easily extend to large-scale simulations.
A coarse-grained protein force field for folding and structure prediction.
Maupetit, Julien; Tuffery, P; Derreumaux, Philippe
2007-11-01
We have revisited the protein coarse-grained optimized potential for efficient structure prediction (OPEP). The training and validation sets consist of 13 and 16 protein targets. Because optimization depends on details of how the ensemble of decoys is sampled, trial conformations are generated by molecular dynamics, threading, greedy, and Monte Carlo simulations, or taken from publicly available databases. The OPEP parameters are varied by a genetic algorithm using a scoring function which requires that the native structure has the lowest energy, and the native-like structures have energy higher than the native structure but lower than the remote conformations. Overall, we find that OPEP correctly identifies 24 native or native-like states for 29 targets and has very similar capability to the all-atom discrete optimized protein energy model (DOPE), found recently to outperform five currently used energy models.
Murtola, Teemu; Karttunen, Mikko; Vattulainen, Ilpo
2009-01-01
We present a two-dimensional coarse-grained (CG) model for a lipid membrane composed of phospholipids and cholesterol. The effective CG interactions are determined using radial distribution functions (RDFs) from atom-scale molecular dynamics simulations using the inverse Monte Carlo (IMC) technique...... in the presence of internal states, in general, and present a modified IMC method for their inclusion. The new model agrees with the original models on large-scale structural features such as density fluctuations in pure dipalmitoylphosphocholine and cholesterol domain formation at intermediate concentrations...... and also indicates that ordered and disordered domains form at all cholesterol concentrations, even if the global density remains uniform. The inclusion of ordering also improves transferability of the interactions between different concentrations, but does not eliminate transferability problems completely...
A hybrid multiscale coarse-grained method for dynamics on complex networks
Shen, Chuansheng; Hou, Zhonghuai; Kurths, Jürgen
2016-01-01
Brute-force simulations for dynamics on very large networks are quite expensive. While phenomenological treatments may capture some macroscopic properties, they often ignore important microscopic details. Fortunately, one may be only interested in the property of local part and not in the whole network. Here, we propose a hybrid multiscale coarse-grained(HMCG) method which combines a fine Monte Carlo(MC) simulation on the part of nodes of interest with a more coarse Langevin dynamics on the rest part. We demonstrate the validity of our method by analyzing the equilibrium Ising model and the nonequilibrium susceptible-infected-susceptible model. It is found that HMCG not only works very well in reproducing the phase transitions and critical phenomena of the microscopic models, but also accelerates the evaluation of dynamics with significant computational savings compared to microscopic MC simulations directly for the whole networks. The proposed method is general and can be applied to a wide variety of network...
Genheden, Samuel
2017-09-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
Unconstrained Structure Formation in Coarse-Grained Protein Simulations
Bereau, Tristan
The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid
Souad Oudjemia
2013-01-01
Full Text Available This paper proposes a combined coarse-grained multifractal method to discriminate between distressed and normal foetuses. The coarse-graining operation was performed by means of a coarse-grained procedure and the multifractal operation was based on a structure function. The proposed method was evaluated by one hundred recordings including eighty normal foetuses and twenty distressed foetuses. We found that it was possible to discriminate between distressed and normal foetuses using the Hurst exponent, singularity, and Holder spectra.
Coarse-grained molecular dynamics simulations of biomolecules
Ken Takahashi
2014-03-01
Full Text Available Coarse-grained molecular dynamics (CGMD simulations are increasingly being used to analyze the behaviors of biological systems. When appropriately used, CGMD can simulate the behaviors of molecular systems several hundred times faster than elaborate all-atom molecular dynamics simulations with similar accuracy. CGMD parameters for lipids, proteins, nucleic acids, and some artificial substances such as carbon nanotubes have been suggested. Here we briefly discuss a method for CGMD system configuration and the types of analysis and perturbations that can be performed with CGMD simulations. We also describe specific examples to show how CGMD simulations have been applied to various situations, and then describe experimental results that were used to validate the simulation results. CGMD simulations are applicable to resolving problems for various biological systems.
MARTINI Coarse-Grained Models of Polyethylene and Polypropylene.
Panizon, Emanuele; Bochicchio, Davide; Monticelli, Luca; Rossi, Giulia
2015-06-25
The understanding of the interaction of nanoplastics with living organisms is crucial both to assess the health hazards of degraded plastics and to design functional polymer nanoparticles with biomedical applications. In this paper, we develop two coarse-grained models of everyday use polymers, polyethylene (PE) and polypropylene (PP), aimed at the study of the interaction of hydrophobic plastics with lipid membranes. The models are compatible with the popular MARTINI force field for lipids, and they are developed using both structural and thermodynamic properties as targets in the parametrization. The models are then validated by showing their reliability at reproducing structural properties of the polymers, both linear and branched, in dilute conditions, in the melt, and in a PE-PP blend. PE and PP radius of gyration is correctly reproduced in all conditions, while PE-PP interactions in the blend are slightly overestimated. Partitioning of PP and PE oligomers in phosphatidylcholine membranes as obtained at CG level reproduces well atomistic data.
Microcanonical thermostatistics of coarse-grained proteins with amyloidogenic propensity
Frigori, Rafael B; Alves, Nelson A
2012-01-01
The formation of fibrillar aggregates seems to be a common characteristic of polypeptide chains, although the observation of these aggregates may depend on appropriate experimental conditions. Partially folded intermediates seem to have an important role in the generation of protein aggregates, and a mechanism for this fibril formation considers that these intermediates also correspond to metastable states with respect to the fibrillar ones. Here, using a coarse-grained (CG) off-lattice model, we carry out a comparative analysis of the thermodynamic aspects characterizing the folding transition with respect to the propensity for aggregation of four different systems: two isoforms of the amyloid $\\beta$-protein, the Src SH3 domain, and the human prion proteins (hPrP). Microcanonical analysis of the data obtained from replica exchange method (REM) is conducted to evaluate the free-energy barrier and latent heat in these models. The simulations of the amyloid $\\beta$ isoforms and Src SH3 domain indicated that th...
Holonomy Spin Foam Models: Definition and Coarse Graining
Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech
2012-01-01
We propose a new holonomy formulation for spin foams, which naturally extends the theory space of lattice gauge theories. This allows current spin foam models to be defined on arbitrary two-complexes as well as to generalize current spin foam models to arbitrary, in particular finite groups. The similarity with standard lattice gauge theories allows to apply standard coarse graining methods, which for finite groups can now be easily considered numerically. We will summarize other holonomy and spin network formulations of spin foams and group field theories and explain how the different representations arise through variable transformations in the partition function. A companion paper will provide a description of boundary Hilbert spaces as well as a canonical dynamic encoded in transfer operators.
Irregular Coarse-Grain Data Parallelism under LPARX
Scott R. Kohn
1996-01-01
Full Text Available LPARX is a software development tool for implementing dynamic, irregular scientific applications, such as multilevel finite difference and particle methods, on high-performance multiple instruction multiple data (MIMD parallel architectures. It supports coarse-grain data parallelism and gives the application complete control over specifying arbitrary block decompositions. LPARX provides structural abstraction, representing data decompositions as first-class objects that can be manipulated and modified at runtime. LPARX, implemented as a C++ class library, is currently running on diverse MIMD platforms, including the Intel Paragon, Cray C-90, IBM SP2, and networks of workstations running under PVM. Software may be developed and debugged on a singe-processor workstation.
Coarse-grained cellular automaton for traffic systems
Krawczyk, Malgorzata J
2012-01-01
A coarse-grained cellular automaton is proposed to simulate traffic systems. There, cells represent road sections. A cell can be in two states: jammed or passable. Numerical calculations are performed for a piece of square lattice with open boundary conditions, for the same piece with some cells removed and for a map of a small city. The results indicate the presence of a phase transition in the parameter space, between two macroscopic phases: passable and jammed. The results are supplemented by exact calculations of the stationary probabilities of states for the related Kripke structure constructed for the traffic system. There, the symmetry-based reduction of the state space allows to partially reduce the computational limitations of the numerical method.
Coarse grained modeling of transport properties in monoclonal antibody solution
Swan, James; Wang, Gang
Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.
A Coarse-Grained Model for Simulating Chitosan Hydrogels
Xu, Hongcheng; Matysiak, Silvina
Hydrogels are biologically-derived materials composed of water-filled cross-linking polymer chains. It has widely been used as biodegradable material and has many applications in medical devices. The chitosan hydrogel is stimuli-responsive for undergoing pH-sensitive self-assembly process, allowing programmable tuning of the chitosan deposition through electric pulse. To explore the self-assembly mechanism of chitosan hydroge, we have developed an explicit-solvent coarse-grained chitosan model that has roots in the MARTINI force field, and the pH change is modeled by protonating chitosan chains using the Henderson-Hasselbalch equation. The mechanism of hydrogel network formation will be presented. The self-assembled polymer network qualitatively reproduce many experimental observables such as the pH-dependent strain-stress curve, bulk moduli, and structure factor. Our model is also capable of simulating other similar polyelectrolyte polymer systems.
One-bead coarse-grained model for RNA dynamics
Villada-Balbuena, Mario; Carbajal-Tinoco, Mauricio D.
2017-01-01
We present a revised version of a coarse-grained model for RNA dynamics. In such approach, the description of nucleotides is reduced to single points that interact between them through a series of effective pair potentials that were obtained from an improved analysis of RNA structures from the Protein Data Bank. These interaction potentials are the main constituents of a Brownian dynamics simulation algorithm that allows to perform a variety of tasks by taking advantage of the reduced number of variables. Such tasks include the prediction of the three-dimensional configuration of a series of test molecules. Moreover, the model permits the inclusion of effective magnesium ions and the ends of the RNA chains can be pulled with an external force to study the process of unfolding. In spite of the simplicity of the model, we obtain a good agreement with the experimental results.
Coarse-Grained Molecular Simulations of Allosteric Cooperativity
Nandigrami, Prithviraj
2015-01-01
Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two calcium ions to each domain of calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding is treated implicitly at the mean field level. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energy to the open and closed ensembles accurately describe...
Non-periodic molecular dynamics simulations of coarse grained lipid bilayer in water
Kotsalis, E. M.; Hanasaki, I.; Walther, Jens Honore
2010-01-01
We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations...... of the material properties of the system represented by CGMD. In this paper we extend a control algorithm originally developed for atomistic simulations [3], to conduct simulations involving coarse grained water molecules without periodic boundary conditions. We demonstrate the applicability of our method...... in simulating more complex systems by performing a non-periodic Molecular Dynamics simulation of a DPPC lipid in liquid coarse grained water....
Relative Entropy and Optimization-Driven Coarse-Graining Methods in VOTCA.
S Y Mashayak
Full Text Available We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations. In addition to the newly implemented methods, we have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process.
On fast iterative mapping algorithms for stripe based coarse-grained reconfigurable architectures
Mehta, Gayatri; Patel, Krunalkumar; Pollard, Nancy S.
2015-01-01
Reconfigurable devices have potential for great flexibility/efficiency, but mapping algorithms onto these architectures is a long-standing challenge. This paper addresses this challenge for stripe based coarse-grained reconfigurable architectures (CGRAs) by drawing on insights from graph drawing. We adapt fast, iterative algorithms from hierarchical graph drawing to the problem of mapping to stripe based architectures. We find that global sifting is 98 times as fast as simulated annealing and produces very compact designs with 17% less area on average, at a cost of 5% greater wire length. Interleaving iterations of Sugiyama and global sifting is 40 times as fast as simulated annealing and achieves somewhat more compact designs with 1.8% less area on average, at a cost of only 1% greater wire length. These solutions can enable fast design space exploration, rapid performance testing, and flexible programming of CGRAs "in the field."
Hybrid simulations : combining atomistic and coarse-grained force fields using virtual sites
Rzepiela, Andrzej J.; Louhivuori, Martti; Peter, Christine; Marrink, Siewert J.
2011-01-01
Hybrid simulations, in which part of the system is represented at atomic resolution and the remaining part at a reduced, coarse-grained, level offer a powerful way to combine the accuracy associated with the atomistic force fields to the sampling speed obtained with coarse-grained (CG) potentials. I
Wassenaar, Tsjerk A.; Pluhackova, Kristyna; Böckmann, Rainer A.; Marrink, Siewert J.; Tieleman, D. Peter
2014-01-01
The conversion of coarse-grained to atomistic models is an important step in obtaining insight about atomistic scale processes from coarse-grained simulations. For this process, called backmapping or reverse transformation, several tools are available, but these commonly require libraries of molecul
A Column Arrangement Algorithm for a Coarse-grained Reconfigurable Architecture
Guo, Y.; Hoede, C.; Smit, G.J.M.; Plaks, T.P.; DeMara, R.; Gokhale, M.; Guccione, S.; Platzner, M.; Smit, G.J.M.; Wirthlin, M.
2006-01-01
In a coarse-grained reconfigurable architecture, the functions of resources such as Arithmetic Logic Units (ALUs) can be reconfigured. Unlike the programmability of a general purpose processor, the programmability of a coarse-grained reconfigurable architecture is limited. The limitation might be th
Savelyev, Alexey; Papoian, Garegin A.
2009-01-01
Coarse-graining of atomistic force fields allows us to investigate complex biological problems, occurring at long timescales and large length scales. In this work, we have developed an accurate coarse-grained model for double-stranded DNA chain, derived systematically from atomistic simulations. Our approach is based on matching correlators obtained from atomistic and coarse-grained simulations, for observables that explicitly enter the coarse-grained Hamiltonian. We show that this requirement leads to equivalency of the corresponding partition functions, resulting in a one-step renormalization. Compared to prior works exploiting similar ideas, the main novelty of this work is the introduction of a highly compact set of Hamiltonian basis functions, based on molecular interaction potentials. We demonstrate that such compactification allows us to reproduce many-body effects, generated by one-step renormalization, at low computational cost. In addition, compact Hamiltonians greatly increase the likelihood of finding unique solutions for the coarse-grained force-field parameter values. By successfully applying our molecular renormalization group coarse-graining technique to double-stranded DNA, we solved, for the first time, a long-standing problem in coarse-graining polymer systems, namely, how to accurately capture the correlations among various polymeric degrees of freedom. Excellent agreement is found among atomistic and coarse-grained distribution functions for various structural observables, including those not included in the Hamiltonian. We also suggest higher-order generalization of this method, which may allow capturing more subtle correlations in biopolymer dynamics. PMID:19450476
Influence of fines content on the anti-frost properties of coarse-grained soil
TianLiang Wang; ZuRun Yue; TieCheng Sun; JinChuang Hua
2015-01-01
This paper aims to determine the optimal fines content of coarse-grained soil required to simultaneously achieve weaker frost susceptibility and better bearing capacity. We studied the frost susceptibility and strength properties of coarse-grained soil by means of frost heaving tests and static triaxial tests, and the results are as follows: (1) the freezing temperature of coarse-grained soil decreased gradually and then leveled off with incremental increases in the percent content of fines; (2) the fines content proved to be an important factor influencing the frost heave susceptibility and strength properties of coarse-grained soil. With incremental increases in the percent content of fines, the frost heave ratio increased gradually and the cohesion function of fines effectively enhanced the shear strength of coarse-grained soil before freeze-thaw, but the frost susceptibility of fines weakened the shear strength of coarse-grained soil after freeze-thaw; (3) with increasing numbers of freeze-thaw cycles, the shear strength of coarse-grained soil decreased and then stabilized after the ninth freeze-thaw cycle, and therefore the mechanical indexes of the ninth freeze-thaw cycle are recommended for the engi-neering design values; and (4) considering frost susceptibility and strength properties as a whole, the optimal fines content of 5% is recommended for railway subgrade coarse-grained soil fillings in frozen regions.
Grest, Gary S.
2017-09-01
Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects the measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.
Coarse-grained potentials of single-walled carbon nanotubes
Zhao, Junhua; Jiang, Jin-Wu; Wang, Lifeng; Guo, Wanlin; Rabczuk, Timon
2014-11-01
We develop the coarse-grained (CG) potentials of single-walled carbon nanotubes (SWCNTs) in CNT bundles and buckypaper for the study of the static and dynamic behaviors. The explicit expressions of the CG stretching, bending and torsion potentials for the nanotubes are obtained by the stick-spiral and the beam models, respectively. The non-bonded CG potentials between two different CG beads are derived from analytical results based on the cohesive energy between two parallel and crossing SWCNTs from the van der Waals interactions. We show that the CG model is applicable to large deformations of complex CNT systems by combining the bonded potentials with non-bonded potentials. Checking against full atom molecular dynamics calculations and our analytical results shows that the present CG potentials have high accuracy. The established CG potentials are used to study the mechanical properties of the CNT bundles and buckypaper efficiently at minor computational cost, which shows great potential for the design of micro- and nanomechanical devices and systems.
Deformation characteristics of coarse-grained soil with various gradations
盂飞; 张家生; 陈晓斌; 王启云
2014-01-01
By using large scale triaxial shearing apparatus, consolidated-drained shear tests were conducted on coarse-grained soil with different gradations. In order to describe their deformation rules, three main characteristics of tangent Poisson ratio curves were summarized and the reason was revealed by dividing the movement of soil particles into two kinds: the movement of fine particles and the movement of coarse particles. Then, a volumetric strain expression and a tangent Poisson ratio expression were put forward, and two defects of widely used Duncan-Chang model were fixed. Results calculated from them agree well with test results. There are three parameters, namelyL,G andF, in this new model. ParameterL reflects the dilatancy of a specimen andL=4 can be used as a criterion to estimate whether a certain kind of soil has dilatancy quality or not. ParametersG andF relate to the initial slope of tangent Poisson ratio curves, andG=F=0 indicates a special situation which happens in dense granular material of the same diameter. Influences of various gradations on volume deformation are mainly reflected in parameterL which is smaller when there are more gravels in specimens.
Coarse grained model for calculating the ion mobility of hydrocarbons
Kuroboshi, Y.; Takemura, K.
2016-12-01
Hydrocarbons are widely used as insulating compounds. However, their fundamental characteristics in conduction phenomena are not completely understood. A great deal of effort is required to determine reasonable ionic behavior from experiments because of their complicated procedures and tight controls of the temperature and the purity of the liquids. In order to understand the conduction phenomena, we have theoretically calculated the ion mobilities of hydrocarbons and investigated their characteristics using the coarse grained model in molecular dynamics simulations. We assumed a molecule of hydrocarbons to be a bead and simulated its dependence on the viscosity, electric field, and temperature. Furthermore, we verified the suitability of the conformation, scale size, and long-range interactions for the ion mobility. The results of the simulations show that the ion mobility values agree reasonably well with the values from Walden's rule and depend on the viscosity but not on the electric field. The ion mobility and self-diffusion coefficient exponentially increase with increasing temperature, while the activation energy decreases with increasing molecular size. These values and characteristics of the ion mobility are in reasonable agreement with experimental results. In the future, we can understand not only the ion mobilies of hydrocarbons in conduction, but also we can predict general phenomena in electrochemistry with molecular dynamics simulations.
Coarse-grained molecular simulations of allosteric cooperativity
Nandigrami, Prithviraj; Portman, John J.
2016-03-01
Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca2+ ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca2+ with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop's structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.
Improving the treatment of coarse-grain electrostatics: CVCEL
Ceres, N.; Lavery, R., E-mail: richard.lavery@ibcp.fr [Bioinformatics: Structures and Interactions, Institut de Biologie et Chimie des Protéines, BMSSI UMR CNRS 5086/Université Lyon I, 7 Passage du Vercors, Lyon 69367 (France)
2015-12-28
We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.
Coarse-grained DNA model capable of simulating ribose flexibility
Kovaleva, Natalya A; Mazo, Mikhail A; Zubova, Elena A
2014-01-01
We propose a "sugar" coarse-grained (CG) DNA model capable of simulating both biologically significant B- and A-DNA forms. The number of degrees of freedom is reduced to six grains per nucleotide. We show that this is the minimal number sufficient for this purpose. The key features of the sugar CG DNA model are: (1) simulation of sugar repuckering between C2'-endo and C3'-endo by the use of one non-harmonic potential and one three-particle potential, (2) explicit representation of sodium counterions and (3) implicit solvent approach. Effects of solvation and of partial charge screening at small distances are taken into account through the shape of potentials of interactions between charged particles. We obtain parameters of the sugar CG DNA model from the all-atom AMBER model. The suggested model allows adequate simulation of the transitions between A- and B-DNA forms, as well as of large deformations of long DNA molecules, for example, in binding with proteins. Small modifications of the model can provide th...
Improving the treatment of coarse-grain electrostatics: CVCEL.
Ceres, N; Lavery, R
2015-12-28
We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.
Entrainment of coarse grains using a discrete particle model
Valyrakis, Manousos, E-mail: Manousos.Valyrakis@glasgow.ac.uk [Lecturer in Water and Environmental Engineering, Rankine 817b, University of Glasgow, Glasgow G12 8LT (United Kingdom); Arnold, Roger B. Jr. [Environmental Engineer, Arcadis, USA (formerly: research assistant Virginia Tech, USA) (United States)
2014-10-06
Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.
Development and application of coarse-grained models for lipids
Cui, Qiang
2013-03-01
I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang
Transferable coarse-grained model for perfluorosulfonic acid polymer membranes
Kuo, An-Tsung; Okazaki, Susumu; Shinoda, Wataru
2017-09-01
Perfluorosulfonic acid (PFSA) polymer membranes are widely used as proton exchange membranes. Because the structure of the aqueous domain within the PFSA membrane is expected to directly influence proton conductance, many coarse-grained (CG) simulation studies have been performed to investigate the membrane morphology; these studies mostly used phenomenological models, such as dissipative particle dynamics. However, a chemically accurate CG model is required to investigate the morphology in realistic membranes and to provide a concrete molecular design. Here, we attempt to construct a predictive CG model for the structure and morphology of PFSA membranes that is compatible with the Sinoda-DeVane-Klein (SDK) CG water model [Shinoda et al., Mol. Simul. 33, 27 (2007)]. First, we extended the parameter set for the SDK CG force field to examine a hydrated PFSA membrane based on thermodynamic and structural data from experiments and all-atom (AA) molecular dynamics (MD) simulations. However, a noticeable degradation of the morphology motivated us to improve the structural properties by using the iterative Boltzmann inversion (IBI) approach. Thus, we explored a possible combination of the SDK and IBI approaches to describe the nonbonded interaction. The hybrid SDK/IBI model improved the structural issues of SDK, showing a better agreement with AA-MD in the radial distribution functions. The hybrid SDK/IBI model was determined to reasonably reproduce both the thermodynamic and structural properties of the PFSA membrane for all examined water contents. In addition, the model demonstrated good transferability and has considerable potential for application to realistic long-chained PFSA membranes.
Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution.
McCullagh, Peter; Lake, Peter T; McCullagh, Martin
2016-09-13
An analytic method to assign optimal coarse-grained charges based on electrostatic potential matching is presented. This solution is the infinite size and density limit of grid-integration charge-fitting and is computationally more efficient by several orders of magnitude. The solution is also minimized with respect to coarse-grained positions which proves to be an extremely important step in reproducing the all-atom electrostatic potential. The joint optimal-charge optimal-position coarse-graining procedure is applied to a number of aggregating proteins using single-site per amino acid resolution. These models provide a good estimate of both the vacuum and Debye-Hückel screened all-atom electrostatic potentials in the vicinity and in the far-field of the protein. Additionally, these coarse-grained models are shown to approximate the all-atom dimerization electrostatic potential energy of 10 aggregating proteins with good accuracy.
mineral elements content of some coarse grains used as staple food ...
DR. AMINU
2014-06-01
Jun 1, 2014 ... Keywords: Mineral Elements, Coarse Grains, Staple Food, Kano, Nigeria. INTRODUCTION ... maize, sorghum, wheat, cowpea and rice are the most popular agricultural ... of the body by the time the baby walks. Deficiencies.
Development of a coarse-grained water forcefield via multistate iterative Boltzmann inversion
Moore, Timothy C; McCabe, Clare
2015-01-01
A coarse-grained water model is developed using multistate iterative Boltzmann inversion. Following previous work, the k-means algorithm is used to dynamically map multiple water molecules to a single coarse-grained bead, allowing the use of structure-based coarse-graining methods. The model is derived to match the bulk and interfacial properties of liquid water and improves upon previous work that used single state iterative Boltzmann inversion. The model accurately reproduces the density and structural correlations of water at 305 K and 1.0 atm, stability of a liquid droplet at 305 K, and shows little tendency to crystallize at physiological conditions. This work also illustrates several advantages of using multistate iterative Boltzmann inversion for deriving generally applicable coarse-grained forcefields.
Simulating protein unfolding under pressure with a coarse-grained model.
Perezzan, Ramiro; Rey, Antonio
2012-11-14
We describe and test a coarse-grained molecular model for the simulation of the effects of pressure on the folding/unfolding transition of proteins. The model is a structure-based one, which takes into account the desolvation barrier for the formation of the native contacts. The pressure is taken into account in a qualitative, mean field approach, acting on the parameters describing the native stabilizing interactions. The model has been tested by simulating the thermodynamic and structural behavior of protein GB1 with a parallel tempering Monte Carlo algorithm. At low effective pressures, the model reproduces the standard two-state thermal transition between the native and denatured states. However, at large pressures a new state appears. Its structural characteristics have been analyzed, showing that it corresponds to a swollen version of the native structure. This swollen state is at equilibrium with the native state at low temperatures, but gradually transforms into the thermally denatured state as temperature is increased. Therefore, our model predicts a downhill transition between the swollen and the denatured states. The analysis of the model permits us to obtain a phase diagram for the pressure-temperature behavior of the simulated system, which is compatible with the known elliptical shape of this diagram for real proteins.
Coarse-grained hidden entropy production in partially inaccessible quantum jump trajectories
Frenzel, Max F.; Sagawa, Takahiro
2016-01-01
We consider an open quantum system for which only a subset of all possible transitions are accessible, while the remaining ones are hidden from direct observation. Using a modification of the notion of quantum jump trajectories we introduce the coarse-grained hidden entropy, which quantifies the entropy production in the hidden subsystem conditioned on our observations of the visible part. The entropy production consisting of the sum of visible and coarse-grained hidden entropy is shown to sa...
A unified data representation theory for network visualization, ordering and coarse-graining
Kovács, István A.; Réka Mizsei; Péter Csermely
2015-01-01
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to dis...
Constructing Optimal Coarse-Grained Sites of Huge Biomolecules by Fluctuation Maximization.
Li, Min; Zhang, John Zenghui; Xia, Fei
2016-04-12
Coarse-grained (CG) models are valuable tools for the study of functions of large biomolecules on large length and time scales. The definition of CG representations for huge biomolecules is always a formidable challenge. In this work, we propose a new method called fluctuation maximization coarse-graining (FM-CG) to construct the CG sites of biomolecules. The defined residual in FM-CG converges to a maximal value as the number of CG sites increases, allowing an optimal CG model to be rigorously defined on the basis of the maximum. More importantly, we developed a robust algorithm called stepwise local iterative optimization (SLIO) to accelerate the process of coarse-graining large biomolecules. By means of the efficient SLIO algorithm, the computational cost of coarse-graining large biomolecules is reduced to within the time scale of seconds, which is far lower than that of conventional simulated annealing. The coarse-graining of two huge systems, chaperonin GroEL and lengsin, indicates that our new methods can coarse-grain huge biomolecular systems with up to 10,000 residues within the time scale of minutes. The further parametrization of CG sites derived from FM-CG allows us to construct the corresponding CG models for studies of the functions of huge biomolecular systems.
Shi, Ya-Zhou; Wu, Yuan-Yan; Tan, Zhi-Jie
2014-01-01
To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (less than or equal to 45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 {\\AA} and an overall minimum RMSD of 1.9 {\\AA} from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ~ 1.0 degrees Celsius of melting temperatures, as compared wi...
Transferable potentials for phase equilibria-coarse-grain description for linear alkanes.
Maerzke, Katie A; Siepmann, J Ilja
2011-04-07
Coarse-grain potentials allow one to extend molecular simulations to length and time scales beyond those accesssible to atomistic representations of the interacting system. Since the coarse-grain potentials remove a large number of interaction sites and, hence, a large number of degrees of freedom, it is generally assumed that coarse-grain potentials are not transferable to different systems or state points (temperature and pressure). Here we apply lessons learned from the parametrization of transferable atomistic potentials to develop a systematic procedure for the parametrization of transferable coarse-grain potentials. In particular, we apply an iterative Boltzmann optimization for the determination of the bonded interactions for coarse-grain beads belonging to the same molecule and separated by one or two coarse-grain bonds and parametrize the nonbonded interactions by fitting to the vapor-liquid coexistence curves computed for selected molecules represented by the TraPPE-UA (transferable potentials for phase equilibria-united atom) force field. This approach is tested here for linear alkanes where parameters for C(3)H(7) end segments and for C(3)H(6) middle segments of the TraPPE-CG (transferable potentials for phase equilibria-coarse grain) force field are determined and it is shown that these parameters yield quite accurate vapor-liquid equilibria for neat n-hexane to n-triacontane and for the binary mixture of n-hexane and n-hexatriacontane. In addition, the position of the first peak in various radial distribution functions and the coordination number for the first solvation shell are well reproduced by the TraPPE-CG force field, but the first peaks are too high and narrow.
Zimmermann, Eva; Seifert, Udo
2015-02-01
Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F(1)-ATPase and the kinesin motor.
Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles
Hong, Bingbing
2012-01-01
Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.
Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
Salerno, K. Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Agrawal, Anupriya [Washington Univ., St. Louis, MO (United States). Dept. of Mechanical Engineering and Materials Science; Clemson Univ., SC (United States). Dept. of Chemistry; Perahia, Dvora [Clemson Univ., SC (United States). Dept. of Chemistry; Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-02-05
Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion is used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.
Zhang, Yuwei; Cao, Zexing; Zhang, John Zenghui; Xia, Fei
2017-02-27
Construction of coarse-grained (CG) models for large biomolecules used for multiscale simulations demands a rigorous definition of CG sites for them. Several coarse-graining methods such as the simulated annealing and steepest descent (SASD) based on the essential dynamics coarse-graining (ED-CG) or the stepwise local iterative optimization (SLIO) based on the fluctuation maximization coarse-graining (FM-CG), were developed to do it. However, the practical applications of these methods such as SASD based on ED-CG are subject to limitations because they are too expensive. In this work, we extend the applicability of ED-CG by combining it with the SLIO algorithm. A comprehensive comparison of optimized results and accuracy of various algorithms based on ED-CG show that SLIO is the fastest as well as the most accurate algorithm among them. ED-CG combined with SLIO could give converged results as the number of CG sites increases, which demonstrates that it is another efficient method for coarse-graining large biomolecules. The construction of CG sites for Ras protein by using MD fluctuations demonstrates that the CG sites derived from FM-CG can reflect the fluctuation properties of secondary structures in Ras accurately.
A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene
Agrawal, Vipin; Peralta, Pedro; Li, Yiyang; Oswald, Jay
2016-09-01
We investigate the thermomechanical response of semi-crystalline polyethylene under shock compression by performing molecular dynamics (MD) simulations using a new coarse-graining scheme inspired by the embedded atom method. The coarse-graining scheme combines the iterative Boltzmann inversion method and least squares optimization to parameterize interactions between coarse-grained sites, including a many-body potential energy designed to improve the representability of the model across a wide range of thermodynamic states. We demonstrate that a coarse-grained model of polyethylene, calibrated to match target structural and thermodynamic data generated from isothermal MD simulations at different pressures, can also accurately predict the shock Hugoniot response. Analysis of the rise in temperature along the shock Hugoniot and comparison with analytical predictions from the Mie-Grüneisen equation of state are performed to thoroughly explore the thermodynamic consistency of the model. As the coarse-graining model affords nearly two orders of magnitude reduction in simulation time compared to all-atom MD simulations, the proposed model can help identify how nanoscale structure in semi-crystalline polymers, such as polyethylene, influences mechanical behavior under extreme loading.
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
Müller, Kathrin; Osterman, Natan; Babič, Dušan; Likos, Christos N; Dobnikar, Jure; Nikoubashman, Arash
2014-05-13
We study the pattern formation in a two-dimensional system of superparamagnetic colloids interacting via spatially coherent induced interactions driven by an external precessing magnetic field. On the pair level, upon changing the opening angle of the external field, the interactions smoothly vary from purely repulsive (opening angle equal to zero) to purely attractive (time-averaged pair interactions at an opening angle of 90°). In the experiments, we observed ordered hexagonal crystals at the repulsive end and coarsening frothlike structures for purely attractive interactions. In both of these limiting cases, the dense colloidal systems can be sufficiently accurately described by assuming pairwise additivity of the interaction potentials. However, for a range of intermediate angles, pronounced many-body depolarization effects compete with the direct induced interactions, resulting in inherently anisotropic effective interactions. Under such conditions, we observed the decay of hexagonal order with the concomitant formation of short chains and percolated networks of chains coexisting with free colloids. In order to describe and investigate these systems theoretically, we developed a coarse-grained model of a binary mixture of patchy and nonpatchy particles with the ratio of patchy and nonpatchy colloids as the order parameter. Combining genetic algorithms with Monte Carlo simulations, we optimized the model parameters and quantitatively reproduced the experimentally observed sequence of colloidal structures. The results offer new insight into the anisotropy induced by the many-body effects. At the same time, they allow for a very efficient description of the system by means of a pairwise-additive Hamiltonian, whereupon the original, one-component system features a two-component mixture of isotropic and patchy colloids.
Study on growth of coarse grains of diamond with high quality under HPHT
ZHOU ShengGuo; ZANG ChuanYi; MA HongAn; LI XiaoLei; ZHANG HeMin; JIA XiaoPeng
2009-01-01
The growth of coarse grains of diamond was observed with graphite as carbon source and Fe80Ni20 alloy powder as catalyst at HPHT in a China-type SPD 6x1670T cubic high-pressure apparatus with highly exact control system. To synthesize coarse grains of diamond crystal with high quality, ad-vanced indirect heat assembly, powder catalyst technology and catalyst with optimal granularity were used. Especially the nucleation of diamond and the growth rate were strictly controlled by the opti-mized synthesis craft. At last, diamond crystals (about 0.85 mm) in the perfect hex-octahedron shape were successfully synthesized at ~5.4 Gpa and ~1360℃ in 60 min. The characteristic of crystal growth with powder catalyst technology under HPHT was discussed. The results and techniques might be useful for production of coarse grains of diamond.
An implicit solvent coarse-grained lipid model with correct stress profile
Sodt, Alex J.; Head-Gordon, Teresa
2010-05-01
We develop a coarse-grained parametrization strategy for lipid membranes that we illustrate for a dipalmitoylphosphatidylcholine bilayer. Our coarse-graining approach eliminates the high cost of explicit solvent but maintains more lipid interaction sites. We use a broad attractive tail-tail potential and extract realistic bonded potentials of mean force from all-atom simulations, resulting in a model with a sharp gel to fluid transition, a correct bending modulus, and overall very reasonable dynamics when compared with experiment. We also determine a quantitative stress profile and correct breakdown of contributions from lipid components when compared with detailed all-atom simulation benchmarks, which has been difficult to achieve for implicit membrane models. Such a coarse-grained lipid model will be necessary for efficiently simulating complex constructs of the membrane, such as protein assembly and lipid raft formation, within these nonaqueous chemical environments.
A unified data representation theory for network visualization, ordering and coarse-graining
Kovács, István A.; Mizsei, Réka; Csermely, Péter
2015-09-01
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.
A unified data representation theory for network visualization, ordering and coarse-graining.
Kovács, István A; Mizsei, Réka; Csermely, Péter
2015-09-08
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.
Assessing the Quality of the OPEP Coarse-Grained Force Field.
Barducci, Alessandro; Bonomi, Massimiliano; Derreumaux, Philippe
2011-06-14
A coarse-grained potential that could accurately describe the overall conformational landscape of proteins would be extremely valuable not only for structure prediction but also for studying protein dynamics, large conformational motions, and intrinsically disordered systems. Here, we assessed the quality of the OPEP coarse-grained potential by comparing the reconstructed free-energy surfaces (FESs) of two prototypical β-hairpin and α-helix peptides to all-atom calculations in explicit solvent. We found remarkable agreement between the OPEP FES and those obtained using atomistic models, despite a general overstabilization of α- and β-structures by the coarse-grained potential. The use of advanced sampling techniques based on metadynamics and parallel tempering guaranteed a thorough exploration of the conformational space accessible to the two peptides studied.
Bayramoglu, Beste; Faller, Roland
2011-03-01
We present systematic coarse-graining of several polystyrene models and test their performance under confinement and eventually in brush systems. The structural properties of a dilute polystyrene solution, a polystyrene melt and a confined concentrated polystyrene solution at 450K, 1 bar were investigated in detail by atomistic molecular dynamics simulations of these systems. Coarse-graining of the models was performed by Iterative Boltzmann Inversion Technique (IBI), in which the interaction potentials are optimized against the structure of the corresponding atomistically simulated systems. Radial distribution functions, bond, angle and dihedral angle probability distributions were calculated and compared to characterize the structure of the systems. Good agreement between the simulation results of the coarse-grained and atomistic models was observed.
The geometry of generalized force matching in coarse-graining and related information metrics
Kalligiannaki, Evangelia; Katsoulakis, Markos A; Plechac, Petr
2015-01-01
Using the probabilistic language of conditional expectations we reformulate the force matching method for coarse-graining of molecular systems as a projection on spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force in order to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular syst...
A unified data representation theory for network visualization, ordering and coarse-graining
Kovács, István A; Csermely, Peter
2014-01-01
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of huge data sets in science, by reve...
From time series to complex networks: The phase space coarse graining
Wang, Minggang; Tian, Lixin
2016-11-01
In this paper, we present a simple and fast computational method, the phase space coarse graining algorithm that converts a time series into a directed and weighted complex network. The constructed directed and weighted complex network inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series do so into random networks. Moreover, chaotic series convert into scale-free networks. It is shown that the phase space coarse graining algorithm allows us to distinguish, identify and describe in detail various time series. Finally, we apply the phase space coarse graining algorithm to the practical observations series, international gasoline regular spot price series and identify its dynamic characteristics.
Coarse-grained models of protein folding: toy models or predictive tools?
Clementi, Cecilia
2008-02-01
Coarse-grained models are emerging as a practical alternative to all-atom simulations for the characterization of protein folding mechanisms over long time scales. While a decade ago minimalist toy models were mainly designed to test general hypotheses on the principles regulating protein folding, the latest coarse-grained models are increasingly realistic and can be used to characterize quantitatively the detailed folding mechanism of specific proteins. The ability of such models to reproduce the essential features of folding dynamics suggests that each single atomic degree of freedom is not by itself particularly relevant to folding and supports a statistical mechanical approach to characterize folding transitions. When combined with more refined models and with experimental studies, the systematic investigation of protein systems and complexes using coarse-grained models can advance our theoretical understanding of the actual organizing principles that emerge from the complex network of interactions among protein atomic constituents.
Fast coarse-grained model for RNA titration
Barroso da Silva, Fernando Luís; Derreumaux, Philippe; Pasquali, Samuela
2017-01-01
A new numerical scheme for RNA (ribonucleic acid) titration based on the Debye-Hückel framework for the salt description is proposed in an effort to reduce the computational costs for further applications to study protein-RNA systems. By means of different sets of Monte Carlo simulations, we demonstrated that this new scheme is able to correctly reproduce the experimental titration behavior and salt pKa shifts. In comparison with other theoretical approaches, similar or even better outcomes are achieved at much lower computational costs. The model was tested on the lead-dependent ribozyme, the branch-point helix, and the domain 5 from Azotobacter vinelandii Intron 5.
Coarse-graining the input of education and R&D in China
Ren, Zhuo-Ming; Kong, Yixiu
2016-08-01
Coarse-grained analysis enhances our understanding of complex processes such as physical procedures, economic complexity. We collect the data sets from 31 regions of China in terms of the gross regional domestic product (GRDP) and the expense invested in Education and R&D between 1998 and 2013, then employ the coarse-grained method to analyze the causal direction according to the cross-section data with time-series information. Specifically, the empirical results suggest that the share of the GRDP invested in Education and R&D in large time scale reveals a dynamical process due to economic complexity, but limits around to base lines.
Glade, R.; Jerolmack, D. J.; Pelletier, J. D.
2014-12-01
Coarse-grained ripples, also known as "megaripples," are large sand ripples found in both aeolian and aquatic environments on Earth, and are common on Mars. The formation and morphology of coarse-grained ripples are not as well understood as more common splash ripples. Current understanding suggests that formative wind speeds are above the saltation threshold for the fine grains, but below this threshold for coarse grains found on the crests, such that they creep. Based on this idea, we hypothesize that wind speeds above this coarse-grain saltation threshold will destroy the ripples. We further hypothesize that these ripples do not have an equilibrium size; rather, their size is related to the persistence of formative winds in a given direction. To test this model, we studied windblown coarse-grained ripples in White Sands, New Mexico. Terrestrial LiDAR was used to obtain high resolution ripple morphology and migration over a three month period. Wind velocity profiles and concurrent saltating grain size data were collected during a wind storm to directly relate modes of transport to particle size and wind stress. These local data were used to calibrate wind records from a nearby meteorological station to estimate local fluid stress using a long-term record. LiDAR data indicate that these ripples were destroyed and reoriented between March and June 2013, while the wind record shows that the coarse-grain saltation threshold was indeed exceeded during this time. Morphological analysis indicates that the lee slope of these ripples is set by saltation impact - similar to splash ripples - but that height, wavelength and stoss slope are not related to instantaneous transport conditions. The historical wind record also shows that the range of wind directions decreases rapidly with increasing speed, restricting strong winds to a narrow range of direction. From these results we explore the idea that coarse-grained ripples are typically larger and less frequently destroyed
Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models
Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper
2010-01-01
the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two...... CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, Torus...
Power-Aware Rationale for Using Coarse-Grained Transponders in IP-Over-WDM Networks
Saldaña Cercos, Silvia; Resendo, Leandro C.; Ribeiro, Moises R. N.;
2015-01-01
generations. However, the adoption of such coarse-grained bit-rate granularity with lower flexibility for traffic grooming raises important questions: (1) What repercussions do they have on the overall power consumption and thus operational expenditures (OPEX) compared to legacy fine-grained designs (i.......e., using 10 Gbps technology)? (2) What is the long-term cost of coarse-grained designs? We define a power-aware mixed integer linear programming (MILP) formulation based on actual modular architectures where modules are upgraded as the network traffic increases. We introduce, for the first time, important...
Towards Software Defined Radios Using Coarse-Grained Reconfigurable Hardware
Rauwerda, Gerard K.; Heysters, Paul M.; Smit, Gerard J.M.; Jha, N.K.
2008-01-01
Mobile wireless terminals tend to become multimode wireless communication devices. Furthermore, these devices become adaptive. Heterogeneous reconfigurable hardware provides the flexibility, performance, and efficiency to enable the implementation of these devices. The implementation of a wideband c
Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case
Rossi, G.; Monticelli, L.; Puisto, S. R.
2011-01-01
in the parameterization. We refine the MARTINI procedure by including one additional target property related to the structure of the polymer, namely the radius of gyration. The force-field optimization is mainly based on experimental data. We test our procedure on polystyrene, a standard benchmark for coarse-grained (CG...
Preface: Special Topic on Coarse Graining of Macromolecules, Biopolymers, and Membranes.
Holm, Christian; Gompper, Gerhard; Dill, Ken A
2015-12-28
This special issue highlights new developments in theory and coarse-graining in biological and synthetic macromolecules and membranes. Such approaches give unique insights into the principles and design of the structures, dynamics, and assembly processes of these complex fluids and soft materials, where the length and time scales are often prohibitively long for fully atomistic modeling.
Preface: Special Topic on Coarse Graining of Macromolecules, Biopolymers, and Membranes
Holm, Christian [Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart (Germany); Gompper, Gerhard [Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich (Germany); Dill, Ken A. [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States)
2015-12-28
This special issue highlights new developments in theory and coarse-graining in biological and synthetic macromolecules and membranes. Such approaches give unique insights into the principles and design of the structures, dynamics, and assembly processes of these complex fluids and soft materials, where the length and time scales are often prohibitively long for fully atomistic modeling.
Measurement and Simulation of Grain Size in Strong Textured and Coarse-Grained Metal Sheets
Leng CHEN; Weimin MAO; Yongning YU; Huiping FENG
2003-01-01
An X-ray diffractometer that equipped with a two-dimensional detector is used for developing the technique of grainsize measurement for strong textured and coarse-grained Si steel sheet. The method is based on the concept thatthe position of diffraction s
Lee, Hwankyu; de Vries, Alex H.; Marrink, Siewert-Jan; Pastor, Richard W.
2009-01-01
A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree
Ultrasonic imaging in coarse-grained stainless steels by total focusing method
Villaverde, E. Lopez; Robert, S.; Prada, C.
2016-02-01
In the present work, the Total Focusing Method (TFM) is used to image flaws in coarse-grained steels with a contact phased-array probe. In order to reduce the noise introduced by the heterogeneous structure, as well as artifacts due to surface guided waves, the Decomposition of the Time Reversal Operator method is performed before calculating TFM images.
Polarizable Water Model for the Coarse-Grained MARTINI Force Field
Yesylevskyy, Semen O.; Schafer, Lars V.; Sengupta, Durba; Marrink, Siewert J.
2010-01-01
Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, whic
Diffusion-Based Coarse Graining in Hybrid Continuum--Discrete Solvers: Applications in CFD--DEM
Sun, Rui
2014-01-01
In this work, a coarse graining method previously proposed by the authors based on solving diffusion equations is applied to CFD--DEM simulations, where coarse graining is used to obtain solid volume fraction, particle phase velocity, and fluid--particle interaction forces. By examining the conservation requirements, the variables to solve diffusion equations for in CFD--DEM simulations are identified. The algorithm is then implemented to a CFD--DEM solver based on OpenFOAM and LAMMPS, the former being a general-purpose, three-dimensional CFD solver based on unstructured meshes. Numerical simulations are performed for a fluidized bed by using the CFD--DEM solver with the diffusion-based coarse graining algorithm. Converged results are obtained on successively refined meshes, even for meshes with cell sizes comparable to or smaller than the particle diameter. This is a critical advantage of the proposed method over many existing coarse graining methods, and would be particularly valuable when small cells are r...
Software News and Update Reconstruction of Atomistic Details from Coarse-Grained Structures
Rzepiela, Andrzej J.; Schafer, Lars V.; Goga, Nicolae; Risselada, H. Jelger; De Vries, Alex H.; Marrink, Siewert J.
2010-01-01
We present an algorithm to reconstruct atomistic structures from their corresponding coarse-grained (CG) representations and its implementation into the freely available molecular dynamics (MD) program package GROMACS. The central part of the algorithm is a simulated annealing MD simulation in which
DNA Self-Assembly and Computation Studied with a Coarse-grained Dynamic Bonded Model
Svaneborg, Carsten; Fellermann, Harold; Rasmussen, Steen
2012-01-01
We utilize a coarse-grained directional dynamic bonding DNA model [C. Svaneborg, Comp. Phys. Comm. (In Press DOI:10.1016/j.cpc.2012.03.005)] to study DNA self-assembly and DNA computation. In our DNA model, a single nucleotide is represented by a single interaction site, and complementary sites c...
2010-01-01
can also refer to hierarchical parameterization transcending any scale, such as mesoscopic to continuum levels. Such a multiscale modeling paradigm ...particularly suited for systems defined by long-chain polymers with relatively short persistence lengths, or systems that are entropically driven...mechanics. Thus, we introduce a universal framework through a finer-trains-coarser multiscale paradigm , which effectively defines coarse- grain
Lee, Hwankyu; de Vries, Alex H.; Marrink, Siewert-Jan; Pastor, Richard W.
2009-01-01
A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree
Path-space variational inference for non-equilibrium coarse-grained systems
Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Katsoulakis, Markos, E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts at Amherst (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware (United States)
2016-06-01
In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.
Deformation and reconstruction mechanisms in coarse-grained superplastic Al-Mg alloys
Soer, W. A.; Chezan, A. R.; De Hosson, J. Th. M.
2006-01-01
This paper concentrates on the superplastic response of fine-grained and coarse-grained Al-Mg alloys under uniaxial tension. To identify the main characteristics of superplastic deformation and to determine the optimum deformation parameters, the microstructure and dislocation substructure of the al
Izvekov, Sergei
2017-03-01
We consider the generalized Langevin equations of motion describing exactly the particle-based coarse-grained dynamics in the classical microscopic ensemble that were derived recently within the Mori-Zwanzig formalism based on new projection operators [S. Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]. The fundamental difference between the new family of projection operators and the standard Zwanzig projection operator used in the past to derive the coarse-grained equations of motion is that the new operators average out the explicit irrelevant trajectories leading to the possibility of solving the projected dynamics exactly. We clarify the definition of the projection operators and revisit the formalism to compute the projected dynamics exactly for the microscopic system in equilibrium. The resulting expression for the projected force is in the form of a "generalized additive fluctuating force" describing the departure of the generalized microscopic force associated with the coarse-grained coordinate from its projection. Starting with this key expression, we formulate a new exact formula for the memory function in terms of microscopic and coarse-grained conservative forces. We conclude by studying two independent limiting cases of practical importance: the Markov limit (vanishing correlations of projected force) and the limit of weak dependence of the memory function on the particle momenta. We present computationally affordable expressions which can be efficiently evaluated from standard molecular dynamics simulations.
Toward Quantitative Coarse-Grained Models of Lipids with Fluids Density Functional Theory.
Frink, Laura J Douglas; Frischknecht, Amalie L; Heroux, Michael A; Parks, Michael L; Salinger, Andrew G
2012-04-10
We describe methods to determine optimal coarse-grained models of lipid bilayers for use in fluids density functional theory (fluids-DFT) calculations. Both coarse-grained lipid architecture and optimal parametrizations of the models based on experimental measures are discussed in the context of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers in water. The calculations are based on a combination of the modified-iSAFT theory for bonded systems and an accurate fundamental measures theory (FMT) for hard sphere reference fluids. We furthermore discuss a novel approach for pressure control in the fluids-DFT calculations that facilitates both partitioning studies and zero tension control for the bilayer studies. A detailed discussion of the numerical implementations for both solvers and pressure control capabilities are provided. We show that it is possible to develop a coarse-grained lipid bilayer model that is consistent with experimental properties (thickness and area per lipid) of DPPC provided that the coarse-graining is not too extreme. As a final test of the model, we find that the predicted area compressibility moduli and lateral pressure profiles of the optimized models are in reasonable agreement with prior results.
The role of microstructural aspects on the performance of coarse-grained superplastic Al alloys
Chezan, AR; De Hosson, JTM; Houtte, PV; Kestens, L
2005-01-01
Deformed under optimum conditions of temperature and strain rate, coarse-grained aluminum alloys show elongation to failure in excess of 300%. The strain rate sensitivity index and the activation energy point to solute drag creep as the principal mechanism, a mechanism that has virtually no grain si
Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature
Rudd, R E; Broughton, J Q
2005-05-30
Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.
Establishment of the coarse grained parameters for epoxy-copper interfacial separation
Wong, C.K.Y.; Leung, S.Y.Y.; Poelma, R.H.; Jansen, K.M.B.; Yuan, C.C.A.; Driel, W.D. van; Zhang, G.
2012-01-01
Atomistic coarse grained parameters were calculated from a non-equilibrium molecular dynamics simulation of the separation of an epoxy-copper interface. The methodology to determine the interaction energy and the equilibrium distance between the interfacial materials at a minimum energy is
Coarse-grained Simulations of Conformational Changes in Multidrug Resistance Transporters
Jewel, S. M. Yead; Dutta, Prashanta; Liu, Jin
2016-11-01
The overexpression of multidrug resistance (MDR) systems on the gram negative bacteria causes serious problems for treatment of bacterial infectious diseases. The system effectively pumps the antibiotic drugs out of the bacterial cells. During the pumping process one of the MDR components, AcrB undergoes a series of large-scale conformational changes which are responsible for drug recognition, binding and expelling. All-atom simulations are unable to capture those conformational changes because of computational cost. Here, we implement a hybrid coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid, to investigate the proton-dependent conformational changes of AcrB. The simulation results in early stage ( 100 ns) of proton-dependent conformational changes agree with all-atom simulations, validating the coarse-grained model. The coarse-grained force field allows us to explore the process in microsecond simulations. Starting from the crystal structures of Access(A)/Binding(B)/Extrusion(E) monomers in AcrB, we find that deprotonation of Asp407 and Asp408 in monomer E causes a series of large-scale conformational changes from ABE to AAA in absence of drug molecules, which is consistent with experimental findings. This work is supported by NIH Grant: 1R01GM122081-01.
Coarse-grained simulation of dynamin-mediated fission
Muller, Marcus; Zhang, Guojie; Fuhrmans, Marc
Fission is a process in which a region of a lipid bilayer is deformed and separated from its host membrane, so that an additional, topologically independent compartment surrounded by a continuous lipid bilayer is formed. It is a fundamental process in the compartmentalization of living organisms and carefully regulated by a number of membrane-shaping proteins. An important group within these is the dynamin family of proteins that are involved in the final severance of the hourglass-shaped neck, via which the growing compartment remains connected to the main volume until the completion of fission. We present computer simulations testing different hypotheses of how dynamin proteins facilitate fission by constriction and curvature. Our results on constraint-induced fission of cylindrical membrane tubes emphasize the importance of the local creation of positive curvature and reveal a complex picture of fission, in which the topological transformation can become arrested in an intermediate stage if the proteins constituting the fission machinery are not adaptive.
Gu, Ruifeng; Wang, Lifeng; He, Xiaoqiao
2017-08-01
A new beam element based coarse-grained model is developed to investigate efficiently the mechanical behavior of a large system of super-graphene carbon nanotube (SGCNT) networks with all boundaries clamped supported. The natural frequencies and mode shapes of the SGCNT networks made of single-walled carbon nanotubes (SWCNTs) with different diameters and lengths are obtained via the proposed coarse-grained model. The applicability of the coarse-grained model for the SGCNT networks is verified by comparison with the molecular structural mechanics model. The natural frequencies and associated mode shapes obtained via the coarse-grained model agree well with the results obtained from the molecular structural mechanics method, indicating that the coarse-grained model developed in this study can be applied for the dynamic prediction of the SGCNT networks.
A test of systematic coarse-graining of molecular dynamics simulations: Transport properties.
Fu, Chia-Chun; Kulkarni, Pandurang M; Shell, M Scott; Leal, L Gary
2013-09-07
To what extent can a "bottom-up" mesoscale fluid model developed through systematic coarse-graining techniques recover the physical properties of a molecular scale system? In a previous paper [C.-C. Fu, P. M. Kulkarni, M. S. Shell, and L. G. Leal, J. Chem. Phys. 137, 164106 (2012)], we addressed this question for thermodynamic properties through the development of coarse-grained (CG) fluid models using modified iterative Boltzmann inversion methods that reproduce correct pair structure and pressure. In the present work we focus on the dynamic behavior. Unlike the radial distribution function and the pressure, dynamical properties such as the self-diffusion coefficient and viscosity in a CG model cannot be matched during coarse-graining by modifying the pair interaction. Instead, removed degrees of freedom require a modification of the equations of motion to simulate their implicit effects on dynamics. A simple but approximate approach is to introduce a friction coefficient, γ, and random forces for the remaining degrees of freedom, in which case γ becomes an additional parameter in the coarse-grained model that can be tuned. We consider the non-Galilean-invariant Langevin and the Galilean-invariant dissipative particle dynamics (DPD) thermostats with CG systems in which we can systematically tune the fraction φ of removed degrees of freedom. Between these two choices, only DPD allows both the viscosity and diffusivity to match a reference Lennard-Jones liquid with a single value of γ for each degree of coarse-graining φ. This friction constant is robust to the pressure correction imposed on the effective CG potential, increases approximately linearly with φ, and also depends on the interaction cutoff length, rcut, of the pair interaction potential. Importantly, we show that the diffusion constant and viscosity are constrained by a simple scaling law that leads to a specific choice of DPD friction coefficient for a given degree of coarse-graining. Moreover, we
Why it is hard to see Schroedinger's cat: micro-macro entanglement and coarse-graining
Raeisi, Sadegh; Simon, Christoph
2011-01-01
Observing quantum effects such as superpositions and entanglement in macroscopic systems requires not only a system that is well protected against environmental decoherence, but also sufficient measurement precision. Motivated by recent experiments, we study the effects of coarse-graining in photon number measurements on the observability of micro-macro entanglement that is created by greatly amplifying one photon from an entangled pair. We compare the results obtained for a unitary quantum cloner, which generates micro-macro entanglement, and for a measure-and-prepare cloner, which produces a separable micro-macro state. We show that the distance between the probability distributions of results for the two cloners approaches zero for a fixed moderate amount of coarse-graining. Proving the presence of micro-macro entanglement therefore becomes progressively harder as the system size increases.
Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate
Xu, Zhu; Li, Ning, E-mail: hslining@mail.hust.edu.cn; Jiang, Huawen; Liu, Lin
2015-01-05
In order to reveal the possible occurrence of deformation twins in coarse-grained aluminum/aluminum alloy at normal experimental conditions, a 5A02-O aluminum alloy with coarse grains was compressed quasi-statically to various plastic strains at ambient temperature, followed by high-resolution transmission electron analysis. The results revealed some long streaks produced by the thin plate-like structure with 2 atomic planes thick in the specimen undergoing a large strain, while under a relatively small plastic strain, the striped characteristics disappeared. The fast Fourier transform and theoretical analysis have shown that these long streaks are nanotwins, derived from the overlapping of stacking fault ribbons formed by Shockley partial dislocation on adjacent slip planes, which are triggered by the large plastic strain.
Haxton, Thomas K; Zuckermann, Ronald N; Whitelam, Stephen
2014-01-01
Certain sequences of peptoid polymers (synthetic analogs of peptides) assemble into bilayer nanosheets via a nonequilibrium assembly pathway of adsorption, compression, and collapse at an air-water interface. As with other large-scale dynamic processes in biology and materials science, understanding the details of this supramolecular assembly process requires a modeling approach that captures behavior on a wide range of length and time scales, from those on which individual sidechains fluctuate to those on which assemblies of polymers evolve. Here we demonstrate that a new coarse-grained modeling approach is accurate and computationally efficient enough to do so. Our approach uses only a minimal number of coarse-grained sites, but retains independently fluctuating orientational degrees of freedom for each site. These orientational degrees of freedom allow us to accurately parameterize both bonded and nonbonded interactions, and to generate all-atom configurations with sufficient accuracy to perform atomic sca...
Ab initio determination of coarse-grained interactions in double stranded DNA
Hsu, Chia Wei; Fyta, Maria; Lakatos, Greg; Melchionna, Simone; Kaxiras, Efthimios
2012-02-01
We derive the coarse-grained interactions between DNA nucleotides from ab initio calculations using density functional theory (DFT). The interactions take into account the base and sequence specificity, and are decomposed into physically distinct contributions. The interactions energies calculated from DFT for a wide range of configurations are fitted to simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide into two sites. This non-empirical model accurately yields structural properties of B-DNA even in extreme conditions, and predicts persistence length in excellent agreement with experiments. The model enables quantitative an efficient investigations of the dynamics of long DNA strands in various environments, making it possible to reach microsecond time scales and beyond.
Ab initio determination of coarse-grained interactions in double-stranded DNA
Hsu, Chia Wei; Fyta, Maria; Lakatos, Greg; Melchionna, Simone; Kaxiras, Efthimios
2012-09-01
We derive the coarse-grained interactions between DNA nucleotides from ab initio total-energy calculations based on density functional theory (DFT). The interactions take into account base and sequence specificity, and are decomposed into physically distinct contributions that include hydrogen bonding, stacking interactions, backbone, and backbone-base interactions. The interaction energies of each contribution are calculated from DFT for a wide range of configurations and are fitted by simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide into two sites. This model is not derived from experimental data, yet it successfully reproduces the stable B-DNA structure and gives good predictions for the persistence length. It may be used to realistically probe dynamics of DNA strands in various environments at the μs time scale and the μm length scale.
Folding and stability of helical bundle proteins from coarse-grained models.
Kapoor, Abhijeet; Travesset, Alex
2013-07-01
We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics.
A coarse-grained DNA model for the prediction of current signals in DNA translocation experiments
Weik, Florian; Kesselheim, Stefan; Holm, Christian
2016-11-01
We present an implicit solvent coarse-grained double-stranded DNA (dsDNA) model confined to an infinite cylindrical pore that reproduces the experimentally observed current modulations of a KaCl solution at various concentrations. Our model extends previous coarse-grained and mean-field approaches by incorporating a position dependent friction term on the ions, which Kesselheim et al. [Phys. Rev. Lett. 112, 018101 (2014)] identified as an essential ingredient to correctly reproduce the experimental data of Smeets et al. [Nano Lett. 6, 89 (2006)]. Our approach reduces the computational effort by orders of magnitude compared with all-atom simulations and serves as a promising starting point for modeling the entire translocation process of dsDNA. We achieve a consistent description of the system's electrokinetics by using explicitly parameterized ions, a friction term between the DNA beads and the ions, and a lattice-Boltzmann model for the solvent.
Ito, Hiroaki; Shimokawa, Naofumi
2016-01-01
Biomembranes, which are mainly composed of neutral and charged lipids, exhibit a large variety of functional structures and dynamics. Here, we report a coarse-grained molecular dynamics (MD) simulation of the phase separation and morphological dynamics in charged lipid bilayer vesicles. The screened long-range electrostatic repulsion among charged head groups delays or inhibits the lateral phase separation in charged vesicles compared with neutral vesicles, suggesting the transition of the phase-separation mechanism from spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the electrostatic repulsion causes morphological changes, such as pore formation, and further transformations into disk, string, and bicelle structures, which are spatiotemporally coupled to the lateral segregation of charged lipids. Based on our coarse-grained MD simulation, we propose a plausible mechanism of pore formation at the molecular level. The pore formation in a charged-lipid-rich domain is initiated by the p...
Coarse-grain Modeling of Lipid Membrane Adsorption on Nanopatterned Surfaces
Hoopes, Matthew; Longo, Marjorie; Faller, Roland
2009-03-01
Substrate interactions with adsorbed membranes modify the intrinsic mechanics of supported lipid bilayers. Coarse-graining of the membrane lipids and surface allow for the larger system size necessary for membrane shape studies. Supported lipid bilayers (SLB) continue to be an important means of measuring the thermodynamic and mechanical properties of phospholipid membranes, which are the basis of compartmentalization in living cells. Understanding SLB systems with respect to their substrates enhances the understanding of the measurements taken thereon and promotes design of new substrates to expand the usefulness of these systems. We present data for the interaction of coarse-grained lipid membranes with nanopatterned surfaces, showing the effect of the balance between bending energy and adsorption energy on membrane topology.
BioVEC: a program for biomolecule visualization with ellipsoidal coarse-graining.
Abrahamsson, Erik; Plotkin, Steven S
2009-09-01
Biomolecule Visualization with Ellipsoidal Coarse-graining (BioVEC) is a tool for visualizing molecular dynamics simulation data while allowing coarse-grained residues to be rendered as ellipsoids. BioVEC reads in configuration files, which may be output from molecular dynamics simulations that include orientation output in either quaternion or ANISOU format, and can render frames of the trajectory in several common image formats for subsequent concatenation into a movie file. The BioVEC program is written in C++, uses the OpenGL API for rendering, and is open source. It is lightweight, allows for user-defined settings for and texture, and runs on either Windows or Linux platforms.
Folding of small knotted proteins: Insights from a mean field coarse-grained model
Najafi, Saeed; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)
2015-12-28
A small but relevant number of proteins whose native structure is known features nontrivial topology, i.e., they are knotted. Understanding the process of folding from a swollen unknotted state to the biologically relevant native conformation is, for these proteins, particularly difficult, due to their rate-limiting topological entanglement. To shed some light into this conundrum, we introduced a structure-based coarse-grained model of the protein, where the information about the folded conformation is encoded in bonded angular interactions only, which do not favor the formation of native contacts. A stochastic search scheme in parameter space is employed to identify a set of interactions that maximizes the probability to attain the knotted state. The optimal knotting pathways of the two smallest knotted proteins, obtained through this approach, are consistent with the results derived by means of coarse-grained as well as full atomistic simulations.
Systematic coarse-grained modeling of complexation between small interfering RNA and polycations
Wei, Zonghui [Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208 (United States); Luijten, Erik, E-mail: luijten@northwestern.edu [Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)
2015-12-28
All-atom molecular dynamics simulations can provide insight into the properties of polymeric gene-delivery carriers by elucidating their interactions and detailed binding patterns with nucleic acids. However, to explore nanoparticle formation through complexation of these polymers and nucleic acids and study their behavior at experimentally relevant time and length scales, a reliable coarse-grained model is needed. Here, we systematically develop such a model for the complexation of small interfering RNA (siRNA) and grafted polyethyleneimine copolymers, a promising candidate for siRNA delivery. We compare the predictions of this model with all-atom simulations and demonstrate that it is capable of reproducing detailed binding patterns, charge characteristics, and water release kinetics. Since the coarse-grained model accelerates the simulations by one to two orders of magnitude, it will make it possible to quantitatively investigate nanoparticle formation involving multiple siRNA molecules and cationic copolymers.
Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices
Zhao, Hui-Hai; Xie, Zhi-Yuan; Xiang, Tao; Imada, Masatoshi
2016-03-01
We develop coarse-graining tensor renormalization group algorithms to compute physical properties of two-dimensional lattice models on finite periodic lattices. Two different coarse-graining strategies, one based on the tensor renormalization group and the other based on the higher-order tensor renormalization group, are introduced. In order to optimize the tensor network model globally, a sweeping scheme is proposed to account for the renormalization effect from the environment tensors under the framework of second renormalization group. We demonstrate the algorithms by the classical Ising model on the square lattice and the Kitaev model on the honeycomb lattice, and show that the finite-size algorithms achieve substantially more accurate results than the corresponding infinite-size ones.
Coarse-Grained Molecular Dynamics Simulation of a Red Blood Cell
Jiang, Li-Guo; Wu, Heng-An; Zhou, Xiao-Zhou; Wang, Xiu-Xi
2010-02-01
A worm-like chain model based on a spectrin network is employed to study the biomechanics of red blood cells. Coarse-grained molecular dynamics simulations are performed to obtain a stable configuration free of external loadings. We also discuss the influence of two parameters: the average bending modulus and the persistence length. The change in shape of a malaria-infected red blood cell can contribute to the change in its molecular-based structure. As the persistence length of the membrane network in the infected red blood cell decreases, the deformability decreases and the biconcave shape is destroyed. The numerical results are comparable with previously reported experimental results. The coarse-grained model can be used to study the relationship between macro-mechanical properties and molecular-scale structures of cells.
Xu, Yinlin; Schmitt, Daniel T; Bernaola-Galván, Pedro; Ivanov, Plamen Ch
2010-01-01
We investigate how various coarse-graining methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find, that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval $\\Delta$ this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when $\\Delta1$ a crossover appears at small scales and moves to intermediate and large scales with increasing $\\Delta$. For very rough coarse-graining ($\\Delta>3$) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the ...
Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)
2014-04-07
We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.
Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models
Stovgaard Kasper
2010-08-01
Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for
Dalgıçdir, Cahit; Şensoy, Özge; Sayar, Mehmet; Peter, Christine
2013-01-01
A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition Cahit Dalgicdir, Ozge Sensoy, Christine Peter, and Mehmet Sayar Citation: The Journal of Chemical Physics 139, 234115 (2013); doi: 10.1063/1.4848675 View online: http://dx.doi.org/10.1063/1.4848675 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/23?ver=pdfcov Published by the AIP Publishing Articles you may be interested in...
Theory of Wavelet-Based Coarse-Graining Hierarchies for Molecular Dynamics
2017-04-01
b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std . Z39.18 Apr...Diffusion wavelet-based decompo- sitions for coarse-graining of polymer chains. Paper presented at: University of Delaware , Applied Mathematics. 2015
Effective coarse-grained simulations of super-thick multi-walled carbon nanotubes under torsion
Jian, Zou; Huang, Xu; Arroyo Balaguer, Marino; Zhang, Sulin
2009-01-01
Under torsion and beyond the buckling point, multi-walled carbon nanotubes (MWCNTs) develop a periodic wave-like rippling morphology. Here, we show that torsional rippling deformations can be accurately described by a simple sinusoidal shape function. Combining this observation with the geometry optimization, we develop an effective coarse-grained model that reproduces the complex nonlinear mechanical responses of thick MWCNTs under torsion predicted by large-scale atomistic simulations. Furt...
Hyuntae Na
2015-10-01
Full Text Available Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations--how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models.
Na, Hyuntae; Jernigan, Robert L; Song, Guang
2015-10-01
Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations--how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models.
Multiscale simulation of thin-film lubrication: free-energy-corrected coarse graining.
Wu, Z-B; Zeng, X C
2014-09-01
The quasicontinuum method was previously extended to the nonzero temperature conditions by implementing a free-energy correction on non-nodal atoms in coarse-grained solid systems to avoid the dynamical constraint, [Diestler, Wu, and Zeng, J. Chem. Phys. 121, 9279 (2004)]. In this paper, we combine the extended quasicontinuum method and an atomistic simulation to treat the monolayer film lubrication with elastic (nonrigid) substrates. It is shown that the multiscale method with the coarse-graining local elements in the merging regions between the atomistic and continuous descriptions of the substrates can reasonably predict the shear stress profile, the mean separation curve, and the transverse stress profile in the fully atomistic simulation for the tribological system. Moreover, when the nonlocal elements are placed in the merging regions, the inhomogeneous solid atoms in the near regions covered by the cut-off circles of the nonlocal elements replace the homogeneous ones at the equilibrium configuration for the free-energy correction on the non-nodal atoms. The treatment can cause an unphysical sliding between the near and far regions of the upper substrate. It is shown that if the free-energy correction on the non-nodal atoms in the coarse-grained merging regions is removed, the multiscale method can still well reproduce the shear stress profile, the mean separation curve, and the transverse stress profile obtained from the fully atomistic simulation for the system.
Pairwise energies for polypeptide coarse-grained models derived from atomic force fields
Betancourt, Marcos R.; Omovie, Sheyore J.
2009-05-01
The energy parametrization of geometrically simplified versions of polypeptides, better known as polypeptide or protein coarse-grained models, is obtained from molecular dynamics and statistical methods. Residue pairwise interactions are derived by performing atomic-level simulations in explicit water for all 210 pairs of amino acids, where the amino acids are modified to closer match their structure and charges in polypeptides. Radial density functions are computed from equilibrium simulations for each pair of residues, from which statistical energies are extracted using the Boltzmann inversion method. The resulting models are compared to similar potentials obtained by knowledge based methods and to hydrophobic scales, resulting in significant similarities in spite of the model simplicity. However, it was found that glutamine, asparagine, lysine, and arginine are more attractive to other residues than anticipated, in part, due to their amphiphilic nature. In addition, equally charged residues appear more repulsive than expected. Difficulties in the calculation of knowledge based potentials and hydrophobicity scale for these cases, as well as sensitivity of the force field to polarization effects are suspected to cause this discrepancy. It is also shown that the coarse-grained model can identify native structures in decoy databases nearly as well as more elaborate knowledge based methods, in spite of its resolution limitations. In a test conducted with several proteins and corresponding decoys, the coarse-grained potential was able to identify the native state structure but not the original atomic force field.
Coarse grain deposit feature of Guantao formation in western depression Shuyi area of Liaohe basin
GUO Jian-hua; LIU Chen-sheng; ZHU Mei-heng
2005-01-01
The extensive distribution of coarse-grained clastic rock of Guantao formation in Shuyi area of Liaohe basin was considered as a result of fluvial deposit. According to the comprehensive analysis of seism data, well log, core observation and experimental data, this kind of clastic rock is composed of pebblestone-cobblestone, microconglomerate, sand conglomerate, medium-coarse grained sandstone and fine-sandstone. According to the clast composition, sedimentary texture, structure and rock type, 3 kinds of sediment facies can be recognized ie the mixed accumulation-conglomerate dominated debris flow, pebblestone-cobblestone dominated gradient flow and sandstone dominated braided stream. Vertically, the bottom gradient current deposit and top braided stream deposit form fining-upward sediment sequence, and the debris flow deposit distributes in them at random. The sedimentary feature of coarse grain clastic of Guantao formation in Shuyi area is accordant with proximal wet alluvial fan deposited in wet climate at foreland and this kind of alluvial fan is different from the traditional one.
Kristian Lindgren
2015-05-01
Full Text Available An information-theoretic perspective on coarse-graining is presented. It starts with an information characterization of configurations at the micro-level using a local information quantity that has a spatial average equal to a microscopic entropy. With a reversible micro dynamics, this entropy is conserved. In the micro-macro transition, it is shown how this local information quantity is transformed into a macroscopic entropy, as the local states are aggregated into macroscopic concentration variables. The information loss in this transition is identified, and the connection to the irreversibility of the macro dynamics and the second law of thermodynamics is discussed. This is then connected to a process of further coarse-graining towards higher characteristic length scales in the context of chemical reaction-diffusion dynamics capable of pattern formation. On these higher levels of coarse-graining, information flows across length scales and across space are defined. These flows obey a continuity equation for information, and they are connected to the thermodynamic constraints of the system, via an outflow of information from macroscopic to microscopic levels in the form of entropy production, as well as an inflow of information, from an external free energy source, if a spatial chemical pattern is to be maintained.
Numerical and experimental direct shear tests for coarse-grained soils
Ahad Bagherzadeh-Khalkhali; Ali Asghar Mirghasemi
2009-01-01
The presence of particles larger than the permissible dimensions of conventional laboratory specimens causes difficulty in the determination of shear strength of coarse-grained soils. In this research, the influence of particle size on shear strength of coarse-grained soils was investigated by resorting to experimental tests in different scale and numerical simulations based on discrete element method (DEM). Experimental tests on such soil specimens were based on using the techniques designated as "parallel" and "scalping" to prepare gradation of samples in view of the limitation of laboratory specimen size. As a second approach, the direct shear test was numerically simulated on assemblies of elliptical particles. The behaviors of samples under experimental and numerical tests are presented and compared, indicating that the modification of sample gradation has a significant influence on the mechanical properties of coarse-grained soils. It is noted that the shear strengths of samples produced by the scalping method are higher than samples by the parallel method. The scalping method for preparing specimens for direct shear test is therefore recommended. The micromechanical behavior of assemblies under direct shear test is also discussed and the effects of stress level on sample behavior are investigated.
DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
Wang, Yin; Gkeka, Paraskevi; Fuchs, Julian E; Liedl, Klaus R; Cournia, Zoe
2016-11-01
Cholesterol-phospholipid bilayers continue to be the current state of the art in membrane models and serve as representative systems for studying the effect of cholesterol on the cell membrane. As the mixing of different lipid species requires long spatio-temporal scales, coarse-grained models have gained increasing popularity in modeling such membrane systems. In this paper, a systematic study of the MARTINI coarse-grained model for the DPPC-cholesterol binary system has been performed. We construct the phase diagram of DPPC lipid bilayers in the presence of different cholesterol concentrations and at different temperatures using coarse-grained Molecular Dynamics (MD) simulations with the MARTINI force field. The phase diagram based on the condensation effect is directly comparable to available experimental data and demonstrates qualitative agreement over all cholesterol concentrations. Self-assembled bilayers quantitatively reproduce experimental observables, such as lateral diffusion of lipids, electron density, area per lipid and lipid order parameters. The phase diagram of the DPPC-cholesterol binary system also reveals the profound effect of cholesterol on the physical properties of phospholipid bilayers such lipid order, diffusion, and fluidity. Cholesterol induces the liquid-ordered phase, which increases the fluidity of the phospholipid hydrocarbon chains above the gel to liquid-crystalline phase transition temperature and decreases it below the phase transition. The present study suggests that the MARTINI force field can be successfully used to obtain molecular level insights into cholesterol-DPPC model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.
Model reduction for agent-based social simulation: coarse-graining a civil violence model.
Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
Coarse-grained molecular dynamics studies of cluster-bombarded benzene crystals
Smiley, Edward J. [Department of Chemistry, Penn State University, 104 Chemistry Building, University Park, PA 16802 (United States)]. E-mail: ejs236@psu.edu; Postawa, Zbigniew [Smoluchowski Institute of Physics, Jagiellonian University, Cracow (Poland); Wojciechowski, Igor A. [Department of Chemistry, Penn State University, 104 Chemistry Building, University Park, PA 16802 (United States); Winograd, Nicholas [Department of Chemistry, Penn State University, 104 Chemistry Building, University Park, PA 16802 (United States); Garrison, Barbara J. [Department of Chemistry, Penn State University, 104 Chemistry Building, University Park, PA 16802 (United States)
2006-07-30
As high-energy cluster projectile beams become standard analysis probes for SIMS, simulating larger crystals is now a requirement for the modeling community due to the large sputtering yields. As crystals get larger, computer resources become a limitation. Even though computer technology has evolved to include large memory systems and fast processors, there are still issues with having sufficient resources to run a calculation. This manuscript reports a method of studying a full crystal of benzene after impact with a 500 eV C{sub 60} projectile using a coarse-grained model. The potentials developed for this model incorporate the C-H bond of benzene into a single coarse-grained bead. This coarse-grained method has several advantages over atomistic models-the amount of time to perform these calculations has been drastically reduced and the potentials for this sample are pair-wise additive potentials. A discussion is made as to how these results compare to those obtained with fully atomistic calculations using the AIREBO potential.
Mal, Shiladitya; Das, Debarshi; Home, Dipankar
2016-12-01
For multilevel spin systems, robustness of the quantum mechanical (QM) violation of macrorealism (MR) with respect to coarse-grained measurements is investigated using three different necessary conditions of MR, namely, the Leggett-Garg inequality (LGI), Wigner's form of the Leggett-Garg inequality (WLGI), and the condition of no-signaling in time (NSIT). It is shown that for dichotomic sharp measurements, in the asymptotic limit of spin, the algebraic maxima of the QM violations of all these three necessary conditions of MR are attained. Importantly, the QM violations of all these persist in that limit even for arbitrary unsharp measurements, i.e., for any nonzero value of the sharpness parameter characterizing the degree of fuzziness of the relevant measurements. We also find that, when different measurement outcomes are clubbed into two groups for the sake of dichotomizing the outcomes, the asymmetry or symmetry in the number of outcomes in the two groups, signifying the degree of coarse graining of measurements, has a crucial role in discerning quantum violation of MR. The results clearly demonstrate that classicality does not emerge in the asymptotic limit of spin, whatever be the unsharpness and degree of coarse graining of the measurements.
Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design.
Lehoucq, Richard B.; Aidun, John Bahram; Silling, Stewart Andrew; Sears, Mark P.; Kamm, James R.; Parks, Michael L.
2010-09-01
This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project was to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. The goal of our project is to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM (material point method); namely, that classical continuum mechanics assumes a local force interaction that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM, SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching consequences; for example, classical continuum mechanics cannot resolve the short wavelength behavior associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic capability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces for describing long-range material interaction. The force interactions occurring at finite distances are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD can be employed for mesoscopic phenomena that are beyond the realms of classical continuum mechanics and
Lin, Guan-Hong; Chen, Jie-Ru; Ching, Jianye; Phoon, Kok-Kwang
2017-01-01
This study compiles a generic database of seven parameters, including relative density and friction angle, for coarse-grained soils from 176 studies, covering a wide range of reconstituted and in situ...
Spiriti, Justin; Zuckerman, Daniel M.
2015-12-01
Traditional coarse-graining based on a reduced number of interaction sites often entails a significant sacrifice of chemical accuracy. As an alternative, we present a method for simulating large systems composed of interacting macromolecules using an energy tabulation strategy previously devised for small rigid molecules or molecular fragments [S. Lettieri and D. M. Zuckerman, J. Comput. Chem. 33, 268-275 (2012); J. Spiriti and D. M. Zuckerman, J. Chem. Theory Comput. 10, 5161-5177 (2014)]. We treat proteins as rigid and construct distance and orientation-dependent tables of the interaction energy between them. Arbitrarily detailed interactions may be incorporated into the tables, but as a proof-of-principle, we tabulate a simple α-carbon Gō-like model for interactions between dimeric subunits of the hepatitis B viral capsid. This model is significantly more structurally realistic than previous models used in capsid assembly studies. We are able to increase the speed of Monte Carlo simulations by a factor of up to 6700 compared to simulations without tables, with only minimal further loss in accuracy. To obtain further enhancement of sampling, we combine tabulation with the weighted ensemble (WE) method, in which multiple parallel simulations are occasionally replicated or pruned in order to sample targeted regions of a reaction coordinate space. In the initial study reported here, WE is able to yield pathways of the final ˜25% of the assembly process.
Multiscale design of coarse-grained elastic network-based potentials for the μ opioid receptor.
Fossépré, Mathieu; Leherte, Laurence; Laaksonen, Aatto; Vercauteren, Daniel P
2016-09-01
Despite progress in computer modeling, most biological processes are still out of reach when using all-atom (AA) models. Coarse-grained (CG) models allow classical molecular dynamics (MD) simulations to be accelerated. Although simplification of spatial resolution at different levels is often investigated, simplification of the CG potential in itself has been less common. CG potentials are often similar to AA potentials. In this work, we consider the design and reliability of purely mechanical CG models of the μ opioid receptor (μOR), a G protein-coupled receptor (GPCR). In this sense, CG force fields (FF) consist of a set of holonomic constraints guided by an elastic network model (ENM). Even though ENMs are used widely to perform normal mode analysis (NMA), they are not often implemented as a single FF in the context of MD simulations. In this work, various ENM-like potentials were investigated by varying their force constant schemes and connectivity patterns. A method was established to systematically parameterize ENM-like potentials at different spatial resolutions by using AA data. To do so, new descriptors were introduced. The choice of conformation descriptors that also include flexibility information is important for a reliable parameterization of ENMs with different degrees of sensitivity. Hence, ENM-like potentials, with specific parameters, can be sufficient to accurately reproduce AA MD simulations of μOR at highly coarse-grained resolutions. Therefore, the essence of the flexibility properties of μOR can be captured with simple models at different CG spatial resolutions, opening the way to mechanical approaches to understanding GPCR functions. Graphical Abstract All atom structure, residue interaction network and coarse-grained elastic network models of the μ opioid receptor (μOR).
The coarse-grained OPEP force field for non-amyloid and amyloid proteins.
Chebaro, Yassmine; Pasquali, Samuela; Derreumaux, Philippe
2012-08-02
Coarse-grained protein models with various levels of granularity and degrees of freedom offer the possibility to explore many phenomena including folding, assembly, and recognition in terms of dynamics and thermodynamics that are inaccessible to all-atom representations in explicit aqueous solution. Here, we present a refined version of the coarse-grained optimized potential for efficient protein structure prediction (OPEP) based on a six-bead representation. The OPEP version 4.0 parameter set, which uses a new analytical formulation for the nonbonded interactions and adds specific side-chain-side-chain interactions for α-helix, is subjected to three tests. First, we show that molecular dynamics simulations at 300 K preserve the experimental rigid conformations of 17 proteins with 37-152 amino acids within a root-mean-square deviation (RMSD) of 3.1 Å after 30 ns. Extending the simulation time to 100 ns for five proteins does not change the RMSDs. Second, replica exchange molecular dynamics (REMD) simulations recover the NMR structures of three prototypical β-hairpin and α-helix peptides and the NMR three-stranded β-sheet topology of a 37-residue WW domain, starting from randomly chosen states. Third, REMD simulations on the ccβ peptide show a temperature transition from a three-stranded coiled coil to amyloid-like aggregates consistent with experiments, while simulations on low molecular weight aggregates of the prion protein helix 1 do not. Overall, these studies indicate the effectiveness of our OPEP4 coarse-grained model for protein folding and aggregation, and report two future directions for improvement.
Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane
Xinghua Shi; Yong Kong; Huajian Gao
2008-01-01
Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theore-tical studies of the intrinsic interaction mechanisms between CNT's and lipid bilayer. The results indicate that CNT-cell interaction is dominated by van der Waals and hydropho-bic forces, and that CNT's with sufficiently small radii can directly pierce through cell membrane while larger tubes tend to enter cell via a wrapping mechanism. Theoretical models are proposed to explain the observed size effect in transition of entry mechanisms.
Coarse-Grained Dynamics of Protein Synthesis in a Cell-Free System
Karzbrun, Eyal; Shin, Jonghyeon; Bar-Ziv, Roy H.; Noireaux, Vincent
2011-01-01
A complete gene expression reaction is reconstituted in a cell-free system comprising the entire endogenous transcription, translation, as well as mRNA and protein degradation machinery of E. coli. In dissecting the major reaction steps, we derive a coarse-grained enzymatic description of biosynthesis and degradation, from which ten relevant rate constants and concentrations are determined. Governed by zeroth-order degradation, protein expression follows a sharp transition from undetectable levels to constant-rate accumulation, without reaching steady state.
Role of Neutral Lipids in Tear Fluid Lipid Layer: Coarse-Grained Simulation Study
Telenius, J.; Koivuniemi, A.; Kulovesi, P.
2012-01-01
Tear fluid lipid layer (TFLL) residing at the air-water interface of tears has been recognized to play an important role in the development of dry eye syndrome. Yet, the composition, structure, and mechanical properties of TFLL are only partly known. Here, we report results of coarse-grained simu......Tear fluid lipid layer (TFLL) residing at the air-water interface of tears has been recognized to play an important role in the development of dry eye syndrome. Yet, the composition, structure, and mechanical properties of TFLL are only partly known. Here, we report results of coarse...
Water hammer in coarse-grained solid-liquid flows in hydraulic hoisting for ocean mining
韩文亮; 王光谦; 吴保生; 刘少军; 邹伟生
2002-01-01
The particles of polymetallic nodules in hydraulic hoisting flows that are used for mining in deep sea are rather coarse, therefore their flow velocity is smaller than that of the surrounding water. The characteristics of solid-liquid flows such as their density, concentration, elastic modulus and resistance were discussed. The wave propagation speed and the continuity and momentum equations of water hammer in coarse-grained solid-liquid flows were theoretically derived, and a water hammer model for such flows was developed.
V.PURUSHOTHAM REDDY
2011-02-01
Full Text Available In computer networks the routing is based on shortest path routing algorithms. Based on its advantages, an alternative method is used known as Genetic Algorithm based routing algorithm, which is highly scalable and insensitive to variations in network topology. Here we propose a coarse-grained parallel genetic algorithm to solve the shortest path routing problem with the primary goal of computation time reduction along with the use of migration scheme. This algorithm is developed and implemented on an MPI cluster. The effects of migration and its performance is studied in this paper.
Synchronization of coupled noisy oscillators: Coarse graining from continuous to discrete phases
Escaff, Daniel; Rosas, Alexandre; Toral, Raúl; Lindenberg, Katja
2016-11-01
The theoretical description of synchronization phenomena often relies on coupled units of continuous time noisy Markov chains with a small number of states in each unit. It is frequently assumed, either explicitly or implicitly, that coupled discrete-state noisy Markov units can be used to model mathematically more complex coupled noisy continuous phase oscillators. In this work we explore conditions that justify this assumption by coarse graining continuous phase units. In particular, we determine the minimum number of states necessary to justify this correspondence for Kuramoto-like oscillators.
Coarse Grained Modeling of The Interface BetweenWater and Heterogeneous Surfaces
Willard, Adam; Chandler, David
2008-06-23
Using coarse grained models we investigate the behavior of water adjacent to an extended hydrophobic surface peppered with various fractions of hydrophilic patches of different sizes. We study the spatial dependence of the mean interface height, the solvent density fluctuations related to drying the patchy substrate, and the spatial dependence of interfacial fluctuations. We find that adding small uniform attractive interactions between the substrate and solvent cause the mean position of the interface to be very close to the substrate. Nevertheless, the interfacial fluctuations are large and spatially heterogeneous in response to the underlying patchy substrate. We discuss the implications of these findings to the assembly of heterogeneous surfaces.
Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
Rzepiela, Andrzej J; Louhivuori, Martti; Peter, Christine; Marrink, Siewert J
2011-06-14
Hybrid simulations, in which part of the system is represented at atomic resolution and the remaining part at a reduced, coarse-grained, level offer a powerful way to combine the accuracy associated with the atomistic force fields to the sampling speed obtained with coarse-grained (CG) potentials. In this work we introduce a straightforward scheme to perform hybrid simulations, making use of virtual sites to couple the two levels of resolution. With the help of these virtual sites interactions between molecules at different levels of resolution, i.e. between CG and atomistic molecules, are treated the same way as the pure CG-CG interactions. To test our method, we combine the Gromos atomistic force field with a number of coarse-grained potentials, obtained through several approaches that are designed to obtain CG potentials based on an existing atomistic model, namely iterative Boltzmann inversion, force matching, and a potential of mean force subtraction procedure (SB). We also explore the use of the MARTINI force field for the CG potential. A simple system, consisting of atomistic butane molecules dissolved in CG butane, is used to study the performance of our hybrid scheme. Based on the potentials of mean force for atomistic butane in CG solvent, and the properties of 1:1 mixtures of atomistic and CG butane which should exhibit ideal mixing behavior, we conclude that the MARTINI and SB potentials are particularly suited to be combined with the atomistic force field. The MARTINI potential is subsequently used to perform hybrid simulations of atomistic dialanine peptides in both CG butane and water. Compared to a fully atomistic description of the system, the hybrid description gives similar results provided that the dielectric screening of water is accounted for. Within the field of biomolecules, our method appears ideally suited to study e.g. protein-ligand binding, where the active site and ligand are modeled in atomistic detail and the rest of the protein
Ginzburg-Landau free energy for molecular fluids: Determination and coarse-graining
Desgranges, Caroline; Delhommelle, Jerome
2017-02-01
Using molecular simulation, we determine Ginzburg-Landau free energy functions for molecular fluids. To this aim, we extend the Expanded Wang-Landau method to calculate the partition functions, number distributions and Landau free energies for Ar,CO2 and H2O . We then parametrize a coarse-grained free energy function of the density order parameter and assess the performance of this free energy function on its ability to model the onset of criticality in these systems. The resulting parameters can be readily used in hybrid atomistic/continuum simulations that connect the microscopic and mesoscopic length scales.
Davtyan, Aram; Dama, James F.; Voth, Gregory A. [Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Andersen, Hans C., E-mail: hca@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2015-04-21
Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that
Español, Pep [Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid (Spain); Donev, Aleksandar [Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid (Spain); Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)
2015-12-21
We derive a coarse-grained description of the dynamics of a nanoparticle immersed in an isothermal simple fluid by performing a systematic coarse graining of the underlying microscopic dynamics. As coarse-grained or relevant variables, we select the position of the nanoparticle and the total mass and momentum density field of the fluid, which are locally conserved slow variables because they are defined to include the contribution of the nanoparticle. The theory of coarse graining based on the Zwanzing projection operator leads us to a system of stochastic ordinary differential equations that are closed in the relevant variables. We demonstrate that our discrete coarse-grained equations are consistent with a Petrov-Galerkin finite-element discretization of a system of formal stochastic partial differential equations which resemble previously used phenomenological models based on fluctuating hydrodynamics. Key to this connection between our “bottom-up” and previous “top-down” approaches is the use of the same dual orthogonal set of linear basis functions familiar from finite element methods (FEMs), both as a way to coarse-grain the microscopic degrees of freedom and as a way to discretize the equations of fluctuating hydrodynamics. Another key ingredient is the use of a “linear for spiky” weak approximation which replaces microscopic “fields” with a linear FE interpolant inside expectation values. For the irreversible or dissipative dynamics, we approximate the constrained Green-Kubo expressions for the dissipation coefficients with their equilibrium averages. Under suitable approximations, we obtain closed approximations of the coarse-grained dynamics in a manner which gives them a clear physical interpretation and provides explicit microscopic expressions for all of the coefficients appearing in the closure. Our work leads to a model for dilute nanocolloidal suspensions that can be simulated effectively using feasibly short molecular dynamics
Deviation of permeable coarse-grained boundary resistance from Nikuradse's observations
Cheng, Nian-Sheng; Liu, Xingnian; Chen, Xingwei; Qiao, Changkai
2016-02-01
Nikuradse's (1933) rough pipe study is enormously influential in the understanding of flow resistance over a sediment bed. However, the rough boundary employed in Nikuradse's study differs from permeable sediment beds in rivers. This implies that the results derived from the rough pipe experiments may not be applicable for flows over a permeable coarse-grained bed. The present study aimed to explore to what extent the flow resistance of a permeable coarse-grained boundary deviates from the Nikuradse's observations. Experiments were conducted with rough pipes, which were prepared by overlaying the inner wall with one to four layers of spherical beads. The single layer roughness resembles the experimental setup reported in Nikuradse's study, while the multilayer of grains allows significant flow to pass through the porous roughness layer. In addition, the ratio of grain diameter, k, to pipe diameter, d, was chosen to be one to two orders greater than the range (0.001 measurements also suggest the existence of a laminar flow regime, in which the friction factor is inversely proportional to the Reynolds number. The observed variations in the flow resistance are attributed to both wall permeability and large-scale roughness.
Differences between real and particle-in-cell plasmas: effects of coarse-graining
Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe
2013-01-01
The PIC model relies on two building blocks. The first stems from the capability of computers to handle only up to $\\sim10^{10}$ particles, while real plasmas contain from $10^4$ to $10^{20}$ particles per Debye sphere: a coarse-graining step must be used, whereby of the order of $p\\sim10^{10}$ real particles are represented by a single computer superparticle. The second is field storage on a grid with its subsequent finite superparticle size. We introduce the notion of coarse-graining dependent quantities, i.e. physical quantities depending on the number $p$. They all derive from the plasma parameter $\\Lambda$, which we show to be proportional to $1/p$. We explore three examples: the rapid collision- and fluctuation-induced thermalization of plasmas with different temperatures, that scale with the number of superparticles per grid cell and are a factor $p\\sim10^{10}$ faster than in real plasmas; the high level of electrostatic fluctuations in a thermal plasma, with corrections due to the finite superparticle...
Bhadra, Pratiti; Pal, Debnath
2017-02-24
Dynamics is integral to the function of proteins, yet the use of molecular dynamics (MD) simulation as a technique remains under-explored for molecular function inference. This is more important in the context of genomics projects where novel proteins are determined with limited evolutionary information. Recently we developed a method to match the query protein's flexible segments to infer function using a novel approach combining analysis of residue fluctuation-graphs and auto-correlation vectors derived from coarse-grained (CG) MD trajectory. The method was validated on a diverse dataset with sequence identity between proteins as low as 3%, with high function-recall rates. Here we share its implementation as a publicly accessible web service, named DynFunc (Dynamics Match for Function) to query protein function from ≥1 µs long CG dynamics trajectory information of protein subunits. Users are provided with the custom-developed coarse-grained molecular mechanics (CGMM) forcefield to generate the MD trajectories for their protein of interest. On upload of trajectory information, the DynFunc web server identifies specific flexible regions of the protein linked to putative molecular function. Our unique application does not use evolutionary information to infer molecular function from MD information and can, therefore, work for all proteins, including moonlighting and the novel ones, whenever structural information is available. Our pipeline is expected to be of utility to all structural biologists working with novel proteins and interested in moonlighting functions.
Molecular dynamics simulation of water in and around carbon nanotubes: A coarse-grained description
Pantawane, Sanwardhini; Choudhury, Niharendu
2016-05-01
In the present study, we intend to investigate behaviour of water in and around hydrophobic open ended carbon nanotubes (CNTs) using a coarse-grained, core-softened model potential for water. The model potential considered here for water has recently been shown to successfully reproduce dynamic, thermodynamic and structural anomalies of water. The epitome of the study is to understand the incarceration of this coarse-grained water in a single-file carbon nanotube. In order to examine the effect of fluid-water van der Waals interaction on the structure of fluid in and around the nanotube, we have simulated three different CNT-water systems with varying degree of solute-water dispersion interaction. The analyses of the radial one-particle density profiles reveal varying degree of permeation and wetting of the CNT interior depending on the degree of fluid-solute attractive van der Waals interaction. A peak in the radial density profile slightly off the nanotube axis signifies a zigzag chain of water molecule around the CNT axis. The average numbers of water molecules inside the CNT have been shown to increase with the increase in fluid-water attractive dispersion interaction.
Molecular dynamics simulation of water in and around carbon nanotubes: A coarse-grained description
Pantawane, Sanwardhini [Department of Physics, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400098 (India); Choudhury, Niharendu, E-mail: nihcho@barc.gov.in [Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2016-05-23
In the present study, we intend to investigate behaviour of water in and around hydrophobic open ended carbon nanotubes (CNTs) using a coarse-grained, core-softened model potential for water. The model potential considered here for water has recently been shown to successfully reproduce dynamic, thermodynamic and structural anomalies of water. The epitome of the study is to understand the incarceration of this coarse-grained water in a single-file carbon nanotube. In order to examine the effect of fluid-water van der Waals interaction on the structure of fluid in and around the nanotube, we have simulated three different CNT-water systems with varying degree of solute-water dispersion interaction. The analyses of the radial one-particle density profiles reveal varying degree of permeation and wetting of the CNT interior depending on the degree of fluid-solute attractive van der Waals interaction. A peak in the radial density profile slightly off the nanotube axis signifies a zigzag chain of water molecule around the CNT axis. The average numbers of water molecules inside the CNT have been shown to increase with the increase in fluid-water attractive dispersion interaction.
Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institut für Weiche Materie und Funktionale Materialen, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany)
2015-11-07
In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.
An Impulse-C Hardware Accelerator for Packet Classification Based on Fine/Coarse Grain Optimization
O. Ahmed
2013-01-01
Full Text Available Current software-based packet classification algorithms exhibit relatively poor performance, prompting many researchers to concentrate on novel frameworks and architectures that employ both hardware and software components. The Packet Classification with Incremental Update (PCIU algorithm, Ahmed et al. (2010, is a novel and efficient packet classification algorithm with a unique incremental update capability that demonstrated excellent results and was shown to be scalable for many different tasks and clients. While a pure software implementation can generate powerful results on a server machine, an embedded solution may be more desirable for some applications and clients. Embedded, specialized hardware accelerator based solutions are typically much more efficient in speed, cost, and size than solutions that are implemented on general-purpose processor systems. This paper seeks to explore the design space of translating the PCIU algorithm into hardware by utilizing several optimization techniques, ranging from fine grain to coarse grain and parallel coarse grain approaches. The paper presents a detailed implementation of a hardware accelerator of the PCIU based on an Electronic System Level (ESL approach. Results obtained indicate that the hardware accelerator achieves on average 27x speedup over a state-of-the-art Xeon processor.
Coarse-grained molecular dynamics simulations of protein-ligand binding.
Negami, Tatsuki; Shimizu, Kentaro; Terada, Tohru
2014-09-30
Coarse-grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein-ligand binding processes. We chose two protein-ligand systems, the levansucrase-sugar (glucose or sucrose), and LinB-1,2-dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand-binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse-grained (CG) ligand molecules revealed potential ligand-binding sites on the protein surfaces other than the real ligand-binding sites. The ligands bound most strongly to the real ligand-binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase-sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand-binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein-ligand binding processes.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks.
Manhart, Michael; Kion-Crosby, Willow; Morozov, Alexandre V
2015-12-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs.
Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L
2015-11-07
In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.
Coarse-grained model of glycosaminoglycans in aqueous salt solutions. A field-theoretical approach.
Kolesnikov, Andrei L; Budkov, Yurij A; Nogovitsyn, Evgenij A
2014-11-20
We present results of self-consistent field calculations of thermodynamic and structural properties of glycosaminoglycans (chondroitin sulfate, hyaluronic acid, and heparin) in aqueous solutions with added monovalent and divalent salts. A semiphenomenological coarse-grained model for semiflexible polyelectrolyte chains in solution is proposed. The coarse-grained model permits one to focus on the essential features of these systems and provides significant computational advantages with respect to more detailed models. Our approach relies on the method of Gaussian equivalent representation for the calculation of the partition functions in the form of functional integrals. This method provides reliable thermodynamic information for polyelectrolyte solutions over wide ranges of monomer concentrations. In the present work, we use the comparison and fitting of the experimental osmotic pressure with a theoretical equation of state within the Gaussian equivalent representation. The degrees of ionization, radii of gyration, persistence lengths, and structure factors of chondroitin sulfate, hyaluronic acid, and heparin in aqueous solutions with added monovalent and divalent salts are calculated and discussed.
Parameterizing the Morse potential for coarse-grained modeling of blood plasma
Zhang, Na; Zhang, Peng; Kang, Wei; Bluestein, Danny; Deng, Yuefan
2014-01-01
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters are systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately.
Parameterizing the Morse potential for coarse-grained modeling of blood plasma
Zhang, Na [Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794 (United States); Zhang, Peng [Department of Biomedical Engineering, Stony Brook University, NY 11790 (United States); Kang, Wei [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Bluestein, Danny [Department of Biomedical Engineering, Stony Brook University, NY 11790 (United States); Deng, Yuefan, E-mail: Yuefan.Deng@StonyBrook.edu [Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794 (United States)
2014-01-15
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters are systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately.
Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material
Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.
2014-02-01
Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.
Lardner, Timothy; Li, Minghui; Gachagan, Anthony
2014-02-01
Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.
Coarse-Grained Modeling of Genetic Circuits as a Function of the Inherent Time Scales
Labavic, Darka; Hildegard, Wolfhard Janke; Meyer-Ortmanns,
2012-01-01
From a coarse-grained perspective the motif of a self-activating species, activating a second species which acts as its own repressor, is widely found in biological systems, in particular in genetic systems with inherent oscillatory behavior. Here we consider a specific realization of this motif as a genetic circuit, in which genes are described as directly producing proteins, leaving out the intermediate step of mRNA production. We focus on the effect that inherent time scales on the underlying fine-grained scale can have on the bifurcation patterns on a coarser scale in time. Time scales are set by the binding and unbinding rates of the transcription factors to the promoter regions of the genes. Depending on the ratio of these rates to the decay times of the proteins, the appropriate averaging procedure for obtaining a coarse-grained description changes and leads to sets of deterministic equations, which differ in their bifurcation structure. In particular the desired intermediate range of regular limit cyc...
Macro-micromechanical approaches for non-coaxiality of coarse grained soils
无
2011-01-01
For coarse grained soils,their principal stress directions may change when the water level of embankment dam varies instantaneously.In this loading case,the principal directions of stress and strain rate will become non-coaxial.In an effort to model non-coaxial behavior,a modified three-dimensional non-coaxial model is developed in the context of vertex yield(tangent plasticity) theory.Discrete Element Method(PFC) incorporating user-defined interparticle contact models is also employed to gain an insight into microscopic mechanism of non-coaxiality.The analysis focuses on non-coaxial behaviors under simple shear condition.It has been shown that the proposed non-coaxial model gives good predictions for non-coaxiality with reference to microscopic observations while the classical coaxial model fails to simulate the non-coaxial behaviors.In general,non-coaxiality as a result of the rotation of principal stress,is large at a small shear strain,and inclined to become negligible with increasing shear strain.For coarse grained soils,their non-coaxiality tends to largely depend on the initial normal pressure,where a larger degree of non-coaxiality can be observed at a higher pressure.
Krokhotin, Andrey; Dokholyan, Nikolay V
2015-01-01
Computational methods can provide significant insights into RNA structure and dynamics, bridging the gap in our understanding of the relationship between structure and biological function. Simulations enrich and enhance our understanding of data derived on the bench, as well as provide feasible alternatives to costly or technically challenging experiments. Coarse-grained computational models of RNA are especially important in this regard, as they allow analysis of events occurring in timescales relevant to RNA biological function, which are inaccessible through experimental methods alone. We have developed a three-bead coarse-grained model of RNA for discrete molecular dynamics simulations. This model is efficient in de novo prediction of short RNA tertiary structure, starting from RNA primary sequences of less than 50 nucleotides. To complement this model, we have incorporated additional base-pairing constraints and have developed a bias potential reliant on data obtained from hydroxyl probing experiments that guide RNA folding to its correct state. By introducing experimentally derived constraints to our computer simulations, we are able to make reliable predictions of RNA tertiary structures up to a few hundred nucleotides. Our refined model exemplifies a valuable benefit achieved through integration of computation and experimental methods.
The ELBA force field for coarse-grain modeling of lipid membranes.
Mario Orsi
Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.
All-atom/coarse-grained hybrid predictions of distribution coefficients in SAMPL5
Genheden, Samuel; Essex, Jonathan W.
2016-11-01
We present blind predictions submitted to the SAMPL5 challenge on calculating distribution coefficients. The predictions were based on estimating the solvation free energies in water and cyclohexane of the 53 compounds in the challenge. These free energies were computed using alchemical free energy simulations based on a hybrid all-atom/coarse-grained model. The compounds were treated with the general Amber force field, whereas the solvent molecules were treated with the Elba coarse-grained model. Considering the simplicity of the solvent model and that we approximate the distribution coefficient with the partition coefficient of the neutral species, the predictions are of good accuracy. The correlation coefficient, R is 0.64, 82 % of the predictions have the correct sign and the mean absolute deviation is 1.8 log units. This is on a par with or better than the other simulation-based predictions in the challenge. We present an analysis of the deviations to experiments and compare the predictions to another submission that used all-atom solvent.
Coarse graining approach to First principles modeling of radiation cascade in large Fe super-cells
Odbadrakh, Khorgolkhuu; Nicholson, Don; Rusanu, Aurelian; Wang, Yang; Stoller, Roger; Zhang, Xiaoguang; Stocks, George
2012-02-01
First principles techniques employed to understand systems at an atomistic level are not practical for large systems consisting of millions of atoms. We present an efficient coarse graining approach to bridge the first principles calculations of local electronic properties to classical Molecular Dynamics (MD) simulations of large structures. Local atomic magnetic moments in crystalline Fe are perturbed by radiation generated defects. The effects are most pronounced near the defect core and decay with distance. We develop a coarse grained technique based on the Locally Self-consistent Multiple Scattering (LSMS) method that exploits the near-sightedness of the electron Green function. The atomic positions were determined by MD with an embedded atom force field. The local moments in the neighborhood of the defect cores are calculated with first-principles based on full local structure information. Atoms in the rest of the system are modeled by representative atoms with approximated properties. This work was supported by the Center for Defect Physics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.
3d Quantum Gravity: Coarse-Graining and q-Deformation
Livine, Etera R
2016-01-01
The Ponzano-Regge state-sum model provides a quantization of 3d gravity as a spin foam, providing a quantum amplitude to each 3d triangulation defined in terms of the 6j-symbol (from the spin-recoupling theory of SU(2) representations). In this context, the invariance of the 6j-symbol under 4-1 Pachner moves, mathematically defined by the Biedenharn-Elliot identity, can be understood as the invariance of the Ponzano-Regge model under coarse-graining or equivalently as the invariance of the amplitudes under the Hamiltonian constraints. Here we look at length and volume insertions in the Biedenharn-Elliot identity for the 6j-symbol, derived in some sense as higher derivatives of the original formula. This gives the behavior of these geometrical observables under coarse-graining. These new identities turn out to be related to the Biedenharn-Elliot identity for the q-deformed 6j-symbol and highlight that the q-deformation produces a cosmological constant term in the Hamiltonian constraints of 3d quantum gravity.
Thermal and mechanical properties of thermosetting polymers using coarse-grained simulation
Jang, C.; Abrams, C. F.
2016-10-01
We developed coarse-grained (CG) molecular representations of mixtures of diglycidyl ether of bisphenol-A (DGEBA) and poly(oxypropylene) diamine (POP-DA) for use in CG molecular dynamics (MD) simulations. In the CG representation, DGEBA is comprised of three beads of two types and POP-DA also by three beads of two types. Atomistic MD of liquid systems was performed to derive intra- and inter-bead potentials via Boltzmann inversion. While the bonded potentials, composed of bond stretching and angle bending, were parameterized directly from the distribution functions of all atomistic molecular dynamics trajectories, the non-bonded potentials were derived from the iterative Boltzmann Inversion with a given set of coarse-grained interactions. CG systems correctly reproduced liquid and crosslinked densities. Under uniaxial tension, the Young's modulus of the CG systems was much lower than the experimental value, and we show this arises from the assumed form of the extrapolated regions of the CG potentials. By stiffening these regions, we increased the CG Young's modulus of the crosslinked systems without sacrificing the correct prediction of density. This suggests that transferrable CG potentials can be optimized for use in non-equilibrium MD for property estimation.
Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em
2015-12-01
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.
Coarse-grained quantum transport simulation for analyzing leakage-mobility antagonism in GNRFET
Ito, Masakatsu; Sato, Shintaro; Yokoyama, Naoki; Joachim, Christian; Green Nanoelectronics Center Team; CEMES-CNRS and Mana Satellite Collaboration
2013-03-01
Since it became clear that graphene transistors based on the classical MOSFET principle suffer from serious performance problems, researchers have explored new graphene device design using quantum transport simulations. A first-principle quantum transport simulation, however, still takes unaffordable computational cost to deal with a realistic size of graphene transistor (>104 atoms). This motivated us to import ESQC (elastic scattering quantum chemistry) technique from the research field of molecular electronics and to develop its coarse-grained version. To eliminate the atomic scale details, we reformulated ESQC technique using the continuum limit description of graphene charge carriers, which is given by the massless Dirac equation. Since the potential function in this Dirac equation is electrostatic potential distribution, it can be obtained from Poisson equation with the boundary conditions of gate voltages in a self-consistent manner. We are now applying this coarse-grained quantum transport simulation to GNRFETs (graphene nanoribbon field effect transistors) for resolving the mobility-leakage antagonism, where opening a bandgap in a graphene channel improves its switching ability but at the same time deteriorates the electron channel mobility.
Replica exchange molecular dynamics simulations of coarse-grained proteins in implicit solvent.
Chebaro, Yassmine; Dong, Xiao; Laghaei, Rozita; Derreumaux, Philippe; Mousseau, Normand
2009-01-08
Current approaches aimed at determining the free energy surface of all-atom medium-size proteins in explicit solvent are slow and are not sufficient to converge to equilibrium properties. To ensure a proper sampling of the configurational space, it is preferable to use reduced representations such as implicit solvent and/or coarse-grained protein models, which are much lighter computationally. Each model must be verified, however, to ensure that it can recover experimental structures and thermodynamics. Here we test the coarse-grained implicit solvent OPEP model with replica exchange molecular dynamics (REMD) on six peptides ranging in length from 10 to 28 residues: two alanine-based peptides, the second beta-hairpin from protein G, the Trp-cage and zinc-finger motif, and a dimer of a coiled coil peptide. We show that REMD-OPEP recovers the proper thermodynamics of the systems studied, with accurate structural description of the beta-hairpin and Trp-cage peptides (within 1-2 A from experiments). The light computational burden of REMD-OPEP, which enables us to generate many hundred nanoseconds at each temperature and fully assess convergence to equilibrium ensemble, opens the door to the determination of the free energy surface of larger proteins and assemblies.
Coarse-graining of Polystyrene in Various Environments by Iterative Boltzmann Inversion
Faller, Roland; Bayramoglu, Beste
2013-03-01
We have developed mesoscale models for polystyrene (PS) oligomers in various environments following the Iterative Boltzmann Inversion Technique for polymer coarse-graining with and without confinement. Bond, bending angle, torsion angle distributions and radial distribution functions between PS monomers show that local structures were reproduced very well, while a small discrepancy remained in the reproduction of global structures (radii of gyration and end-to-end distances), which is probably due to end effects. Speed-up in polymer dynamics with each model was monitored by scaling factors calculated based on characteristic relaxation times of the end monomers as well as diffusivities of the chains. Results show that coarse-graining is most successful for the highest concentration system (melt) and least for the lowest concentration (dilute solution) due to the stronger slowdown of diffusive and rotational dynamics in atomistic simulations with concentration. The speed-up in the confined solution system was found to be greater than in the unconfined solution system due to the same reason except that confinement slows down the dynamics in that situation. We also characterize the limits to which extent the same models can be used for different degrees of confinement. Supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences (grant number DE-FG02-06ER46340).
M3B: A coarse grain model for the simulation of oligosaccharides and their water mixtures.
Goddard, William A.; Cagin, Tahir; Molinero, Valeria
2003-03-01
Water and sugar dynamics in concentrated carbohydrate solutions is of utmost importance in food and pharmaceutical technology. Water diffusion in concentrated sugar mixtures can be slowed down many orders of magnitude with respect to bulk water [1], making extremely expensive the simulation of these systems with atomistic detail for the required time-scales. We present a coarse grain model (M3B) for malto-oligosaccharides and their water mixtures. M3B speeds up molecular dynamics simulations about 500-1000 times with respect to the atomistic model while retaining enough detail to be mapped back to the atomistic structures with low uncertainty in the positions. The former characteristic allows the study of water and carbohydrate dynamics in supercooled and polydisperse mixtures with characteristic time scales above the nanosecond. The latter makes M3B well suited for combined atomistic-mesoscale simulations. We present the parameterization of M3B force field for water and a family of technologically relevant glucose oligosaccharides, the alpha-(1->4) glucans. The coarse grain force field is completely parameterized from atomistic simulations to reproduce the density, cohesive energy and structural parameters of amorphous sugars. We will show that M3B is capable to describe the helical character of the higher oligosaccharides, and that the water structure in low moisture mixtures shows the same features obtained with the atomistic and M3B models. [1] R Parker, SG Ring: Carbohydr. Res. 273 (1995) 147-55.
Coarse-grained Simulations of Sugar Transport and Conformational Changes of Lactose Permease
Liu, Jin; Jewel, S. M. Yead; Dutta, Prashanta
2016-11-01
Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves sugar translocation, H+ transfer, as well as large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear due to the complexity and multiscale nature of the process. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the transport of a β-D-galactopyranosyl-1-thio- β-D-galactopyranoside (TDG) molecule across a wild-type LacY during lactose/H+ symport process. Results show that the local interactions between TDG and LacY at the binding pocket are consistent with the X-ray experiment. Protonation of Glu325 stabilizes the TDG and inward-facing conformation of LacY. Protonation of Glu269 induces a dramatic protein structural reorganization and causes the expulsion of TDG from LacY to both sides of the membrane. The structural changes occur primarily in the N-terminal domain of LacY. This work is supported by NSF Grants: CBET-1250107 and CBET -1604211.
A coarse-grained model to study calcium activation of the cardiac thin filament
Zhang, Jing; Schwartz, Steven
2015-03-01
Familial hypertrophic cardiomyopathy (FHC) is one of the most common heart disease caused by genetic mutations. Cardiac muscle contraction and relaxation involve regulation of crossbridge binding to the cardiac thin filament, which regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin (cTn) and tropomyosin (Tm). An atomistic model of cTn complex interacting with Tm has been studied by our group. A more realistic model requires the inclusion of the dynamics of actin filament, which is almost 6 times larger than cTn and Tm in terms of atom numbers, and extensive sampling of the model becomes very resource-demanding. By using physics-based protein united-residue force field, we introduce a coarse-grained model to study the calcium activation of the thin filament resulting from cTn's allosteric regulation of Tm dynamics on actin. The time scale is much longer than that of all-atom molecular dynamics simulation because of the reduction of the degrees of freedom. The coarse-grained model is a good template for studying cardiac thin filament mutations that cause FHC, and reduces the cost of computational resources.
Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism
Li, Zhen; Bian, Xin; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Li, Xiantao [Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2015-12-28
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.
Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions
Yang, G.; Guo, X.; Weng, G. J.; Zhu, L. L.; Ji, R.
2015-12-01
Coarse-grained (CG) metals strengthened by nanotwinned (NT) regions have both ultrahigh strength and good ductility. The presence of the NT regions contributes to their ultrahigh strength, while their good ductility is attributed to the recrystallized coarse grains. These characteristics make them a potential candidate for bullet-proof material. In this paper, numerical simulations based on the mechanism-based strain gradient plasticity and the Johnson-Cook failure criterion are carried out to investigate the effects of twin spacing and microstructural attributes on the ballistic performance of CG copper strengthened by NT regions. We investigate the performance of fourteen idealized microstructures, and find that smaller twin spacing and regular distribution of NT regions are more conducive to the promotion of the ballistic performance. We also uncover that the role of the shape of NT regions is significantly affected by twin spacing. Furthermore, we make a comparison with its CG counterpart without NTs, and find that microstructures with array arrangement of NT regions have higher limit velocities and smaller relative displacements than the single phase CG structure. This makes them a strong candidate for helmets and other personal protective equipments. It is believed that the simulated results could provide useful insights into the development of this advanced class of metals for ballistic protection.
A Tunable Coarse-Grained Model for Ligand-Receptor Interaction
Guantes, Raúl; Miguez, David G.
2013-01-01
Cell-surface receptors are the most common target for therapeutic drugs. The design and optimization of next generation synthetic drugs require a detailed understanding of the interaction with their corresponding receptors. Mathematical approximations to study ligand-receptor systems based on reaction kinetics strongly simplify the spatial constraints of the interaction, while full atomistic ligand-receptor models do not allow for a statistical many-particle analysis, due to their high computational requirements. Here we present a generic coarse-grained model for ligand-receptor systems that accounts for the essential spatial characteristics of the interaction, while allowing statistical analysis. The model captures the main features of ligand-receptor kinetics, such as diffusion dependence of affinity and dissociation rates. Our model is used to characterize chimeric compounds, designed to take advantage of the receptor over-expression phenotype of certain diseases to selectively target unhealthy cells. Molecular dynamics simulations of chimeric ligands are used to study how selectivity can be optimized based on receptor abundance, ligand-receptor affinity and length of the linker between both ligand subunits. Overall, this coarse-grained model is a useful approximation in the study of systems with complex ligand-receptor interactions or spatial constraints. PMID:24244115
Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism.
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em
2015-12-28
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.
Coarse-grained transport of a turbulent flow via moments of the Reynolds-averaged Boltzmann equation
Abramov, Rafail V
2015-01-01
Here we introduce new coarse-grained variables for a turbulent flow in the form of moments of its Reynolds-averaged Boltzmann equation. With the exception of the collision moments, the transport equations for the new variables are identical to the usual moment equations, and thus naturally lend themselves to the variety of already existing closure methods. Under the anelastic turbulence approximation, we derive equations for the Reynolds-averaged turbulent fluctuations around the coarse-grained state. We show that the global relative entropy of the coarse-grained state is bounded from above by the Reynolds average of the fine-grained global relative entropy, and thus obeys the time decay bound of Desvillettes and Villani. This is similar to what is observed in the rarefied gas dynamics, which makes the Grad moment closure a good candidate for truncating the hierarchy of the coarse-grained moment equations. We also show that, under additional assumptions on the form of the coarse-grained collision terms, one a...
A test of systematic coarse-graining of molecular dynamics simulations: thermodynamic properties.
Fu, Chia-Chun; Kulkarni, Pandurang M; Shell, M Scott; Leal, L Gary
2012-10-28
Coarse-graining (CG) techniques have recently attracted great interest for providing descriptions at a mesoscopic level of resolution that preserve fluid thermodynamic and transport behaviors with a reduced number of degrees of freedom and hence less computational effort. One fundamental question arises: how well and to what extent can a "bottom-up" developed mesoscale model recover the physical properties of a molecular scale system? To answer this question, we explore systematically the properties of a CG model that is developed to represent an intermediate mesoscale model between the atomistic and continuum scales. This CG model aims to reduce the computational cost relative to a full atomistic simulation, and we assess to what extent it is possible to preserve both the thermodynamic and transport properties of an underlying reference all-atom Lennard-Jones (LJ) system. In this paper, only the thermodynamic properties are considered in detail. The transport properties will be examined in subsequent work. To coarse-grain, we first use the iterative Boltzmann inversion (IBI) to determine a CG potential for a (1-φ)N mesoscale particle system, where φ is the degree of coarse-graining, so as to reproduce the radial distribution function (RDF) of an N atomic particle system. Even though the uniqueness theorem guarantees a one to one relationship between the RDF and an effective pairwise potential, we find that RDFs are insensitive to the long-range part of the IBI-determined potentials, which provides some significant flexibility in further matching other properties. We then propose a reformulation of IBI as a robust minimization procedure that enables simultaneous matching of the RDF and the fluid pressure. We find that this new method mainly changes the attractive tail region of the CG potentials, and it improves the isothermal compressibility relative to pure IBI. We also find that there are optimal interaction cutoff lengths for the CG system, as a function of
Peter Mirau
2015-09-01
Full Text Available Despite enormous efforts, our understanding the structure and dynamics of α-synuclein (ASN, a disordered protein (that plays a key role in neurodegenerative disease is far from complete. In order to better understand sequence-structure-property relationships in α-SYNUCLEIN we have developed a coarse-grained model using knowledge-based residue-residue interactions and used it to study the structure of free ASN as a function of temperature (T with a large-scale Monte Carlo simulation. Snapshots of the simulation and contour contact maps show changes in structure formation due to self-assembly as a function of temperature. Variations in the residue mobility profiles reveal clear distinction among three segments along the protein sequence. The N-terminal (1-60 and C-terminal (96-140 regions contain the least mobile residues, which are separated by the higher mobility non-amyloid component (NAC (61-95. Our analysis of the intra-protein contact profile shows a higher frequency of residue aggregation (clumping in the N-terminal region relative to that in the C-terminal region, with little or no aggregation in the NAC region. The radius of gyration (Rg of ASN decays monotonically with decreasing the temperature, consistent with the finding of Allison et al. (JACS, 2009. Our analysis of the structure function provides an insight into the mass (N distribution of ASN, and the dimensionality (D of the structure as a function of temperature. We find that the globular structure with D ≈ 3 at low T, a random coil, D ≈ 2 at high T and in between (2 ≤ D ≤ 3 at the intermediate temperatures. The magnitudes of D are in agreement with experimental estimates (J. Biological Chem 2002.
Mirau, Peter; Farmer, B. L.; Pandey, R. B.
2015-09-01
Despite enormous efforts, our understanding the structure and dynamics of α-synuclein (ASN), a disordered protein (that plays a key role in neurodegenerative disease) is far from complete. In order to better understand sequence-structure-property relationships in α-SYNUCLEIN we have developed a coarse-grained model using knowledge-based residue-residue interactions and used it to study the structure of free ASN as a function of temperature (T) with a large-scale Monte Carlo simulation. Snapshots of the simulation and contour contact maps show changes in structure formation due to self-assembly as a function of temperature. Variations in the residue mobility profiles reveal clear distinction among three segments along the protein sequence. The N-terminal (1-60) and C-terminal (96-140) regions contain the least mobile residues, which are separated by the higher mobility non-amyloid component (NAC) (61-95). Our analysis of the intra-protein contact profile shows a higher frequency of residue aggregation (clumping) in the N-terminal region relative to that in the C-terminal region, with little or no aggregation in the NAC region. The radius of gyration (Rg) of ASN decays monotonically with decreasing the temperature, consistent with the finding of Allison et al. (JACS, 2009). Our analysis of the structure function provides an insight into the mass (N) distribution of ASN, and the dimensionality (D) of the structure as a function of temperature. We find that the globular structure with D ≈ 3 at low T, a random coil, D ≈ 2 at high T and in between (2 ≤ D ≤ 3) at the intermediate temperatures. The magnitudes of D are in agreement with experimental estimates (J. Biological Chem 2002).
Markutsya, Sergiy [Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lamm, Monica H., E-mail: mhlamm@iastate.edu [Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011 (United States)
2014-11-07
We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.
Markutsya, Sergiy; Lamm, Monica H.
2014-11-01
We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.
Soheilifard, Reza; Makarov, Dmitrii E; Rodin, Gregory J
2011-08-07
Reduced-dimensionality, coarse-grained models are commonly employed to describe the structure and dynamics of large molecular systems. In those models, the dynamics is often described by Langevin equations of motion with phenomenological parameters. This paper presents a rigorous coarse-graining method for the dynamics of linear systems. In this method, as usual, the conformational space of the original atomistic system is divided into master and slave degrees of freedom. Under the assumption that the characteristic timescales of the masters are slower than those of the slaves, the method results in Langevin-type equations of motion governed by an effective potential of mean force. In addition, coarse-graining introduces hydrodynamic-like coupling among the masters as well as non-trivial inertial effects. Application of our method to the long-timescale part of the relaxation spectra of proteins shows that such dynamic coupling is essential for reproducing their relaxation rates and modes.
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plecháč, Petr
2015-08-01
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A; Plecháč, Petr
2015-08-28
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.
Ruff, Kiersten M. [Computational and Systems Biology Program and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899 (United States); Harmon, Tyler S. [Department of Physics and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899 (United States); Pappu, Rohit V., E-mail: pappu@wustl.edu [Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, CB 1097, St. Louis, Missouri 63130-4899 (United States)
2015-12-28
We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.
Efficient modeling, simulation and coarse-graining of biological complexity with NFsim.
Sneddon, Michael W; Faeder, James R; Emonet, Thierry
2011-02-01
Managing the overwhelming numbers of molecular states and interactions is a fundamental obstacle to building predictive models of biological systems. Here we introduce the Network-Free Stochastic Simulator (NFsim), a general-purpose modeling platform that overcomes the combinatorial nature of molecular interactions. Unlike standard simulators that represent molecular species as variables in equations, NFsim uses a biologically intuitive representation: objects with binding and modification sites acted on by reaction rules. During simulations, rules operate directly on molecular objects to produce exact stochastic results with performance that scales independently of the reaction network size. Reaction rates can be defined as arbitrary functions of molecular states to provide powerful coarse-graining capabilities, for example to merge Boolean and kinetic representations of biological networks. NFsim enables researchers to simulate many biological systems that were previously inaccessible to general-purpose software, as we illustrate with models of immune system signaling, microbial signaling, cytoskeletal assembly and oscillating gene expression.
Coarse-grained Dynamic Taint Analysis for Defeating Control and Non-control Data Attacks
Kohli, Pankaj
2009-01-01
Memory corruption attacks remain the primary threat for computer security. Information flow tracking or taint analysis has been proven to be effective against most memory corruption attacks. However, there are two shortcomings with current taint analysis based techniques. First, these techniques cause application slowdown by about 76% thereby limiting their practicality. Second, these techniques cannot handle non-control data attacks i.e., attacks that do not overwrite control data such as return address, but instead overwrite critical application configuration data or user identity data. In this work, to address these problems, we describe a coarse-grained taint analysis technique that uses information flow tracking at the level of application data objects. We propagate a one-bit taint over each application object that is modified by untrusted data thereby reducing the taint management overhead considerably. We performed extensive experimental evaluation of our approach and show that it can detect all critic...
Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics
Wabik, Jacek; Gront, Dominik; Kouza, Maksim; Kolinski, Andrzej
2013-01-01
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory
Wallden, P
2006-01-01
We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider with the arrival time problem and the problem of time in reparametrization invariant theories as for example in canonical quantum gravity. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem.
Rudzinski, Joseph F
2016-01-01
The parametrization of coarse-grained (CG) simulation models for molecular systems often aims at reproducing static properties alone. The reduced molecular friction of the CG representation usually results in faster, albeit inconsistent, dynamics. In this work, we rely on Markov state models to simultaneously characterize the static and kinetic properties of two CG peptide force fields---one top-down and one bottom-up. Instead of a rigorous evolution of CG dynamics (e.g., using a generalized Langevin equation), we attempt to improve the description of kinetics by simply altering the existing CG models, which employ standard Langevin dynamics. By varying masses and relevant force-field parameters, we can improve the timescale separation of the slow kinetic processes, achieve a more consistent ratio of mean-first-passage times between metastable states, and refine the relative free-energies between these states. Importantly, we show that the incorporation of kinetic information into a structure-based parametriz...
Tian, Pu
2015-01-01
Free energy is arguably the most important thermodynamic property for physical systems. Despite the fact that free energy is a state function, presently available rigorous methodologies, such as those based on thermodynamic integration (TI) or non-equilibrium work (NEW) analysis, involve energetic calculations on path(s) connecting the starting and the end macrostates. Meanwhile, presently widely utilized approximate end-point free energy methods lack rigorous treatment of conformational variation within end macrostates, and are consequently not sufficiently reliable. Here we present an alternative and rigorous end point free energy calculation formulation based on microscopic configurational space coarse graining, where the configurational space of a high dimensional system is divided into a large number of sufficiently fine and uniform elements, which were termed conformers. It was found that change of free energy is essentially decided by change of the number of conformers, with an error term that accounts...
Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components
Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.
2014-08-01
The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.
Virtual ultrasound sources for inspecting nuclear components of coarse-grained structure
Brizuela, J. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Katchadjian, P.; Desimone, C.; Garcia, A. [INEND-UAENDE, Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)
2014-02-18
This work describes an ultrasonic inspection procedure designed for verifying coarse-grained structure materials, which are commonly used on nuclear reactors. In this case, conventional phased array techniques cannot be used due to attenuating characteristics and backscattered noise from microstructures inside the material. Thus, synthetic aperture ultrasonic imaging (SAFT) is used for this approach in contact conditions. In order to increase energy transferred to the medium, synthetic transmit aperture is formed by several elements which generate a diverging wavefront equivalent to a virtual ultrasound source behind the transducer. On the other hand, the phase coherence technique has been applied to reduce more structural noise and improve the image quality. The beamforming process has been implemented over a GPU platform to reduce computing time.
Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly
Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.
2016-05-01
The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies.
Abbott, Lauren J.; Stevens, Mark J., E-mail: msteve@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2015-12-28
A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil–globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations.
Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics
Andrzej Koliński
2013-05-01
Full Text Available We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
Many-Body Coarse-Grained Interactions using Gaussian Approximation Potentials
John, S T
2016-01-01
This thesis introduces a framework that is able to describe general many-body coarse-grained interactions. We make use of this to describe the free energy surface as a cluster expansion in terms of monomer, dimer, and trimer terms. The contributions to the free energy due to these terms are inferred from MD results of the underlying all-atom model using Gaussian Approximation Potentials, a type of machine-learning potential based on Gaussian process regression. This provides CG interactions that are much more accurate than is possible with site-based pair potentials. While slower than these, it can still be faster than all-atom simulations for solvent-free CG models of systems with a large amount of solvent, as is common in biomolecular simulations.
Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics.
Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej
2013-05-10
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field.
Qi, Yifei; Ingólfsson, Helgi I; Cheng, Xi; Lee, Jumin; Marrink, Siewert J; Im, Wonpil
2015-09-08
Coarse-grained simulations are widely used to study large biological systems. Nonetheless, building such simulation systems becomes nontrivial, especially when membranes with various lipid types are involved. Taking advantage of the frameworks in all-atom CHARMM-GUI modules, we have developed CHARMM-GUI Martini Maker for building solution, micelle, bilayer, and vesicle systems as well as systems with randomly distributed lipids using the Martini force field. Martini Maker supports 82 lipid types and different flavors of the Martini force field, including polar and nonpolar Martini, Dry Martini, and ElNeDyn (an elastic network model for proteins). The qualities of the systems generated by Martini Maker are validated by simulations of various examples involving proteins and lipids. We expect Martini Maker to be a useful tool for modeling large, complicated biomolecular systems in a user-friendly way.
Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles
Lopez, Hender
2016-01-01
We present a coarse-grained model for evaluation of interactions of globular proteins with nanoparticles. The protein molecules are represented by one bead per aminoacid and the nanoparticle by a homogeneous sphere that interacts with the aminoacids via a central force that depends on the nanoparticle size. The proposed methodology is used to predict the adsorption energies for six common human blood plasma proteins on hydrophobic charged or neutral nanoparticles of different sizes as well as the preferred orientation of the molecules upon adsorption. Our approach allows one to rank the proteins by their binding affinity to the nanoparticle, which can be used for predicting the composition of the NP-protein corona. The predicted ranking is in good agreement with known experimental data for protein adsorption on surfaces.
A Dynamically Reconfigurable Video Compression Scheme Using FPGAs with Coarse-grain Parallelism
S. Ramachandran
2002-01-01
Full Text Available A dynamically reconfigurable scheme for video encoder to switch among many different applications is presented. The scheme is suitable for FPGA implementation and conforms to JPEG, MPEG-1, MPEG-2, and H.263 standards. The scheme has emerged as an efficient and cost-effective solution for video compression as a result of innovative design using well-partitioned algorithms, highly pipelined architecture and coarse-grain parallelism. The reconfiguration time of the video encoder is less than 320 μs while switching from one standard to another. Although the dynamic reconfiguration scheme is presented for a video encoder, the same design methodology may be applied effectively for any other application.
Twist/Writhe Partitioning in a Coarse-Grained DNA Minicircle Model
Sayar, Mehmet; Kabakcioglu, Alkan
2009-01-01
Here we present a systematic study of supercoil formation in DNA minicircles under varying linking number by using molecular dynamics simulations of a two-bead coarse-grained model. Our model is designed with the purpose of simulating long chains without sacrificing the characteristic structural properties of the DNA molecule, such as its helicity, backbone directionality and the presence of major and minor grooves. The model parameters are extracted directly from full-atomistic simulations of DNA oligomers via Boltzmann inversion, therefore our results can be interpreted as an extrapolation of those simulations to presently inaccessible chain lengths and simulation times. Using this model, we measure the twist/writhe partitioning in DNA minicircles, in particular its dependence on the chain length and excess linking number. We observe an asymmetric supercoiling transition consistent with experiments. Our results suggest that the fraction of the linking number absorbed as twist and writhe is nontrivially depe...
Probing the QCD phase diagram with dileptons - a study using coarse-grained transport dynamics
Endres, Stephan; Bleicher, Marcus
2016-01-01
Dilepton production in heavy-ion collisions at various energies is studied using coarse-grained transport simulations. Microscopic output from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is hereby put on a grid of space-time cells which allows to extract the local temperature and chemical potential in each cell via an equation of state. The dilepton emission is then calculated applying in-medium spectral functions from hadronic many-body theory and partonic production rates based on lattice calculations. The comparison of the resulting spectra with experimental data shows that the dilepton excess beyond the decay contributions from a hadronic cocktail reflects the trajectory of the fireball in the $T-\\mu_{\\mathrm{B}}$ plane of the QCD phase diagram.
Experimental study on waves propagation over a coarse-grained sloping beach
Hsu, Tai-Wen; Lai, Jian-Wu
2013-04-01
This study investigates velocity fields of wave propagation over a coarse-grained sloping beach using laboratory experiments. The experiment was conducted in a wave flume of 25 m long, 0.5 m wide and 0.6 m high in which a coarse-grained sloping 1:5 beach was placed with two layers ball. The glass ball is D=7.9 cm and the center to center distance of each ball is 8.0 cm. The test section for observing wave and flow fields is located at the middle part of the flume. A piston type wave maker driven by an electromechanical hydraulic serve system is installed at the end of the flume. The intrinsic permeability Kp and turbulent drag coefficient Cf were obtained from steady flow water-head experiments. The flow velocity was measured by the particle image velocimeter (PIV) and digital image process (DIP) techniques. Eleven fields of view (FOVS) were integrated into a complete representation including the outer, surf and swash zone. Details of the definition sketch of the coarse-grained sloping beach model as well as experimental setup are referred to Lai et al. (2008). A high resolution of CCD camera was used to capture the images which was calibrated by the direct linear transform (DCT) algorithm proposed by Abed El-Aziz and Kar-Ara (1971). The water surface between the interface of air and water at each time step are calculated by Otsu' (1978) detect algorithm. The comparison shows that the water surface elevation observed by integrated image agrees well with that of Otsu' detection results. For the flow field measurement, each image pair was cross correlated with 32X32 pixel inter rogation window and a half overlap between adjacent windows. The repeatability and synchronization are the key elements for both wave motion and PIV technique. The wave profiles and flow field were compared during several wave periods to ensure that they can be reproduced by the present system. The water depth is kept as a constant of h=32 cm. The incident wave conditions are set to be wave
A new algorithm for construction of coarse-grained sites of large biomolecules.
Li, Min; Zhang, John Z H; Xia, Fei
2016-04-05
The development of coarse-grained (CG) models for large biomolecules remains a challenge in multiscale simulations, including a rigorous definition of CG representations for them. In this work, we proposed a new stepwise optimization imposed with the boundary-constraint (SOBC) algorithm to construct the CG sites of large biomolecules, based on the s cheme of essential dynamics CG. By means of SOBC, we can rigorously derive the CG representations of biomolecules with less computational cost. The SOBC is particularly efficient for the CG definition of large systems with thousands of residues. The resulted CG sites can be parameterized as a CG model using the normal mode analysis based fluctuation matching method. Through normal mode analysis, the obtained modes of CG model can accurately reflect the functionally related slow motions of biomolecules. The SOBC algorithm can be used for the construction of CG sites of large biomolecules such as F-actin and for the study of mechanical properties of biomaterials.
A coarse-grain force field for RDX: Density dependent and energy conserving
Moore, Joshua D.; Barnes, Brian C.; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S.; Taylor, DeCarlos E.; Brennan, John K.
2016-03-01
We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.
A coarse-grained reconfigurable computing architecture with loop self-pipelining
DOU Yong; WU GuiMing; XU JinHui; ZHOU XingMing
2009-01-01
Reconfigurable computing tries to achieve the balance between high efficiency of custom computing and flexibility of general-purpose computing. This paper presents the Implementation techniques in LEAP, a coarse-grained reconfigurable array, and proposes a speculative execution mechanism for dynamic loop scheduling with the goal of one iteration per cycle and Implementation techniques to support decoupling synchronization between the token generator and the collector. This paper also in-troduces the techniques of exploiting both data dependences of intra- and inter-Iteration, with the help of two instructions for special data reuses in the loop-carried dependences. The experimental results show that the number of memory accesses reaches on average 3% of an RISC processor simulator with no memory optimization. In a practical Image matching application, LEAP architecture achieves about 34 times of speedup in execution cycles, compared with general-purpose processors.
Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics.
Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone
2015-04-14
A novel simulation framework that integrates the OPEP coarse-grained (CG) model for proteins with the Lattice Boltzmann (LB) methodology to account for the fluid solvent at mesoscale level is presented. OPEP is a very efficient, water-free and electrostatic-free force field that reproduces at quasi-atomistic detail processes like peptide folding, structural rearrangements, and aggregation dynamics. The LB method is based on the kinetic description of the solvent in order to solve the fluid mechanics under a wide range of conditions, with the further advantage of being highly scalable on parallel architectures. The capabilities of the approach are presented, and it is shown that the strategy is effective in exploring the role of hydrodynamics on protein relaxation and peptide aggregation. The end result is a strategy for modeling systems of thousands of proteins, such as in the case of dense protein suspensions. The future perspectives of the multiscale approach are also discussed.
The derivation and approximation of coarse-grained dynamics from Langevin dynamics
Ma, Lina; Li, Xiantao; Liu, Chun
2016-11-01
We present a derivation of a coarse-grained description, in the form of a generalized Langevin equation, from the Langevin dynamics model that describes the dynamics of bio-molecules. The focus is placed on the form of the memory kernel function, the colored noise, and the second fluctuation-dissipation theorem that connects them. Also presented is a hierarchy of approximations for the memory and random noise terms, using rational approximations in the Laplace domain. These approximations offer increasing accuracy. More importantly, they eliminate the need to evaluate the integral associated with the memory term at each time step. Direct sampling of the colored noise can also be avoided within this framework. Therefore, the numerical implementation of the generalized Langevin equation is much more efficient.
Ishioka, T.; Yamada, H.; Miyakawa, T.; Morikawa, R.; Akanuma, S.; Yamagishi, A.; Takasu, M.
2016-12-01
Proteins, which incorporate charged and hydrophobic amino acid residues, are useful as a material of nanotechnology. Among these proteins, IPMDH (3-isopropylmalate dehydrogenase), which has thermal stability, has potential as a material of nanofiber. In this study, we performed coarse-grained molecular dynamics simulation of IPMDH using MARTINI force fields, and we investigated the orientation for the binding of IPMDH. In simulation, we analyzed wild type of IPMDH and the mutated IPMDH proteins, where 13, 20, 27, 332, 335 and 338th amino acid residues are replaced by lysine residues which have positive charge and by glutamic acid residues which have negative charge. Since the binding of mutated IPMDH is advantageous compared with the binding of wild type for one orientation, we suggest that the Coulomb interaction for the binding of IPMDH is important.
Coarse-grained entropy and causal holographic information in AdS/CFT
Kelly, William R.; Wall, Aron C. [University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)
2014-03-26
We propose bulk duals for certain coarse-grained entropies of boundary regions. The ‘one-point entropy’ is defined in the conformal field theory by maximizing the entropy in a domain of dependence while fixing the one-point functions. We conjecture that this is dual to the area of the edge of the region causally accessible to the domain of dependence (i.e. the ‘causal holographic information’ of Hubeny and Rangamani). The ‘future one-point entropy’ is defined by generalizing this conjecture to future domains of dependence and their corresponding bulk regions. We show that the future one-point entropy obeys a nontrivial second law. If our conjecture is true, this answers the question “What is the field theory dual of Hawking’s area theorem?”.
Development of DPD coarse-grained models: From bulk to interfacial properties
Solano Canchaya, José G.; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice
2016-08-01
A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.
Simulations of room temperature ionic liquids: From polarizable to coarse-grained force fields
Salanne, Mathieu
2015-01-01
Room temperature ionic liquids (RTILs) are solvent with unusual properties, which are difficult to characterize experimentally because of their intrinsic complexity (large number of atoms, strong Coulomb interactions). Molecular simulations have therefore been essential in our understanding of these systems. Depending on the target property and on the necessity to account for fine details of the molecular structure of the ions, a large range of simulation techniques are available. Here I focus on classical molecular dynamics, in which the level of complexity of the simulation, and therefore the computational cost, mostly depends on the force field. Depending on the representation of the ions, these are either classified as all-atom or coarse-grained. In addition, all-atom force fields may account for polarization effects if necessary. The most widely used methods for RTILs are described together with their main achievements and limitations.
Transferable coarse-grained potential for $\\textit{de novo}$ protein folding and design
Coluzza, Ivan
2014-01-01
Protein folding and design are major biophysical problems, the solution of which would lead to important applications especially in medicine. Here a novel protein model capable of simultaneously provide quantitative protein design and folding is introduced. With computer simulations it is shown that, for a large set of real protein structures, the model produces designed sequences with similar physical properties to the corresponding natural occurring sequences. The designed sequences are not yet fully realistic and require further experimental testing. For an independent set of proteins, notoriously difficult to fold, the correct folding of both the designed and the natural sequences is also demonstrated. The folding properties are characterized by free energy calculations. which not only are consistent among natural and designed proteins, but we also show a remarkable precision when the folded structures are compared to the experimentally determined ones. Ultimately, this novel coarse-grained protein model ...
Simulating a burnt-bridges DNA motor with a coarse-grained DNA model
Šulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A
2012-01-01
We apply a recently-developed coarse-grained model of DNA, designed to capture the basic physics of nanotechnological DNA systems, to the study of a `burnt-bridges' DNA motor consisting of a single-stranded cargo that steps processively along a track of single-stranded stators. We demonstrate that the model is able to simulate such a system, and investigate the sensitivity of the stepping process to the spatial separation of stators, finding that an increased distance can suppress successful steps due to the build up of unfavourable tension. The mechanism of suppression suggests that varying the distance between stators could be used as a method for improving signal-to-noise ratios for motors that are required to make a decision at a junction of stators.
Coarse-grained entropy rates for characterization of complex time series
Paluš, Milan
A method for classification of complex time series using coarse grained entropy rates (CER's) is presented. The CER's, which are computed from information-theoretic funcionals - redundancies, are relative measures of regularity and predictability, and for data generated by dynamical systems they are related to Kolmogorov-Sinai entropy. A deterministic dynamical origin of the data under study, however, is not a necessary condition for the use of the CER's, since the entropy rates can be defined for stochastic processes as well. Sensitivity of the CER's to changes in data dynamics and their robustness with respect to noise are tested by using numerically generated time series resulted from both deterministic - chaotic and stochastic processes. Potential application of the CER's in analysis of physiological signals or other complex time series is demonstrated by using examples from pharmaco-EEG and tremor classification.
Bridging the Coarse-grained to Microscopic information gap: A numerical optimization method
Mansour, Andrew Abi
2013-01-01
Atom-resolved states must be constructed as part of a multiscale algorithm that coevolves the system at the atomic and coarse-grained (CG) scales. The CG description does not capture the constraints on distances and angles imposed by stiff bonded interactions. Thus, in isothermal simulations, using only CG information to construct the initial conditions yields microstates of negligible Boltzmann weight. In this paper, we present a reversible CG to all-atom mapping algorithm that overcomes this difficulty. The result is a scalable algorithm for simulating mesoscopic systems with atomic precision, over long periods of time, and with great efficiency over conventional MD. The mapping algorithm is implemented in parallel for distributed memory systems as part of the Deductive Multiscale Simulator software. It is demonstrated for Lactoferrin, an assembly of Nudaurelia Capensis Omega proteins, and Cowpea Chlorotic Mottle virus capsid.
Macroscopic and large scale phenomena coarse graining, mean field limits and ergodicity
Rademacher, Jens; Zagaris, Antonios
2016-01-01
This book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a mor...
A Coarse-grained Model of Stratum Corneum Lipids: Free Fatty Acids and Ceramide NS
Moore, Timothy C.; Iacovella, Christopher R.; Hartkamp, Remco; Bunge, Annette L.; McCabe, Clare
2017-01-01
Ceramide (CER)-based biological membranes are used both experimentally and in simulations as simplified model systems of the skin barrier. Molecular dynamics studies have generally focused on simulating preassembled structures using atomistically detailed models of CERs, which limit the system sizes and timescales that can practically be probed, rendering them ineffective for studying particular phenomena, including self-assembly into bilayer and lamellar superstructures. Here, we report on the development of a coarse-grained (CG) model for CER NS, the most abundant CER in human stratum corneum. Multistate iterative Boltzmann inversion is used to derive the intermolecular pair potentials, resulting in a force field that is applicable over a range of state points and suitable for studying ceramide self-assembly. The chosen CG mapping, which includes explicit interaction sites for hydroxyl groups, captures the directional nature of hydrogen bonding and allows for accurate predictions of several key structural properties of CER NS bilayers. Simulated wetting experiments allow the hydrophobicity of CG beads to be accurately tuned to match atomistic wetting behavior, which affects the whole system since inaccurate hydrophobic character is found to unphysically alter the lipid packing in hydrated lamellar states. We find that CER NS can self-assemble into multilamellar structures, enabling the study of lipid systems more representative of the multilamellar lipid structures present in the skin barrier. The coarse-grained force field derived herein represents an important step in using molecular dynamics to study the human skin barrier, which gives a resolution not available through experiment alone. PMID:27564869
Polarizable water model for the coarse-grained MARTINI force field.
Semen O Yesylevskyy
2010-06-01
Full Text Available Coarse-grained (CG simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.
A Direct Method for Incorporating Experimental Data into Multiscale Coarse-Grained Models.
Dannenhoffer-Lafage, Thomas; White, Andrew D; Voth, Gregory A
2016-05-10
To extract meaningful data from molecular simulations, it is necessary to incorporate new experimental observations as they become available. Recently, a new method was developed for incorporating experimental observations into molecular simulations, called experiment directed simulation (EDS), which utilizes a maximum entropy argument to bias an existing model to agree with experimental observations while changing the original model by a minimal amount. However, there is no discussion in the literature of whether or not the minimal bias systematically and generally improves the model by creating agreement with the experiment. In this work, we show that the relative entropy of the biased system with respect to an ideal target is always reduced by the application of a minimal bias, such as the one utilized by EDS. Using all-atom simulations that have been biased with EDS, one can then easily and rapidly improve a bottom-up multiscale coarse-grained (MS-CG) model without the need for a time-consuming reparametrization of the underlying atomistic force field. Furthermore, the improvement given by the many-body interactions introduced by the EDS bias can be maintained after being projected down to effective two-body MS-CG interactions. The result of this analysis is a new paradigm in coarse-grained modeling and simulation in which the "bottom-up" and "top-down" approaches are combined within a single, rigorous formalism based on statistical mechanics. The utility of building the resulting EDS-MS-CG models is demonstrated on two molecular systems: liquid methanol and ethylene carbonate.
Shendruk, Tyler N; Bertrand, Martin; Harden, James L; Slater, Gary W; de Haan, Hendrick W
2014-12-28
Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap of the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.
A coarse-grained model for synergistic action of multiple enzymes on cellulose
Asztalos Andrea
2012-08-01
Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures
Coarse-graining to the meso and continuum scales with molecular-dynamics-like models
Plimpton, Steve
Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.
Web-based computational chemistry education with CHARMMing II: Coarse-grained protein folding.
Pickard, Frank C; Miller, Benjamin T; Schalk, Vinushka; Lerner, Michael G; Woodcock, H Lee; Brooks, Bernard R
2014-07-01
A lesson utilizing a coarse-grained (CG) Gō-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the Gō-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG Gō model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field.
Shendruk, Tyler N., E-mail: tyler.shendruk@physics.ox.ac.uk [The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Bertrand, Martin; Harden, James L.; Slater, Gary W. [Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Haan, Hendrick W. de [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, Ontario L1H 7K4 (Canada)
2014-12-28
Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap of the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.
Shendruk, Tyler N.; Bertrand, Martin; Harden, James L.; Slater, Gary W.; de Haan, Hendrick W.
2014-12-01
Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap of the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.
Web-based computational chemistry education with CHARMMing II: Coarse-grained protein folding.
Frank C Pickard
2014-07-01
Full Text Available A lesson utilizing a coarse-grained (CG Gō-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing web portal (www.charmming.org to the Chemistry at HARvard Macromolecular Mechanics (CHARMM molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the Gō-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG Gō model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field.
Perlmutter, Jason D; Drasler, William J; Xie, Wangshen; Gao, Jiali; Popot, Jean-Luc; Sachs, Jonathan N
2011-09-06
Amphipathic polymers called amphipols (APols) have been developed as an alternative to detergents for stabilizing membrane proteins (MPs) in aqueous solutions. APols provide MPs with a particularly mild environment and, as a rule, keep them in a native functional state for longer periods than do detergents. Amphipol A8-35, a derivative of polyacrylate, is widely used and has been particularly well studied experimentally. In aqueous solutions, A8-35 molecules self-assemble into well-defined globular particles with a mass of ∼40 kDa and a R(g) of ∼2.4 nm. As a first step towards describing MP/A8-35 complexes by molecular dynamics (MD), we present three sets of simulations of the pure APol particle. First, we performed a series of all-atom MD (AAMD) simulations of the particle in solution, starting from an arbitrary initial configuration. Although AAMD simulations result in stable cohesive particles over a 45 ns simulation, the equilibration of the particle organization is limited. This motivated the use of coarse-grained MD (CGMD), allowing us to investigate processes on the microsecond time scale, including de novo particle assembly. We present a detailed description of the parametrization of the CGMD model from the AAMD simulations and a characterization of the resulting CGMD particles. Our third set of simulations utilizes reverse coarse-graining (rCG), through which we obtain all-atom coordinates from a CGMD simulation. This allows a higher-resolution characterization of a configuration determined by a long-timescale simulation. Excellent agreement is observed between MD models and experimental, small-angle neutron scattering data. The MD data provides new insight into the structure and dynamics of A8-35 particles, which is possibly relevant to the stabilizing effects of APols on MPs, as well as a starting point for modeling MP/A8-35 complexes.
Thermal dileptons from coarse-grained transport as fireball probes at SIS energies
Galatyuk, Tetyana; Seck, Florian [Technische Universitaet Darmstadt, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hohler, Paul M.; Rapp, Ralf [Texas A and M University, College Station, TX (United States); Stroth, Joachim [Texas A and M University, College Station, TX (United States); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)
2016-05-15
Utilizing a coarse-graining method to convert hadronic transport simulations of Au+Au collisions at SIS energies into local temperature, baryon and pion densities, we compute the pertinent radiation of thermal dileptons based on an in-medium ρ spectral function that describes available spectra at ultrarelativistic collision energies. In particular, we analyze how far the resulting yields and slopes of the invariant-mass spectra can probe the lifetime and temperatures of the fireball. We find that dilepton radiation sets in after the initial overlap phase of the colliding nuclei of about 7 fm/c, and lasts for about 13 fm/c. This duration closely coincides with the development of the transverse collectivity of the baryons, thus establishing a direct correlation between hadronic collective effects and thermal EM radiation, and supporting a near local equilibration of the system. This fireball ''lifetime'' is substantially smaller than the typical 20-30 fm/c that naive considerations of the density evolution alone would suggest. We furthermore find that the total dilepton yield radiated into the invariant-mass window of M = 0.3-0.7 GeV/c{sup 2} normalized to the number of charged pions, follows a relation to the lifetime found earlier in the (ultra-)relativistic regime of heavy-ion collisions, and thus corroborates the versatility of this tool. The spectral slopes of the invariant-mass spectra above the φ -meson mass provide a thermometer of the hottest phases of the collision, and agree well with the maximal temperatures extracted from the coarse-grained hadron spectra. (orig.)
Weberszpil, J; Cherman, A; Helayël-Neto, J A
2012-01-01
The main goal of this paper is to set up the coarse-grained formulation of a fractional Schr\\"odinger equation that incorporates a higher (spatial) derivative term which accounts for relativistic effects at a lowest order. The corresponding continuity equation is worked out and we also identify the contribution of the relativistic correction the quantum potential in the coarse-grained treatment. As a consequence, in the classical regime, we derive the sort of fractional Newtonian law with the quantum potential included and the fractional conterparts of the De Broglies's energy and momentum relations.
Miller, Thomas F.; Vanden-Eijnden, Eric; Chandler, David
2007-01-01
With computer simulations of >100,000 atoms, the mechanism for the hydrophobic collapse of an idealized hydrated chain was obtained by tiling space with (0.2 nm)3 cubes and projecting the atomistic water molecule positions onto this grid. With the coarse-grained field thus defined, the string method in collective variables was used to compute a minimum free-energy pathway (MFEP) for the collapsing chain. These calculations provide a proof of principle for a coarse-grained description of water...
Grahnen, Johan A; Kubelka, Jan; Liberles, David A
2011-08-01
For high-throughput structural genomic and evolutionary bioinformatics approaches, there is a clear need for fast methods to evaluate substitutions structurally. Coarse-grained methods are both powerful and fast, and a coarse-grained approach to position the substituted side chains is presented. Through the application of a coarse-grained method, a speed-up on the single- residue replacement, of at least sevenfold is achieved compared with modern all-atom approaches. At the same time, this approach maintains a small median RMSD from the leading all-atom approach (as measured in coarse-grained space), and predicts the conformation of point mutants with similar accuracy and generates biologically realistic side chain angles. This method is also substantially more predictable in its run time, making it useful for high-throughput studies of protein structural evolution. To demonstrate the utility of this method, it has been implemented in a forward simulation of sequences threaded through the SH2 domains, with selective pressures to fold and bind specifically. The relative substitution rates across the protein structure and at the binding interface are reflective of those observed in SH2 domain evolution. The algorithm has been implemented in C++, with the source code and binaries (currently supported for Linux systems) freely available as SARA at http://www.wyomingbioinformatics.org/LiberlesGroup/SARA .
Kraft, Johan Frederik; Vestergaard, Mikkel; Schiøtt, Birgit
2012-01-01
Membrane mimics such as micelles and bicelles are widely used in experiments involving membrane proteins. With the aim of being able to carry out molecular dynamics simulations in environments comparable to experimental conditions, we set out to test the ability of both coarse grained and atomist...
RAJAT DESIKAN; SWARNA M PATRA; KUMAR SARTHAK; PRABAL K MAITI; K G AYAPPA
2017-07-01
Pore forming toxins (PFTs) are virulent proteins whose primary goal is to lyse target cells by unregulated pore formation. Molecular dynamics simulations can potentially provide molecular insights on the properties of the pore complex as well as the underlying pathways for pore formation. In this manuscript wecompare both coarse-grained (MARTINI force-field) and all-atom simulations, and comment on the accuracy of the MARTINI coarse-grained method for simulating these large membrane protein pore complexes. We report 20 μs long coarse-grained MARTINI simulations of prototypical pores from two different classes ofpore forming toxins (PFTs) in lipid membranes - Cytolysin A (ClyA), which is an example of an α toxin, and α-hemolysin (AHL) which is an example of a β toxin. We compare and contrast structural attributes such as the root mean square deviation (RMSD) histograms and the inner pore radius profiles from the MARTINIsimulations with all-atom simulations. RMSD histograms sampled by the MARTINI simulations are about a factor of 2 larger, and the radius profiles show that the transmembrane domains of both ClyA and AHL pores undergo significant distortions, when compared with the all-atom simulations. In addition to the fully inserted transmembrane pores, membrane-inserted proteo-lipid ClyA arcs show large shape distortions with a tendency to close in the MARTINI simulations. While this phenomenon could be biologically plausible given the factthat α-toxins can form pores of varying sizes, the additional flexibility is probably due to weaker inter-protomer interactions which are modulated by the elastic dynamic network in the MARTINI force-field. We conclude that there is further scope for refining inter-protomer contacts and perhaps membrane-protein interactions in the MARTINI coarse-grained framework. A robust coarse-grained force-field will enable one to reliably carry out mesoscopic simulations which are required to understand protomer oligomerization, pore
Short- and medium-term response to storms on three Mediterranean coarse-grained beaches
Grottoli, Edoardo; Bertoni, Duccio; Ciavola, Paolo
2017-10-01
The storm response of three Italian coarse-grained beaches was investigated to better understand the morphodynamics of coarse-clastic beaches in a microtidal context. Two of the studied sites are located on the eastern side of the country (Portonovo and Sirolo) and the third one (Marina di Pisa) is on the western side. Portonovo and Sirolo are mixed sand and gravel beaches where the storms approach from two main directions, SE and NE. Marina di Pisa is a coarse-grained, gravel-dominated beach, exposed to storms driven by SW winds. Gravel nourishments were undertaken in recent years on the three sites. Beach topography was monitored measuring the same network of cross sections at a monthly (i.e. short-term) to seasonal frequency (i.e. medium-term). Geomorphic changes were examined before and after storm occurrences by means of profile analyses and shoreline position evaluations. The beach orientation and the influence of hard structures are the main factors controlling the transport and accumulation of significant amount of sediments and the consequent high variability of beach morphology over the medium-term. For Marina di Pisa, storms tend to accumulate material towards the upper part of the beach with no shoreline rotation and no chance to recover the initial configuration. Sirolo and Portonovo showed a similar behaviour that is more typical of pocket beaches. Both beaches show shoreline rotation after storms in a clockwise or counter-clockwise direction according to the incoming wave direction. The wider and longer beach at Sirolo allows the accumulation of a thin layer of sediment during storms, rather than at Portonovo where, given its longshore and landward boundaries, the beach material tends to accumulate in greater thickness. After storms, Sirolo and especially Portonovo can quickly recover the initial beach configuration, as soon as another storm of comparable energy approaches from the opposite direction of the previous one. Large morphological
Relationships among coarse-grained field theories of fluctuations in polymer liquids.
Morse, David C; Qin, Jian
2011-02-28
Two closely related field-theoretic approaches have been used in previous work to construct coarse-grained theories of corrections to the random phase approximation for correlations in block copolymer melts and miscible polymer blends. The "auxiliary field" (AF) approach is based on a rigorous expression for the partition function Z of a coarse-grained model as a functional integral of an auxiliary chemical potential field. The "effective Hamiltonian" (EH) approach is instead based on an expression for Z as a functional integral of an observable order parameter field. The exact effective Hamiltonian H(eff) in the EH approach is defined as the free energy of a system with a constrained order parameter field. In practice, however, H(eff) has often been approximated by a mean-field free energy functional, yielding what we call a mean-field effective Hamiltonian (MFEH) approximation. This approximation was the starting point of both the Fredrickson-Helfand analysis of fluctuation effects in diblock copolymers and earlier work on the Ginzburg criterion in polymer blends. A more rigorous EH approach by Holyst and Vilgis used an auxiliary field representation of the exact H(eff) and allowed for Gaussian fluctuations of this field. All applications of both AF and EH approaches have thus far relied upon some form of Gaussian, or "one-loop" approximation for fluctuations of a chemical potential and/or order parameter field about a mean-field saddle-point. The one-loop EH approximation of Holyst and Vilgis and the one-loop AF theory are equivalent to one another, but not to the one-loop MFEH theory. The one-loop AF and MFEH theories are shown to yield predictions for the inverse structure factor S(-1)(q) that (in the absence of further approximations to either theory) differ by a function that is independent of the Flory-Huggins interaction parameter χ. As a result, these theories yield predictions for the peak scattering intensity that exhibit a similar χ-dependence near a
Representing environment-induced helix-coil transitions in a coarse grained peptide model
Dalgicdir, Cahit; Globisch, Christoph; Sayar, Mehmet; Peter, Christine
2016-10-01
Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that
First-principles theory, coarse-grained models, and simulations of ferroelectrics.
Waghmare, Umesh V
2014-11-18
large-scale simulations while capturing the relevant microscopic interactions quantitatively. In this Account, we first summarize the insights obtained into chemical mechanisms of ferroelectricity using first-principles DFT calculations. We then discuss the principles of construction of first-principles model Hamiltonians for ferroelectric phase transitions in perovskite oxides, which involve coarse-graining in time domain by integrating out high frequency phonons. Molecular dynamics simulations of the resulting model are shown to give quantitative predictions of material-specific ferroelectric transition behavior in bulk as well as nanoscale ferroelectric structures. A free energy landscape obtained through coarse-graining in real-space provides deeper understanding of ferroelectric transitions, domains, and states with inhomogeneous order and points out the key role of microscopic coupling between phonons and strain. We conclude with a discussion of the multiscale modeling strategy elucidated here and its application to other materials such as shape memory alloys.
Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers
Daily, Michael D.; Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.
2014-03-24
In mammalian cells cholesterol is essential for membrane function, but in excess can be cytototoxic. The cellular response to acute cholesterol loading involves biophysical-based mechanisms that regulate cholesterol levels, through modulation of the “activity” or accessibility of cholesterol to extra-membrane acceptors. Experiments and united atom (UA) simulations show that at high concentrations of cholesterol, lipid bilayers thin significantly and cholesterol availability to external acceptors increases substantially. Such cholesterol activation is critical to its trafficking within cells. Here we aim to reduce the computational cost to enable simulation of large and complex systems involved in cholesterol regulation, such as those including oxysterols and cholesterol-sensing proteins. To accomplish this, we have modified the published MARTINI coarse-grained force field to improve its predictions of cholesterol-induced changes in both macroscopic and microscopic properties of membranes. Most notably, MARTINI fails to capture both the (macroscopic) area condensation and membrane thickening seen at less than 30% cholesterol and the thinning seen above 40% cholesterol. The thinning at high concentration is critical to cholesterol activation. Microscopic properties of interest include cholesterol-cholesterol radial distribution functions (RDFs), tilt angle, and accessible surface area. First, we develop an “angle-corrected” model wherein we modify the coarse-grained bond angle potentials based on atomistic simulations. This modification significantly improves prediction of macroscopic properties, most notably the thickening/thinning behavior, and also slightly improves microscopic property prediction relative to MARTINI. Second, we add to the angle correction a “volume correction” by also adjusting phospholipid bond lengths to achieve a more accurate volume per molecule. The angle + volume correction substantially further improves the quantitative
Multi-scale coarse-graining of non-conservative interactions in molecular liquids
Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)
2014-03-14
A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger
Distributed and Adaptive Darting Monte Carlo through Regenerations
Ahn, S.; Chen, Y.; Welling, M.
2013-01-01
Darting Monte Carlo (DMC) is a MCMC procedure designed to effectively mix between multiple modes of a probability distribution. We propose an adaptive and distributed version of this method by using regenerations. This allows us to run multiple chains in parallel and adapt the shape of the jump regi
Smoothing potential energy surface of proteins by hybrid coarse grained approach
Lu, Yukun; Zhou, Xin; OuYang, ZhongCan
2017-05-01
Coarse-grained (CG) simulations can more efficiently study large conformational changes of biological polymers but usually lose accuracies in the details. Lots of different hybrid models involving multiple different resolutions have been developed to overcome the difficulty. Here we propose a novel effective hybrid CG (hyCG) approach which mixes the fine-grained interaction and its average in CG space to form a more smoothing potential energy surface. The hyCG approximately reproduces the potential of mean force in the CG space, and multiple mixed potentials can be further combined together to form a single effective force field for achieving both high efficiency and high accuracy. We illustrate the hyCG method in Trp-cage and Villin headpiece proteins to exhibit the folding of proteins. The topology of the folding landscape and thus the folding paths are preserved, while the folding is boosted nearly one order of magnitude faster. It indicates that the hyCG approach could be applied as an efficient force field in proteins. Project supported by the National Basic Research Program of China (Grant No. 2013CB932803), the National Natural Science Foundation of China (Grant No. 11574310), and the Joint NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145002).
A coarse-grained model for the simulations of biomolecular interactions in cellular environments
Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao, E-mail: yinghao.wu@einstein.yu.edu [Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461 (United States)
2014-02-07
The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments.
Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations.
Nandigrami, Prithviraj; Portman, John J
2016-03-14
Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest that the mechanism for the domain's allosteric transitions between the open and closed conformations depends on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM consistent with nCaM's higher thermal stability. Under approximate physiological conditions, the simulated unfolded state population of cCaM accounts for 10% of the population with nearly all of the sampled transitions (approximately 95%) unfolding and refolding during the conformational change. Transient unfolding significantly slows the domain opening and closing rates of cCaM, which can potentially influence its Ca(2+)-binding mechanism.
A Coarse Grained Model for Methylcellulose: Spontaneous Ring Formation at Elevated Temperature
Huang, Wenjun; Larson, Ronald
Methylcellulose (MC) is widely used as food additives and pharma applications, where its thermo-reversible gelation behavior plays an important role. To date the gelation mechanism is not well understood, and therefore attracts great research interest. In this study, we adopted coarse-grained (CG) molecular dynamics simulations to model the MC chains, including the homopolymers and random copolymers that models commercial METHOCEL A, in an implicit water environment, where each MC monomer modeled with a single bead. The simulations are carried using a LAMMPS program. We parameterized our CG model using the radial distribution functions from atomistic simulations of short MC oligomers, extrapolating the results to long chains. We used dissociation free energy to validate our CG model against the atomistic model. The CG model captured the effects of monomer substitution type and temperature from the atomistic simulations. We applied this CG model to simulate single chains up to 1000 monomers long and obtained persistence lengths that are close to those determined from experiment. We observed the chain collapse transition for random copolymer at 600 monomers long at 50C. The chain collapsed into a stable ring structure with outer diameter around 14nm, which appears to be a precursor to the fibril structure observed in the methylcellulose gel observed by Lodge et al. in the recent studies. Our CG model can be extended to other MC derivatives for studying the interaction between these polymers and small molecules, such as hydrophobic drugs.
Geometry of C-flat connections, coarse graining and the continuum limit
Martínez, J; Zapata, R J A; Mart\\'\\i{}nez, Jorge; Meneses, Claudio; Zapata, Jos\\'e A.
2005-01-01
A notion of effective gauge fields which does not involve a background metric is introduced. The role of scale is played by cellular decompositions of the base manifold. Once a cellular decomposition is chosen, the corresponding space of effective gauge fields is the space of flat connections with singularities on its codimension two skeleton, ${\\cal A}_{C-flat} \\subset \\bar{\\cal A}_M$. If cellular decomposition $C_2$ is finer than cellular decomposition $C_1$, there is a coarse graining map $\\pi_{C_2 \\to C_1}: {\\cal A}_{C_2-flat} \\to {\\cal A}_{C_1-flat}$. We prove that the triple $({\\cal A}_{C_2-flat}, \\pi_{C_2 \\to C_1}, {\\cal A}_{C_1-flat})$ is a principal fiber bundle with a preferred global section given by the natural inclusion map $i_{C_1 \\to C_2}: {\\cal A}_{C_1-flat} \\to {\\cal A}_{C_2-flat}$. Since the spaces ${\\cal A}_{C-flat}$ are partially ordered (by inclusion) and this order is directed in the direction of refinement, we can define a continuum limit, $C \\to M$. We prove that, in an appropriate sen...
Coarse-graining polymer solutions: A critical appraisal of single- and multi-site models
D'Adamo, G.; Menichetti, R.; Pelissetto, A.; Pierleoni, C.
2015-09-01
We critically discuss and review the general ideas behind single- and multi-site coarse-grained (CG) models as applied to macromolecular solutions in the dilute and semi-dilute regime. We first consider single-site models with zero-density and density-dependent pair potentials. We highlight advantages and limitations of each option in reproducing the thermodynamic behavior and the large-scale structure of the underlying reference model. As a case study we consider solutions of linear homopolymers in a solvent of variable quality. Secondly, we extend the discussion to multi-component systems presenting, as a test case, results for mixtures of colloids and polymers. Specifically, we found the CG model with zero-density potentials to be unable to predict fluid-fluid demixing in a reasonable range of densities for mixtures of colloids and polymers of equal size. For larger colloids, the polymer volume fractions at which phase separation occurs are largely overestimated. CG models with density-dependent potentials are somewhat less accurate than models with zero-density potentials in reproducing the thermodynamics of the system and, although they present a phase separation, they significantly underestimate the polymer volume fractions along the binodal. Finally, we discuss a general multi-site strategy, which is thermodynamically consistent and fully transferable with the number of sites, and that allows us to overcome most of the limitations discussed for single-site models.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K., E-mail: jonathan.doye@chem.ox.ac.uk [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Randisi, Ferdinando [Life Sciences Interface Doctoral Training Center, South Parks Road, Oxford OX1 3QU (United Kingdom); Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Šulc, Petr [Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065 (United States); Ouldridge, Thomas E. [Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ (United Kingdom); Tsukanov, Roman; Nir, Eyal [Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva (Israel); Louis, Ard A. [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2015-06-21
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals
Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637 (United States)
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V.
2016-01-01
Using dissipative particle dynamics (DPD), we simulate nanoscale segregation, water diffusion, and proton conductivity in hydrated sulfonated polystyrene (sPS). We employ a novel model [Lee et al. J. Chem. Theory Comput. 11(9), 4395-4403 (2015)] that incorporates protonation/deprotonation equilibria into DPD simulations. The polymer and water are modeled by coarse-grained beads interacting via short-range soft repulsion and smeared charge electrostatic potentials. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with the base beads representing water and sulfonate anions. Morse bond formation and breakup artificially mimics the Grotthuss mechanism of proton hopping between the bases. The DPD model is parameterized by matching the proton mobility in bulk water, dissociation constant of benzenesulfonic acid, and liquid-liquid equilibrium of water-ethylbenzene solutions. The DPD simulations semi-quantitatively predict nanoscale segregation in the hydrated sPS into hydrophobic and hydrophilic subphases, water self-diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from isolated water clusters to a 3D network. The analysis of hydrophilic subphase connectivity and water diffusion demonstrates the importance of the dynamic percolation effect of formation and breakup of temporary junctions between water clusters. The proposed DPD model qualitatively predicts the ratio of proton to water self-diffusion and its dependence on the hydration level that is in reasonable agreement with experiments.
Protein simulations in fluids: coupling the OPEP coarse-grained force field with hydrodynamics
Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone
2017-01-01
A novel simulation framework that integrates the OPEP coarse-grained (CG) model for proteins with the Lattice Boltzmann (LB) methodology to account for the fluid solvent at mesoscale level, is presented. OPEP is a very efficient, water-free and electrostatic-free force field that reproduces at quasi-atomistic detail processes like peptide folding, structural rearrangements and aggregation dynamics. The LB method is based on the kinetic description of the solvent in order to solve the fluid mechanics under a wide range of conditions, with the further advantage of being highly scalable on parallel architectures. The capabilities of the approach are presented and it is shown that the strategy is effective in exploring the role of hydrodynamics on protein relaxation and peptide aggregation. The end result is a strategy for modelling systems made up to thousands of proteins, such as in the case of dense protein suspensions. The future perspectives of the multi-scale approach are also discussed. PMID:26574390
A Ciampalini; M Firpo
2015-12-01
This study aims to develop a better understanding of the stratigraphy of the southern side of the Maritime Alps and of the Ligurian Sea during the Plio-Pleistocene. Five stratigraphic sections were measured and studied in the Segno River valley (Liguria, Italy). These sections are composed of Lower to Middle Pleistocene marine and continental deposits. Based on detailed mapping and sedimentological analysis, 12 marine and deltaic facies were identified. These facies were grouped into facies associations. Two allostratigraphic units were recognized, namely U1 and U2 from oldest to youngest. The lower unit (U1) represents the evolution of a coarse-grained delta developed in a valley or embayment. Within the deltaic sequence, transgressive and highstand systems tracts were recognized. The coarsening/shallowing upward trend observed within the sections suggests that the delta prograded rapidly in the landward portion of the canyon adjacent to the paleo-river outlet. The upper boundary of U1 is represented by a subaerial unconformity overlain by U2, which is composed of sediments deposited by several alluvial fan systems.
Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations
Bell, David R.; Cheng, Sara Y.; Salazar, Heber; Ren, Pengyu
2017-01-01
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3–4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes). PMID:28393861
A coarse-grained generalized second law for holographic conformal field theories
Bunting, William; Fu, Zicao; Marolf, Donald
2016-03-01
We consider the universal sector of a d\\gt 2 dimensional large-N strongly interacting holographic CFT on a black hole spacetime background B. When our CFT d is coupled to dynamical Einstein-Hilbert gravity with Newton constant G d , the combined system can be shown to satisfy a version of the thermodynamic generalized second law (GSL) at leading order in G d . The quantity {S}{CFT}+\\frac{A({H}B,{perturbed})}{4{G}d} is non-decreasing, where A({H}B,{perturbed}) is the (time-dependent) area of the new event horizon in the coupled theory. Our S CFT is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information—a quantity in turn defined in the AdS{}d+1 dual by the renormalized area {A}{ren}({H}{{bulk}}) of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Another corollary, given by setting {G}d=0, states that no finite process taken as a whole can increase the renormalized free energy F={E}{out}-{{TS}}{CFT}-{{Ω }}J, with T,{{Ω }} constants set by {H}B. This latter corollary constitutes a 2nd law for appropriate non-compact AdS event horizons.
pH-dependent Response of Coiled Coils: A Coarse-Grained Molecular Simulation Study
Enciso, Marta; Site, Luigi Delle
2013-01-01
In a recent work we proposed a coarse-grained methodology for studying the response of peptides when simulated at different values of pH; in this work we extend the methodology to analyze the pH-dependent behavior of coiled coils. This protein structure presents a remarkable chain stiffness andis formed by two or more long helical peptides that are interacting like the strands of a rope. Chain length and rigidity are the key aspects needed to extend previous peptide interaction potentials to this particular case; however the original model is naturally recovered when the length or the ridigity of the simulated chain are reduced. We apply the model and discuss results for two cases: (a) the folding/unfolding transition of a generic coiled coil as a function of pH; (b) behavior of a specific sequence as a function of the acidity conditions. In this latter case results are compared with experimental data from the literature in order to comment about the consistency of our approach.
Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.
Allefeld, Carsten; Bialonski, Stephan
2007-12-01
Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.
Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers
Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio; Cruz, Monica; de Pablo, Juan
2017-03-01
Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.
Shuai Wu; Hai-yi Zhan; Hong-ming Wang; Yan Ju
2012-01-01
The secondary structure of different Ⅰβ cellulose was analyzed by a molecular dynamics simulation with MARTINI coarse-grained force field,where each chain of the cellulose includes 40 D-glucoses units.Calculation gives a satisfied description about the secondary structure of the cellulose.As the chain number increasing,the cellulose becomes the form of a helix,with the diameter of screw growing and spiral rising.Interestingly,the celluloses with chain number N of 4,6,24 and 36 do show right-hand twisting.On the contrast,the celluloses with N of 8,12,16 chains are left-hand twisting.These simulations indicate that the cellulose with chain number larger than 36 will break down to two parts.Besides,the result indicates that 36-chains cellulose model is the most stable among all models.Furthermore,the Lennard-Jones potential determines the secondary structure.In addition,an equation was set up to analyze the twisting structure.
State refinements and coarse graining in a full theory embedding of loop quantum cosmology
Bodendorfer, N.
2017-07-01
Bridging between descriptions involving few large and many small quantum numbers is the main open problem in loop quantum gravity. In other words, one would like to be able to represent the same physical system in terms of a few ‘coarse’ quantum numbers, while the effective dynamics at the coarse level should agree with the one induced by a description involving many small quantum numbers. Efforts to understand this relationship face the problem of the enormous computational complexity involved in evolving a generic state containing many quanta. In a cosmological context however, certain symmetry assumptions on the quantum states allow one to simplify the problem. In this paper, we will show how quantum states describing a spatially flat homogeneous and isotropic universe can be refined and coarse grained. Invariance of the dynamics of the coarse observables is shown to require a certain scaling property (familiar from loop quantum cosmology) of the quantum states if no running of parameters is taken into account. The involved states are solutions to the Hamiltonian constraint when terms coming from spatial derivatives are neglected, i.e. one works in the approximation of non-interacting FRW patches. The technical means to arrive at this result are a version of loop quantum gravity based on variables inspired by loop quantum cosmology, as well as an exact solution to the quantum dynamics of loop quantum cosmology which extends to the full theory in the chosen approximation.
Self-assembly of gold nanorods coated with phospholipids: a coarse-grained molecular dynamics study
Wan, Mingwei; Li, Xiaoxu; Gao, Lianghui; Fang, Weihai
2016-11-01
The self-assembly of phospholipid-coated gold nanorods (GNRs) was investigated by coarse-grained molecular dynamics simulations. We predict that in addition to the formation of deformed vesicles encapsulating GNRs with diverse orientations, the lipid-coated GNRs can form a semi-ring attached to an excess vesicle phase, a branch with excess vesicle phase, a ring phase, a branch phase, a stack phase, and a vortex phase. The morphologies of the lipid-GNR complexes depend on the lipid/GNR molar ratio and the interaction strength between the nanorod surface and the lipid head groups. At given lipid-nanorod interactions, removing the lipid induces a phase transition from an isolated ring or branch phase to an aggregated vortex or stack phase and vice versa. As the lipid-coated GNRs transit from an isolated phase to an aggregated phase, the structure of the lipid at the nanorod surface converts from a bilayer state to a non-bilayer state.
The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study
Hoiles, William; Gupta, Rini; Cornell, Bruce; Krishnamurthy, Vikram
2016-01-01
Tethered bilayer lipid membranes (tBLMs) provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD) is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped Fokker-Planck equation, we show that the diffusion tensor and particle density of water in the tBLM is spatially dependent. Further, it is shown that the membrane thickness, lipid diffusion, defect density, free energy of lipid flip-flop, and membrane dielectric permittivity are all dependent on the tether density. The numerically computed results from the CGMD model are in agreement with the experimentally measured results from tBLMs containing different tether densities and lipids derived from Archaebacteria. Additionally, using experimental measurements from Escherichia coli bacteria and Saccharomyces Cerevisiae yeast tethered membranes, we illustrate how previous molecular dynamics results can be combined with the proposed model to estimate the dielectric permittivity and defect density of these membranes as a function of tether density. PMID:27736860
The attachment of α -synuclein to a fiber: A coarse-grain approach
Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.
2017-03-01
We present simulations of the amyloidogenic core of α-synuclein, the protein causing Parkinson's disease, as a short chain of coarse-grain patchy particles. Each particle represents a sequence of about a dozen amino acids. The fluctuating secondary structure of this intrinsically disordered protein is modelled by dynamic variations of the shape and interaction characteristics of the patchy particles, ranging from spherical with weak isotropic attractions for the disordered state to spherocylindrical with strong directional interactions for a β-sheet. Flexible linkers between the particles enable sampling of the tertiary structure. This novel model is applied here to study the growth of an amyloid fibril, by calculating the free energy profile of a protein attaching to the end of a fibril. The simulation results suggest that the attaching protein readily becomes trapped in a mis-folded state, thereby inhibiting further growth of the fibril until the protein has readjusted to conform to the fibril structure, in line with experimental findings and previous simulations on small fragments of other proteins.
Spiske, M.; Jaffe, B.E.
2009-01-01
Storms and associated surges are major coast-shaping processes. Nevertheless, no typical sequences for storm surge deposits in different coastal settings have been established. This study interprets a coarse-grained hurricane ridge deposit on the island of Bonaire, Netherlands Antilles. The sequence was deposited during Hurricane Lenny in November 1999. Insight is gained into the hydrodynamics of surge flow by interpreting textural trends, particle imbrication, and deposit geometry. Vertical textural variations, caused by time-dependent hydrodynamic changes, were used to subdivide the deposit into depositional units that correspond to different stages of the surge, such as setup, peak, and return flow. Particle size and imbrication trends and geometry of the units reflect landward bed-load transport of components during the setup, a nondirectional flow with sediment falling out of suspension during the peak, and a seaward bedload transport during the return flow. Formation of a ridge during setup affected the texture of the return flow unit. Changing angles of imbrication reflect alternating flow velocities during each phase. Normal grading during setup and inverse grading during return flow are caused by decelerating and accelerating flow, respectively. Hence, the interpreted deposit seems to represent the first described complete hurricane surge sequence from a carbonate environment. ?? 2009 Geological Society of America.
Systematic methods for defining coarse-grained maps in large biomolecules.
Zhang, Zhiyong
2015-01-01
Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.
Rudzinski, J. F.; Bereau, T.
2016-10-01
The parametrization of coarse-grained (CG) simulation models for molecular systems often aims at reproducing static properties alone. The reduced molecular friction of the CG representation usually results in faster, albeit inconsistent, dynamics. In this work, we rely on Markov state models to simultaneously characterize the static and kinetic properties of two CG peptide force fields—one top-down and one bottom-up. Instead of a rigorous evolution of CG dynamics (e.g., using a generalized Langevin equation), we attempt to improve the description of kinetics by simply altering the existing CG models, which employ standard Langevin dynamics. By varying masses and relevant force-field parameters, we can improve the timescale separation of the slow kinetic processes, achieve a more consistent ratio of mean-first-passage times between metastable states, and refine the relative free-energies between these states. Importantly, we show that the incorporation of kinetic information into a structure-based parametrization improves the description of the helix-coil transition sampled by a minimal CG model. While structure-based models understabilize the helical state, kinetic constraints help identify CG models that improve the ratio of forward/backward timescales by effectively hindering the sampling of spurious conformational intermediate states.
Coarse-grain molecular dynamics study of fullerene transport across a cell membrane
Sridhar, Akshay; Srikanth, Bharath; Kumar, Amit; Dasmahapatra, Ashok Kumar
2015-07-01
The study of the ability of drug molecules to enter cells through the membrane is of vital importance in the field of drug delivery. In cases where the transport of the drug molecules through the membrane is not easily accomplishable, other carrier molecules are used. Spherical fullerene molecules have been postulated as potential carriers of highly hydrophilic drugs across the plasma membrane. Here, we report the coarse-grain molecular dynamics study of the translocation of C60 fullerene and its derivatives across a cell membrane modeled as a 1,2-distearoyl-sn-glycero-3-phosphocholine bilayer. Simulation results indicate that pristine fullerene molecules enter the bilayer quickly and reside within it. The addition of polar functionalized groups makes the fullerenes less likely to reside within the bilayer but increases their residence time in bulk water. Addition of polar functional groups to one half of the fullerene surface, in effect creating a Janus particle, offers the most promise in developing fullerene models that can achieve complete translocation through the membrane bilayer.
Thermal Dileptons from Coarse-Grained Transport as Fireball Probes at SIS Energies
Galatyuk, Tetyana; Rapp, Ralf; Seck, Florian; Stroth, Joachim
2015-01-01
Utilizing a coarse-graining method to convert hadronic transport simulations of Au+Au collisions at SIS energies into local temperature, baryon and pion densities, we compute the pertinent radiation of thermal dileptons based on an in-medium $\\rho$ spectral function that describes available spectra at ultrarelativistic collision energies. In particular, we analyze in how far the resulting yields and slopes of the invariant-mass spectra can probe the lifetime and temperatures of the fireball. We find that dilepton radiation sets in after the initial overlap phase of the colliding nuclei of about 7 fm/c, and lasts for about 13 fm/c. This duration closely coincides with the development of the transverse collectivity of the baryons, thus establishing a direct correlation between hadronic collective effects and thermal EM radiation, and supporting a near local equilibration of the system. This fireball "lifetime" is substantially smaller than the typical 20-30 fm/c that naive considerations of the density evolutio...
Coarse-grained simulations of poly(propylene imine) dendrimers in solution
Smeijers, A. F.; Markvoort, A. J.; Pieterse, K.; Hilbers, P. A. J.
2016-02-01
The behavior of poly(propylene imine) (PPI) dendrimers in concentrated solutions has been investigated using molecular dynamics simulations containing up to a thousand PPI dendrimers of generation 4 or 5 in explicit water. To deal with large system sizes and time scales required to study the solutions over a wide range of dendrimer concentrations, a previously published coarse-grained model was applied. Simulation results on the radius of gyration, structure factor, intermolecular spacing, dendrimer interpenetration, and water penetration are compared with available experimental data, providing a clear concentration dependent molecular picture of PPI dendrimers. It is shown that with increasing concentration the dendrimer volume diminishes accompanied by a reduction of internalized water, ultimately resulting in solvent filled cavities between stacked dendrimers. Concurrently dendrimer interpenetration increases only slightly, leaving each dendrimer a separate entity also at high concentrations. Moreover, we compare apparent structure factors, as calculated in experimental studies relying on the decoupling approximation and the constant atomic form factor assumption, with directly computed structure factors. We demonstrate that these already diverge at rather low concentrations, not because of small changes in form factor, but rather because the decoupling approximation fails as monomer positions of separate dendrimers become correlated at concentrations well below the overlap concentration.
Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V., E-mail: aneimark@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058 (United States)
2016-01-07
Using dissipative particle dynamics (DPD), we simulate nanoscale segregation, water diffusion, and proton conductivity in hydrated sulfonated polystyrene (sPS). We employ a novel model [Lee et al. J. Chem. Theory Comput. 11(9), 4395-4403 (2015)] that incorporates protonation/deprotonation equilibria into DPD simulations. The polymer and water are modeled by coarse-grained beads interacting via short-range soft repulsion and smeared charge electrostatic potentials. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with the base beads representing water and sulfonate anions. Morse bond formation and breakup artificially mimics the Grotthuss mechanism of proton hopping between the bases. The DPD model is parameterized by matching the proton mobility in bulk water, dissociation constant of benzenesulfonic acid, and liquid-liquid equilibrium of water-ethylbenzene solutions. The DPD simulations semi-quantitatively predict nanoscale segregation in the hydrated sPS into hydrophobic and hydrophilic subphases, water self-diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from isolated water clusters to a 3D network. The analysis of hydrophilic subphase connectivity and water diffusion demonstrates the importance of the dynamic percolation effect of formation and breakup of temporary junctions between water clusters. The proposed DPD model qualitatively predicts the ratio of proton to water self-diffusion and its dependence on the hydration level that is in reasonable agreement with experiments.
Self-assembly of Spherical Macroions in Solution: A Coarse-grained Molecular Dynamics Study
Liu, Zhuonan; Liu, Tianbo; Tsige, Mesfin
2015-03-01
Macroions (such as polyoxometalates) in solution can form a stable hollow spherical super-molecular structure called blackberry when they have moderate surface charge density and size (1-10 nm). Depending on the surface charge density of macroions, the size of the blackberry can be from 20 to more than 100 nm. Other macroions such as dendrimers can also self-assemble into similar super-molecular structure in solution. Existing theories such as Debye-Hückel and DLVO theories cannot explain this phenomenon and we are not aware of any other theory that can explain this. Previous studies using all-atom Molecular Dynamics simulations have shown identical macroions forming oligomers mediated by counterions. Due to the limitations in all-atom simulation and available computational capabilities, these studies handled only small systems with simple macroions, leading to less conclusive but still relevant results on the self-assembly behavior. To overcome these limitations, in this work large-scale coarse-grained modeling of macroions in solution is used. In order to understand the origin of the attractive force that is responsible for the self-assembly of macroions, different types of macroions in different solution conditions are studied. This work was supported by NSF Grant DMR0847580.
Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase.
Eichenberger, Andreas P; Huang, Wei; Riniker, Sereina; van Gunsteren, Wilfred F
2015-07-14
A supra-atomic coarse-grained (CG) force field for liquid n-alkanes is presented. The model was calibrated using experimental thermodynamic data and structural as well as energetic properties for 14 n-alkanes as obtained from atomistic fine-grained (FG) simulations of the corresponding hydrocarbons using the GROMOS 45A3 biomolecular force field. A variation of the nonbonded force-field parameters obtained from mapping the FG interactions onto the CG degrees of freedom to fit the density and heat of vaporization to experimental values turned out to be mandatory for a correct reproduction of these data by the CG model, while the bonded force-field parameters for the CG model could be obtained from a Boltzmann-weighted fit with some variations with respect to the corresponding properties from the FG simulations mapped onto the CG degrees of freedom. The model presents 6 different CG bead types, for bead sizes from 2 to 4 distinguishing between terminal and nonterminal beads within an alkane chain (end or middle). It contains different nonbonded Lennard-Jones parameters for the interaction of CG alkanes with CG water. The CG alkane model was further tested by comparing predictions of the excess free energy, the self-diffusion constant, surface tension, isothermal compressibility, heat capacity, thermal expansion coefficient, and shear viscosity for n-alkanes to experimental values. The CG model offers a thermodynamically calibrated basis for the development of CG models of lipids.
Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik
2016-08-01
Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.
van den Wildenberg, Siet; Tourin, Arnaud; Jia, Xiaoping
2016-08-01
We measure the consequences of elastic heterogeneities in confined granular layers using long-wavelength sound velocity determination. By progressively decreasing the coarse-graining length w, which is determined here by the sample size L, we measure the standard deviation of the longitudinal sound velocity δ VL and the packing density ϕ, normalized by their ensemble-averaged values. We find that the relative fluctuations in V L and ϕ increase when w is decreased. Importantly, we observe that decreasing the confining pressure P or using nonspherical particles leads to an important increase of the fluctuations in δ V_L/\\bar{V_L} . We conduct simulations of sound propagation in 2D hexagonal packings with contact-stiffness disorder to mimic the inhomogeneous contact networks. The sound velocity fluctuations of coherent longitudinal waves increase either with decreasing the sample size or with increasing the elastic disorder related to confining pressure, in consistency with the experiments. Our experimental observations thus support the scenario of a pressure-dependent mesoscopic length ξ∼10d (at P∼200 \\text{kPa} ), below which the continuum elasticity breaks down, likely due to the large spatial fluctuation of the shear modulus δ G/\\bar{G} ∼ 5δ V_L/\\bar{V_L}>20% .
A Coarse-Graining Approach for Dilepton Production at SPS Energies
Endres, Stephan; Weil, Janus; Bleicher, Marcus
2014-01-01
We present a novel approach using coarse-grained output from transport calculations to determine thermal dilepton emission rates by applying medium-modified spectral functions from thermal quantum field theoretical models. By averaging over an ensemble of events generated with the UrQMD transport model, we extract the local thermodynamic properties at each time step of the calculation. With an equation of state the temperature $T$ and chemical potential $\\mu_{\\mathrm{B}}$ can be determined. The approach goes beyond simplified fireball models of the bulk-medium evolution by treating the full (3+1)-dimensional expansion of the system with realistic time and density profiles. For the calculation of thermal dilepton rates we use the in-medium spectral function of the $\\rho$ meson developed by Rapp and Wambach and consider thermal QGP and multi-pion contributions as well. The approach is applied for the evaluation of dimuon production in In+In collisions at top SPS energy. Comparison to the experimental results of...
In-medium Spectral Functions in a Coarse-Graining Approach
Endres, Stephan; Weil, Janus; Bleicher, Marcus
2015-01-01
We use a coarse-graining approach to extract local thermodynamic properties from simulations with a microscopic transport model by averaging over a large ensemble of events. Setting up a grid of small space-time cells and going into each cell's rest frame allows to determine baryon and energy density. With help of an equation of state we get the corresponding temperature $T$ and baryon-chemical potential $\\mu_{\\mathrm{B}}$. These results are used for the calculation of the thermal dilepton yield. We apply and compare two different spectral functions for the $\\rho$ meson, firstly a calculation from hadronic many-body theory and secondly a calculation from experimental scattering amplitudes. The results obtained with our approach are compared to measurements of the NA60 Collaboration. A good description of the data is achieved with both spectral functions. However, the hadronic many-body calculation is found to be closer to the experimental data with regard to the in-medium broadening of the spectral shape.
Zhao, Junhua; Nagao, Shijo; Odegard, Gregory M; Zhang, Zhiliang; Kristiansen, Helge; He, Jianying
2013-12-21
Anisotropic conductive adhesives (ACAs) are promising materials used for producing ultra-thin liquid-crystal displays. Because the mechanical response of polymer particles can have a significant impact in the performance of ACAs, understanding of this apparent size effect is of fundamental importance in the electronics industry. The objective of this research is to use a coarse-grained molecular dynamics model to verify and gain physical insight into the observed size dependence effect in polymer particles. In agreement with experimental studies, the results of this study clearly indicate that there is a strong size effect in spherical polymer particles with diameters approaching the nanometer length scale. The results of the simulations also clearly indicate that the source for the increases in modulus is the increase in relative surface energy for decreasing particle sizes. Finally, the actual contact conditions at the surface of the polymer nanoparticles are shown to be similar to those predicted using Hertz and perfectly plastic contact theory. As ACA thicknesses are reduced in response to reductions in polymer particle size, it is expected that the overall compressive stiffness of the ACA will increase, thus influencing the manufacturing process.
Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials
Stepinski, Tadeusz (Uppsala Univ., Signals and Systems, Box 528, SE-751 20 Uppsala (Sweden))
2007-12-15
Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified
A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
Masella, Michel; Borgis, Daniel; Cuniasse, Philippe
2013-05-15
A multiscale coarse-grained approach able to handle efficiently the solvation of microscopic solutes in extended chemical environment is described. That approach is able to compute readily and efficiently very long-range solute/solvent electrostatic microscopic interactions, up to the 1-μm scale, by considering a reduced amount of computational resources. All the required parameters are assigned to reproduce available data concerning the solvation of single ions. Such a strategy makes it possible to reproduce with good accuracy the solvation properties concerning simple ion pairs in solution (in particular, the asymptotic behavior of the ion pair potentials of mean force). This new method represents an extension of the polarizable pseudoparticle solvent model, which has been recently improved to account for the main features of hydrophobic effects in liquid water (Masella et al., J. Comput. Chem. 2011, 32, 2664). This multiscale approach is well suited to be used for computing the impact of charge changes in free energy computations, in terms of both accuracy and efficiency.
Universal and non-universal features in coarse-grained models of flow in disordered solids.
Nicolas, Alexandre; Martens, Kirsten; Bocquet, Lydéric; Barrat, Jean-Louis
2014-07-14
We study the two-dimensional (2D) shear flow of amorphous solids within variants of an elastoplastic model, paying particular attention to spatial correlations and time fluctuations of, e.g., local stresses. The model is based on the local alternation between an elastic regime and plastic events during which the local stress is redistributed. The importance of a fully tensorial description of the stress and of the inclusion of (coarse-grained) convection in the model is investigated; scalar and tensorial models yield similar results, while convection enhances fluctuations and breaks the spurious symmetry between the flow and velocity gradient directions, for instance when shear localisation is observed. Besides, correlation lengths measured with diverse protocols are discussed. One class of such correlation lengths simply scale with the spacing between homogeneously distributed, simultaneous plastic events. This leads to a scaling of the correlation length with the shear rate as γ̇(-1/2) in 2D in the athermal regime, regardless of the details of the model. The radius of the cooperative disk, defined as the near-field region in which plastic events induce a stress redistribution that is not amenable to a mean-field treatment, notably follows this scaling. On the other hand, the cooperative volume measured from the four-point stress susceptibility and its dependence on the system size and the shear rate are model-dependent.
Sequence-dependent thermodynamics of a coarse-grained DNA model
Šulc, Petr; Ouldridge, Thomas E; Rovigatti, Lorenzo; Doye, Jonathan P K; Louis, Ard A
2012-01-01
We introduce a sequence-dependent parametrization for a coarse-grained DNA model [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys. 134, 085101 (2011)] originally designed to reproduce the properties of DNA molecules with average sequences. The new parametrization introduces sequence-dependent stacking and base-pairing interaction strengths chosen to reproduce the melting temperatures of short duplexes. By developing a histogram reweighting technique, we are able to fit our parameters to the melting temperatures of thousands of sequences. To demonstrate the flexibility of the model, we study the effects of sequence on: (a) the heterogeneous stacking transition of single strands, (b) the tendency of a duplex to fray at its melting point, (c) the effects of stacking strength in the loop on the melting temperature of hairpins, (d) the force-extension properties of single strands and (e) the structure of a kissing-loop complex. Where possible we compare our results with experimental data and find a ...
Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations
Nandigrami, Prithviraj
2015-01-01
Calmodulin (CaM) is a ubiquitous calcium binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest the mechanism for the domain's allosteric transitions between the open and closed conformations depend on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM. That is, we find that cCaM unfolds more readily along the transition route than nCaM. Furthermore, unfolding and refolding of the domain significantly slows the domain opening and closing rates of cCaM, a distinct scenario which can potentially influence the mechani...
Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models.
Baron, Riccardo; Trzesniak, Daniel; de Vries, Alex H; Elsener, Andreas; Marrink, Siewert J; van Gunsteren, Wilfred F
2007-02-19
Thermodynamic data are often used to calibrate or test amomic-level (AL) force fields for molecular dynamics (MD) simulations. In contrast, the majority of coarse-grained (CG) force fields do not rely extensively on thermodynamic quantities. Recently, a CG force field for lipids, hydrocarbons, ions, and water, in which approximately four non-hydrogen atoms are mapped onto one interaction site, has been proposed and applied to study various aspects of lipid systems. To date, no extensive investigation of its capability to describe salvation thermodynamics has been undertaken. In the present study, a detailed picture of vaporization, solvation, and phase-partitioning thermodynamics for liquid hydrocarbons and water was obtained at CG and AL resolutions, in order to compare the two types or models and evaluate their ability to describe thermodynamic properties in the temperature range between 263 and 343 K. Both CG and AL models capture the experimental dependence of the thermodynamic properties on the temperature, albeit a systematically weaker dependence is found for the CG model. Moreover, deviations are found for solvation thermodynamics and for the corresponding enthalpy-entropy compensation for the CG model. Particularly water/oil repulsion seems to be overestimated. However, the results suggest that the thermodynamic properties considered should be reproducible by a CG model provided it is reparametrized on the basis of these liquid-phase properties.
Coarse-grained entropy rates for characterization of complex time series
Palus, M
1995-01-01
A method for classification of complex time series using coarse-grained entropy rates (CER's) is presented. The CER's, which are computed from information-theoretic functionals -- redundancies, are relative measures of regularity and predictability, and for data generated by dynamical systems they are related to Kolmogorov-Sinai entropy. A deterministic dynamical origin of the data under study, however, is not a necessary condition for the use of the CER's, since the entropy rates can be defined for stochastic processes as well. Sensitivity of the CER's to changes in data dynamics and their robustness with respect to noise are tested by using numerically generated time series resulted from both deterministic -- chaotic and stochastic processes. Potential application of the CER's in analysis of physiological signals or other complex time series is demonstrated by using examples from pharmaco-EEG and tremor classification. From no-reply@xxx.lanl.gov Thu Dec 17 09:14 MET 1998 Received: from dxmint.cern.ch (dxmin...
Extension of CAVS coarse-grained model to phospholipid membranes: The importance of electrostatics.
Shen, Hujun; Deng, Mingsen; Zhang, Yachao
2017-05-15
It is evident from experiment that electrostatic potential (or dipole potential) is positive inside PC or PE lipid bilayers in the absence of ions. MARTINI coarse-grained (CG) model, which has been widely used in simulating physical properties of lipid bilayers, fails to reproduce the positive value for the dipole potential in the membrane interior. Although the total dipole potential can be correctly described by the BMW/MARTINI model, the contribution from the ester dipoles, playing a nontrivial role in the electrostatic potential across lipid membranes, is neglected by this hybrid approach. In the ELBA CG model, the role of the ester dipoles is considered, but it is overweighed because various atomistic models have consistently shown that water is actually the leading contributor of dipole potential. Here, we present a CG approach by combining the BMW-like water model (namely CAVS model) with the ELBA-like lipid model proposed in this work. Our CG model was designed not only to correctly reproduce the positive values for the dipole potential inside PC and PE lipid bilayers but also to properly balance the individual contributions from the ester dipoles and water, surmounting the limitations of current CG models in the calculations of dipole potential. © 2017 Wiley Periodicals, Inc.
Extension of 239+240Pu sediment geochronology to coarse-grained marine sediments
Kuehl, Steven A.; Ketterer, Michael E.; Miselis, Jennifer L.
2012-01-01
Sediment geochronology of coastal sedimentary environments dominated by sand has been extremely limited because concentrations of natural and bomb-fallout radionuclides are often below the limit of measurement using standard techniques. ICP-MS analyses of 239+240Pu from two sites representative of traditionally challenging (i.e., low concentration) environments provide a "proof of concept" and demonstrate a new application for bomb-fallout radiotracers in the study of sandy shelf-seabed dynamics. A kasten core from the New Zealand shelf in the Southern Hemisphere (low fallout), and a vibracore from the sandy nearshore of North Carolina (low particle surface area) both reveal measurable 239+240Pu activities at depth. In the case of the New Zealand site, independently verified steady-state sedimentation results in a 239+240Pu profile that mimics the expected atmospheric fallout. The depth profile of 239+240Pu in the North Carolina core is more uniform, indicating significant sediment resuspension, which would be expected in this energetic nearshore environment. This study, for the first time, demonstrates the utility of 239+240Pu in the study of sandy environments, significantly extending the application of bomb-fallout isotopes to coarse-grained sediments, which compose the majority of nearshore regions.
Coarse-Grain QoS-Aware Dynamic Instance Provisioning for Interactive Workload in the Cloud
Jianxiong Wan
2014-01-01
Full Text Available Cloud computing paradigm renders the Internet service providers (ISPs with a new approach to deliver their service with less cost. ISPs can rent virtual machines from the Infrastructure-as-a-Service (IaaS provided by the cloud rather than purchasing them. In addition, commercial cloud providers (CPs offer diverse VM instance rental services in various time granularities, which provide another opportunity for ISPs to reduce cost. We investigate a Coarse-grain QoS-aware Dynamic Instance Provisioning (CDIP problem for interactive workload in the cloud from the perspective of ISPs. We formulate the CDIP problem as an optimization problem where the objective is to minimize the VM instance rental cost and the constraint is the percentile delay bound. Since the Internet traffic shows a strong self-similar property, it is hard to get an analytical form of the percentile delay constraint. To address this issue, we purpose a lookup table structure together with a learning algorithm to estimate the performance of the instance provisioning policy. This approach is further extended with two function approximations to enhance the scalability of the learning algorithm. We also present an efficient dynamic instance provisioning algorithm, which takes full advantage of the rental service diversity, to determine the instance rental policy. Extensive simulations are conducted to validate the effectiveness of the proposed algorithms.
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
Sinitskiy, Anton V; Voth, Gregory A
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
A Stochastic Phase-Field Model Computed From Coarse-Grained Molecular Dynamics
von Schwerin, Erik
2007-01-01
Results are presented from numerical experiments aiming at the computation of stochastic phase-field models for phase transformations by coarse-graining molecular dynamics. The studied phase transformations occur between a solid crystal and a liquid. Nucleation and growth, sometimes dendritic, of crystal grains in a sub-cooled liquid is determined by diffusion and convection of heat, on the macroscopic level, and by interface effects, where the width of the solid-liquid interface is on an atomic length-scale. Phase-field methods are widely used in the study of the continuum level time evolution of the phase transformations; they introduce an order parameter to distinguish between the phases. The dynamics of the order parameter is modelled by an Allen--Cahn equation and coupled to an energy equation, where the latent heat at the phase transition enters as a source term. Stochastic fluctuations are sometimes added in the coupled system of partial differential equations to introduce nucleation and to get qualita...
Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes.
Lado Touriño, Isabel; Naranjo, Arisbel Cerpa; Negri, Viviana; Cerdán, Sebastián; Ballesteros, Paloma
2015-11-01
Computational modeling of the translational diffusion of water molecules in anisotropic environments entails vital relevance to understand correctly the information contained in the magnetic resonance images weighted in diffusion (DWI) and of the diffusion tensor images (DTI). In the present work we investigated the validity, strengths and weaknesses of a coarse-grained (CG) model based on the MARTINI force field to simulate water diffusion in a medium containing carbon nanotubes (CNTs) as models of anisotropic water diffusion behavior. We show that water diffusion outside the nanotubes follows Ficḱs law, while water diffusion inside the nanotubes is not described by a Ficḱs behavior. We report on the influence on water diffusion of various parameters such as length and concentration of CNTs, comparing the CG results with those obtained from the more accurate classic force field calculation, like the all-atom approach. Calculated water diffusion coefficients decreased in the presence of nanotubes in a concentration dependent manner. We also observed smaller water diffusion coefficients for longer CNTs. Using the CG methodology we were able to demonstrate anisotropic diffusion of water inside the nanotube scaffold, but we could not prove anisotropy in the surrounding medium, suggesting that grouping several water molecules in a single diffusing unit may affect the diffusional anisotropy calculated. The methodologies investigated in this work represent a first step towards the study of more complex models, including anisotropic cohorts of CNTs or even neuronal axons, with reasonable savings in computation time.
A coarse-grained generalized second law for holographic conformal field theories
Bunting, William; Marolf, Donald
2015-01-01
We consider the universal sector of a $d$-dimensional large-$N$ strongly-interacting holographic CFT on a black hole spacetime background $B$. When our CFT$_d$ is coupled to dynamical Einstein-Hilbert gravity with Newton constant $G_{d}$, the combined system can be shown to satisfy a version of the thermodynamic Generalized Second Law (GSL) at leading order in $G_{d}$. The quantity $S_{CFT} + \\frac{A(H_{B, \\text{perturbed}})}{4G_{d}}$ is non-decreasing, where $A(H_{B, \\text{perturbed}})$ is the (time-dependent) area of the new event horizon in the coupled theory. Our $S_{CFT}$ is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information -- a quantity in turn defined in the AdS$_{d+1}$ dual by the renormalized area $A_{ren}(H_{\\rm bulk})$ of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Anothe...
PSII-LHCII supercomplex organizations in photosynthetic membrane by coarse-grained simulation.
Lee, Cheng-Kuang; Pao, Chun-Wei; Smit, Berend
2015-03-12
Green plant photosystem II (PSII) and light-harvesting complex II (LHCII) in the stacked grana regions of thylakoid membranes can self-organize into various PSII-LHCII supercomplexes with crystalline or fluid-like supramolecular structures to adjust themselves with external stimuli such as high/low light and temperatures, rendering tunable solar light absorption spectrum and photosynthesis efficiencies. However, the mechanisms controlling the PSII-LHCII supercomplex organizations remain elusive. In this work, we constructed a coarse-grained (CG) model of the thylakoid membrane including lipid molecules and a PSII-LHCII supercomplex considering association/dissociation of moderately bound-LHCIIs. The CG interaction between CG beads were constructed based on electron microscope (EM) experimental results, and we were able to simulate the PSII-LHCII supramolecular organization of a 500 × 500 nm(2) thylakoid membrane, which is compatible with experiments. Our CGMD simulations can successfully reproduce order structures of PSII-LHCII supercomplexes under various protein packing fractions, free-LHCII:PSII ratios, and temperatures, thereby providing insights into mechanisms leading to PSII-LHCII supercomplex organizations in photosynthetic membranes.
Coarse-grained models of stripe forming systems: phase diagrams, anomalies, and scaling hypothesis.
Mendoza-Coto, Alejandro; Stariolo, Daniel A
2012-11-01
Two coarse-grained models which capture some universal characteristics of stripe forming systems are studied. At high temperatures, the structure factors of both models attain their maxima on a circle in reciprocal space, as a consequence of generic isotropic competing interactions. Although this is known to lead to some universal properties, we show that the phase diagrams have important differences, which are a consequence of the particular k dependence of the fluctuation spectrum in each model. The phase diagrams are computed in a mean field approximation and also after inclusion of small fluctuations, which are shown to modify drastically the mean field behavior. Observables like the modulation length and magnetization profiles are computed for the whole temperature range accessible to both models and some important differences in behavior are observed. A stripe compression modulus is computed, showing an anomalous behavior with temperature as recently reported in related models. Also, a recently proposed scaling hypothesis for modulated systems is tested and found to be valid for both models studied.
Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model.
Schreck, John S; Romano, Flavio; Zimmer, Matthew H; Louis, Ard A; Doye, Jonathan P K
2016-04-26
We use oxDNA, a coarse-grained model of DNA at the nucleotide level, to simulate large nanoprisms that are composed of multi-arm star tiles, in which the size of bulge loops that have been incorporated into the tile design is used to control the flexibility of the tiles. The oxDNA model predicts equilibrium structures for several different nanoprism designs that are in excellent agreement with the experimental structures as measured by cryoTEM. In particular we reproduce the chiral twisting of the top and bottom faces of the nanoprisms, as the bulge sizes in these structures are varied due to the greater flexibility of larger bulges. We are also able to follow how the properties of the star tiles evolve as the prisms are assembled. Individual star tiles are very flexible, but their structures become increasingly well-defined and rigid as they are incorporated into larger assemblies. oxDNA also finds that the experimentally observed prisms are more stable than their inverted counterparts, but interestingly this preference for the arms of the tiles to bend in a given direction only emerges after they are part of larger assemblies. These results show the potential for oxDNA to provide detailed structural insight as well as to predict the properties of DNA nanostructures and hence to aid rational design in DNA nanotechnology.
Chi Wai Yu
2008-01-01
Full Text Available This paper examines the interface between fine-grained and coarse-grained programmable logic in FPGAs. Specifically, it presents an empirical study that covers the location, pin arrangement, and interconnect between embedded floating point units (FPUs and the fine-grained logic fabric in FPGAs. It also studies this interface in FPGAs which contain both FPUs and embedded memories. The results show that (1 FPUs should have a square aspect ratio; (2 they should be positioned near the center of the FPGA; (3 their I/O pins should be arranged around all four sides of the FPU; (4 embedded memory should be located between the FPUs; and (5 connecting higher I/O density coarse-grained blocks increases the demand for routing resources. The hybrid FPGAs with embedded memory required 12% wider channels than the case where embedded memory is not used.
Li, Dechang; Liu, Ming S.; Ji, Baohua; Hwang, Kehchih; Huang, Yonggang
2009-06-01
Binding dynamics and pathways of ligands or inhibitors to target proteins are challenging both experimental and theoretical biologists. A dynamics understanding of inhibitors interacting with protein is essential for the design of novel potent drugs. In this work we applied a coarse-grained molecular dynamics method for simulating inhibitors entering the binding cavity of human immunodeficiency virus type 1 protease (PR). It shows that the coarse-grained dynamics, consistent with the experimental results, can capture the essential molecular dynamics of various inhibitors binding into PR. The primary driving force for the binding processes is the nonbond interaction between inhibitors and PR. The size and topology of inhibitors and the interacting strength between inhibitors and PR have great influence on the binding mode and processes. The interaction strength between the PR and various inhibitors is also analyzed by atomistic molecular mechanics and Poisson-Boltzmann solvation area method.
Hu, Hongda; Shu, Hong
2015-05-01
Heavy computation limits the use of Kriging interpolation methods in many real-time applications, especially with the ever-increasing problem size. Many researchers have realized that parallel processing techniques are critical to fully exploit computational resources and feasibly solve computation-intensive problems like Kriging. Much research has addressed the parallelization of traditional approach to Kriging, but this computation-intensive procedure may not be suitable for high-resolution interpolation of spatial data. On the basis of a more effective serial approach, we propose an improved coarse-grained parallel algorithm to accelerate ordinary Kriging interpolation. In particular, the interpolation task of each unobserved point is considered as a basic parallel unit. To reduce time complexity and memory consumption, the large right hand side matrix in the Kriging linear system is transformed and fixed at only two columns and therefore no longer directly relevant to the number of unobserved points. The MPI (Message Passing Interface) model is employed to implement our parallel programs in a homogeneous distributed memory system. Experimentally, the improved parallel algorithm performs better than the traditional one in spatial interpolation of annual average precipitation in Victoria, Australia. For example, when the number of processors is 24, the improved algorithm keeps speed-up at 20.8 while the speed-up of the traditional algorithm only reaches 9.3. Likewise, the weak scaling efficiency of the improved algorithm is nearly 90% while that of the traditional algorithm almost drops to 40% with 16 processors. Experimental results also demonstrate that the performance of the improved algorithm is enhanced by increasing the problem size.
The impact of resolution upon entropy and information in coarse-grained models
Foley, Thomas T. [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shell, M. Scott, E-mail: shell@engineering.ucsb.edu [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Noid, W. G., E-mail: wnoid@chem.psu.edu [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2015-12-28
By eliminating unnecessary degrees of freedom, coarse-grained (CG) models tremendously facilitate numerical calculations and theoretical analyses of complex phenomena. However, their success critically depends upon the representation of the system and the effective potential that governs the CG degrees of freedom. This work investigates the relationship between the CG representation and the many-body potential of mean force (PMF), W, which is the appropriate effective potential for a CG model that exactly preserves the structural and thermodynamic properties of a given high resolution model. In particular, we investigate the entropic component of the PMF and its dependence upon the CG resolution. This entropic component, S{sub W}, is a configuration-dependent relative entropy that determines the temperature dependence of W. As a direct consequence of eliminating high resolution details from the CG model, the coarsening process transfers configurational entropy and information from the configuration space into S{sub W}. In order to further investigate these general results, we consider the popular Gaussian Network Model (GNM) for protein conformational fluctuations. We analytically derive the exact PMF for the GNM as a function of the CG representation. In the case of the GNM, −TS{sub W} is a positive, configuration-independent term that depends upon the temperature, the complexity of the protein interaction network, and the details of the CG representation. This entropic term demonstrates similar behavior for seven model proteins and also suggests, in each case, that certain resolutions provide a more efficient description of protein fluctuations. These results may provide general insight into the role of resolution for determining the information content, thermodynamic properties, and transferability of CG models. Ultimately, they may lead to a rigorous and systematic framework for optimizing the representation of CG models.
Probing the structural dynamics of the SNARE recycling machine based on coarse-grained modeling.
Zheng, Wenjun
2016-08-01
Membrane fusion in eukaryotes is driven by the formation of a four-helix bundle by three SNARE proteins. To recycle the SNARE proteins, they must be disassembled by the ATPase NSF and four SNAP proteins which together form a 20S supercomplex. Recently, the first high-resolution structures of the NSF (in both ATP and ADP state) and 20S (in four distinct states termed I, II, IIIa, and IIIb) were solved by cryo-electron microscopy (cryo-EM), which have paved the way for structure-driven studies of the SNARE recycling mechanism. To probe the structural dynamics of SNARE disassembly at amino-acid level of details, a systematic coarse-grained modeling based on an elastic network model and related analyses were performed. Our normal mode analysis of NSF, SNARE, and 20S predicted key modes of collective motions that partially account for the observed structural changes, and illuminated how the SNARE complex can be effectively destabilized by untwisting and bending motions of the SNARE complex driven by the amino-terminal domains of NSF in state II. Our flexibility analysis identified regions with high/low flexibility that coincide with key functional sites (such as the NSF-SNAPs-SNARE binding sites). A subset of hotspot residues that control the above collective motions, which will make promising targets for future mutagenesis studies were also identified. Finally, the conformational changes in 20S as induced by the transition of NSF from ATP to ADP state were modeled, and a concerted untwisting motion of SNARE/SNAPs and a sideway flip of two amino-terminal domains were observed. In sum, the findings have offered new structural and dynamic details relevant to the SNARE disassembly mechanism, and will guide future functional studies of the SNARE recycling machinery. Proteins 2016; 84:1055-1066. © 2016 Wiley Periodicals, Inc.
Experimental deformation of coarse-grained rock salt to high strain
Linckens, J.; Zulauf, G.; Hammer, J.
2016-08-01
The processes and deformation mechanisms (e.g., dislocation creep, pressure solution, grain boundary sliding, and recrystallization) of rock salt are still a matter of debate. In order to fill this gap, high strain constriction experiments at 345°C, atmospheric pressure and a strain rate of 10-7 s-1 have been conducted on natural halite cuboids (60 × 60 × 45 mm) from the Morsleben mine of Northern Germany. Most samples were almost single crystals and contain a small amount of smaller grains (10-26%). The grain boundaries are decorated with fluid inclusions. The experiments were stopped at different final strains (ɛy = z of 10, 20, 30, and 40%) corresponding to a maximum strain (ɛx) range of 20-170%. The halite is deformed by dislocation creep, and the size of developed subgrains corresponds to the applied stress. The combined Schmid factor and subgrain boundary analysis indicate that slip was largely accommodated by the {110} slip systems, with possible minor contribution by slip on the {100} slip systems. Some of the deformed samples show evidence of grain boundary migration. In addition, subgrains with small misorientations form that result in large cumulative misorientations within a single grain (>40°). However, no subgrain rotation recrystallization is observed (i.e., misorientation angles are <10°). All the experiments show strain hardening, suggesting that recrystallization by grain boundary migration was not extensive and did not reset the microstructure. The experiments show that high finite strain in coarse-grained relatively dry rock salt can be accommodated by dislocation creep, without extensive dynamic recrystallization.
Liu, Linying; Zhang, Jianhua; Zhao, Xiaowei; Mao, Zheng; Liu, Na; Zhang, Youyu; Liu, Qing Huo
2016-11-23
An enhanced understanding of the interactions between charged nanoparticles (CNPs) and a curved vesicle membrane may have important implications for the design of nanocarrier agents and drug delivery systems. In this work, coarse-grained molecular dynamics (CGMD) simulations of the CNPs with vesicles were performed to evaluate the effects of hydrophobicity, surface charge density and distribution on the curved vesicle membrane. The simulations reveal that there exist four distinct modes (insertion, repulsion, adhesion, and penetration) in the CNP-vesicle interaction. In contrast to previous studies on a planar membrane, the interactions of CNPs and a curved vesicle membrane show some novel properties. CNPs with low surface charge density (or neutral ones) can penetrate into the interior of the vesicle membrane more easily because of the increased membrane tension. The asymmetry between two leaflets of the membrane induces different interaction strengths of the negatively CNPs with the outer and inner leaflets. After penetration, the negatively CNPs prefer to stay close to the inner leaflet inside the vesicle where CNPs have stronger interactions with their surroundings. In the present work, we analyze the detailed mechanism of CNP's spontaneous penetration into vesicles, which is rarely mentioned in previous simulations. Moreover, we found that the negatively CNPs with the same surface charge density but different distribution result in different modes: the homogeneous mode is more likely to adsorb on the vesicle surface while the inhomogeneous mode tends to be more penetrable. In addition, the flip-flop phenomenon of the lipid membrane and the exchanging of water in or out of the vesicle were observed during penetration. Our results demonstrate that the electrostatic effect plays an essential role in the interaction between CNPs and vesicles. These findings suggest a way of controlling the CNP-vesicle interaction by coupling the hydrophobic properties, surface
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
2016-06-01
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.
Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit
Izvekov, Sergei
2017-01-01
We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.
A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.
Satyan Sharma
Full Text Available The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.
Role of Ionic Clusters in Dynamics of Ionomer Melts: From Atomistic to Coarse Grained Simulations
Agrawal, Anupriya
Ionomers, polymers decorated with ionizable groups, have found application in numerous technologies where ionic transport is required. The ionic groups associate into random clusters resulting in substantial effect on structure, dynamics and transport of these materials. The effects of topology, size and dynamics of these aggregates however remain an open question. Here we probe cluster formation correlated with polymer dynamics through a model system of randomly sulfonated polystyrene (SPS) melts with molecular dynamics (MD) simulations over a broad time and length scales ranging from that within the ionic clusters through polymer segmental dynamics to the motion of the entire molecules. The cluster evolution was probed by fully atomistic studies. We find ladder-like aggregates that transform to globule-like with increasing the dielectric constant of media for sodium neutralized SPS. With increasing dielectric constant, the size of the aggregates decrease and their number increases. Concurrently, the mobility of the polymer increases. The counterion radius and valency affect both morphology and dynamics as is evident in the calculated static and dynamic structure factors. It is further manifested in the results of viscosity obtained through non-equilibrium molecular dynamics technique. Finally, to access larger length scales a three bead coarse-grained model to describe sulfonated styrene that we have developed will be discussed in view of the outstanding challenges in ionic polymers. Supported in part by DOE Grant No. DE-SC007908. This work was carried out in collaboration with Dvora Perahia and Gary Grest while I was a postdoc at Clemson University. I gratefully acknowledge both of them for their support and encouragement.
Energy-efficient specialization of functional units in a Coarse-Grained Reconfigurable Array
Van Essen, B; Panda, R; Wood, A; Ebeling, C; Hauck, S
2010-12-01
Functional units provide the backbone of any spatial accelerator by providing the computing resources. The desire for having rich and expensive functional units is in tension with producing a regular and energy-efficient computing fabric. This paper explores the design trade-off between complex, universal functional units and simpler, limited functional units. We show that a modest amount of specialization reduces the area-delay-energy product of an optimized architecture to 0.86x a baseline architecture. Furthermore, we provide a design guideline that allows an architect to customize the contents of the computing fabric just by examining the profile of benchmarks within the application domains. Functional units are the core of compute-intensive spatial accelerators. They perform the computation of interest with support from local storage and communication structures. Ideally, the functional units will provide rich functionality, supporting operations ranging from simple addition, to fused multiply-adds, to advanced transcendental functions and domain specific operations like add-compare-select. However, the total opportunity cost to support the more complex operations is a function of the cost of the hardware, the rate of occurrence of the operation in the application domain, and the inefficiency of emulating the operation with simpler operators. Examples of operations that are typically emulated in spatial accelerators are division and trigonometric functions, which can be solved using table-lookup based algorithms and the CORDIC algorithm. One reason to avoid having direct hardware support for complex operations in a tiled architecture like a Coarse-Grained Reconfigurable Array (CGRA) is that the expensive hardware will typically need to be replicated in some or all of the architecture's tiles. Tiled architecture are designed such that their tiles are either homogeneous or heterogeneous. Homogeneous architectures are simpler to design but heterogeneous
Coarse-grained simulations of hemolytic peptide δ-lysin interacting with a POPC bilayer.
King, Mariah J; Bennett, Ashley L; Almeida, Paulo F; Lee, Hee-Seung
2016-12-01
δ-lysin, secreted by a Gram-positive bacterium Staphylococcus aureus, is a 26-residue membrane active peptide that shares many common features with antimicrobial peptides (AMPs). However, it possesses a few unique features that differentiate itself from typical AMPs. In particular, δ-lysin has zero net charge, even though it has many charged residues, and it preferentially lyses eukaryotic cells over bacterial cells. Here, we present the results of coarse-grained molecular dynamics simulations of δ-lysin interacting with a zwitterionic membrane over a wide range of peptide concentrations. When the peptides concentration is low, spontaneous dimerization of peptides is observed on the membrane surface, but deep insertion of peptides or pore formation was not observed. However, the calculated free energy of peptide insertion suggests that a small fraction of peptides is likely to be present inside the membrane at the peptide concentrations typically seen in dye efflux experiments. When the simulations with multiple peptides are carried out with a single pre-inserted transmembrane peptide, spontaneous pore formation occurs with a peptide-to-lipid ratio (P/L) as low as P/L=1:42. Inter-peptide salt bridges among the transmembrane peptides seem to play a role in creating compact pores with very low level of hydration. More importantly, the transmembrane peptides making up the pore are constantly pushed to the opposite side of the membrane when the mass imbalance between the two sides of membrane is significant. Thus, the pore is very dynamic, allowing multiple peptides to translocate across the membrane simultaneously.
Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins.
May, Ali; Pool, René; van Dijk, Erik; Bijlard, Jochem; Abeln, Sanne; Heringa, Jaap; Feenstra, K Anton
2014-02-01
To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full atomistic molecular simulation methods do have this potential, but are completely unfeasible for large-scale applications in terms of computational cost required. Here we investigate whether applying coarse-grained (CG) molecular dynamics simulations is a viable alternative for complexes of known structure. We calculate the free energy barrier with respect to the bound state based on molecular dynamics simulations using both a full atomistic and a CG force field for the TCR-pMHC complex and the MP1-p14 scaffolding complex. We find that the free energy barriers from the CG simulations are of similar accuracy as those from the full atomistic ones, while achieving a speedup of >500-fold. We also observe that extensive sampling is extremely important to obtain accurate free energy barriers, which is only within reach for the CG models. Finally, we show that the CG model preserves biological relevance of the interactions: (i) we observe a strong correlation between evolutionary likelihood of mutations and the impact on the free energy barrier with respect to the bound state; and (ii) we confirm the dominant role of the interface core in these interactions. Therefore, our results suggest that CG molecular simulations can realistically be used for the accurate prediction of protein-protein interaction strength. The python analysis framework and data files are available for download at http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz.
2017-01-01
Control over the morphology of the active layer of bulk heterojunction (BHJ) organic solar cells is paramount to achieve high-efficiency devices. However, no method currently available can predict morphologies for a novel donor–acceptor blend. An approach which allows reaching relevant length scales, retaining chemical specificity, and mimicking experimental fabrication conditions, and which is suited for high-throughput schemes has been proven challenging to find. Here, we propose a method to generate atom-resolved morphologies of BHJs which conforms to these requirements. Coarse-grain (CG) molecular dynamics simulations are employed to simulate the large-scale morphological organization during solution-processing. The use of CG models which retain chemical specificity translates into a direct path to the rational design of donor and acceptor compounds which differ only slightly in chemical nature. Finally, the direct retrieval of fully atomistic detail is possible through backmapping, opening the way for improved quantum mechanical calculations addressing the charge separation mechanism. The method is illustrated for the poly(3-hexyl-thiophene) (P3HT)–phenyl-C61-butyric acid methyl ester (PCBM) mixture, and found to predict morphologies in agreement with experimental data. The effect of drying rate, P3HT molecular weight, and thermal annealing are investigated extensively, resulting in trends mimicking experimental findings. The proposed methodology can help reduce the parameter space which has to be explored before obtaining optimal morphologies not only for BHJ solar cells but also for any other solution-processed soft matter device. PMID:28209056
Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems
Rudd, R E
2003-11-02
Unique challenges for computer modeling and simulation arise in the course of the development and design of nanoscale mechanical systems. Materials often exhibit unconventional behavior at the nanoscale that can affect device operation and failure. This uncertainty poses a problem because of the limited experimental characterization at these ultra-small length scales. In this Article we give an overview of how we have used concurrent multiscale modeling techniques to address some of these issues. Of particular interest are the dynamic and temperature-dependent processes found in nanomechanical systems. We focus on the behavior of sub-micron mechanical components of Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS), especially flexural-mode resonators. The concurrent multiscale methodology we have developed for NEMS employs an atomistic description of millions of atoms in relatively small but key regions of the system, coupled to, and run concurrently with, a generalized finite element model of the periphery. We describe two such techniques. The more precise model, Coarse-Grained Molecular Dynamics (CGMD), describes the dynamics on a mesh of elements, but the equations of motion are built up from the underlying atomistic physics to ensure a smooth coupling between regions governed by different length scales. In many cases the degrees of smoothness of the coupling provided by CGMD is not necessary. The hybrid Coupling of Length Scales (CLS) methodology, combining molecular dynamics with conventional finite element modeling, provides a suitable technique for these cases at a greatly reduced computation expense. We review these models and some of the results we have obtained regarding size effects in the elasticity and dissipation of nanomechanical systems.
Poursina, Mohammad [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 (United States); Anderson, Kurt S. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy, NY 12180 (United States)
2014-08-01
This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.
Harrison, Ryan M.; Romano, Flavio; Thomas E. Ouldridge; Louis, Ard A.; Doye, Jonathan P. K.
2015-01-01
DNA bending is biologically important for genome regulation and is relevant to a range of nanotechnological systems. Recent results suggest that sharp bending is much easier than implied by the widely-used worm-like chain model; many of these studies, however, remain controversial. We use a coarse-grained model, previously fitted to DNA's basic thermodynamic and mechanical properties, to explore strongly bent systems. We find that as the end-to-end distance is decreased sufficiently short dup...
Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe
2013-01-01
We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic sta...
Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2015-12-28
The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.
Yoo, Jejoong; Jackson, Meyer B; Cui, Qiang
2013-02-19
To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Majumder, Manoj K; S, Ramkumar; Mahajan, Dhiraj K; Basu, Sumit
2010-01-01
Simulation of the deformation of polymers below their glass transition through molecular dynamics provides an useful route to correlate their molecular architecture to deformation behavior. However, present computational capabilities severely restrict the time and length scales that can be simulated when detailed models of these macromolecules are used. Coarse-graining techniques for macromolecular structures intend to make bigger and longer simulations possible by grouping atoms into superatoms and devising ways of determining reasonable force fields for the superatoms in a manner that retains essential macromolecular features relevant to the process under study but jettisons unnecessary details. In this work we systematically develop a coarse-graining scheme aimed at simulating uniaxial stress-strain behavior of polymers below their glass transition. The scheme involves a two step process of obtaining the coarse grained force field parameters above glass transition. This seems to be enough to obtain "faithful" stress-strain responses after quenching to below the glass transition temperature. We apply the scheme developed to a commercially important polymer polystyrene, derive its complete force field parameters and thus demonstrate the effectiveness of the technique.
Wiese, Kay Jörg
2016-04-01
We derive and study two different formalisms used for nonequilibrium processes: the coherent-state path integral, and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path integral and the corresponding field theory, using the annihilation process A+A→A as an example. The field theory contains counterintuitive quartic vertices. We show how they can be interpreted in terms of a first-passage problem. Reformulating the coherent-state path integral as a stochastic equation of motion, the noise generically becomes imaginary. This renders it not only difficult to interpret, but leads to convergence problems at finite times. We then show how alternatively an effective coarse-grained stochastic equation of motion with real noise can be constructed. The procedure is similar in spirit to the derivation of the mean-field approximation for the Ising model, and the ensuing construction of its effective field theory. We finally apply our findings to stochastic Manna sandpiles. We show that the coherent-state path integral is inappropriate, or at least inconvenient. As an alternative, we derive and solve its mean-field approximation, which we then use to construct a coarse-grained stochastic equation of motion with real noise.
Sanyal, Tanmoy; Shell, M. Scott
2016-07-01
Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.
Sellers, Michael; Lisal, Martin; Schweigert, Igor; Larentzos, James; Brennan, John
2015-06-01
In discrete particle simulations, when an atomistic model is coarse-grained, a trade-off is made: a boost in computational speed for a reduction in accuracy. Dissipative Particle Dynamics (DPD) methods help to recover accuracy in viscous and thermal properties, while giving back a small amount of computational speed. One of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. Today, pairing the current evolution of DPD-RX with a coarse-grained potential and its chemical decomposition reactions allows for the simulation of the shock behavior of energetic materials at a timescale faster than an atomistic counterpart. In 2007, Maillet et al. introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We have recently extended the DPD-RX method and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its tranition to hot product gases within DPD-RX will be presented. Additionally, examples of the effect of microstructure on shock behavior will be shown. Approved for public release. Distribution is unlimited.
Shi, Wenbin; Shang, Pengjian; Ma, Yan; Sun, Shuchen; Yeh, Chien-Hung
2017-03-01
It is of great interests in identifying dynamical properties of human sleep signals using electroencephalographic (EEG) measures. Multiscale entropy (MSE) is effective in quantifying the degree of unpredictability of time series in different time scales. To understand the superior coarse-graining approach for the EEG analysis, we therefor use different moments to coarse-grain a time series, and examine their volatility as well as the effectiveness in quantifying the complexities of sleep EEG in different sleep stages. Both the simulated signals (logistic map) and the EEGs with different sleep stages are calculated and compared using three types of coarse-graining procedure: including MSEμ (mean), MSEσ2 (variance) and MSEskew (skewness). The simulated results show that the generalized MSE (including MSEσ2 and MSEskew) can identify the differences in chaotic more easily with less fluctuation of entropy values in different time scales. As for the analysis of human sleep EEG, we find: (1) at small scales (sleep and lower with increasing time scales.
Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
Maisuradze, Gia G; Senet, Patrick; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A
2010-04-08
Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 residues can be obtained in days. A straightforward application of canonical UNRES/MD simulations, demonstrated with the example of the N-terminal part of the B-domain of staphylococcal protein A (PDB code: 1BDD, a three-alpha-helix bundle), discerns the folding mechanism and determines kinetic parameters by parallel simulations of several hundred or more trajectories. Use of generalized-ensemble techniques, of which the multiplexed replica exchange method proved to be the most effective, enables us to compute thermodynamics of folding and carry out fully physics-based prediction of protein structure, in which the predicted structure is determined as a mean over the most populated ensemble below the folding-transition temperature. By using principal component analysis of the UNRES folding trajectories of the formin-binding protein WW domain (PDB code: 1E0L; a three-stranded antiparallel beta-sheet) and 1BDD, we identified representative structures along the folding pathways and demonstrated that only a few (low-indexed) principal components can capture the main structural features of a protein-folding trajectory; the potentials of mean force calculated along these essential modes exhibit multiple minima, as opposed to those along the remaining modes that are unimodal. In addition
Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
Takada, Shoji; Kanada, Ryo; Tan, Cheng; Terakawa, Tsuyoshi; Li, Wenfei; Kenzaki, Hiroo
2015-12-15
Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to
Garrido, J. M.; Algaba, J.; Míguez, J. M.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.; Piñeiro, M. M.; Blas, F. J.
2016-04-01
We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with
Derivation of free energy expressions for tube models from coarse-grained slip-link models
Steenbakkers, Rudi J. A.; Schieber, Jay D.
2012-07-01
We present the free energy of a single-chain mean-field model for polymer melt dynamics, which uses a continuous (tube-like) approximation to the discrete entanglements with surrounding chains, but, in contrast to previous tube models, includes fluctuations in the number density of Kuhn steps along the primitive path and in the degree of entanglement. The free energy is obtained from that of the slip-link model with fluctuating entanglement positions [J. D. Schieber and K. Horio, J. Chem. Phys. 132, 074905 (2010)], 10.1063/1.3314727 by taking the continuous limit of (functions of) the discrete Kuhn-step numbers and end-to-end vectors of the strands between entanglements. This coarse-graining from a more-detailed level of description has the advantage that no ad hoc arguments need to be introduced. Moreover, the thermodynamic consistency of the slip-link model [J. D. Schieber, J. Non-Equilib. Thermodyn. 28, 179 (2003)], 10.1515/JNETDY.2003.010 can be preserved. Fluctuations in the positions of entanglements lead to a harmonic bending term in the free energy of the continuous chain, similar to that derived by Read et al. [Macromolecules 41, 6843 (2008)], 10.1021/ma8009855 starting from a modified GLaMM model [R. S. Graham, A. E. Likhtman, T. C. B. McLeish, and S. T. Milner, J. Rheol. 47, 1171 (2003)], 10.1122/1.1595099. If these fluctuations are set to zero, the free energy becomes purely Gaussian and corresponds to the continuous limit of the original slip-link model, with affinely moving entanglements [J. D. Schieber, J. Chem. Phys. 118, 5162 (2003)], 10.1063/1.1553764. The free energy reduces to that of Read et al. under their assumptions of a homogeneous Kuhn-step number density and a constant degree of entanglement. Finally, we show how a transformation of the primitive-path coordinate can be applied to make the degree of entanglement an outcome of the model instead of a variable. In summary, this paper constitutes a first step towards a unified mathematical
Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan
2013-12-01
Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain
Adaptive Monte Carlo on multivariate binary sampling spaces
Schäfer, Christian
2010-01-01
A Monte Carlo algorithm is said to be adaptive if it can adjust automatically its current proposal distribution, using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for a good performance. We treat the problem of constructing such parametric families for adaptive sampling on multivariate binary spaces. A practical motivation for this problem is variable selection in a linear regression context, where we need to either find the best model, with respect to some criterion, or to sample from a Bayesian posterior distribution on the model space. In terms of adaptive algorithms, we focus on the Cross-Entropy (CE) method for optimisation, and the Sequential Monte Carlo (SMC) methods for sampling. Raw versions of both SMC and CE algorithms are easily implemented using binary vectors with independent components. However, for high-dimensional model choice problems, these straightforward proposals do not yields satisfactory results. The key to advanced a...
Xin Qiao
2015-12-01
Full Text Available We show the construction of a novel coarse grain model for simulations of HIV capsid assembly based on four structural models of HIV capsid proteins: isolated hexamer 3H47.pdb, tubular assembly 3J34.pdb, isolated pentamer 3P05.pdb and C-terminus dimer 2KOD.pdb. The data demonstrates the derivation of inter-domain motions from all atom Molecular Dynamics simulations and comparison with the motions derived from the analysis of solution NMR results defined in 2M8L.pdb. Snapshots from a representative Monte Carlo simulation with 128 dimeric subunit proteins based on 3J34.pdb are shown in addition to the quantitative analysis of its assembly pathway. Movies of the assembly process are compiled with snapshots of representative simulations of four structural models. The methods and data in this article were utilized in Qiao et al. (in press [1] to probe the mechanism of polymorphism and curvature control of HIV capsid assembly.
Kitjaruwankul, Sunan; Khrutto, Channarong; Sompornpisut, Pornthep; Farmer, B. L.; Pandey, R. B.
2016-10-01
Structure of CorA protein and its inner (i.corA) and outer (o.corA) transmembrane (TM) components are investigated as a function of temperature by a coarse-grained Monte Carlo simulation. Thermal response of i.corA is found to differ considerably from that of the outer component, o.corA. Analysis of the radius of gyration reveals that the inner TM component undergoes a continuous transition from a globular conformation to a random coil structure on raising the temperature. In contrast, the outer transmembrane component exhibits an abrupt (nearly discontinuous) thermal response in a narrow range of temperature. Scaling of the structure factor shows a globular structure of i.corA at a low temperature with an effective dimension D ˜ 3 and a random coil at a high temperature with D ˜ 2. The residue distribution in o.corA is slightly sparser than that of i.corA in a narrow thermos-responsive regime. The difference in thermos-response characteristics of these components (i.corA and o.corA) may reflect their unique transmembrane functions.
Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A
2016-09-08
In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values.
Odoh, S.; Saylor, J. E.; Higuera-Diaz, C.; Lapen, T. J.; Copeland, P.
2015-12-01
Progradation of coarse clastic material into distal foreland basins has been attributed to both 1) enhanced sediment production during rapid tectonic exhumation and 2) sediment reworking during tectonic quiescence. The Floresta and Medina basins in the Eastern Cordillera record deposition of alternating coarse- and fine-grained clastic strata in medial and distal (respectively) Cenozoic foreland basins. The Medina Basin records the continued eastward progradation of the deformation front in the Neogene. We use detrital zircon U-Pb (ZPb) and (U-Th)/He (ZHe) analyses from the Paleogene Floresta Basin and the entire Cenozoic Medina Basin record to evaluate the effects of episodic thrust-belt exhumation and wide-spread deposition of coarse-grained sediments in the adjacent foreland basin. Both ZPb and ZHe systems are applied to individual grains (double dating) to constrain source area and up-section variations in exhumation rates. Changes in exhumation rate or introduction of new sediment sources are recorded as changes in lag time (ZHe age - depositional age). Analysis of 6 samples from the Floresta Basin shows a decrease in lag time during deposition of the coarse-grained middle Eocene Picacho Formation and upper Paleocene Socha Sandstone suggesting that Paleogene deposition of coarse-grained intervals in this medial location corresponds to an increase in exhumation rate. However, initial results from the Medina basin are less clear as there is evidence for Paleocene volcanic input but no clear evidence for thrust-belt related sediment until the Oligocene-early Miocene. We interpret the evidence for different sediment sources for Eocene strata in the axial Eastern Cordillera (Floresta) versus the Eastern foothills (Medina) as indicative of separation of these two regions by an emergent forebulge. Exhumation rate and granularity appear to be inversely correlated in post-Oligocene strata, though confirmation of initial interpretations awaits larger samples sizes
Anderson, Roger Y.
2001-02-01
Sediment-trapping investigations in Pyramid Lake, Nevada show that medium- to coarse-grained clastic sediments suspended in streamflow after periods of low flow can be transported several kilometers in plumes of freshwater discharged over the surface of a saline lake. Analogous conditions are postulated to explain changes in the abundance of detrital quartz in lake clay near the center of Estancia Basin, New Mexico during the Late Pleistocene. Abrupt increases in the abundance of quartz grains mark the onset of lake freshening, and ostracode and trace-metal proxies for salinity indicate repeated, brief episodes of streamflow and lake freshening during the Last Glacial Maximum (LGM).
Sovová, Žofie; Berka, Karel; Otyepka, Michal; Jurečka, Petr
2015-03-12
Ceramides are lipids that are involved in numerous biologically important structures (e.g., the stratum corneum and ceramide-rich platforms) and processes (e.g., signal transduction and membrane fusion), but their behavior is not fully understood. We report coarse-grain force field parameters for N-lignocerylsphingosine (ceramide NS, also known as ceramide 2) that are consistent with the Martini force field. These parameters were optimized for simulations in the gel phase and validated against atomistic simulations. Coarse-grained simulations with our parameters provide areas per lipid, membrane thicknesses, and electron density profiles that are in good agreement with atomistic simulations. Properties of the simulated membranes are compared with available experimental data. The obtained parameters were used to model the phase behavior of ceramide NS as a function of temperature and hydration. At low water content and above the main phase transition temperature, the bilayer melts into an irregular phase, which may correspond to the unstructured melted-chain phase observed in X-ray diffraction experiments. The developed parameters also reproduce the extended conformation of ceramide, which may occur in the stratum corneum. The parameters presented herein will facilitate studies on important complex functional structures such as the uppermost layer of the skin and ceramide-rich platforms in phospholipid membranes.
Jardat, Marie; Dufrêche, Jean-François; Marry, Virginie; Rotenberg, Benjamin; Turq, Pierre
2009-03-28
We study the exclusion of salt from charged porous media (Donnan effect), by using a coarse-grained approach. The porous medium is a lamellar system, namely a Montmorillonite clay, in contact with a reservoir, which contains an electrolyte solution. We develop a specific coarse-graining strategy to investigate the structural properties of this system. Molecular simulations are used to calibrate a mesoscopic model of the clay micropore in equilibrium with a reservoir. Brownian Dynamics simulations are then used to predict the structure of ions in the pore and the amount of NaCl salt entering the pore as a function of the pore size (the distance L between clay surfaces) and of the electrolyte concentration in the reservoir. These results are also compared to the predictions of a Density Functional Theory, which takes into account the excluded volumes of ions. We show that the calibration of the mesoscopic model is a key point and has a strong influence on the result. We observe that the salt exclusion increases when kappaL decreases (where kappa is the inverse of the Debye length) and that this effect is modulated by the correlations between ions. Two different regimes are revealed. At low concentrations in the reservoir, we observe a regime controlled by electrostatics: the Coulomb attraction between ions increases the amount of salt in the interlayer space. On the opposite, at high concentrations in the reservoir, the excluded volume effect dominates.
Ervik, Åsmund; Serratos, Guadalupe Jiménez; Müller, Erich A.
2017-03-01
We describe here raaSAFT, a Python code that enables the setup and running of coarse-grained molecular dynamics simulations in a systematic and efficient manner. The code is built on top of the popular HOOMD-blue code, and as such harnesses the computational power of GPUs. The methodology makes use of the SAFT- γ Mie force field, so the resulting coarse grained pair potentials are both closely linked to and consistent with the macroscopic thermodynamic properties of the simulated fluid. In raaSAFT both homonuclear and heteronuclear models are implemented for a wide range of compounds spanning from linear alkanes, to more complicated fluids such as water and alcohols, all the way up to nonionic surfactants and models of asphaltenes and resins. Adding new compounds as well as new features is made straightforward by the modularity of the code. To demonstrate the ease-of-use of raaSAFT, we give a detailed walkthrough of how to simulate liquid-liquid equilibrium of a hydrocarbon with water. We describe in detail how both homonuclear and heteronuclear compounds are implemented. To demonstrate the performance and versatility of raaSAFT, we simulate a large polymer-solvent mixture with 300 polystyrene molecules dissolved in 42 700 molecules of heptane, reproducing the experimentally observed temperature-dependent solubility of polystyrene. For this case we obtain a speedup of more than three orders of magnitude as compared to atomistically-detailed simulations.
Davtyan, Aram; Voth, Gregory A.; Andersen, Hans C.
2016-12-01
We recently developed a dynamic force matching technique for converting a coarse-grained (CG) model of a molecular system, with a CG potential energy function, into a dynamic CG model with realistic dynamics [A. Davtyan et al., J. Chem. Phys. 142, 154104 (2015)]. This is done by supplementing the model with additional degrees of freedom, called "fictitious particles." In that paper, we tested the method on CG models in which each molecule is coarse-grained into one CG point particle, with very satisfactory results. When the method was applied to a CG model of methanol that has two CG point particles per molecule, the results were encouraging but clearly required improvement. In this paper, we introduce a new type (called type-3) of fictitious particle that exerts forces on the center of mass of two CG sites. A CG model constructed using type-3 fictitious particles (as well as type-2 particles previously used) gives a much more satisfactory dynamic model for liquid methanol. In particular, we were able to construct a CG model that has the same self-diffusion coefficient and the same rotational relaxation time as an all-atom model of liquid methanol. Type-3 particles and generalizations of it are likely to be useful in converting more complicated CG models into dynamic CG models.
Li Weijuan
2016-09-01
Full Text Available In the present work, specimens prepared from coarse grained low carbon steel with different prestrains were baked and then, their bake hardening (BH property and internal friction were determined. TEM was used to characterize the dislocation structure in BH treated samples. The measurements of internal friction in prestrained samples and baked samples were carried out using a multifunctional internal friction apparatus. The results indicate that, in coarse grained low carbon steel, the bake hardening properties (BH values were negative, which were increased by increasing the prestrain from 2 to 5%, and then were decreased by increasing the prestrain from 5 to 10%. In the specimen with prestrain 5%, the BH value reached the maximum value and the height of Snoek-Köster peak was observed to be the maximum alike. With increasing the prestrain, both of the BH value and Snoek-Köster peak heights are similarly varied. It is concluded that Snoek-Köster and dislocation-enhanced Snoek peaks, caused by the interactions between interstitial solute carbon atoms and dislocations, can be used in further development of the bake hardening steels.
Liao, Chenyi; Zhao, Xiaochuan; Liu, Jiyuan; Schneebeli, Severin T; Shelley, John C; Li, Jianing
2017-03-20
The structures and dynamics of protein complexes are often challenging to model in heterogeneous environments such as biological membranes. Herein, we meet this fundamental challenge at attainable cost with all-atom, mixed-resolution, and coarse-grained models of vital membrane proteins. We systematically simulated five complex models formed by two distinct G protein-coupled receptors (GPCRs) in the lipid-bilayer membrane on the ns-to-μs timescales. These models, which suggest the swinging motion of an intracellular loop, for the first time, provide the molecular details for the regulatory role of such a loop. For the models at different resolutions, we observed consistent structural stability but various levels of speed-ups in protein dynamics. The mixed-resolution and coarse-grained models show two and four times faster protein diffusion than the all-atom models, in addition to a 4- and 400-fold speed-up in the simulation performance. Furthermore, by elucidating the strengths and challenges of combining all-atom models with reduced resolution models, this study can serve as a guide to simulating other complex systems in heterogeneous environments efficiently.
Endres, Stephan; Weil, Janus; Bleicher, Marcus
2015-01-01
Dilepton invariant-mass spectra for heavy-ion collisions at SIS 18 and BEVALAC energies are calculated using a coarse-grained time evolution from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The coarse-graining of the microscopic simulations enables to calculate thermal dilepton emission rates by application of in-medium spectral functions from equilibrium quantum-field theoretical calculations. The results show that extremely high baryon chemical potentials dominate the evolution of the created hot and dense fireball. Consequently, a significant modification of the $\\rho$ spectral shape becomes visible in the dilepton invariant-mass spectrum, resulting in an enhancement in the low-mass region $M_{ee} = 200$ to 600 MeV/$c^{2}$. This enhancement, mainly caused by baryonic effects on the $\\rho$ spectral shape, can fully describe the experimentally observed excess above the hadronic cocktail contributions in Ar+KCl ($E_{\\mathrm{lab}}=1.76$ $A$GeV) reactions as measured by the HADES collaborat...
Kraft, Johan F; Vestergaard, Mikkel; Schiøtt, Birgit; Thøgersen, Lea
2012-05-08
Membrane mimics such as micelles and bicelles are widely used in experiments involving membrane proteins. With the aim of being able to carry out molecular dynamics simulations in environments comparable to experimental conditions, we set out to test the ability of both coarse grained and atomistic resolution force fields to model the experimentally observed behavior of the lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), which is a widely used lipid for biophysical characterization of membrane proteins. It becomes clear from our results that a satisfactory modeling of DHPC aggregates in solution poses different demands to the force field than do the modeling of bilayers. First, the representation of the short tailed lipid DHPC in the coarse grained force field MARTINI is assessed with the intend of successfully self-assemble micelles with structural characteristics comparable to experimental data. Then, the use of the recently presented polarizable water model in MARTINI is shown to be essential for producing micelles that are structurally in accordance with experiments. For the atomistic representations of DHPC micelles in solution the GROMOS96 force field with lipid parameters by A. Kukol fails to maintain stable micelles, whereas the most recent CHARMM36 lipid parameters and GROMOS96 with the so-called Berger lipid parameters both succeed in this regard.
Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Park, Jun-Koo; Jernigan, Robert; Wu, Zhijun
2013-01-01
We investigate several approaches to coarse grained normal mode analysis on protein residual-level structural fluctuations by choosing different ways of representing the residues and the forces among them. Single-atom representations using the backbone atoms C(α), C, N, and C(β) are considered. Combinations of some of these atoms are also tested. The force constants between the representative atoms are extracted from the Hessian matrix of the energy function and served as the force constants between the corresponding residues. The residue mean-square-fluctuations and their correlations with the experimental B-factors are calculated for a large set of proteins. The results are compared with all-atom normal mode analysis and the residue-level Gaussian Network Model. The coarse-grained methods perform more efficiently than all-atom normal mode analysis, while their B-factor correlations are also higher. Their B-factor correlations are comparable with those estimated by the Gaussian Network Model and in many cases better. The extracted force constants are surveyed for different pairs of residues with different numbers of separation residues in sequence. The statistical averages are used to build a refined Gaussian Network Model, which is able to predict residue-level structural fluctuations significantly better than the conventional Gaussian Network Model in many test cases.
Sellers, Michael S.; Lísal, Martin; Schweigert, Igor; Larentzos, James P.; Brennan, John K.
2017-01-01
In discrete particle simulations, when an atomistic model is coarse-grained, a tradeoff is made: a boost in computational speed for a reduction in accuracy. The Dissipative Particle Dynamics (DPD) methods help to recover lost accuracy of the viscous and thermal properties, while giving back a relatively small amount of computational speed. Since its initial development for polymers, one of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. In 2007, Maillet, Soulard, and Stoltz introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We present an extended and generalized version of the DPD-RX method, and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Demonstration simulations of reacting RDX are performed under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its transition to hot product gases within DPD-RX is presented. Additionally, we discuss several examples of the effect of shock speed and microstructure on the corresponding material chemistry.
Koehl, Patrice; Poitevin, Frédéric; Navaza, Rafael; Delarue, Marc
2017-03-14
Understanding the dynamics of biomolecules is the key to understanding their biological activities. Computational methods ranging from all-atom molecular dynamics simulations to coarse-grained normal-mode analyses based on simplified elastic networks provide a general framework to studying these dynamics. Despite recent successes in studying very large systems with up to a 100,000,000 atoms, those methods are currently limited to studying small- to medium-sized molecular systems due to computational limitations. One solution to circumvent these limitations is to reduce the size of the system under study. In this paper, we argue that coarse-graining, the standard approach to such size reduction, must define a hierarchy of models of decreasing sizes that are consistent with each other, i.e., that each model contains the information of the dynamics of its predecessor. We propose a new method, Decimate, for generating such a hierarchy within the context of elastic networks for normal-mode analysis. This method is based on the concept of the renormalization group developed in statistical physics. We highlight the details of its implementation, with a special focus on its scalability to large systems of up to millions of atoms. We illustrate its application on two large systems, the capsid of a virus and the ribosome translation complex. We show that highly decimated representations of those systems, containing down to 1% of their original number of atoms, still capture qualitatively and quantitatively their dynamics. Decimate is available as an OpenSource resource.
Andreetta, Christian
) is also provided. Empowered by data available from SAXS experiments, by this protocol as a forward model for Markov Chain Monte Carlo (MCMC) simulations, by a continuous model of the peptide bond (TorusDBN) and the conformations of side chains (COMPAS and BasiliskDBN), we are able to propose ensembles...
Kim, J.; Chang, T.; Yi, S.; Hong, S.
2012-12-01
We tested the applicability of optically stimulated luminescence (OSL) dating to fine- and coarse-grained quartz from the western coastal sediments of the Korean Peninsula. Twenty six samples were collected from 43-m-long core sediments, which contain two tidal deposits stratigraphically separated by a yellow, semi-consolidated mud layer and a gravel layer. A single aliquot regenerative dose (SAR) procedure was applied to chemically purified quartz grains of different grain sizes (4-11 and 90-212 μm diameter). The fine grain (4-11μm) OSL shows much higher saturation characteristic doses than those of the coarse grain (90-212 μm) OSL. The growth curves of the fine grain OSL show linear growth with dose up to ~800 Gy, whereas the those of the coarse grain OSL show an early saturated growth curve pattern (below 300 Gy). The OSL signal from the fine grain shows a quartz-dominated signal. On the other hand, OSL signals from coarse grain still contain a contribution from feldspars even after repeated chemical treatments. The De values are in agreement between the fine- and coarse-grained OSL in the upper part (0-15 m depth), but those of the lower part (>15 m) sediments are not. In the lower part, the De values of the fine grain are much higher (>400 Gy) than those from the coarse grain (part, but for the lower core samples ages based on fine grain OSL become progressively larger than those based on coarse grain. The fine grain ages are considered to be more accurate than the coarse grain ages, because they are not affected by signal saturation in this age range. Also, feldspar contamination may give rise to underestimation of the ages from the coarse grain OSL. Our results indicate that the ages obtained using fine-grained quartz can be old back to the Eemian. The major parts containing two tidal deposits have been deposited during the Holocene and MIS 5, with a limited sediment record during the last glacial period (MIS 2-4).
Implementation and analysis of an adaptive multilevel Monte Carlo algorithm
Hoel, Hakon
2014-01-01
We present an adaptive multilevel Monte Carlo (MLMC) method for weak approximations of solutions to Itô stochastic dierential equations (SDE). The work [11] proposed and analyzed an MLMC method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a single level Euler-Maruyama Monte Carlo method from O(TOL-3) to O(TOL-2 log(TOL-1)2) for a mean square error of O(TOL2). Later, the work [17] presented an MLMC method using a hierarchy of adaptively re ned, non-uniform time discretizations, and, as such, it may be considered a generalization of the uniform time discretizationMLMC method. This work improves the adaptiveMLMC algorithms presented in [17] and it also provides mathematical analysis of the improved algorithms. In particular, we show that under some assumptions our adaptive MLMC algorithms are asymptotically accurate and essentially have the correct complexity but with improved control of the complexity constant factor in the asymptotic analysis. Numerical tests include one case with singular drift and one with stopped diusion, where the complexity of a uniform single level method is O(TOL-4). For both these cases the results con rm the theory, exhibiting savings in the computational cost for achieving the accuracy O(TOL) from O(TOL-3) for the adaptive single level algorithm to essentially O(TOL-2 log(TOL-1)2) for the adaptive MLMC algorithm. © 2014 by Walter de Gruyter Berlin/Boston 2014.
Vries, de R.
2011-01-01
A large literature exists on modeling the influence of sequence-specific DNA-binding proteins on the shape of the DNA double helix in terms of one or a few fixed constraints. This approach is inadequate for the many proteins that bind DNA sequence independently, and that are present in very large qu
Vries, de R.
2011-01-01
A large literature exists on modeling the influence of sequence-specific DNA-binding proteins on the shape of the DNA double helix in terms of one or a few fixed constraints. This approach is inadequate for the many proteins that bind DNA sequence independently, and that are present in very large
Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Sokhan, Vlad P. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Crain, Jason [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Martyna, Glenn J. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States)
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a
Camadas de tempestito grosso (coarse grained storm beds: exemplos do Permiano da bacia do Paraná
Joel C. de Castro
2001-07-01
Full Text Available Tempestitos grossos constituem camadas delgadas de conglomerado gradando a arenito, com estratificação cruzada seguida de laminação ondulada truncante a simétrica e de drape/flaser de siltito/folhelho. Cinco exemplos extraídos do Permiano da bacia do Paraná ilustram esse tipo de depósito: três deles são de rochas siliciclásticas, contendo bioclastos de bivalves e vertebrados (Formação Rio Bonito-Membro Triunfo e Formação Palermo, enquanto os outros dois são de rochas carbonática e fosfática (respectivamente, formações Teresina e Corumbataí do Grupo Passa Dois. O componente tracional da base do tempestito grosso apresenta-se como arenite quartzoso/lítico ou grainstone oolítico com cimento calcífero preenchendo poros (casos das formações Palermo e Teresina. Em sua maioria, os tempestitos grossos constituem pavimentos transgressivos intercalados em folhelhos ou tempestitos finos (arenitos muito finos a folhelhos com estratificação ondulada truncante-hummocky. Em outro caso, extraído de subsuperfície, o pavimento transgressivo ocorre na base de uma sucessão progradante de barra de plataforma. O tempestito grosso da Formação Teresina constitui um evento transgressivo sobreposto a depósitos de barra de plataforma.Coarse-grained storm beds are formed by cross-bedded to symmetrically-rippled conglomerate and sandstone, followed by drape or flaser of siltstone/shale. Five examples from the Permian of Paraná Basin illustrate this type of deposit: three of them are bioclast-bearing siliciclastic rocks of Rio Bonito (Triunfo Member and Palermo formations, while the other two are carbonate and phosphate rocks of Teresina and Corumbataí formations. The traction component at the base of coarse-grained storm beds is represented by quartzose arenite or oolitic grainstone with cavity-filling calcite cement (Palermo and Teresina formations. Most of the coarse-grained storm beds are transgressive lags intercalated in shales and
Ahuja, V. R.; van der Gucht, J.; Briels, W. J.
2016-11-01
We present a coarse-grained particle-based simulation technique for modeling flow of complex soft matter fluids such as polymer solutions in the presence of solid interfaces. In our coarse-grained description of the system, we track the motion of polymer molecules using their centers-of-mass as our coarse-grain co-ordinates and also keep track of another set of variables that describe the background flow field. The coarse-grain motion is thus influenced not only by the interactions based on appropriate potentials used to model the particular polymer system of interest and the random kicks associated with thermal fluctuations, but also by the motion of the background fluid. In order to couple the motion of the coarse-grain co-ordinates with the background fluid motion, we use a Galilean invariant, first order Brownian dynamics algorithm developed by Padding and Briels [J. Chem. Phys. 141, 244108 (2014)], which on the one hand draws inspiration from smoothed particle hydrodynamics in a way that the motion of the background fluid is efficiently calculated based on a discretization of the Navier-Stokes equation at the positions of the coarse-grain coordinates where it is actually needed, but also differs from it because of the inclusion of thermal fluctuations by having momentum-conserving pairwise stochastic updates. In this paper, we make a few modifications to this algorithm and introduce a new parameter, viz., a friction coefficient associated with the background fluid, and analyze the relationship of the model parameters with the dynamic properties of the system. We also test this algorithm for flow in the presence of solid interfaces to show that appropriate boundary conditions can be imposed at solid-fluid interfaces by using artificial particles embedded in the solid walls which offer friction to the real fluid particles in the vicinity of the wall. We have tested our method using a model system of a star polymer solution at the overlap concentration.
McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G.
2014-05-01
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
Ahuja, V R; van der Gucht, J; Briels, W J
2016-11-21
We present a coarse-grained particle-based simulation technique for modeling flow of complex soft matter fluids such as polymer solutions in the presence of solid interfaces. In our coarse-grained description of the system, we track the motion of polymer molecules using their centers-of-mass as our coarse-grain co-ordinates and also keep track of another set of variables that describe the background flow field. The coarse-grain motion is thus influenced not only by the interactions based on appropriate potentials used to model the particular polymer system of interest and the random kicks associated with thermal fluctuations, but also by the motion of the background fluid. In order to couple the motion of the coarse-grain co-ordinates with the background fluid motion, we use a Galilean invariant, first order Brownian dynamics algorithm developed by Padding and Briels [J. Chem. Phys. 141, 244108 (2014)], which on the one hand draws inspiration from smoothed particle hydrodynamics in a way that the motion of the background fluid is efficiently calculated based on a discretization of the Navier-Stokes equation at the positions of the coarse-grain coordinates where it is actually needed, but also differs from it because of the inclusion of thermal fluctuations by having momentum-conserving pairwise stochastic updates. In this paper, we make a few modifications to this algorithm and introduce a new parameter, viz., a friction coefficient associated with the background fluid, and analyze the relationship of the model parameters with the dynamic properties of the system. We also test this algorithm for flow in the presence of solid interfaces to show that appropriate boundary conditions can be imposed at solid-fluid interfaces by using artificial particles embedded in the solid walls which offer friction to the real fluid particles in the vicinity of the wall. We have tested our method using a model system of a star polymer solution at the overlap concentration.
Fitrasari, Dian; Purqon, Acep
2017-07-01
Proteins play important roles in body metabolism. However, to reveal hydration effects, it is cost computing especially for all-atom calculation. Coarse-grained method is one of potential solution to reduce the calculation and computable in longer timescale. Furthermore, the protein of Azurin is interesting protein and potentially applicable to cancer medicine for the stability property reason. We investigate the effects of hydration on Azurin, the conformation and the stabilities. Furthermore, we analyze the free-energy of the conformation system to find the favorable structure using free energy perturbation (FEP) calculation. Our calculation results show that free energy value of azurin is -136.9 kJ/mol. It shows a good agreement with experimental results with relative error index remained at 0.07%.
Hanasaki, Itsuo; Walther, Jens H.; Kawano, Satoyuki; Koumoutsakos, Petros
2010-11-01
We study shear-induced instabilities of lipid bilayers immersed in water using coarse-grained molecular dynamics simulations. The shear imposed by the flow of the water induces initially microscopic structural changes of the membrane, starting with tilting of the molecules in the direction of the shear. The tilting propagates in the spanwise direction when the shear rate exceeds a critical value and the membrane undergoes a bucklinglike deformation in the direction perpendicular to the shear. The bucklinglike undulation continues until a localized Kelvin-Helmholtz-like instability leads to membrane rupture. We study the different modes of membrane undulation using membranes of different geometries and quantify the relative importance of the bucklinglike bending and the Kelvin-Helmholtz-like instability of the membrane.
LI Xing-mei; ZHANG Li-hui; QI Jian-xun; ZHANG Su-fang
2008-01-01
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and free-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying thee effectiveness and stronger global convergence ability of the EPSO.
Gui-long Xie; Yong-hong Zhang; Shi-ping Huang
2012-01-01
Using coarse-grained molecular dynamics simulations based on Gay-Berne potential model,we have simulated the cooling process of liquid n-butanol.A new set of GB parameters are obtained by fitting the results of density functional theory calculations.The simulations are carried out in the range of 290-50 K with temperature decrements of 10 K.The cooling characteristics are determined on the basis of the variations of the density,the potential energy and orientational order parameter with temperature,whose slopes all show discontinuity.Both the radial distribution function curves and the second-rank orientational correlation function curves exhibit splitting in the second peak.Using the discontinuous change of these thermodynamic and structure properties,we obtain the glass transition at an estimate of temperature Tg=120±10 K,which is in good agreement with experimental results 110±1 K.
Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe
2013-10-08
We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.
Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Diaz, Aaron A.; Hathaway, John E.; Anderson, Michael T.
2012-04-16
A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound field image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.
Darré, Leonardo; Machado, Matías Rodrigo; Brandner, Astrid Febe; González, Humberto Carlos; Ferreira, Sebastián; Pantano, Sergio
2015-02-10
Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein-protein complexes.
Yamazaki, Tamio
2011-01-01
To evaluate shear viscosity of ehylene glycol oligomers (EGO)/water binary mixture by means of coarse-grained molecular dynamics (CG-MD) simulations, we proposed the self-diffusion-coefficient-based parameterization of non-bonded interactions among CG particles. Our parameterization procedure consists of three steps: 1)determination of bonded potentials, 2)scaling for time and solvent diffusivity, and 3)optimization of Lennard-Jones parameters to reproduce experimental self-diffusion coefficient data. With the determined parameters and the scaling relations, we evaluated shear viscosities of EGO/water binary mixtures, which are in close agreement with the experimental data, without any further fitting procedure. The largest simulation in this article corresponds to a 1.2 microseconds atomistic simulation for 100,000 atoms. Our CG model with the parameterization scheme for CG particles may be useful to study the dynamic properties of a liquid which contains relatively low molecular weight polymers or oligomers...
Korotin, D M; Bartkowski, S; Kurmaev, E Z; Borchers, C; Müller, M; Neumann, M; Gunderov, D V; Valiev, R Z; Cholakh, S O
2012-10-01
XPS measurements of coarse-grained and nanostructured nitinol (Ni(50.2)Ti(49.8)) before and after chemical treatment in hydrofluoric acid (40% HF, 1 min) are presented. The nanostructured state, providing the excellent mechanical properties of nitinol, is achieved by severe plastic deformation. The near-surface layers of nitinol were studied by XPS depth profiling. According to the obtained results, a chemical treatment in hydrofluoric acid reduces the thickness of the protective TiO(2) oxide layer and induces a nickel release from the nitinol surface and an arsenic contamination, and can therefore not be recommended as conditioning to increase the roughness of NiTi-implants. A detailed evaluation of the resulting toxicological risks is given.
Coarse-Grained Simulations of the Self-Assembly of DNA-Linked Gold Nanoparticle Building Blocks
Armistead, Charles
The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks into a desired nanostructure. In this report, a coarse-grained model of NP building blocks based on an effective anisotropic mono-functionalization approach, which has shown the ability to construct six building block configurations, was used to simulate various nanoassemblies. The purpose of the study was to validate the model's ability to simulate the self-assembly of the NP building blocks into nanostructures previously produced experimentally. The model can be programmed to designate up to six oligonucleotides attached to the surface of a Au NP building block, with a modifiable length and nucleotide sequence. The model successfully simulated the self-assembly of Au NP building blocks into a number of previously produced nanostructures and demonstrated the ability to produce visualizations of self-assembly as well as calculate interparticle distances and angles to be used for the comparison with the previous experimental data for validation of the model. Also, the model was used to simulate nanoassemblies which had not been produced experimentally for its further validation. The simulations showed the capability of the model to use specific NP building blocks and self-assemble. The coarse-grained NP building block model shows promise as a tool to complement
Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.
Genheden, Samuel; Eriksson, Leif A
2016-09-13
Liposomes are common carriers of drug molecules, providing enhanced delivery and accumulation of hydrophilic agents or larger biomolecules. Molecular simulations can be used to estimate key features of the drug molecules upon interaction with the liposomes, such as penetration barriers and localization. Herein, we investigate several aspects of the computational estimation of penetration barriers, viz. the potential of mean force (PMFs) along a vector spanning the membrane. First, we provide an evaluation of the all-atom (AA) and coarse-grained (CG) parametrization of 5-aminolevulinic acid (5-ALA) and two of its alkyl esters by computing n-octanol/water partition coefficients. We find that the CG parametrization of the esters performs significantly better than the CG model of 5-ALA, highlighting the difficulty to coarse-grain small, polar molecules. However, the expected trend in partition coefficients is reproduced also with the CG models. Second, we compare PMFs in a small membrane slab described with either the AA or CG models. Here, we are able to reproduce the all-atom PMF of 5-ALA with CG. However, for the alkyl esters it is unfortunately not possible to correctly reproduce both the depth and the penetration barrier of the PMF seen in the AA simulations with any of the tested CG models. We argue that it is more important to choose a CG parametrization that reproduces the depth of the PMF. Third, we compare, using the CG model, PMFs in the membrane slab with PMFs in a large, realistic liposome. We find similar depths but slightly different penetration barriers most likely due to differences in the lipid density along the membrane axis. Finally, we compute PMFs in liposomes with three different lipid compositions. Unfortunately, differences in the PMFs could not be quantified, and it remains to be investigated to what extent liposome simulations can fully reproduce experimental findings.
Vakser Ilya A
2011-07-01
Full Text Available Abstract Background Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom pairs in the non-interaction state. Results The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of
Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging
Kapinchev, Konstantin; Bradu, Adrian; Barnes, Frederick; Podoleanu, Adrian
2016-03-01
This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.
de Oliveira, Tiago E.; Netz, Paulo A.; Kremer, Kurt; Junghans, Christoph; Mukherji, Debashish
2016-05-01
We present a coarse-graining strategy that we test for aqueous mixtures. The method uses pair-wise cumulative coordination as a target function within an iterative Boltzmann inversion (IBI) like protocol. We name this method coordination iterative Boltzmann inversion ( C -IBI). While the underlying coarse-grained model is still structure based and, thus, preserves pair-wise solution structure, our method also reproduces solvation thermodynamics of binary and/or ternary mixtures. Additionally, we observe much faster convergence within C -IBI compared to IBI. To validate the robustness, we apply C -IBI to study test cases of solvation thermodynamics of aqueous urea and a triglycine solvation in aqueous urea.
Villaverde, Eduardo Rigoberto Lopez; Robert, Sebastien; Prada, Claire
In the present work, the Synthetic Transmit Aperture (STA) imaging is applied on coarse grained steels using a contact phased-array probe. In order to reduce the noise introduced by the heterogeneous structure, as well as artifacts due to surface guided waves, the Decomposition of the Time Reversal Operator method is performed before calculating STA images.
Contact prediction in protein modeling: Scoring, folding and refinement of coarse-grained models
Kolinski Andrzej
2008-08-01
Full Text Available Abstract Background Several different methods for contact prediction succeeded within the Sixth Critical Assessment of Techniques for Protein Structure Prediction (CASP6. The most relevant were non-local contact predictions for targets from the most difficult categories: fold recognition-analogy and new fold. Such contacts could provide valuable structural information in case a template structure cannot be found in the PDB. Results We described comprehensive tests of the effectiveness of contact data in various aspects of de novo modeling with CABS, an algorithm which was used successfully in CASP6 by the Kolinski-Bujnicki group. We used the predicted contacts in a simple scoring function for the post-simulation ranking of protein models and as a soft bias in the folding simulations and in the fold-refinement procedure. The latter approach turned out to be the most successful. The CABS force field used in the Replica Exchange Monte Carlo simulations cooperated with the true contacts and discriminated the false ones, which resulted in an improvement of the majority of Kolinski-Bujnicki's protein models. In the modeling we tested different sets of predicted contact data submitted to the CASP6 server. According to our results, the best performing were the contacts with the accuracy balanced with the coverage, obtained either from the best two predictors only or by a consensus from as many predictors as possible. Conclusion Our tests have shown that theoretically predicted contacts can be very beneficial for protein structure prediction. Depending on the protein modeling method, a contact data set applied should be prepared with differently balanced coverage and accuracy of predicted contacts. Namely, high coverage of contact data is important for the model ranking and high accuracy for the folding simulations.
John G Koland
2014-01-01
Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in
Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.
Mathew, B; Bauer, A M; Koistinen, P; Reetz, T C; Léon, J; Sillanpää, M J
2012-10-01
Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.
Rapid Calculation of Thermal Forces in Coarse Grained Simulation of Colloidal Particles
Swan, James; Fiore, Andrew; Donev, Aleksander; Balboa, Florencio
2016-11-01
In the presented work, we will demonstrate a spectrally accurate method for calculation of thermal forces in implicit solvent simulations of soft materials such as colloidal dispersions. For implicit solvent models, the stochastic forces must be drawn from a normal distribution whose covariance is a complicated function of the particle configuration. For a system of interacting N particles, drawing a single sample requires O (N3) operations, if numerically exact techniques from linear algebra are employed. So-called "fast" methods can approximate the sampling with roughly O (Nm logN) computational complexity, where m is a coefficient greater than one which depends on the configuration of the particles. The computational complexity of the presented approach is O (N(logN) d / (d + 3)) , where d is the fractal dimension of the particulate structures being modeled. Remarkably, this new approach adapts to the structure of the material under study by leveraging the algebraic structure of Ewald summation and balancing the computational effort spent evaluating near-field and far-field contributions to the hydrodynamic interactions among the suspended particles. Applications of this approach to modeling colloidal gelation and particulate suspensions will be discussed.
Kinetic Monte Carlo method applied to nucleic acid hairpin folding.
Sauerwine, Ben; Widom, Michael
2011-12-01
Kinetic Monte Carlo on coarse-grained systems, such as nucleic acid secondary structure, is advantageous for being able to access behavior at long time scales, even minutes or hours. Transition rates between coarse-grained states depend upon intermediate barriers, which are not directly simulated. We propose an Arrhenius rate model and an intermediate energy model that incorporates the effects of the barrier between simulated states without enlarging the state space itself. Applying our Arrhenius rate model to DNA hairpin folding, we demonstrate improved agreement with experiment compared to the usual kinetic Monte Carlo model. Further improvement results from including rigidity of single-stranded stacking.
Sereda, Yuriy V.; Ortoleva, Peter J.
2014-04-01
A closed kinetic equation for the single-particle density of a viscous simple liquid is derived using a variational method for the Liouville equation and a coarse-grained mean-field (CGMF) ansatz. The CGMF ansatz is based on the notion that during the characteristic time of deformation a given particle interacts with many others so that it experiences an average interaction. A trial function for the N-particle probability density is constructed using a multiscale perturbation method and the CGMF ansatz is applied to it. The multiscale perturbation scheme is based on the ratio of the average nearest-neighbor atom distance to the total size of the assembly. A constraint on the initial condition is discovered which guarantees that the kinetic equation is mass-conserving and closed in the single-particle density. The kinetic equation has much of the character of the Vlasov equation except that true viscous, and not Landau, damping is accounted for. The theory captures condensation kinetics and takes much of the character of the Gross-Pitaevskii equation in the weak-gradient short-range force limit.
Kapoor, Abhijeet; Travesset, Alex
2014-03-01
We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.
Artturi Koivuniemi
2012-01-01
Full Text Available Cholesteryl ester transfer protein (CETP transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed molecular dynamics simulations to unravel the mechanisms associated with the CETP-mediated lipid exchange. To this end we used both atomistic and coarse-grained models whose results were consistent with each other. We found CETP to bind to the surface of high density lipoprotein (HDL -like lipid droplets through its charged and tryptophan residues. Upon binding, CETP rapidly (in about 10 ns induced the formation of a small hydrophobic patch to the phospholipid surface of the droplet, opening a route from the core of the lipid droplet to the binding pocket of CETP. This was followed by a conformational change of helix X of CETP to an open state, in which we found the accessibility of cholesteryl esters to the C-terminal tunnel opening of CETP to increase. Furthermore, in the absence of helix X, cholesteryl esters rapidly diffused into CETP through the C-terminal opening. The results provide compelling evidence that helix X acts as a lid which conducts lipid exchange by alternating the open and closed states. The findings have potential for the design of novel molecular agents to inhibit the activity of CETP.
Wan, Guang; Dai, Xingxing; Yin, Qianqian; Shi, Xinyuan; Qiao, Yanjiang
2015-07-01
Menthol is a widely used penetration enhancer in clinical medicine due to its high efficiency and relative safety. Although there are many studies focused on the penetration-enhancing activity of menthol, the details of molecular mechanism are rarely involved in the discussion. In this study, we present a series of coarse-grained molecular dynamics simulations to investigate the interaction of menthol with a mixed-lipid bilayer model consisting of ceramides, cholesterol and free fatty acids in a 2:2:1 molar ratio. Taking both the concentration of menthol and temperature into consideration, it was found that a rise in temperature and concentration within a specific range (1-20%) could improve the penetration-enhancing property of menthol and the floppiness of the bilayer. However, at high concentrations (30% and more), menthol completely mixed with the lipids and the membrane can no longer maintain a bilayer structure. Our results elucidates some of the molecular basis for menthol's penetration enhancing effects and may provide some assistance for the development and applications of menthol as a penetration enhancer. Furthermore, we establish a method to investigate the penetration enhancement mechanism of traditional Chinese medicine using the mixed-lipid bilayer model of stratum corneum by molecular dynamics simulations.
Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field
Kalimeri, Maria; Derreumaux, Philippe; Sterpone, Fabio
2017-01-01
We present the first investigation of the kinetic and thermodynamic stability of two homologous thermophilic and mesophilic proteins based on the coarse-grained model OPEP. The object of our investigation is a pair of G-domains of relatively large size, 200 amino acids each, with an experimental stability gap of about 40 K. The OPEP force field is able to maintain stable the fold of these relatively large proteins within the hundrend-nanosecond time scale without including external constraints. This makes possible to characterize the conformational landscape of the folded protein as well as to explore the unfolding. In agreement with all-atom simulations used as a reference, we show that the conformational landscape of the thermophilic protein is characterized by a larger number of substates with slower dynamics on the network of states and more resilient to temperature increase. Moreover, we verify the stability gap between the two proteins using replica-exchange simulations and estimate a difference between the melting temperatures of about 23 K, in fair agreement with experiment. The detailed investigation of the unfolding thermodynamics, allows to gain insight into the mechanism underlying the enhanced stability of the thermophile relating it to a smaller heat capacity of unfolding.
Kawamoto, Shuhei; Shinoda, Wataru, E-mail: w.shinoda@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Klein, Michael L. [Institute for Computational Molecular Science, Temple University, SERC Building 1925 North 12th Street, Philadelphia, Pennsylvania 19122 (United States)
2015-12-28
The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.
Cao, Fenglei; Deetz, Joshua D; Sun, Huai
2017-01-23
The free energy based Lennard-Jones 12-6 (FE-12-6) coarse-grained (CG) force field developed for alkanes1 has been extended to model small molecules of light hydrocarbons (methane, ethane, propane, butane, and isobutane), nitrogen, oxygen, and carbon dioxide. The adjustable parameters of the FE-12-6 potential are determined by fitting against experimental vapor-liquid equilibrium (VLE) curves and heat of vaporization (HOV) data for pure substance liquids. Simulations using the optimized FE-12-6 parameters correctly reproduced experimental measures of the VLE, HOV, density, vapor pressure, compressibility, critical point, and surface tension for pure substances over a wide range of thermodynamic states. The force field parameters optimized for pure substances were tested on methane/butane, nitrogen/decane, and carbon dioxide/decane binary mixtures to predict their vapor-liquid equilibrium phase diagrams. It is found that for nonpolar molecules represented by different sized beads, a common scaling factor (0.08) that reduces the strength of the interaction potential between unlike beads, generated using Lorentz-Berthelot (LB) combination rules, is required to predict vapor-liquid phase equilibria accurately.
Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian [Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich Weiss Straße 4, D-64287 Darmstadt (Germany); Sugii, Taisuke, E-mail: taisuke.sugii.zs@hitachi.com [Center for Technology Innovation – Mechanical Engineering, Research & Development Group, Hitachi, Ltd., 832-2, Horiguchi, Hitachinaka, Ibaraki 312-0034 (Japan)
2015-12-28
We investigate the volumetric glass transition temperature T{sub g} in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T{sub g} increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T{sub g} in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T{sub g} is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment.
Euston, Stephen R
2010-10-11
The adsorption of LTP at the decane-water interface was modeled using all-atom and coarse-grained (CG) molecular dynamics simulations. The CG model (300 ns simulation, 1200 ns scaled time) generates equilibrium adsorbed conformations in about 12 h, whereas the equivalent 1200 ns simulation would take about 300 days for the all-atom model. In both models the LTP molecule adsorbs with α-helical regions parallel to the interface with an average tilt angle normal to the interface of 73° for the all-atom model and 62° for the CG model. In the all-atom model, the secondary structure of the LTP is conserved upon adsorption. A considerable proportion of the N-terminal loop of LTP can be found in the decane phase for the all-atom model, whereas in the CG model the protein only penetrates as far as the mixed water-decane interfacial region. This difference may arise due to the different schemes used to parametrize force field parameters in the two models.
Chen, Chunxia; Depa, Praveen; Sakai, Victoria García; Maranas, Janna K; Lynn, Jeffrey W; Peral, Inmaculada; Copley, John R D
2006-06-21
We compare static and dynamic properties obtained from three levels of modeling for molecular dynamics simulation of poly(ethylene oxide) (PEO). Neutron scattering data are used as a test of each model's accuracy. The three simulation models are an explicit atom (EA) model (all the hydrogens are taken into account explicitly), a united atom (UA) model (CH(2) and CH(3) groups are considered as a single unit), and a coarse-grained (CG) model (six united atoms are taken as one bead). All three models accurately describe the PEO static structure factor as measured by neutron diffraction. Dynamics are assessed by comparison to neutron time of flight data, which follow self-motion of protons. Hydrogen atom motion from the EA model and carbon/oxygen atom motion from the UA model closely follow the experimental hydrogen motion, while hydrogen atoms reinserted in the UA model are too fast. The EA and UA models provide a good description of the orientation properties of C-H vectors measured by nuclear magnetic resonance experiments. Although dynamic observables in the CG model are in excellent agreement with their united atom counterparts, they cannot be compared to neutron data because the time after which the CG model is valid is greater than the neutron decay times.
Masella, Michel; Borgis, Daniel; Cuniasse, Philippe
2011-09-01
A revised and improved version of our efficient polarizable force-field/coarse grained solvent combined approach (Masella, Borgis, and Cuniasse, J. Comput. Chem. 2008, 29, 1707) is described. The polarizable pseudo-particle solvent model represents the macroscopic solvent polarization by induced dipoles placed on mobile pseudo-particles. In this study, we propose a new formulation of the energy term handling the nonelectrostatic interactions among the pseudo-particles. This term is now able to reproduce the energetic and structural response of liquid water due to the presence of a hydrophobic spherical cavity. Accordingly, the parameters of the energy term handling the nonpolar solute/solvent interactions have been refined to reproduce the free-solvation energy of small solutes, based on a standard thermodynamic integration scheme. The reliability of this new approach has been checked for the properties of solvated methane and of the solvated methane dimer, as well as by performing 10 × 20 ns molecular dynamics (MD) trajectories for three solvated proteins. A long-time stability of the protein structures along the trajectories is observed. Moreover, our method still provides a measure of the protein solvation thermodynamic at the same accuracy as standard Poisson-Boltzman continuum methods. These results show the relevance of our approach and its applicability to massively coupled MD schemes to accurately and intensively explore solvated macromolecule potential energy surfaces.
Richardson, Robin A; Papachristos, Konstantinos; Read, Daniel J; Harlen, Oliver G; Harrison, Michael; Paci, Emanuele; Muench, Stephen P; Harris, Sarah A
2014-12-01
Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated protein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer simulations provide valuable insights into the different conformations available to a particular system that are not accessible using conventional structural techniques. For larger proteins and protein complexes, where a fully atomistic description would be computationally prohibitive, coarse-grained simulation techniques such as Elastic Network Modeling (ENM) are often employed, whereby each atom or group of atoms is linked by a set of springs whose properties can be customized according to the system of interest. Here we compare ENM with a recently proposed continuum model known as Fluctuating Finite Element Analysis (FFEA), which represents the biomolecule as a viscoelastic solid subject to thermal fluctuations. These two complementary computational techniques are used to answer a critical question in the rotary ATPase family; implicit within these motors is the need for a rotor axle and proton pump to rotate freely of the motor domain and stator structures. However, current single particle cryo-EM reconstructions have shown an apparent connection between the stators and rotor axle or pump region, hindering rotation. Both modeling approaches show a possible role for this connection and how it would significantly constrain the mobility of the rotary ATPase family. © 2014 Wiley Periodicals, Inc.
Knott, Michael [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Best, Robert B., E-mail: robertbe@helix.nih.gov [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)
2014-05-07
Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.
Ghobadi, Ahmadreza F; Jayaraman, Arthi
2016-02-28
In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.
Zaccone, A; Herling, T W; Knowles, T P J; Aleksandrova, A; Terentjev, E M
2016-01-01
While a significant body of investigations have been focused on the process of protein self-assembly, much less is understood about the reverse process of a filament breaking due to thermal motion into smaller fragments, or depolymerization of subunits from the filament ends. Indirect evidence for actin and amyloid filament fragmentation has been reported, although the phenomenon has never been directly observed either experimentally or in simulations. Here we report the direct observation of filament depolymerization and breakup in a minimal, calibrated model of coarse-grained molecular simulation. We quantify the orders of magnitude by which the depolymerization rate from the filament ends $k_\\mathrm{off}$ is larger than fragmentation rate $k_{-}$ and establish the law $k_\\mathrm{off}/k_- = \\exp [( \\varepsilon_\\| - \\varepsilon_\\bot) / k_\\mathrm{B}T ] = \\exp [0.5 \\varepsilon / k_\\mathrm{B}T ]$, which accounts for the topology and energy of bonds holding the filament together. This mechanism and the order-of-...
MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)
2015-12-28
The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.
Copperman, J; Guenza, M G
2015-07-23
We utilize a multiscale approach where molecular dynamic simulations are performed to obtain quantitative structural averages used as input to a coarse-grained Langevin equation for protein dynamics, which can be solved analytically. The approach describes proteins as fundamentally semiflexible objects collapsed into the free energy well representing the folded state. The normal-mode analytical solution to this Langevin equation naturally separates into global modes describing the fully anisotropic tumbling of the macromolecule as a whole and internal modes which describe local fluctuations about the folded structure. Complexity in the configurational free-energy landscape of the macromolecule leads to a renormalization of the internal modes, while the global modes provide a basis set in which the dipolar orientation and global anisotropy can be accounted for when comparing to experiments. This simple approach predicts the dynamics of both global rotational diffusion and internal motion from the picosecond to the nanosecond regime and is quantitative when compared to time correlation functions calculated from molecular dynamic simulations and in good agreement with nuclear magnetic resonance relaxation experiments. Fundamental to this approach is the inclusion of internal dissipation, which is absent in any rigid-body hydrodynamical modeling scheme.
Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Coble, Jamie B.; Diaz, Aaron A.; Anderson, Michael T.
2012-09-01
A sound field beam mapping exercise was conducted to assist in understanding the effects of coarse-grained microstructures found in cast austenitic stainless steel (CASS) materials on acoustic longitudinal wave propagation. Ultrasonic laboratory measurements were made on three specimens representing four different grain structures. Phased array (PA) probes were fixed on each specimen surface and excited in the longitudinal mode at specific angles while a point receiver was scanned in a raster pattern over the end of the specimen, generating a transmitted sound field image. Three probes operating at nominal frequencies of 0.5, 0.8, and 1.0 MHz were used. A 6.4 mm (0.25-in.) thick slice was removed from the specimen end and beam mapping was repeated three times, yielding four full sets of beam images. Data were collected both with a constant part path for each configuration (probe, specimen and slice, angle, etc.) and with a variable part path (fixed position on the surface). The base specimens and slices were then polished and etched to reveal measureable grain microstructures that were compared to the sound field interactions and scattering effects seen in the collected data.
Samia Aci-Sèche
Full Text Available The cancer associated class 3 semaphorins require direct binding to neuropilins and association to plexins to trigger cell signaling. Here, we address the role of the transmembrane domains of neuropilin 1 and plexin A1 for the dimerization of the two receptors by characterizing the assembly in lipid bilayers using coarse-grained molecular dynamics simulations. From experimental evidence using a two-hybrid system showing the biochemical association of the two receptors transmembrane domains, we performed molecular simulations in DOPC and POPC demonstrating spontaneously assembly to form homodimers and heterodimers with a very high propensity for right-handed packing of the helices. Inversely, left-handed packing was observed with a very low propensity. This mode of packing was observed uniquely when the plexin A1 transmembrane domain was involved in association. Potential of mean force calculations were used to predict a hierarchy of self-association for the monomers: the two neuropilin 1 transmembrane domains strongly associated, neuropilin 1 and plexin A1 transmembrane domains associated less and the two plexin A1 transmembrane domains weakly but significantly associated. We demonstrated that homodimerization and heterodimerization are driven by GxxxG motifs, and that the sequence context modulates the packing mode of the plexin A1 transmembrane domains. This work presents major advances towards our understanding of membrane signaling platforms assembly through membrane domains and provides exquisite information for the design of antagonist drugs defining a novel class of therapeutic agents.
Marze, Sébastien
2014-01-01
The digestion of lipophilic nutrients and micronutrients requires numerous and simultaneous processes of chemical, physical and biological nature. Studying these processes experimentally is challenging, explaining why there is only little information about the mechanisms and interactions involved. Nevertheless, the bioaccessibility of lipophilic micronutrients is poorly understood so new investigation approaches are needed, all the more when digestion of lipophilic nutrients is also involved. In this article, the development of a coarse-grained simulation with no adjustable parameter is reported, enabling the study of the chemical and physical processes controlling bioaccessibility in such systems. The intestinal digestion of a droplet of a pure triglyceride containing a lipophilic vitamin was simulated to obtain their bioaccessibility kinetics (via lipolysis and/or solubilization in bile salt). The parameters examined here were the type of triglyceride, the type of vitamin, the digestive fluid amount, the droplet size, and different digestion conditions reflecting the in vitro or in vivo cases. Among these structure and composition parameters, the type of triglyceride and the digestion conditions had the greatest effects on bioaccessibility. An interplay between triglyceride digestion and micronutrient bioaccessibility kinetics was evidenced, highlighting the roles of the different parameters, in agreement with the experimental literature. This new approach is shown to be relevant to both nutrition and pharmacology.
Chu, Jhih-Wei; Voth, Gregory A
2007-12-01
In this work, a double-well network model (DWNM) is presented for generating a coarse-grained free energy function that can be used to study the transition between reference conformational states of a protein molecule. Compared to earlier work that uses a single, multidimensional double-well potential to connect two conformational states, the DWNM uses a set of interconnected double-well potentials for this purpose. The DWNM free energy function has multiple intermediate states and saddle points, and is hence a "rough" free energy landscape. In this implementation of the DWNM, the free energy function is reduced to an elastic-network model representation near the two reference states. The effects of free energy function roughness on the reaction pathways of protein conformational change is demonstrated by applying the DWNM to the conformational changes of two protein systems: the coil-to-helix transition of the DB-loop in G-actin and the open-to-closed transition of adenylate kinase. In both systems, the rough free energy function of the DWNM leads to the identification of distinct minimum free energy paths connecting two conformational states. These results indicate that while the elastic-network model captures the low-frequency vibrational motions of a protein, the roughness in the free energy function introduced by the DWNM can be used to characterize the transition mechanism between protein conformations.
Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru
2015-12-28
The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.
Aci-Sèche, Samia; Sawma, Paul; Hubert, Pierre; Sturgis, James N; Bagnard, Dominique; Jacob, Laurent; Genest, Monique; Garnier, Norbert
2014-01-01
The cancer associated class 3 semaphorins require direct binding to neuropilins and association to plexins to trigger cell signaling. Here, we address the role of the transmembrane domains of neuropilin 1 and plexin A1 for the dimerization of the two receptors by characterizing the assembly in lipid bilayers using coarse-grained molecular dynamics simulations. From experimental evidence using a two-hybrid system showing the biochemical association of the two receptors transmembrane domains, we performed molecular simulations in DOPC and POPC demonstrating spontaneously assembly to form homodimers and heterodimers with a very high propensity for right-handed packing of the helices. Inversely, left-handed packing was observed with a very low propensity. This mode of packing was observed uniquely when the plexin A1 transmembrane domain was involved in association. Potential of mean force calculations were used to predict a hierarchy of self-association for the monomers: the two neuropilin 1 transmembrane domains strongly associated, neuropilin 1 and plexin A1 transmembrane domains associated less and the two plexin A1 transmembrane domains weakly but significantly associated. We demonstrated that homodimerization and heterodimerization are driven by GxxxG motifs, and that the sequence context modulates the packing mode of the plexin A1 transmembrane domains. This work presents major advances towards our understanding of membrane signaling platforms assembly through membrane domains and provides exquisite information for the design of antagonist drugs defining a novel class of therapeutic agents.
Endres, Stephan; Bleicher, Marcus
2016-01-01
Dilepton production in heavy-ion collisions at collider energies - i.e., for the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) - is studied within an approach that uses coarse-grained transport simulations to calculate thermal dilepton emission applying in-medium spectral functions from hadronic many-body theory and partonic production rates based on lattice calculations. The microscopic output from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is hereby put on a grid of space-time cells which allows to extract the local temperature and chemical potential in each cell via an equation of state. The resulting dilepton spectra are in good agreement with the experimental results for the range of RHIC energies, $\\sqrt{s_{NN}}=19.6 - 200$ GeV. The comparison of data and model outcome shows that the newest measurements by the PHENIX and STAR collaborations are consistent and that the low-mass spectra can be described by a cocktail of hadronic decay contributions togethe...
Lyu, Justin; Andrianarijaona, V. M.
2016-05-01
The causes of the misfolding of prion protein -i.e. the transformation of PrPC to PrPSc - have not been clearly elucidated. Many studies have focused on identifying possible chemical conditions, such as pH, temperature and chemical denaturation, that may trigger the pathological transformation of prion proteins (Weiwei Tao, Gwonchan Yoon, Penghui Cao, `` β-sheet-like formation during the mechanical unfolding of prion protein'', The Journal of Chemical Physics, 2015, 143, 125101). Here, we attempt to calculate the ionization energies of the prion protein, which will be able to shed light onto the possible causes of the misfolding. We plan on using the coarse-grain method which allows for a more feasible calculation time by means of approximation. We believe that by being able to approximate the ionization potential, particularly that of the regions known to form stable β-strands of the PrPSc form, the possible sources of denaturation, be it chemical or mechanical, may be narrowed down.