WorldWideScience

Sample records for adaptive backstepping control

  1. Adaptive Backstepping Flight Control for Modern Fighter Aircraft

    NARCIS (Netherlands)

    Sonneveldt, L.

    2010-01-01

    The main goal of this thesis is to investigate the potential of the nonlinear adaptive backstepping control technique in combination with online model identification for the design of a reconfigurable flight control system for a modern fighter aircraft. Adaptive backstepping is a recursive,

  2. Adaptive Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. This gives a highly nonlinear transfer operator from compressor speed input to the superheat output....... A new low order nonlinear model of the evaporator is developed and used in a backstepping design of an adaptive nonlinear controller.  The stability of the proposed method is validated theoretically by Lyapunov analysis and experimental results shows the performance of the system for a wide range...

  3. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    the angular deflection of the tower with respect to the vertical axis in response to variations in wind speed. The controller is shown to guarantee asymptotic tracking of the reference trajectory. The performance of the control system is evaluated through deterministic and stochastic simulations including......This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...... for towers and foundations would greatly reduce the construction cost of the wind turbine, however extra features ought be included in the control system architecture to avoid tower collapse. An adaptive backstepping collective pitch controller is proposed for tower point tracking control, i.e. to modify...

  4. Adaptive Backstepping Self-balancing Control of a Two-wheel Electric Scooter

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2014-10-01

    Full Text Available This paper introduces an adaptive backstepping control law for a two-wheel electric scooter (eScooter with a nonlinear uncertain model. Adaptive backstepping control is integrated with feedback control that satisfies Lyapunov stability. By using the recursive structure to find the controlled function and estimate uncertain parameters, an adaptive backstepping method allows us to build a feedback control law that efficiently controls a self-balancing controller of the eScooter. Additionally, a controller area network (CAN bus with high reliability is applied for communicating between the modules of the eScooter. Simulation and experimental results demonstrate the robustness and good performance of the proposed adaptive backstepping control.

  5. Control-oriented modeling and adaptive backstepping control for a nonminimum phase hypersonic vehicle.

    Science.gov (United States)

    Ye, Linqi; Zong, Qun; Tian, Bailing; Zhang, Xiuyun; Wang, Fang

    2017-09-01

    In this paper, the nonminimum phase problem of a flexible hypersonic vehicle is investigated. The main challenge of nonminimum phase is the prevention of dynamic inversion methods to nonlinear control design. To solve this problem, we make research on the relationship between nonminimum phase and backstepping control, finding that a stable nonlinear controller can be obtained by changing the control loop on the basis of backstepping control. By extending the control loop to cover the internal dynamics in it, the internal states are directly controlled by the inputs and simultaneously serve as virtual control for the external states, making it possible to guarantee output tracking as well as internal stability. Then, based on the extended control loop, a simplified control-oriented model is developed to enable the applicability of adaptive backstepping method. It simplifies the design process and releases some limitations caused by direct use of the no simplified control-oriented model. Next, under proper assumptions, asymptotic stability is proved for constant commands, while bounded stability is proved for varying commands. The proposed method is compared with approximate backstepping control and dynamic surface control and is shown to have superior tracking accuracy as well as robustness from the simulation results. This paper may also provide a beneficial guidance for control design of other complex systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Nonlinear Constrained Adaptive Backstepping Tracking Control for a Hypersonic Vehicle with Uncertainty

    Directory of Open Access Journals (Sweden)

    Qin Zou

    2015-01-01

    Full Text Available The control problem of a flexible hypersonic vehicle is presented, where input saturation and aerodynamic uncertainty are considered. A control-oriented model including aerodynamic uncertainty is derived for simple controller design due to the nonlinearity and complexity of hypersonic vehicle model. Then it is separated into velocity subsystem and altitude subsystem. On the basis of the integration of robust adaptive control and backstepping technique, respective controller is designed for each subsystem, where an auxiliary signal provided by an additional dynamic system is used to compensate for the control saturation effect. Then to deal with the “explosion of terms” problem inherent in backstepping control, a novel first-order filter is proposed. Simulation results are included to demonstrate the effectiveness of the adaptive backstepping control scheme.

  7. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.

    Science.gov (United States)

    Xia, Kewei; Huo, Wei

    2016-05-01

    This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  9. Stabilization of an Underactuated Surface Vessel Based on Adaptive Sliding Mode and Backstepping Control

    Directory of Open Access Journals (Sweden)

    Fuguang Ding

    2013-01-01

    Full Text Available The paper studied controlling problem of an underactuated surface vessel with unknown interferences. It proved that the control problem of underactuated surface vessel can be transformed into the stabilization analysis of two small subsystems. This controller was designed by backstepping method and adaptive sliding mode, was suitable for solving the problem of the control of higher systems, can keep the system global asymptotic stability, and can inhibit unknown interference, and boundary layer can weaken the buffeting generated by sliding mode. The unknown interference was estimated by adaptive function. Finally, the simulation results are given to demonstrate the effectiveness of the proposed control laws.

  10. Adaptive Backstepping Sliding-Mode Control of the Electronic Throttle System in Modern Automobiles

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available In modern automobiles, electronic throttle is a DC-motor-driven valve that regulates air inflow into the vehicle’s combustion system. The electronic throttle is increasingly being used in order to improve the vehicle drivability, fuel economy, and emissions. Electronic throttle system has the nonlinear dynamical characteristics with the unknown disturbance and parameters. At first, the dynamical nonlinear model of the electronic throttle is built in this paper. Based on the model and using the backstepping design technique, a new adaptive backstepping sliding-mode controller of the electronic throttle is developed. During the backstepping design process, parameter adaptive law is designed to estimate the unknown parameter, and sliding-mode control term is applied to compensate the unknown disturbance. The proposed controller can make the actual angle of the electronic throttle track its set point with the satisfactory performance. Finally, a computer simulation is performed, and simulation results verify that the proposed control method can achieve favorable tracking performance.

  11. Adaptive Backstepping Controller Design for Leveling Control of an Underwater Platform Based on Joint Space

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Zeng

    2014-01-01

    Full Text Available This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.

  12. CMAC-based adaptive backstepping synchronization of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Lin, C.-M.; Peng, Y.-F.; Lin, M.-H.

    2009-01-01

    This study proposes an adaptive backstepping control system for synchronizing uncertain chaotic system by using cerebellar model articulation controller (CMAC). CMAC is a nonlinear network with simple computation, good generalization capability and fast learning property. The proposed CMAC-based adaptive backstepping control (CABC) system uses backstepping method and adaptive cerebellar model articulation controller (ACMAC) for synchronizing uncertain chaotic system. Finally, simulation results for the Genesio system are presented to illustrate the effectiveness of the proposed control system.

  13. Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units

    International Nuclear Information System (INIS)

    Fang, Fang; Wei, Le

    2011-01-01

    The control system of boiler-turbine unit plays an important role in improving efficiency and reducing emissions of power generation unit. The nonlinear, coupling and uncertainty of the unit caused by varying working conditions should be fully considered during the control system design. This paper presents an efficient control scheme based on backstepping theory for improving load adaptability of boiler-turbines in wide operation range. The design process of the scheme includes model preprocessing, control Lyapunov functions selection, interlaced computation of adaptive control laws, etc. For simplification and accuracy, differential of steam pipe inlet pressure and integral terms of target errors are adopted. Also, to enhance practicality, implementation steps of the scheme are proposed. A practical nonlinear model of a 500 MW coal-fired boiler-turbine unit is used to test the efficiency of the proposed scheme in different conditions.

  14. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  15. Design of an adaptive backstepping controller for auto-berthing a cruise ship under wind loads

    Directory of Open Access Journals (Sweden)

    Park Jong-Yong

    2014-06-01

    Full Text Available The auto-berthing of a ship requires excellent control for safe accomplishment. Crabbing, which is the pure sway motion of a ship without surge velocity, can be used for this purpose. Crabbing is induced by a peculiar operation procedure known as the push-pull mode. When a ship is in the push-pull mode, an interacting force is induced by complex turbulent flow around the ship generated by the propellers and side thrusters. In this paper, three degrees of freedom equations of the motions of crabbing are derived. The equations are used to apply the adaptive backstepping control method to the auto-berthing controller of a cruise ship. The controller is capable of handling the system nonlinearity and uncertainty of the berthing process. A control allocation algorithm for a ship equipped with two propellers and two side thrusters is also developed, the performance of which is validated by simulation of auto-berthing.

  16. Adaptive Neural Back-Stepping Control with Constrains for a Flexible Air-Breathing Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-01-01

    Full Text Available The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances.

  17. Adaptive Backstepping Control Based on Floating Offshore High Temperature Superconductor Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2014-01-01

    Full Text Available With the rapid development of offshore wind power, the doubly fed induction generator and permanent magnet synchronous generator cannot meet the increasing request of power capacity. Therefore, superconducting generator should be used instead of the traditional motor, which can improve generator efficiency, reduce the weight of wind turbines, and increase system reliability. This paper mainly focuses on nonlinear control in the offshore wind power system which is consisted of a wind turbine and a high temperature superconductor generator. The proposed control approach is based on the adaptive backstepping method. Its main purpose is to regulate the rotor speed and generator voltage, therefore, achieving the maximum power point tracking (MPPT, improving the efficiency of a wind turbine, and then enhancing the system’s stability and robustness under large disturbances. The control approach can ensure high precision of generator speed tracking, which is confirmed in both the theoretical analysis and numerical simulation.

  18. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Directory of Open Access Journals (Sweden)

    Fuhong Min

    2016-08-01

    Full Text Available The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  19. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya; Wang, Enrong [School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, 210042 (China)

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  20. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  1. Globally Stable Adaptive Backstepping Neural Network Control for Uncertain Strict-Feedback Systems With Tracking Accuracy Known a Priori.

    Science.gov (United States)

    Chen, Weisheng; Ge, Shuzhi Sam; Wu, Jian; Gong, Maoguo

    2015-09-01

    This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori, and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new n th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.

  2. Projection-Based Adaptive Backstepping Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults.

  3. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    Science.gov (United States)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  4. Extended State Observer Based Adaptive Back-Stepping Sliding Mode Control of Electronic Throttle in Transportation Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Yongfu Li

    2015-01-01

    Full Text Available Considering the high accuracy requirement of information exchange via vehicle-to-vehicle (V2V communications, an extended state observer (ESO is designed to estimate the opening angle change of an electronic throttle (ET, wherein the emphasis is placed on the nonlinear uncertainties of stick-slip friction and spring in the system as well as the existence of external disturbance. In addition, a back-stepping sliding mode controller incorporating an adaptive control law is presented, and the stability and robustness of the system are analyzed using Lyapunov technique. Finally, numerical experiments are conducted using simulation. The results show that, compared with back-stepping control (BSC, the proposed controller achieves superior performance in terms of the steady-state error and rising time.

  5. Adaptive Backstepping Controller Design for the Anti-Synchronization of Identical WINDMI Chaotic Systems with Unknown Parameters and its SPICE Implementation

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This paper derives new results for the adaptive backstepping controller design for the anti-synchronization of identical WINDMI systems (Wind-Magnetosphere-Ionosphere models with unknown parameters and also details the SPICE implementation of the proposed adaptive backstepping controller. In the anti-synchronization of chaotic systems, the sum of the outputs of master and slave systems is made to converge asymptotically to zero with time. The adaptive controller design for the anti-synchronization of identical WINDMI systems with unknown parameters has been established by applying Lyapunov stability theory. MATLAB simulations have been shown for the illustration of the adaptive anti-synchronizing backstepping controller for identical WINDMI chaotic systems. Finally, the proposed controller has been implemented using SPICE and circuit simulation results have been detailed.

  6. Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin [School of Mathematics and Statistics, Suzhou University, Suzhou 234000 (China); Lv, Hui, E-mail: lvhui207@gmail.com [Department of Applied Mathematics, Huainan Normal University, Huainan 232038 (China)

    2016-08-15

    In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.

  7. Robust chaotic control of Lorenz system by backstepping design

    International Nuclear Information System (INIS)

    Peng, C.-C.; Chen, C.-L.

    2008-01-01

    This work presents a robust chaotic control strategy for the Lorenz chaos via backstepping design. Backstepping technique is a systematic tool of control law design to provide Lyapunov stability. The concept of extended system is used such that a continuous sliding mode control (SMC) effort is generated using backstepping scheme. In the proposed control algorithm, an adaptation law is applied to estimate the system parameter and the SMC offers the robustness to model uncertainties and external disturbances so that the asymptotical convergence of tracking error can be achieved. Regarding the SMC, an equivalent control algorithm is chosen based on the selection of Lyapunov stability criterion during backstepping approach. The converging rate of error state is relative to the corresponding dynamics of sliding surface. Numerical simulations demonstrate its advantages to a regulation problem and an orbit tracking problem of the Lorenz chaos

  8. Dynamic modeling and simulation of an induction motor with adaptive backstepping design of an input-output feedback linearization controller in series hybrid electric vehicle

    Directory of Open Access Journals (Sweden)

    Jalalifar Mehran

    2007-01-01

    Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.

  9. Global Harmonic Current Rejection of Nonlinear Backstepping Control with Multivariable Adaptive Internal Model Principle for Grid-Connected Inverter under Distorted Grid Voltage

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.

  10. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  11. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Qingsong Ai

    2017-12-01

    Full Text Available A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs. To solve the PM’s nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  12. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    Science.gov (United States)

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Meng, Wei; Liu, Quan; Xie, Sheng Q; Yang, Ming

    2017-12-28

    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  13. Adaptive back-stepping control of the harmonic drive system with LuGre model-based friction compensation

    Science.gov (United States)

    Liu, Sen; Gang, Tieqiang

    2018-03-01

    Harmonic drives are widely used in aerospace and industrial robots. Flexibility, friction and parameter uncertainty will result in transmission performance degradation. In this paper, an adaptive back-stepping method with friction compensation is proposed to improve the tracking performance of the harmonic drive system. The nonlinear friction is described by LuGre model and compensated with a friction observer, and the uncertainty of model parameters is resolved by adaptive parameter estimation method. By using Lyapunov stability theory, it is proved that all the errors of the closed-loop system are uniformly ultimately bounded. Simulations illustrate the effectiveness of our friction compensation method.

  14. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir

    2009-01-01

    converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using...

  15. Design of optimised backstepping controller for the synchronisation

    Indian Academy of Sciences (India)

    In this paper, an adaptive backstepping controller has been tuned to synchronise two chaotic Colpitts oscillators in a master–slave configuration. The parameters of the controller are determined using shark smell optimisation (SSO) algorithm. Numerical results are presented and compared with those of particle swarm ...

  16. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Fuzzy Backstepping Sliding Mode Control for Mismatched Uncertain System

    Directory of Open Access Journals (Sweden)

    H. Q. Hou

    2014-06-01

    Full Text Available Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, it can improve the performance of the control systems and their robustness. Finally this method of control is applied to nonlinear system as a case study; simulation results are also provided the performance of the proposed controller.

  18. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    ... than for the recursive backstepping controllers. However, the flexibility in the choice of the control laws for recursive backstepping design gives room for further improvement in its performance and enables it to achieve the goals of stabilization and tracking. Journal of the Nigerian Association of Mathematical Physics Vol.

  19. Aerial robot intelligent control method based on back-stepping

    Science.gov (United States)

    Zhou, Jian; Xue, Qian

    2018-05-01

    The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.

  20. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...

  1. Design of optimised backstepping controller for the synchronisation of chaotic Colpitts oscillator using shark smell algorithm

    Science.gov (United States)

    Fouladi, Ehsan; Mojallali, Hamed

    2018-01-01

    In this paper, an adaptive backstepping controller has been tuned to synchronise two chaotic Colpitts oscillators in a master-slave configuration. The parameters of the controller are determined using shark smell optimisation (SSO) algorithm. Numerical results are presented and compared with those of particle swarm optimisation (PSO) algorithm. Simulation results show better performance in terms of accuracy and convergence for the proposed optimised method compared to PSO optimised controller or any non-optimised backstepping controller.

  2. Design of optimised backstepping controller for the synchronisation ...

    Indian Academy of Sciences (India)

    Ehsan Fouladi

    2017-12-18

    Dec 18, 2017 ... for the proposed optimised method compared to PSO optimised controller or any non-optimised backstepping controller. Keywords. Colpitts oscillator; backstepping controller; chaos synchronisation; shark smell algorithm; particle .... The velocity model is based on the gradient of the objective function, tilting ...

  3. Attitude Optimal Backstepping Controller Based Quaternion for a UAV

    OpenAIRE

    Djamel, Kaddouri; Abdellah, Mokhtari; Benallegue, Abdelaziz

    2016-01-01

    A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-o...

  4. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    In this paper active controllers and recursive backstepping controllers are designed for a third order chaotic system. The performances of these controllers in the control of the dynamics of the chaotic system are investigated numerically and are found to be effective. Comparison of their transient performances show that the ...

  5. Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks

    International Nuclear Information System (INIS)

    Peng Yafu; Hsu, C.-F.

    2009-01-01

    This paper proposes an identification-based adaptive backstepping control (IABC) for the chaotic systems. The IABC system is comprised of a neural backstepping controller and a robust compensation controller. The neural backstepping controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller, and the robust compensation controller is designed to dispel the effect of minimum approximation error introduced by the SOFNN identifier. The SOFNN identifier is used to online estimate the chaotic dynamic function with structure and parameter learning phases of fuzzy neural network. The structure learning phase consists of the growing and pruning of fuzzy rules; thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the neural structure of fuzzy neural network. The parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. Finally, simulation results verify that the proposed IABC can achieve favorable tracking performance.

  6. Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique

    International Nuclear Information System (INIS)

    Peng, Y.-F.

    2009-01-01

    The cerebellar model articulation controller (CMAC) is a non-linear adaptive system with built-in simple computation, good generalization capability and fast learning property. In this paper, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive CMAC and H ∞ control technique is proposed for a class of chaotic systems with unknown system dynamics and external disturbance. In the proposed control system, an adaptive backstepping cerebellar model articulation controller (ABCMAC) is used to mimic an ideal backstepping control (IBC), and a robust H ∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H ∞ control theory, so that the stability of the closed-loop system and H ∞ tracking performance can be guaranteed. Finally, three application examples, including a Duffing-Holmes chaotic system, a Genesio chaotic system and a Sprott circuit system, are used to demonstrate the effectiveness and performance of proposed robust control technique.

  7. Attitude Optimal Backstepping Controller Based Quaternion for a UAV

    Directory of Open Access Journals (Sweden)

    Kaddouri Djamel

    2016-01-01

    Full Text Available A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-off and landing (VTOL aerial robot prototype known as the quadrotor aircraft.

  8. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    . The nonlinear controller aims at regulating the generator torque such that an optimal tip-speed ratio can be obtained. Simply relying on the measured rotor angular velocity the proposed observer backstepping controller guarantees global asymptotic tracking of the desired trajectory while maintaining a globally......This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  9. Nonlinear Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The main idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... of a nonlinear controller. The proposed method is validated by experimental results....

  10. Comparison of backstepping and modified active control in ...

    Indian Academy of Sciences (India)

    In this article, projective synchronization of double–scroll attractor of an extended Bonöffer–van der Pol oscillator (BVPO) is considered via the backstepping and active control techniques. In each synchronization scheme, a single control function is designed to achieve projective synchronization between two Bonhöffer–van ...

  11. Tracking control of mobile robots: a case study in backstepping

    NARCIS (Netherlands)

    Jiang, Zhong-Ping; Nijmeijer, Henk

    1997-01-01

    A tracking control methodology via time-varying state feedback based on the backstepping technique is proposed for both a kinematic and simplified dynamic model of a two-degrees-of-freedom mobile robot. We first address the local tracking problem where initial tracking errors are sufficiently small.

  12. Near Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design

    Directory of Open Access Journals (Sweden)

    Jinyong YU

    2014-07-01

    Full Text Available Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV uncertain MIMO nonaffine block control system by using multilayer neural networks, feedback linearization technology, and dynamic surface backstepping. Multilayer neural networks are used to compensate the influence from the uncertain, which designs the robust terms to solve the problem from approach error. Adaptive backstepping is adopted designed to ensure control law, the dynamic surface control strategy to eliminate “the explosion of terms” by introducing a series of first order filters to obtain the differentiation of the virtual control inputs. Finally, nonlinear six-degree-of-freedom (6-DOF numerical simulation results for a HSUAV model are presented to demonstrate the effectiveness of the proposed method.

  13. Path following of an Underactuated AUV Based on Fuzzy Backstepping Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-06-01

    Full Text Available This paper addresses the path following problem of an underactuated autonomous underwater vehicle (AUV with the aim of dealing with parameter uncertainties and current disturbances. An adaptive robust control system was proposed by employing fuzzy logic, backstepping and sliding mode control theory. Fuzzy logic theory is adopted to approximate unknown system function, and the controller was designed by combining sliding mode control with backstepping thought. Firstly, the longitudinal speed was controlled, then the yaw angle was made as input of path following error to design the calm function and the change rate of path parameters. The controller stability was proved by Lyapunov stable theory. Simulation and outfield tests were conducted and the results showed that the controller is of excellent adaptability and robustness in the presence of parameter uncertainties and external disturbances. It is also shown to be able to avoid the chattering of AUV actuators.

  14. M-MRAC Backstepping for Systems with Unknown Virtual Control Coefficients

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2015-01-01

    The paper presents an over-parametrization free certainty equivalence state feedback backstepping adaptive control design method for systems of any relative degree with unmatched uncertainties and unknown virtual control coefficients. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The benefits of the approach are demonstrated in numerical simulations.

  15. Chaos control of chaotic dynamical systems using backstepping design

    International Nuclear Information System (INIS)

    Yassen, M.T.

    2006-01-01

    This work presents chaos control of chaotic dynamical systems by using backstepping design method. This technique is applied to achieve chaos control for each of the dynamical systems Lorenz, Chen and Lue systems. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical simulations are shown to verify the results

  16. A nonlinear adaptive backstepping approach applied to a three phase PWM AC-DC converter feeding induction heating

    Science.gov (United States)

    Hadri-Hamida, A.; Allag, A.; Hammoudi, M. Y.; Mimoune, S. M.; Zerouali, S.; Ayad, M. Y.; Becherif, M.; Miliani, E.; Miraoui, A.

    2009-04-01

    This paper presents a new control strategy for a three phase PWM converter, which consists of applying an adaptive nonlinear control. The input-output feedback linearization approach is based on the exact cancellation of the nonlinearity, for this reason, this technique is not efficient, because system parameters can vary. First a nonlinear system modelling is derived with state variables of the input current and the output voltage by using power balance of the input and output, the nonlinear adaptive backstepping control can compensate the nonlinearities in the nominal system and the uncertainties. Simulation results are obtained using Matlab/Simulink. These results show how the adaptive backstepping law updates the system parameters and provide an efficient control design both for tracking and regulation in order to improve the power factor.

  17. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems.

    Science.gov (United States)

    Han, Seong-Ik; Lee, Jang-Myung

    2014-01-01

    This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control. The boundedness and convergence of the closed-loop system was confirmed based on the Lyapunov stability theory. The prescribed performance of the proposed control scheme was validated by using it to control the prescribed error of a nonlinear system and a robot manipulator. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design

    International Nuclear Information System (INIS)

    Wang Jing; Gao Jinfeng; Ma Xikui

    2007-01-01

    This Letter presents a novel cross active backstepping design method for synchronization control of cross-strict feedback hyperchaotic system, in which the ordinary backstepping design is unavailable. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. The proposed method is applied to achieve chaos synchronization of two identical cross-strict feedback hyperchaotic systems. Also it is used to implement synchronization between cross-strict feedback hyperchaotic system and Roessler hyperchaotic system. Numerical examples illustrate the validity of the control method

  19. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  20. Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2006-01-01

    Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller. In this paper, the backstepping control is used to synchronize two coupled chaotic neurons in external electrical stimulation. The coupled model is based on the nonlinear cable model and only one state variable can be controlled in practice. The backstepping design needs only one controller to synchronize two chaotic systems and it can be applied to a variety of chaotic systems whether they contain external excitation or not, so the two coupled chaotic neurons in external electrical stimulation can be synchronized perfectly by backstepping control. Numerical simulations demonstrate the effectiveness of this design

  1. Controlling and tracking hyperchaotic Roessler system via active backstepping design

    International Nuclear Information System (INIS)

    Zhang Hao; Ma Xikui; Li Ming; Zou Jianlong

    2005-01-01

    This paper presents a novel active backstepping control approach for controlling hyperchaotic Roessler system to a steady state as well as tracking of any desire trajectory to be achieved in a systematic way. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of active control. Numerical results show that the controller is singularity free and the closed-loop system is stable globally. Especially, the main feature of this technique is that it gives the flexibility to construct a control law. Finally, numerical experiments verify the feasibility and effectiveness of the proposed control technique

  2. Controlling beam halo-chaos via backstepping design

    International Nuclear Information System (INIS)

    Gao Yuan; Kong Feng

    2008-01-01

    A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels (PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment

  3. Boundary control of nonlinear coupled heat systems using backstepping

    KAUST Repository

    Bendevis, Paul

    2016-10-20

    A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.

  4. Robust Backstepping Control of Wing Rock Using Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Dawei Wu

    2017-02-01

    Full Text Available Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA. Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and externaldisturbancesareconsideredinthedesignofwingrockcontrollaw. Tohandletheproblemof multipledisturbances,arobustcontrolschemeisproposedbasedontheextendedstateobserver(ESO and the radial basis function neural network (RBFNN technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.

  5. Control of Higher–Dimensional PDEs Flatness and Backstepping Designs

    CERN Document Server

    Meurer, Thomas

    2013-01-01

    This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smar...

  6. Tutorial on nonlinear backstepping: Applications to ship control

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1999-04-01

    Full Text Available The theoretical foundation of nonlinear backstepping designs is presented in a tutorial setting. This includes a brief review of integral backstepping, extensions to SISO and MIMO systems in strict feedback form and physical motivated case studies. Parallels and differences to feedback linearization where it is shown how so-called "good nonlincarities" can be exploited in the design are also made.

  7. A Hybrid Sensor Based Backstepping Control Approach with its Application to Fault-Tolerant Flight Control

    NARCIS (Netherlands)

    Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Falkena, W.

    2013-01-01

    Recently, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov function based method uses measurements of control variables and less model knowledge, and it is not susceptible to the model

  8. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    Science.gov (United States)

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-04-01

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Chaos control of third-order phase-locked loops using backstepping nonlinear controller

    International Nuclear Information System (INIS)

    Harb, Ahmad M.; Harb, Bassam A.

    2004-01-01

    Previous study showed that a third-order phase-locked loop (PLL) with sinusoidal phase detector characteristics experienced a Hopf bifurcation point as well as chaotic behavior. As a result, this behavior drives the PLL to the out-of-lock (unstable) state. The analysis was based on a modern nonlinear theory such as bifurcation and chaos. The main goal of this paper is to control this chaotic behavior. A nonlinear controller based on the theory of backstepping is designed. The study showed the effectiveness of the designed nonlinear controller in controlling the undesirable unstable behavior and pulling the PLL back to the in-lock state

  10. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    Science.gov (United States)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  11. Disturbance Observer-Based Backstepping Control of PMSM for the Mine Traction Electric Locomotive

    Directory of Open Access Journals (Sweden)

    Jiande Yan

    2018-01-01

    Full Text Available For the Permanent Magnet Synchronous Motor (PMSM control system of the Mine Traction Electric Locomotive (MTEL, the fluctuation of the load will lead to the resonance of the velocity of the MTEL. In addition, the speed sensor is easy to be damaged due to the moisture, dust, and vibration. To solve the above problems, a disturbance observer-based (DOB backstepping control of PMSM for the MTEL is proposed in this paper. First, a full-dimensional Luenberger observer for PMSM is designed and the asymptotically stability of the observer is proved. Next, through the designing of the virtual control input that includes the reconstruction disturbances and using backstepping control strategy, the DOB controller is proposed. The obtained controller can achieve high precision speed tracking and disturbance rejection. Finally, the effectiveness and feasibility of the designed system are verified by Matlab simulation and experiment results.

  12. Backstepping Based Formation Control of Quadrotors with the State Transformation Technique

    Directory of Open Access Journals (Sweden)

    Keun Uk Lee

    2017-11-01

    Full Text Available In this paper, a backstepping-based formation control of quadrotors with the state transformation technique is proposed. First, the dynamics of a quadrotor is derived by using the Newton–Euler formulation. Next, a backstepping-based formation control for quadrotors using a state transformation technique is presented. In the position control, which is the basis of formation control, it is possible to derive the reference attitude angles employing a state transformation technique without the small angle assumption or the simplified dynamics usually used. Stability analysis based on the Lyapunov theorem shows that the proposed formation controller can provide a quadrotor formation error system that is asymptotically stabilized. Finally, we verify the performance of the proposed formation control method through comparison simulations.

  13. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

    CERN Document Server

    Rudra, Shubhobrata; Maitra, Madhubanti

    2017-01-01

    This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

  14. Direct torque control method applied to the WECS based on the PMSG and controlled with backstepping approach

    Science.gov (United States)

    Errami, Youssef; Obbadi, Abdellatif; Sahnoun, Smail; Ouassaid, Mohammed; Maaroufi, Mohamed

    2018-05-01

    This paper proposes a Direct Torque Control (DTC) method for Wind Power System (WPS) based Permanent Magnet Synchronous Generator (PMSG) and Backstepping approach. In this work, generator side and grid-side converter with filter are used as the interface between the wind turbine and grid. Backstepping approach demonstrates great performance in complicated nonlinear systems control such as WPS. So, the control method combines the DTC to achieve Maximum Power Point Tracking (MPPT) and Backstepping approach to sustain the DC-bus voltage and to regulate the grid-side power factor. In addition, control strategy is developed in the sense of Lyapunov stability theorem for the WPS. Simulation results using MATLAB/Simulink validate the effectiveness of the proposed controllers.

  15. Nonlinear Control of Back-to-Back VSC-HVDC System via Command-Filter Backstepping

    Directory of Open Access Journals (Sweden)

    Jie Huang

    2017-01-01

    Full Text Available This paper proposed a command-filtered backstepping controller to improve the dynamic performance of back-to-back voltage-source-converter high voltage direct current (BTB VSC-HVDC. First, the principle and model of BTB VSC-HVDC in abc and d-q frame are described. Then, backstepping method is applied to design a controller to maintain the voltage balance and realize coordinated control of active and reactive power. Meanwhile, command filter is introduced to deal with the problem of input saturation and explosion of complexity in conventional backstepping, and a filter compensation signal is designed to diminish the adverse effects caused by the command filter. Next, the stability and convergence of the whole system are proved via the Lyapunov theorem of asymptotic stability. Finally, simulation results are given to demonstrate that proposed controller has a better dynamic performance and stronger robustness compared to the traditional PID algorithm, which also proves the effectiveness and possibility of the designed controller.

  16. Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC Based On Fuzzy-Backstepping

    Directory of Open Access Journals (Sweden)

    Rizana Fauzi

    2015-06-01

    Full Text Available Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC. Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference. Keywords: Fuzzy-Backstepping, IFOC, induction motor

  17. An Improved Backstepping-Based Controller for Three-Dimensional Trajectory Tracking of a Midwater Trawl System

    Directory of Open Access Journals (Sweden)

    Zhao Yan

    2016-01-01

    Full Text Available An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.

  18. Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Xing Huo

    2014-01-01

    Full Text Available The modeling and attitude stabilization control problems of a four-rotor vertical takeoff and landing unmanned air vehicle (UAV known as the quadrotor are investigated. The quadrotor’s attitude is represented by the unit quaternion rather than Euler angles to avoid singularity problem. Taking dynamical behavior of motors into consideration and ignoring aerodynamic effect, a nonlinear controller is developed to stabilize the attitude. The control design is accomplished by using backstepping control technique. The proposed control law is based on the compensation for the Coriolis and gyroscope torques. Applying Lyapunov stability analysis proves that the closed-loop attitude system is asymptotic stable. Moreover, the controller can guarantee that all the states of the system are uniformly ultimately bounded in the presence of external disturbance torque. The effectiveness of the proposed control approach is analytically authenticated and also validated via simulation study.

  19. Robust Backstepping Control for Cold Rolling Main Drive System with Nonlinear Uncertainties

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2013-01-01

    Full Text Available The nonlinear model of main drive system in cold rolling process, which considers the influence with parameter uncertainties such as clearance and variable friction coefficient, as well as external disturbance by roll eccentricity and variation of strip material quality, is built. By transformation, the lower triangular structure form of main drive system is obtained. The backstepping algorithm based on signal compensation is proposed to design a linear time-invariant (LTI robust controller, including a nominal controller and a robust compensator. A comparison with PI controller shows that the controller has better disturbance attenuation performance and tracking behaviors. Meanwhile, according to its LTI characteristic, the robust controller can be realized easily; therefore it is also appropriated to high speed dynamic rolling process.

  20. Backstepping boundary control: an application to the suppression of flexible beam vibration

    Science.gov (United States)

    Boonkumkrong, Nipon; Asadamongkon, Pichai; Chinvorarat, Sinchai

    2018-01-01

    This paper presents a backstepping boundary control for vibration suppression of flexible beam. The applications are such as industrial robotic arms, space structures, etc. Most slender beams can be modelled using a shear beam. The shear beam is more complex than the conventional Euler-Bernoulli beam in that a shear deformation is additionally taken into account. At present, the application of this method in industry is rather limited, because the application of controllers to the beam is difficult. In this research, we use the shear beam with moving base as a model. The beam is cantilever type. This design method allows us to deal directly with the beam’s partial differential equations (PDEs) without resorting to approximations. An observer is used to estimate the deflections along the beam. Gain kernel of the system is calculated and then used in the control law design. The control setup is anti-collocation, i.e. a sensor is placed at the beam tip and an actuator is placed at the beam moving base. Finite difference equations are used to solve the PDEs and the partial integro-differential equations (PIDEs). Control parameters are varied to see their influences that affect the control performance. The results of the control are presented via computer simulation to verify that the control scheme is effective.

  1. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  2. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    Science.gov (United States)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  3. Output Feedback M-MRAC Backstepping With Aerospace Applications

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje Sriniva

    2014-01-01

    The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.

  4. Synchronization of Harb-Zohdy Chaotic System via Back-Stepping Design

    Directory of Open Access Journals (Sweden)

    M. R. Shamsyeh Zahedi∗

    2015-12-01

    Full Text Available This paper is concerned with the problem of synchronization of the Harb-Zohdy chaotic system using the back-stepping. Based on the stability theory, the control for the synchronization of chaotic systems Harb-Zohdy is considered without unknown parameters. Next, an adaptive back-stepping control law is derived to generate an error signal between the drive and response systems Harb-Zohdy with an uncertain parameter asymptotically synchronized. Finally, this method is extended to synchronize the system with two unknown parameters. Note that the method presented here needs only one controller to realize the synchronization. Numerical simulations indicate the effectiveness of the proposed chaos synchronization scheme

  5. Simple adaptive control system design for a quadrotor with an internal PFC

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro [Dept. of Mechanical Systems Engineering, Kumamoto University 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan)

    2014-12-10

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  6. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode

    Science.gov (United States)

    Su, Zikang; Wang, Honglun; Li, Na; Yu, Yue; Wu, Jianfa

    2018-02-01

    Autonomous aerial refueling (AAR) exact docking control has always been an intractable problem due to the strong nonlinearity, the tight coupling of the 6 DOF aircraft model and the complex disturbances of the multiple environment flows. In this paper, the strongly coupled nonlinear 6 DOF model of the receiver aircraft which considers the multiple flow disturbances is established in the affine nonlinear form to facilitate the nonlinear controller design. The items reflecting the influence of the unknown flow disturbances in the receiver dynamics are taken as the components of the "lumped disturbances" together with the items which have no linear correlation with the virtual control variables. These unmeasurable lumped disturbances are estimated and compensated by a specially designed high order sliding mode observer (HOSMO) with excellent estimation property. With the compensation of the estimated lumped disturbances, a back-stepping high order sliding mode based exact docking flight controller is proposed for AAR in the presence of multiple flow disturbances. Extensive simulation results demonstrate the feasibility and superiority of the proposed docking controller.

  7. Adaptive Optimizing Nonlinear Control Design for an Over-actuated Aircraft Model

    NARCIS (Netherlands)

    Van Oort, E.R.; Sonneveldt, L.; Chu, Q.P.; Mulder, J.A.

    2011-01-01

    In this paper nonlinear adaptive flight control laws based on the backstepping approach are proposed which are applicable to over-actuated nonlinear systems. Instead of solving the control allocation exactly, update laws for the desired control effector signals are defined such that they converge to

  8. Adaptive Output Tracking Control for Nonlinear Systems with Failed Actuators and Aircraft Flight System Applications

    Directory of Open Access Journals (Sweden)

    Chuanjing Hou

    2015-01-01

    Full Text Available An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.

  9. Adaptive Output Tracking Control for Nonlinear Systems with Failed Actuators and Aircraft Flight System Applications

    OpenAIRE

    Hou, Chuanjing; Hu, Lisheng; Zhang, Yingwei

    2015-01-01

    An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.

  10. Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems

    International Nuclear Information System (INIS)

    Li Yin; Chen Yong; Li Biao

    2009-01-01

    This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.

  11. Synchronization in the Genesio Tesi and Coullet systems using the backstepping approach

    International Nuclear Information System (INIS)

    Hu, J-B; Han, Y; Zhao, L-D

    2008-01-01

    In this paper, the backstepping approach is proposed for synchronization in a pair of topologically inequivalent systems, the Genesio Tesi and Coullet systems. Firstly, the control problem for the chaos synchronization in the pair systems without unknown parameter is considered. Then an adaptive backstepping control law is designed to make the error signals between drive Genesio Tesi system and response Coullet system with three unknown parameters synchronized. The stability analysis in this article is proved according to a well-known Lyapunov stability theorem. These methods are applicable to a large class of topologically inequivalent systems where only a few algebraic inequalities are involved. Numerical simulation results are presented to show the effectiveness of the proposed scheme

  12. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  13. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    Science.gov (United States)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  14. Chaos synchronization using single variable feedback based on backstepping method

    International Nuclear Information System (INIS)

    Zhang Jian; Li Chunguang; Zhang Hongbin; Yu Juebang

    2004-01-01

    In recent years, backstepping method has been developed in the field of nonlinear control, such as controller, observer and output regulation. In this paper, an effective backstepping design is applied to chaos synchronization. There are some advantages in this method for synchronizing chaotic systems, such as (a) the synchronization error is exponential convergent; (b) only one variable information of the master system is needed; (c) it presents a systematic procedure for selecting a proper controller. Numerical simulations for the Chua's circuit and the Roessler system demonstrate that this method is very effective

  15. Dynamic Surface Adaptive Robust Control of Unmanned Marine Vehicles with Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Pengchao Zhang

    2018-01-01

    Full Text Available This paper presents a dynamic surface adaptive robust control method with disturbance observer for unmanned marine vehicles (UMV. It uses adaptive law to estimate and compensate the disturbance observer error. Dynamic surface is introduced to solve the “differential explosion” caused by the virtual control derivation in traditional backstepping method. The final controlled system is proved to be globally uniformly bounded based on Lyapunov stability theory. Simulation results illustrate the effectiveness of the proposed controller, which can realize the three-dimensional trajectory tracking for UMV with the systematic uncertainty and time-varying disturbances.

  16. Identical and Nonidentical Synchronization of Hyperchaotic Systems by Active Backstepping Method

    Directory of Open Access Journals (Sweden)

    A. Abooee

    2012-09-01

    Full Text Available This paper focuses on the tracking and synchronization problems of hyperchaotic systems based on active backstepping method. The method consists of a recursive approach that interlaces the choice of a Lyapunov function with the design of feedback control. First, a nonlinear recursive active backstepping control vector is designed to track any desired trajectory in hyperchaotic Wang system. Furthermore, this method is applied to achieve hyperchaos synchronization of two identical hyperchaotic Wang systems. Also, it is used to implement global asymptotic synchronization between hyperchaotic Wang system and hyperchaotic Rössler system. Numerical simulations have been employed to verify the effectiveness of the three designed active backstepping control vectors.

  17. Robust backstepping control of an interlink converter in a hybrid AC/DC microgrid based on feedback linearisation method

    Science.gov (United States)

    Dehkordi, N. Mahdian; Sadati, N.; Hamzeh, M.

    2017-09-01

    This paper presents a robust dc-link voltage as well as a current control strategy for a bidirectional interlink converter (BIC) in a hybrid ac/dc microgrid. To enhance the dc-bus voltage control, conventional methods strive to measure and feedforward the load or source power in the dc-bus control scheme. However, the conventional feedforward-based approaches require remote measurement with communications. Moreover, conventional methods suffer from stability and performance issues, mainly due to the use of the small-signal-based control design method. To overcome these issues, in this paper, the power from DG units of the dc subgrid imposed on the BIC is considered an unmeasurable disturbance signal. In the proposed method, in contrast to existing methods, using the nonlinear model of BIC, a robust controller that does not need the remote measurement with communications effectively rejects the impact of the disturbance signal imposed on the BIC's dc-link voltage. To avoid communication links, the robust controller has a plug-and-play feature that makes it possible to add a DG/load to or remove it from the dc subgrid without distorting the hybrid microgrid stability. Finally, Monte Carlo simulations are conducted to confirm the effectiveness of the proposed control strategy in MATLAB/SimPowerSystems software environment.

  18. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-02-01

    Full Text Available A robust adaptive neural control scheme based on a back-stepping technique is developed for the longitudinal dynamics of a flexible hypersonic flight vehicle, which is able to ensure the state tracking error being confined in the prescribed bounds, in spite of the existing model uncertainties and actuator constraints. Minimal learning parameter technique–based neural networks are used to estimate the model uncertainties; thus, the amount of online updated parameters is largely lessened, and the prior information of the aerodynamic parameters is dispensable. With the utilization of an assistant compensation system, the problem of actuator constraint is overcome. By combining the prescribed performance function and sliding mode differentiator into the neural back-stepping control design procedure, a composite state tracking error constrained adaptive neural control approach is presented, and a new type of adaptive law is constructed. As compared with other adaptive neural control designs for hypersonic flight vehicle, the proposed composite control scheme exhibits not only low-computation property but also strong robustness. Finally, two comparative simulations are performed to demonstrate the robustness of this neural prescribed performance controller.

  19. An adaptive unscented Kalman filter-based adaptive tracking control for wheeled mobile robots with control constrains in the presence of wheel slipping

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2016-09-01

    Full Text Available A novel control approach is proposed for trajectory tracking of a wheeled mobile robot with unknown wheels’ slipping. The longitudinal and lateral slipping are considered and processed as three time-varying parameters. The adaptive unscented Kalman filter is then designed to estimate the slipping parameters online, an adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the adaptive unscented Kalman filter context. Considering the practical physical constrains, a stable tracking control law for this robot system is proposed by the backstepping method. Asymptotic stability is guaranteed by Lyapunov stability theory. Control gains are determined online by applying pole placement method. Simulation and real experiment results show the effectiveness and robustness of the proposed control method.

  20. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  1. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    Science.gov (United States)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  2. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  3. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-01-01

    Full Text Available This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller.

  4. Adaptive LQG controller tuning

    Czech Academy of Sciences Publication Activity Database

    Novák, Miroslav; Böhm, Josef; Nedoma, Petr; Tesař, Ludvík

    2003-01-01

    Roč. 150, č. 6 (2003), s. 655-665 ISSN 1350-2379 R&D Projects: GA ČR GA102/02/0204; GA AV ČR IBS1075102 Institutional research plan: CEZ:AV0Z1075907 Keywords : adaptive controller * LQG controller * controller design Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.745, year: 2003

  5. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  6. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle.

    Science.gov (United States)

    Song, Zhankui; Sun, Kaibiao

    2017-07-01

    A compensation control strategy based on adaptive back-stepping technique is presented to address the problem of attitude adjustment for a quad-rotor unmanned aerial vehicle (QR- UAV) with inertia parameter uncertainties, the limited airflow disturbance and the partial loss of rotation speed effectiveness. In the design process of control system, adaptive estimation technique is introduced into the closed loop system in order to compensate the lumped disturbance term. More specifically, the designed controller utilizes "prescribed performance bounds" method, and therefore guarantees the transient performance of tracking errors, even in the presence of the lumped disturbance. Adaptive compensation algorithms under the proposed closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude tracking error converge to a small neighborhood of equilibrium point. Finally, the simulation results demonstrate the effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Recursive Backstepping Stabilization of a Wheeled Mobile Robot

    Directory of Open Access Journals (Sweden)

    Faical Mnif

    2004-12-01

    Full Text Available This research is aimed to the development of a dynamic control to enhance the performance of the existing dynamic controllers for mobile robots. System dynamics of the car-like robot with nonholonomic constraints were employed. A Backstepping approach for the design of discontinuous state feedback controller is used for the design of the controller. It is shown that the origin of the closed loop system can be made stable in the sense of Lyapunov. The control design is made on the basis of a suitable Lyapunov function candidate. The effectiveness of the proposed approach is tested through simulation on a car-like vehicle mobile robot.

  8. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.

  9. Controlling smart grid adaptivity

    OpenAIRE

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption data. Forecast errors are shown to affect worst case behavior in particular, the severity of which depends on the chosen adaptivity strategy and error model.

  10. Adaptive sequential controller

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Xing, Jian (Seattle, WA); Butler, Nicholas G. (Newberg, OR); Rodriguez, Alonso (Pasadena, CA)

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  11. Adaptive sequential controller

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  12. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    Science.gov (United States)

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  13. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic systems (CVCSs in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  14. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Science.gov (United States)

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  15. Adaptive Command Filtered Integrated Guidance and Control for Hypersonic Vehicle with Magnitude, Rate and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2018-01-01

    Full Text Available This paper proposes a novel integrated guidance and control (IGC method for hypersonic vehicle in terminal phase. Firstly, the system model is developed with a second order actuator dynamics. Then the back-stepping controller is designed hierarchically with command filters, where the first order command filters are implemented to construct the virtual control input with ideal states predicted by an adaptive estimator, and the nonlinear command filter is designed to produce magnitude, rate and bandwidth limited control surface deflection finally tracked by a terminal sliding mode controller with finite convergence time. Through a series of 6-DOF numerical simulations, it’s indicated that the proposed method successfully cancels out the large aerodynamics coefficient uncertainties and disturbances in hypersonic flight under limited control surface deflection. The contribution of this paper lies in the application and determination of nonlinear integrated design of guidance and control system for hypersonic vehicle.

  16. Distributed Adaptive Containment Control for a Class of Nonlinear Multiagent Systems With Input Quantization.

    Science.gov (United States)

    Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu

    2018-06-01

    This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.

  17. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  18. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  19. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  20. A New Adaptive Control for Five-Phase Fault-Tolerant Flux-Switching Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    Hongyu Tang

    2016-01-01

    Full Text Available The five-phase fault-tolerant flux-switching permanent magnet (FT-FSPM motor can offer high efficiency and high fault-tolerant capability. In this paper, its operation principle is presented briefly and its mathematical model is derived. Further, a new adaptive control for an FT-FSPM motor, based on the backstepping method and the sliding mode control strategy, is proposed. According to the backstepping method, the current controllers and voltage control laws are designed to track the speed and minimize the current static error, which enhance the dynamic response and the ability to suppress external disturbances. In order to overcome the influence of parameter variations, according to sliding mode control theory, the virtual control variables and the adaptive algorithm are utilized to approach uncertainty terms. Three Lyapunov functions are designed, and the stability of the closed-loop system is analyzed in detail. Finally, both simulation and experimental results are presented to verify the proposed control method.

  1. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  2. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  3. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  4. Adaptive nonlinear control of single-phase to three-phase UPS system

    Directory of Open Access Journals (Sweden)

    Kissaoui M.

    2014-01-01

    Full Text Available This work deals with the problems of uninterruptible power supplies (UPS based on the single-phase to three-phase converters built in two stages: an input bridge rectifier and an output three phase inverter. The two blocks are joined by a continuous intermediate bus. The objective of control is threefold: i power factor correction “PFC”, ii generating a symmetrical three-phase system at the output even if the load is unknown, iii regulating the DC bus voltage. The synthesis of controllers has been reached by two nonlinear techniques that are the sliding mode and adaptive backstepping control. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.

  5. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  6. Flocking of multiple mobile robots based on backstepping.

    Science.gov (United States)

    Dong, Wenjie

    2011-04-01

    This paper considers the flocking of multiple nonholonomic wheeled mobile robots. Distributed controllers are proposed with the aid of backstepping techniques, results from graph theory, and singular perturbation theory. The proposed controllers can make the states of a group of robots converge to a desired geometric pattern whose centroid moves along a desired trajectory under the condition that the desired trajectory is available to a portion of the group of robots. Since communication delay is inevitable in distributed control, its effect on the performance of the closed-loop systems is analyzed. It is shown that the proposed controllers work well if communication delays are constant. To show effectiveness of the proposed controllers, simulation results are included.

  7. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  8. Adaptive hybrid control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  9. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  10. Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2015-03-01

    Full Text Available A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ⩾ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ⩾ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328, L3 = 0 and L4 = −1.1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY= 3.1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.

  11. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    Science.gov (United States)

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  12. Distributed robust adaptive control of high order nonlinear multi agent systems.

    Science.gov (United States)

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Adaptive Augmenting Control and Launch Vehicle Adaptive Control Flight Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at NASA Armstrong are working to further the development of an adaptive augmenting control algorithm (AAC). The AAC was developed to improve the...

  14. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  15. Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    Science.gov (United States)

    Mahdian-Dehkordi, N.; Namvar, M.; Karimi, H.; Piya, P.; Karimi-Ghartemani, M.

    2017-01-01

    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters' changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the proposed controller offers smoother transient responses, and lower level of current distortions. The Lyapunov approach is used to establish global asymptotic stability of the proposed control system. Linearisation technique is employed to develop guidelines for parameters tuning of the controller. Extensive time-domain digital simulations are performed and presented to verify the performance of the proposed controller when employed in a VSC to control the operation of a two-stage DG unit and also that of a single-stage solar photovoltaic system. Desirable and superior performance of the proposed controller is observed.

  16. Adaptive Neural Output Feedback Control for Uncertain Robot Manipulators with Input Saturation

    Directory of Open Access Journals (Sweden)

    Rong Mei

    2017-01-01

    Full Text Available This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.

  17. Adaptive Control Of Remote Manipulator

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  18. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures.

    Science.gov (United States)

    Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib

    2018-05-10

    In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  20. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  1. Controlling smart grid adaptivity

    NARCIS (Netherlands)

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption

  2. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Science.gov (United States)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  3. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    Science.gov (United States)

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important....... Firstly, it is assumed that the nonlinear processes can be divided into a dynamic linear part and static nonlinear part. Consequently the processes with input nonlinearity and output nonlinearity are treated separately. With the nonlinearity at the input it is easy to set up a model which is linear...

  5. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  6. Performance enhanced design of chaos controller for the mechanical centrifugal flywheel governor system via adaptive dynamic surface control

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2016-09-01

    Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.

  7. Analysis, Adaptive Control and Anti-Synchronization of a Six-Term Novel Jerk Chaotic System with two Exponential Nonlinearities and its Circuit Simulation

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This research work proposes a six-term novel 3-D jerk chaotic system with two exponential nonlinearities. This work also analyses system’s fundamental properties such as dissipativity, equilibria, Lyapunov exponents and Kaplan-Yorke dimension. The phase portraits of the jerk chaotic system simulated using MATLAB, depict the strange chaotic attractor of the system. For the parameter values and initial conditions chosen in this work, the Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0.24519, L2 = 0 and L3 = −0.84571. Also, the Kaplan-Yorke dimension of the novel jerk chaotic system is obtained as DKY = 2.2899. Next, an adaptive backstepping controller is designed to stabilize the novel jerk chaotic system having two unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global chaos anti-synchronization of two identical novel jerk chaotic systems with two unknown system parameters. Finally, an electronic circuit realization of the novel jerk chaotic system is presented using SPICE to confirm the feasibility of the theoretical model.

  8. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  9. Adaptive control of port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for

  10. Adaptive Controller Effects on Pilot Behavior

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  11. Synchronization of generalized Henon map via backstepping design

    International Nuclear Information System (INIS)

    Huang Lilian; Wang Mao; Feng Rupeng

    2005-01-01

    This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the approach

  12. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  13. Efficient adaptive constrained control with time-varying predefined performance for a hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Caisheng Wei

    2017-03-01

    Full Text Available A novel low-complexity adaptive control method, capable of guaranteeing the transient and steady-state tracking performance in the presence of unknown nonlinearities and actuator saturation, is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. In order to attenuate the negative effects of classical predefined performance function for unknown initial tracking errors, a modified predefined performance function with time-varying design parameters is presented. Under the newly developed predefined performance function, two novel adaptive controllers with low-complexity computation are proposed for velocity and altitude subsystems of the hypersonic flight vehicle, respectively. Wherein, different from neural network-based approximation, a least square support vector machine with only two design parameters is utilized to approximate the unknown hypersonic dynamics. And the relevant ideal weights are obtained by solving a linear system without resorting to specialized optimization algorithms. Based on the approximation by least square support vector machine, only two adaptive scalars are required to be updated online in the parameter projection method. Besides, a new finite-time-convergent differentiator, with a quite simple structure, is proposed to estimate the unknown generated state variables in the newly established normal output-feedback formulation of altitude subsystem. Moreover, it is also employed to obtain accurate estimations for the derivatives of virtual controllers in a recursive design. This avoids the inherent drawback of backstepping — “explosion of terms” and makes the proposed control method achievable for the hypersonic flight vehicle. Further, the compensation design is employed when the saturations of the actuator occur. Finally, the numerical simulations validate the efficiency of the proposed finite-time-convergent differentiator and control method.

  14. Integrator backstepping using contraction theory: a brief technological note

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Lottin, Jacques

    While the use of Lyapunov function candidates for integrator backstepping has been extensively studied in the literature, little research has been conducted regarding the applicability of the so-called incremental stability approaches. This note addresses the problem of the use of an incremental ...

  15. Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator

    Science.gov (United States)

    Shao, Xingling; Liu, Jun; Wang, Honglun

    2018-05-01

    In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.

  16. Chaos control of the micro-electro-mechanical resonator by using adaptive dynamic surface technology with extended state observer

    International Nuclear Information System (INIS)

    Luo, Shaohua; Sun, Quanping; Cheng, Wei

    2016-01-01

    This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Putting tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.

  17. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    Science.gov (United States)

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  19. Application of the backstepping method to the prediction of increase or decrease of infected population.

    Science.gov (United States)

    Kuniya, Toshikazu; Sano, Hideki

    2016-05-10

    In mathematical epidemiology, age-structured epidemic models have usually been formulated as the boundary-value problems of the partial differential equations. On the other hand, in engineering, the backstepping method has recently been developed and widely studied by many authors. Using the backstepping method, we obtained a boundary feedback control which plays the role of the threshold criteria for the prediction of increase or decrease of newly infected population. Under an assumption that the period of infectiousness is same for all infected individuals (that is, the recovery rate is given by the Dirac delta function multiplied by a sufficiently large positive constant), the prediction method is simplified to the comparison of the numbers of reported cases at the current and previous time steps. Our prediction method was applied to the reported cases per sentinel of influenza in Japan from 2006 to 2015 and its accuracy was 0.81 (404 correct predictions to the total 500 predictions). It was higher than that of the ARIMA models with different orders of the autoregressive part, differencing and moving-average process. In addition, a proposed method for the estimation of the number of reported cases, which is consistent with our prediction method, was better than that of the best-fitted ARIMA model ARIMA(1,1,0) in the sense of mean square error. Our prediction method based on the backstepping method can be simplified to the comparison of the numbers of reported cases of the current and previous time steps. In spite of its simplicity, it can provide a good prediction for the spread of influenza in Japan.

  20. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  1. Adaptive observer-based control for an IPMC actuator under varying humidity conditions

    Science.gov (United States)

    Bernat, Jakub; Kolota, Jakub

    2018-05-01

    As ionic polymer metal composites (IPMC) are increasingly applied to mechatronic systems, many new IPMC modeling efforts have been reported in the literature. The demands of rapidly growing technology has generated interest in advancing the intrinsic actuation and sensing capabilities of IPMC. Classical IPMC applications need constant hydration to operate. On the other hand, for IPMCs operating in air, the water content of the polymer varies with the humidity level of the ambient environment, which leads to its strong humidity-dependent behavior. Furthermore, decreasing water content over time plays a crucial role in the effectiveness of IPMC. Therefore, the primary challenge of this work is to accurately model this phenomenon. The principal contribution of the paper is a new IPMC model, which considers the change of moisture content. A novel nonlinear adaptive observer is designed to determine the unknown electric potential and humidity level in the polymer membrane. This approach effectively determines the moisture content of the IPMC during long-term continuous operation in air. This subsequently allows us to develop an effective back-stepping control algorithm that considers varying moisture content. Data from experiments are presented to support the effectiveness of the observation process, which is shown in illustrative examples.

  2. Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics.

    Science.gov (United States)

    Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding

    2017-08-29

    This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.

  3. An adaptive Cartesian control scheme for manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.

  4. Direct adaptive control using feedforward neural networks

    OpenAIRE

    Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira

    2003-01-01

    ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...

  5. Adaptive Method Using Controlled Grid Deformation

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  6. Dynamic optimization and adaptive controller design

    Science.gov (United States)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  7. Adaptive Control Methods for Soft Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...

  8. Quantum Transduction with Adaptive Control

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  9. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  10. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    Science.gov (United States)

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  11. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  12. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  13. Adaptive Flight Control Research at NASA

    Science.gov (United States)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  14. Multiple model adaptive control with mixing

    Science.gov (United States)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  15. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    Science.gov (United States)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  16. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  18. Adaptive change in corporate control practices.

    Science.gov (United States)

    Alexander, J A

    1991-03-01

    Multidivisional organizations are not concerned with what structure to adopt but with how they should exercise control within the divisional form to achieve economic efficiencies. Using an information-processing framework, I examined control arrangements between the headquarters and operating divisions of such organizations and how managers adapted control practices to accommodate increasing environmental uncertainty. Also considered were the moderating effects of contextual attributes on such adaptive behavior. Analyses of panel data from 97 multihospital systems suggested that organizations generally practice selective decentralization under conditions of increasing uncertainty but that organizational age, dispersion, and initial control arrangements significantly moderate the direction and magnitude of such changes.

  19. Full Gradient Solution to Adaptive Hybrid Control

    Science.gov (United States)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  20. Semi-Global Practical Stabilization and Disturbance Adaptation for an Underactuated Ship

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    2001-04-01

    Full Text Available We consider the problem of stabilizing the position and orientation of a ship to constant desired values, when the ship has only two independent controls and also the ship is subject to an environmental force of unknown magnitude. We propose a time-varying feedback control law and a disturbance adaptation law, and show that this provides semi-global practical asymptotic stability. The control and adaptation laws are derived using a combined integrator backstepping and averaging approach. Simulation results are presented.

  1. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem.

    Science.gov (United States)

    Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi

    2017-07-01

    In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Fault tolerancy in cooperative adaptive cruise control

    NARCIS (Netherlands)

    Nunen, E. van; Ploeg, J.; Medina, A.M.; Nijmeijer, H.

    2013-01-01

    Future mobility requires sound solutions in the field of fault tolerance in real-time applications amongst which Cooperative Adaptive Cruise Control (CACC). This control system cannot rely on the driver as a backup and is constantly active and therefore more prominent to the occurrences of faults

  3. Modeling and (adaptive) control of greenhouse climates

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1983-01-01

    The material presented in this thesis can be grouped around four themes, system concepts, modeling, control and adaptive control. In this summary these themes will be treated separately.

    System concepts

    In Chapters 1 and 2 an overview of the problem formulation

  4. Neuronal control of adaptive thermogenesis

    Directory of Open Access Journals (Sweden)

    Xiaoyong eYang

    2015-09-01

    Full Text Available The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT, dysfunction of which lie at the core of obesity and associated metabolic disorders. In contrast, brown adipose tissue (BAT burns fat and dissipates chemical energy as heat. The development and activation of brown-like adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system (CNS drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.

  5. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  6. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...... stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...... of the gradient. The proposed method is verified through simulation results indicating that the method may lead to an improvement of the model reference controller in the presence of unmodelled dynamics...

  7. Research on a Nonlinear Robust Adaptive Control Method of the Elbow Joint of a Seven-Function Hydraulic Manipulator Based on Double-Screw-Pair Transmission

    Directory of Open Access Journals (Sweden)

    Gaosheng Luo

    2014-01-01

    Full Text Available A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1 the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2 the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.

  8. Adaptive control of manipulators handling hazardous waste

    International Nuclear Information System (INIS)

    Colbaugh, R.; Glass, K.

    1994-01-01

    This article focuses on developing a robot control system capable of meeting hazardous waste handling application requirements, and presents as a solution an adaptive strategy for controlling the mechanical impedance of kinematically redundant manipulators. The proposed controller is capable of accurate end-effector impedance control and effective redundancy utilization, does not require knowledge of the complex robot dynamic model or parameter values for the robot or the environment, and is implemented without calculation of the robot inverse transformation. Computer simulation results are given for a four degree of freedom redundant robot under adaptive impedance control. These results indicate that the proposed controller is capable of successfully performing important tasks in robotic waste handling applications. (author) 3 figs., 39 refs

  9. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  10. Bayesian nonparametric adaptive control using Gaussian processes.

    Science.gov (United States)

    Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A

    2015-03-01

    Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

  11. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  12. Adaptive Robot Control – An Experimental Comparison

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2012-11-01

    Full Text Available This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with the new management algorithm, outperforms the conventional Model-Based schemes in the presence of structural uncertainties in the mathematical model of the robot, without pre-training and more efficiently than the Neural Network approach.

  13. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  14. Adaptive self-correcting control system

    International Nuclear Information System (INIS)

    Ellis, S.H.

    1984-01-01

    A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values

  15. Cooperative adaptive cruise control : tradeoffs between control and network specifications

    NARCIS (Netherlands)

    Oncu, S.; Wouw, van de N.; Nijmeijer, H.

    2011-01-01

    In this study, we consider a Cooperative Adaptive Cruise Control (CACC) system which regulates inter-vehicle distances in a vehicle string. Improved performance can be achieved by utilizing information exchange between vehicles through wireless communication besides local sensor measurements.

  16. PI controller based model reference adaptive control for nonlinear

    African Journals Online (AJOL)

    user

    Keywords: Model Reference Adaptive Controller (MRAC), Artificial Neural ... attention, and many new approaches have been applied to practical process .... effectiveness of proposed method, it is compared with the simulation results of the ...

  17. Graceful degradation of cooperative adaptive cruise control

    NARCIS (Netherlands)

    Ploeg, J.; Semsar-Kazerooni, E.; Lijster, G.; Wouw, N. van de; Nijmeijer, H.

    2015-01-01

    Cooperative adaptive cruise control (CACC) employs wireless intervehicle communication, in addition to onboard sensors, to obtain string-stable vehicle-following behavior at small intervehicle distances. As a consequence, however, CACC is vulnerable to communication impairments such as latency and

  18. Multivariable adaptive control of bio process

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.; Bahhou, B.; Roux, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Maher, M. [Faculte des Sciences, Rabat (Morocco). Lab. de Physique

    1995-12-31

    This paper presents a multivariable adaptive control of a continuous-flow fermentation process for the alcohol production. The linear quadratic control strategy is used for the regulation of substrate and ethanol concentrations in the bioreactor. The control inputs are the dilution rate and the influent substrate concentration. A robust identification algorithm is used for the on-line estimation of linear MIMO model`s parameters. Experimental results of a pilot-plant fermenter application are reported and show the control performances. (authors) 8 refs.

  19. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  20. On the synchronization of a class of chaotic systems based on backstepping method

    International Nuclear Information System (INIS)

    Wang Bo; Wen Guangjun

    2007-01-01

    This Letter focuses on the synchronization problem of a class of chaotic systems. A synchronization method is presented based on Lyapunov method and backstepping method. Finally some typical numerical examples are given to show the effectiveness of the theoretical results

  1. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  2. Adaptive Control with Reference Model Modification

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  3. Tip-over Prevention: Adaptive Control Development

    Science.gov (United States)

    2015-05-30

    Tip-over Prevention: Adaptive Control Development Leah Kelley Massachusetts Institute of Technology Cambridge, MA 02139 Email: lckelley@mit.edu Kurt...Papadopoulos and D. Rey, Proc. IEEE ICRA, vol.4, 1996, pp. 3111. [7] S. Ali, A. Moosavian, and K. Alipour, Robotics, Automation and Mechatronics , 2006 IEEE Conf...on, 2006, pp. 1–6. [8] K. Talke, L. Kelley, P. Longhini, and G. Catron, Proc. SPIE 9084, Unmanned Systems Technology XVI, June 2014, pp. 90 840L–11

  4. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  5. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  6. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  7. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  8. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  9. Temperature uniformity control in RTP using multivariable adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.

    1995-12-31

    In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.

  10. A Methodology for Investigating Adaptive Postural Control

    Science.gov (United States)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  11. Real time PI-backstepping induction machine drive with efficiency optimization.

    Science.gov (United States)

    Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader

    2017-09-01

    This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive control of a Stewart platform-based manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.

    1993-01-01

    A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  13. Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Omur Can Ozguney

    2017-08-01

    Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.

  14. Mechanosensation and Adaptive Motor Control in Insects.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Error-controlled adaptive finite elements in solid mechanics

    National Research Council Canada - National Science Library

    Stein, Erwin; Ramm, E

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...

  16. Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    M. Ilyas

    2016-01-01

    Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.

  17. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  18. Adaptive tracking control of nonholonomic systems: an example

    NARCIS (Netherlands)

    Lefeber, A.A.J.; Nijmeijer, Henk

    1999-01-01

    We study an example of an adaptive (state) tracking control problem for a four-wheel mobile robot, as it is an illustrative example of the general adaptive state-feedback tracking control problem. It turns out that formulating the adaptive state-feedback tracking control problem is not

  19. Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems

    Science.gov (United States)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.

    2016-04-01

    Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.

  20. Comparison of backstepping and modified active control in ...

    Indian Academy of Sciences (India)

    Numerical simulations are presented to confirm the effectiveness of the analytical results. Keywords. ... complexity and cost. Hence, this makes it ... cal systems which can show a stable threshold phenomenon as well as stable oscillations.

  1. Reference-shaping adaptive control by using gradient descent optimizers.

    Directory of Open Access Journals (Sweden)

    Baris Baykant Alagoz

    Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.

  2. Adaptive Torque Control of Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. E.

    2004-08-01

    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  3. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  4. Adaptive nonlinear control for a research reactor

    International Nuclear Information System (INIS)

    Benitez R, J.S.

    1994-01-01

    Linearization by feedback of states is based on the idea of transform the nonlinear dynamic equation of a system in a linear form. This linear behavior can be achieve well in a complete way (input state) or in partial way (input output). This can be applied to systems of single or multiple inputs, and can be used to solve problems of stabilization and tracking of references trajectories. Comparing this method with conventional ones, linearization by feedback of states is exact in certain region of the space of state, instead of linear approximations of the equations in a certain point of the operation. In the presence of parametric uncertainties in the model of the system, the introduction of adaptive schemes provide a type toughness to the control system by nonlinear feedback, which gives as result the eventual cancellation of the nonlinear terms in the dynamic relationship between the output and the input of the auxiliary control. In the same way, it has been presented the design of a nonlinearizing control for the non lineal model of a TRIGA Mark III type reactor, with the aim of tracking a predetermined power profile. The asymptotic tracking of such profile is, at the present moment, in the stage of verification by computerized simulation the relative easiness in the design of auxiliary variable of control, as well as the decoupling action of the output variable, make very attractive the utilization of the method herein presented. (Author)

  5. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  6. Biofeedback systems and adaptive control hemodialysis treatment

    Directory of Open Access Journals (Sweden)

    Azar Ahmad

    2008-01-01

    Full Text Available On-line monitoring devices to control functions such as volume, body temperature, and ultrafiltration, were considered more toys than real tools for routine clinical application. However, bio-feedback blood volume controlled hemodialysis (HD is now possible in routine dialysis, allowing the delivery of a more physiologically acceptable treatment. This system has proved to reduce the incidence of intra-HD hypotension episodes significantly. Ionic dialysance and the patient′s plasma conductivity can be calculated easily from on-line measurements at two different steps of dialysate conductivity. A bio-feedback system has been devised to calculate the patient′s plasma conductivity and modulate the conductivity of the dialysate continuously in order to achieve a desired end-dialysis patient plasma conductivity corresponding to a desired end-dialysis plasma sodium concentration. Another bio-feedback system can control the body tempe-rature by measuring it at the arterial and venous lines of the extra-corporeal circuit, and then modulating the dialysate temperature in order to stabilize the patients′ temperature at constant values that result in improved intra-HD cardiovascular stability. The module can also be used to quantify vascular access recirculation. Finally, the simultaneous computer control of ultrafiltration has proven the most effective means for automatic blood pressure stabilization during hemo-dialysis treatment. The application of fuzzy logic in the blood-pressure-guided biofeedback con-trol of ultrafiltration during hemodialysis is able to minimize HD-induced hypotension. In con-clusion, online monitoring and adaptive control of the patient during the dialysis session using the bio-feedback systems is expected to render the process of renal replacement therapy more physiological and less eventful.

  7. Direct adaptive control of manipulators in Cartesian space

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.

  8. Pilot-Induced Oscillation Suppression by Using 1 Adaptive Control

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2012-01-01

    research activities that aim to alleviate this problem. In this paper, the L1 adaptive controller has been introduced to suppress the PIO, which is caused by rate limiting and pure time delay. Due to its architecture, the L1 adaptive controller will achieve a desired response with fast adaptation. The analysis of PIO and its suppression by L1 adaptive controller are presented in detail in the paper. The simulation results indicate that the L1 adaptive control is efficient in solving this kind of problem.

  9. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew; Macdonald, Colin; Ong, Benjamin; Spiteri, Raymond

    2015-01-01

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step

  10. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    Science.gov (United States)

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  11. Adaptation in the fuzzy self-organising controller

    DEFF Research Database (Denmark)

    Jantzen, Jan; Poulsen, Niels Kjølstad

    2003-01-01

    This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....

  12. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    K. Prabhu; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  13. Modular and Adaptive Control of Sound Processing

    Science.gov (United States)

    van Nort, Douglas

    parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  14. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  15. Global Practical Stabilization and Tracking for an Underactuated Ship - A Combined Averaging and Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    1999-10-01

    Full Text Available We solve both the global practical stabilization and tracking problem for an underactuated ship, using a combined integrator backstepping and averaging approach. Exponential convergence to an arbitrarily small neighbourhood of the origin and of the reference trajectory, respectively, is proved. Simulation results are included.

  16. Adaptive servo control for umbilical mating

    Science.gov (United States)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  17. Intelligent neural network and fuzzy logic control of industrial and power systems

    Science.gov (United States)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  18. Reducing adapter synthesis to controller synthesis

    NARCIS (Netherlands)

    Gierds, C.; Mooij, A.J.; Wolf, K.

    2012-01-01

    Service-oriented computing aims to create complex systems by composing less-complex systems, called services. Since services can be developed independently, the integration of services requires an adaptation mechanism for bridging any incompatibilities. Behavioral adapters aim to adjust the

  19. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  20. Applications of adaptive filters in active noise control

    Science.gov (United States)

    Darlington, Paul

    The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.

  1. Adaptive Intelligent Ventilation Noise Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for quiet on-orbit crew quarters (CQ), Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  2. Adaptive Intelligent Ventilation Noise Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for quiet crew volumes in a space habitat, Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  3. Enhanced vaccine control of epidemics in adaptive networks

    Science.gov (United States)

    Shaw, Leah B.; Schwartz, Ira B.

    2010-04-01

    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

  4. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  5. Monitoring the Performance of a Neuro-Adaptive Controller

    Science.gov (United States)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  6. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  7. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  8. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  9. Continuous use of an adaptive lung ventilation controller in critically ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... Adaptive lung ventilation (ALV) refers to closed-loop mechanical ventilation designed to work ... optimise the controller performance, the volume controller .... PawEE), vital capacity IYC), an index of airway resistance relative to ...

  10. Contraction theory based adaptive synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2009-01-01

    Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.

  11. Connection adaption for control of networked mobile chaotic agents.

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  12. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  13. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller implement...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown.......The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...

  14. A new approach to adaptive control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  15. Controlling chaos based on an adaptive adjustment mechanism

    International Nuclear Information System (INIS)

    Zheng Yongai

    2006-01-01

    In this paper, we extend the ideas and techniques developed by Huang [Huang W. Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism. Phys Rev E 2000;61:R1012-5] for controlling discrete-time chaotic system using adaptive adjustment mechanism to continuous-time chaotic system. Two control approaches, namely adaptive adjustment mechanism (AAM) and modified adaptive adjustment mechanism (MAAM), are investigated. In both case sufficient conditions for the stabilization of chaotic systems are given analytically. The simulation results on Chen chaotic system have verified the effectiveness of the proposed techniques

  16. Adaptive fuzzy PID control for a quadrotor stabilisation

    Science.gov (United States)

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  17. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  18. Projection Operator: A Step Towards Certification of Adaptive Controllers

    Science.gov (United States)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  19. An Adaptive Speed Control Approach for DC Shunt Motors

    Directory of Open Access Journals (Sweden)

    Ruben Tapia-Olvera

    2016-11-01

    Full Text Available A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach.

  20. Fully probabilistic control design in an adaptive critic framework

    Czech Academy of Sciences Publication Activity Database

    Herzallah, R.; Kárný, Miroslav

    2011-01-01

    Roč. 24, č. 10 (2011), s. 1128-1135 ISSN 0893-6080 R&D Projects: GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic control design * Fully probabilistic design * Adaptive control * Adaptive critic Subject RIV: BC - Control Systems Theory Impact factor: 2.182, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/karny-0364820.pdf

  1. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles

    Science.gov (United States)

    2007-11-01

    Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t

  2. An adaptive predictive controller and its applications in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhiyuan; Lu Huiming; Zhang Xinggao [North China Electric Power University, Beijing (China); Song Chunping [Tsinghua University, Beijing (China). Dept. of Thermal Energy Engineering

    1999-07-01

    Based on the objective function in the form of integration of generalized model error, a globally convergent model reference adaptive predictive control algorithm (MRAPC) containing inertia-time compensators is presented in this paper. MRAPC has been successfully applied to control important thermal process of more than 20 units in many Chinese power stations. In this paper three representative examples are described. Continual operation results for years demonstrate that MRAPC is a successful attempt for the practical applications of adaptive control techniques. (author)

  3. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew

    2015-03-27

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step-size control can be incorporated within a family of parallel time integrators known as revisionist integral deferred correction (RIDC) methods. The RIDC framework allows for various strategies to implement stepsize control, and we report results from exploring a few of them.

  4. Applications of Adaptive Learning Controller to Synthetic Aperture Radar.

    Science.gov (United States)

    1985-02-01

    TERMS (Continue on retuerse if necessary and identify by block num ber) FIELD YGROUP SUB. GR. Adaptive control, aritificial intelligence , synthetic aetr1...application of Artificial Intelligence methods to Synthetic Aperture Radars (SARs) is investigated. It was shown that the neuron-like Adaptive Learning...wavelength Al SE!RI M RADAR DIVISION REFERENCES 1. Barto, A.G. and R.S. Sutton, Goal Seeking Components for Adaptive Intelligence : An Initial Assessment

  5. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    Science.gov (United States)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  6. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  7. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  8. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    Science.gov (United States)

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.

  9. Disturbance Accommodating Adaptive Control with Application to Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2012-01-01

    Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.

  10. Adaptive integral robust control and application to electromechanical servo systems.

    Science.gov (United States)

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  12. Adaptive Automation Based on Air Traffic Controller Decision-Making

    NARCIS (Netherlands)

    IJtsma (Student TU Delft), Martijn; Borst, C.; Mercado Velasco, G.A.; Mulder, M.; van Paassen, M.M.; Tsang, P.S.; Vidulich, M.A.

    2017-01-01

    Through smart scheduling and triggering of automation support, adaptive automation has the potential to balance air traffic controller workload. The challenge in the design of adaptive automation systems is to decide how and when the automation should provide support. This paper describes the design

  13. Adaptive control of a PWR core power using neural networks

    International Nuclear Information System (INIS)

    Arab-Alibeik, H.; Setayeshi, S.

    2005-01-01

    Reactor power control is important because of safety concerns and the call for regular and appropriate operation of nuclear power plants. It seems that the load-follow operation of these plants will be unavoidable in the future. Discrepancies between the real plant and the model used in controller design for load-follow operation encourage one to use auto-tuning and (or) adaptive techniques. Neural network technology shows great promise for addressing many problems in non-model-based adaptive control methods. Also, there has been a great attention to inverse control especially in the neural and fuzzy control context. Fortunately, online adaptation eliminates some limitations of inverse control and its shortcomings for real world applications. We use a neural adaptive inverse controller to control the power of a PWR reactor. The stability of the system and convergence of the controller parameters are guaranteed during online adaptation phase provided the controller is near the plant's real inverse after offline training period. The performance of the controller is verified using nonlinear simulations in diverse operating conditions

  14. Basic Research on Adaptive Model Algorithmic Control

    Science.gov (United States)

    1985-12-01

    Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes

  15. Adaptive control in series load PWM induction heating inverters

    Science.gov (United States)

    Szelitzky, Tibor; Henrietta Dulf, Eva

    2013-12-01

    Permanent variations of the electric properties of the load in induction heating equipment make difficult to control the plant. To overcome these disadvantages, the authors propose a new approach based on adaptive control methods. For real plants it is enough to present desired performances or start-up variables for the controller, from which the algorithms tune the controllers by itself. To present the advantages of the proposed controllers, comparisons are made to a PI controller tuned through Ziegler-Nichols method.

  16. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  17. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    , (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...... adaptive speed control of the CVC drive. A direct truly adaptive speed controller has been implemented. The adaptive controller is a moving Average Self-Tuning Regulator which is abbreviated MASTR throughout the thesis. Two practical implementations of this controller were proposed. They were denoted MASTR...... and measurement noise in general, were the major reasons for the drifting parameters. Two approaches was proposed to robustify MASTR2 against the output noise. The first approach consists of filtering the output. Output filtering had a significant effect in simulations, but the robustness against the output noise...

  18. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  19. Adaptive control and synchronization of a fractional-order chaotic ...

    Indian Academy of Sciences (India)

    Fractional order; adaptive scheme; control; synchronization. ... College of Physics and Electronics, Hunan Institute of Science and Technology, ... of Information and Communication Engineering, Hunan Institute of Science and Technology, ...

  20. Analysis of Postural Control Adaptation During Galvanic and Vibratory Stimulation

    National Research Council Canada - National Science Library

    Fransson, P

    2001-01-01

    The objective for this study was to investigate whether the postural control adaptation during galvanic stimulation of the vestibular nerve were similar to that found during vibration stimulation to the calf muscles...

  1. Adaptive Trajectory Tracking Control using Reinforcement Learning for Quadrotor

    Directory of Open Access Journals (Sweden)

    Wenjie Lou

    2016-02-01

    Full Text Available Inaccurate system parameters and unpredicted external disturbances affect the performance of non-linear controllers. In this paper, a new adaptive control algorithm under the reinforcement framework is proposed to stabilize a quadrotor helicopter. Based on a command-filtered non-linear control algorithm, adaptive elements are added and learned by policy-search methods. To predict the inaccurate system parameters, a new kernel-based regression learning method is provided. In addition, Policy learning by Weighting Exploration with the Returns (PoWER and Return Weighted Regression (RWR are utilized to learn the appropriate parameters for adaptive elements in order to cancel the effect of external disturbance. Furthermore, numerical simulations under several conditions are performed, and the ability of adaptive trajectory-tracking control with reinforcement learning are demonstrated.

  2. Lifetime Maximizing Adaptive Power Control in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Sun, Fangting; Shayman, Mark

    2006-01-01

    ...: adaptive power control. They focus on the sensor networks that consist of a sink and a set of homogeneous wireless sensor nodes, which are randomly deployed according to a uniform distribution...

  3. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  4. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  5. Integrated Damage-Adaptive Control System (IDACS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI, in collaboration with Boeing Phantom Works, proposes to develop and test an efficient Integrated Damage Adaptive Control System (IDACS). The proposed system is...

  6. Real-Time Application Performance Steering and Adaptive Control

    National Research Council Canada - National Science Library

    Reed, Daniel

    2002-01-01

    .... The objective of the Real-time Application Performance Steering and Adaptive Control project is to replace ad hoc, post-mortem performance optimization with an extensible, portable, and distributed...

  7. Vehicle-to-infrastructure program cooperative adaptive cruise control.

    Science.gov (United States)

    2015-03-01

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the project titled Cooperative Adaptive Cruise Control (CACC). Participating companies in the V2I Cons...

  8. Control and adaptation in telecommunication systems mathematical foundations

    CERN Document Server

    Popovskij, Vladimir; Titarenko, Larysa

    2011-01-01

    This book is devoted to mathematical foundations providing synthesis and analysis of control and adaptation algorithms targeting modern telecommunication systems (TCS). The most popular technologies and network management methods are discussed.

  9. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  10. Scenario design : adaptive architecture for command and control experiment eight

    OpenAIRE

    Clark, Frankie J.

    2002-01-01

    Approved for public release; distribution is unlimited. The Adaptive Architectures for Command and Control (A2C2) project is an ongoing research effort sponsored by the Office of Naval Research to explore adaptation in joint command and control. The objective of the project's eighth experiment is to study the adjustments that organizations make when they are confronted with a scenario for which their organizational is ill-suited. To accomplish this, teams will each be in one of two fundame...

  11. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  12. Scalable Harmonization of Complex Networks With Local Adaptive Controllers

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Herzallah, R.

    2017-01-01

    Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Fee dback * Fee dforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf

  13. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    Science.gov (United States)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  14. Simple adaptive control for quadcopters with saturated actuators

    Science.gov (United States)

    Borisov, Oleg I.; Bobtsov, Alexey A.; Pyrkin, Anton A.; Gromov, Vladislav S.

    2017-01-01

    The stabilization problem for quadcopters with saturated actuators is considered. A simple adaptive output control approach is proposed. The control law "consecutive compensator" is augmented with the auxiliary integral loop and anti-windup scheme. Efficiency of the obtained regulator was confirmed by simulation of the quadcopter control problem.

  15. Adaptive lighting controllers using smart sensors

    Science.gov (United States)

    Papantoniou, Sotiris; Kolokotsa, Denia; Kalaitzakis, Kostas; Cesarini, Davide Nardi; Cubi, Eduard; Cristalli, Cristina

    2016-07-01

    The aim of this paper is to present an advanced controller for artificial lights evaluated in several rooms in two European Hospitals located in Chania, Greece and Ancona, Italy. Fuzzy techniques have been used for the architecture of the controller. The energy efficiency of the controllers has been calculated by running the controller coupled with validated models of the RADIANCE back-wards ray tracing software. The input of the controller is the difference between the current illuminance value and the desired one, while the output is the change of the light level that should be applied in the artificial lights. Simulation results indicate significant energy saving potentials. Energy saving potential is calculated from the comparison of the current use of the artificial lights by the users and the proposed one. All simulation work has been conducted using Matlab and RADIANCE environment.

  16. Adaptive pitch control for load mitigation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  17. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  18. Adaptive Controller for Drive System PMSG in Wind Turbine

    OpenAIRE

    Gnanambal; G.Balaji; M.Abinaya

    2014-01-01

    This paper proposes adaptive Maximum Power Point Tracking (MPPT) controller for Permanent Magnet Synchronous Generator (PMSG) wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC li...

  19. Adaptive Sensing and Control for Flexible Transmission in a Turbulent Medium. Adaptive Laser Beam Control Using Return Photon Statistics

    National Research Council Canada - National Science Library

    Lukesh, Gordon

    2004-01-01

    .... Pointing estimates are available after 25 shots. As a prime example of the utility and feasibility, estimates of boresight will be available to adaptively control pointing with a goal of boresight reduction via feedback...

  20. Research on the adaptive optical control technology based on DSP

    Science.gov (United States)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  1. Adaptive Feedfoward Feedback Control Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for the suppression of the aircraft's structural vibration to increase the resilience of the flight control law in the presence of the...

  2. Towards an adaptive model for greenhouse control

    NARCIS (Netherlands)

    Speetjens, S.L.; Stigter, J.D.; Straten, van G.

    2009-01-01

    Application of advanced controllers in horticultural practice requires detailed models. Even highly sophisticated models require regular attention from the user due to changing circumstances like plant growth, changing material properties and modifications in greenhouse design and layout. Moreover,

  3. Design of an adaptable nonlinear controller

    International Nuclear Information System (INIS)

    Benitez R, J.S.

    1994-01-01

    The study of the behavior of a nuclear reactor is of great importance as it allows to know a priori the conditions at which a reactor is submitted. In the sareactor are the design and simulation of control algorithms based on the theories of modern control with the objective of improving improving the performance criterions as well as to guarantee the the stability of the retrofitting system. (author)

  4. Substantiation of Structure of Adaptive Control Systems for Motor Units

    Science.gov (United States)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  5. Decentralized adaptive control of manipulators - Theory, simulation, and experimentation

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.

  6. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  7. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  8. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  9. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  10. Adaptive gaze control for object detection

    NARCIS (Netherlands)

    De Croon, G.C.H.E.; Postma, E.O.; Van den Herik, H.J.

    2011-01-01

    We propose a novel gaze-control model for detecting objects in images. The model, named act-detect, uses the information from local image samples in order to shift its gaze towards object locations. The model constitutes two main contributions. The first contribution is that the model’s setup makes

  11. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    Directory of Open Access Journals (Sweden)

    Guoliang Zhao

    2013-01-01

    Full Text Available This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  12. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    International Nuclear Information System (INIS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-01-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller

  13. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  14. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  15. Adaptive Landing Gear: Optimum Control Strategy and Potential for Improvement

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2009-01-01

    Full Text Available An adaptive landing gear is a landing gear (LG capable of active adaptation to particular landing conditions by means of controlled hydraulic force. The objective of the adaptive control is to mitigate the peak force transferred to the aircraft structure during touch-down, and thus to limit the structural fatigue factor. This paper investigates the ultimate limits for improvement due to various strategies of active control. Five strategies are proposed and investigated numerically using a~validated model of a real, passive landing gear as a reference. Potential for improvement is estimated statistically in terms of the mean and median (significant peak strut forces as well as in terms of the extended safe sinking velocity range. Three control strategies are verified experimentally using a laboratory test stand.

  16. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  17. On Using Exponential Parameter Estimators with an Adaptive Controller

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  18. Parameter Identification and Adaptive Control Applied to the Inverted Pendulum

    Directory of Open Access Journals (Sweden)

    Carlos A. Saldarriaga-Cortés

    2012-06-01

    Full Text Available This paper presents a methodology to implement an adaptive control of the inverted pendulum system; which uses the recursive square minimum method for the identification of a dynamic digital model of the plant and then, with its estimated parameters, tune in real time a pole placement control. The plant to be used is an unstable and nonlinear system. This fact, combined with the adaptive controller characteristics, allows the obtained results to be extended to a great variety of systems. The results show that the above methodology was implemented satisfactorily in terms of estimation, stability and control of such a system. It was established that adaptive techniques have a proper performance even in systems with complex features such as nonlinearity and instability.

  19. Adaptive Incentive Controls for Stackelberg Games with Unknown Cost Functionals.

    Science.gov (United States)

    1984-01-01

    APR EZT:: F I AN 73S e OsL:-: UNCLASSI?:-- Q4~.’~- .A.., 6, *~*i i~~*~~*.- U ADAPTIVE INCENTIVE CONTROLS FOR STACKELBERG GAMES WITH UNKNOWN COST...AD-A161 885 ADAPTIVE INCENTIVE CONTROLS FOR STACKELBERG GAMES WITH i/1 UNKNOWN COST FUNCTIONALSCU) ILLINOIS UNIV AT URBANA DECISION AND CONTROL LAB T...ORGANIZATION 6b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION CoriaeLcenef~pda~ Joint Services Electronics Program Laboratory, Univ. of Illinois N/A

  20. Adaptive control of chaotic continuous-time systems with delay

    Science.gov (United States)

    Tian, Yu-Chu; Gao, Furong

    1998-06-01

    A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.

  1. Adaptive Tracking Control of an Electro-Pneumatic Clutch Actuator

    Directory of Open Access Journals (Sweden)

    Glenn-Ole Kaasa

    2003-10-01

    Full Text Available This paper deals with the application of a simple adaptive algorithm for robust tracking control of an electro-pneumatic clutch actuator with output feedback. We present a mathematical model of the strongly nonlinear system, and implement an adaptive algorithm, based on a parallel feedforward compensator (PFC to remove the relative-degree-1 restriction. We propose a practical method of constructing the PFC, and introduce a simple modification that removes an inherent restriction on bandwidth of the nonlinear system. We show that the adaptive algorithm deals well with nonlinearities, and we achieve tracking corresponding to a settling-time of 150 ms.

  2. Adaptive Disturbance Rejection Control for Automatic Carrier Landing System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available An adaptive disturbance rejection algorithm is proposed for carrier landing system in the final-approach. The carrier-based aircraft dynamics and the linearized longitudinal model under turbulence conditions in the final-approach are analyzed. A stable adaptive control scheme is developed based on LDU decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. Finally, simulation studies of a linearized longitudinal-directional dynamics model are conducted to demonstrate the performance of the adaptive scheme.

  3. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  4. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    NARCIS (Netherlands)

    Klein Wolterink, W.; Heijenk, Geert; Karagiannis, Georgios

    2011-01-01

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system,

  5. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    NARCIS (Netherlands)

    Klein Wolterink, W.; Karagiannis, Georgios; Brogle, Marc; Masip Bruin, Xavier; Braun, Torsten; Heijenk, Gerhard J.

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system,

  6. Adaptive Control of Wind Turbines for Maximum Power Point Tracking

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    induction generator (SCIG) is used to illustrate the generator control system for a variable‐speed WECS. The chapter also presents case studies have been carried out to verify the developed adaptive controller for WECSs. WECSs are non‐linear systems with parameter uncertainties and which are subject...... to disturbances, in the form of non‐linear and unmodeled aerodynamics....

  7. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  8. Adaptive decoupled power control method for inverter connected DG

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe

    2014-01-01

    an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...

  9. Multiple Model Adaptive Control Using Dual Youla-Kucera Factorisation

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2012-01-01

    We propose a multi-model adaptive control scheme for uncertain linear plants based on the concept of model unfalsification. The approach relies on examining the ability of a pre-computed set of plant-controller candidates and choosing the one that is best able to reproduce observed in- and output...

  10. Optimal adaptive control for a class of stochastic systems

    NARCIS (Netherlands)

    Bagchi, Arunabha; Chen, Han-Fu

    1995-01-01

    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law

  11. Frequency Adaptability of Harmonics Controllers for Grid-Interfaced Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2017-01-01

    sensitivity of the most popular harmonic controllers for grid-interfaced converters. The frequency adaptability of these harmonic controllers is evaluated in the presence of a variable grid frequency within a specified reasonable range, e.g., +-1% of the nominal grid frequency (50 Hz). Solutions...

  12. Development of adaptive control applied to chaotic systems

    Science.gov (United States)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  13. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  14. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  15. Adaptive landing gear concept—feedback control validation

    Science.gov (United States)

    Mikulowski, Grzegorz M.; Holnicki-Szulc, Jan

    2007-12-01

    The objective of this paper is to present an integrated feedback control concept for adaptive landing gears (ALG) and its experimental validation. Aeroplanes are subjected to high dynamic loads as a result of the impact during each landing. Classical landing gears, which are in common use, are designed in accordance with official regulations in a way that ensures the optimal energy dissipation for the critical (maximum) sink speed. The regulations were formulated in order to ensure the functional capability of the landing gears during an emergency landing. However, the landing gears, whose characteristics are optimized for these critical conditions, do not perform well under normal impact conditions. For that situation it is reasonable to introduce a system that would adapt the characteristics of the landing gears according to the sink speed of landing. The considered system assumes adaptation of the damping force generated by the landing gear, which would perform optimally in an emergency situation and would adapt itself for regular landings as well. This research covers the formulation and design of the control algorithms for an adaptive landing gear based on MR fluid, implementation of the algorithms on an FPGA platform and experimental verification on a lab-scale landing gear device. The main challenge of the research was to develop a control methodology that could operate effectively within 50 ms, which is assumed to be the total duration of the phenomenon. The control algorithm proposed in this research was able to control the energy dissipation process on the experimental stand.

  16. VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER

    Directory of Open Access Journals (Sweden)

    P. N. Filippenko

    2013-03-01

    Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.

  17. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  18. FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    A. BENNASSAR

    2016-01-01

    Full Text Available Many industrial applications require high performance speed sensorless operation and demand new control methods in order to obtain fast dynamic response and insensitive to external disturbances. The current research aims to present the performance of the sensorless direct torque control (DTC of an induction motor (IM using adaptive Luenberger observer (ALO with fuzzy logic controller (FLC for adaptation mechanism. The rotor speed is regulated by proportional integral (PI anti-windup controller. The proposed strategy is directed to reduce the ripple on the torque and the flux. Numerical simulation results show the good performance and effectiveness of the proposed sensorless control for different references of the speed even both low and high speeds.

  19. Adaptive fuzzy controller based MPPT for photovoltaic systems

    International Nuclear Information System (INIS)

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  20. A discrete-time adaptive control scheme for robot manipulators

    Science.gov (United States)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  1. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  2. Adaptive nonlinear control using input normalized neural networks

    International Nuclear Information System (INIS)

    Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong

    2008-01-01

    An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small

  3. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  4. Robust Optimal Adaptive Trajectory Tracking Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    M. Navabi

    Full Text Available Abstract This paper focuses on robust optimal adaptive control strategy to deal with tracking problem of a quadrotor unmanned aerial vehicle (UAV in presence of parametric uncertainties, actuator amplitude constraints, and unknown time-varying external disturbances. First, Lyapunov-based indirect adaptive controller optimized by particle swarm optimization (PSO is developed for multi-input multi-output (MIMO nonlinear quadrotor to prevent input constraints violation, and then disturbance observer-based control (DOBC technique is aggregated with the control system to attenuate the effects of disturbance generated by an exogenous system. The performance of synthesis control method is evaluated by a new performance index function in time-domain, and the stability analysis is carried out using Lyapunov theory. Finally, illustrative numerical simulations are conducted to demonstrate the effectiveness of the presented approach in altitude and attitude tracking under several conditions, including large time-varying uncertainty, exogenous disturbance, and control input constraints.

  5. Adaptive Dynamic Programming for Control Algorithms and Stability

    CERN Document Server

    Zhang, Huaguang; Luo, Yanhong; Wang, Ding

    2013-01-01

    There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...

  6. Multi-Model Adaptive Fuzzy Controller for a CSTR Process

    Directory of Open Access Journals (Sweden)

    Shubham Gogoria

    2015-09-01

    Full Text Available Continuous Stirred Tank Reactors are intensively used to control exothermic reactions in chemical industries. It is a very complex multi-variable system with non-linear characteristics. This paper deals with linearization of the mathematical model of a CSTR Process. Multi model adaptive fuzzy controller has been designed to control the reactor concentration and temperature of CSTR process. This method combines the output of multiple Fuzzy controllers, which are operated at various operating points. The proposed solution is a straightforward implementation of Fuzzy controller with gain scheduler to control the linearly inseparable parameters of a highly non-linear process.

  7. Adaptive mechanism-based congestion control for networked systems

    Science.gov (United States)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  8. L1 Adaptive Control for a Vertical Rotor Orientation System

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2016-08-01

    Full Text Available Bottom-fixed vertical rotating devices are widely used in industrial and civilian fields. The free upside of the rotor will cause vibration and lead to noise and damage during operation. Meanwhile, parameter uncertainties, nonlinearities and external disturbances will further deteriorate the performance of the rotor. Therefore, in this paper, we present a rotor orientation control system based on an active magnetic bearing with L 1 adaptive control to restrain the influence of the nonlinearity and uncertainty and reduce the vibration amplitude of the vertical rotor. The boundedness and stability of the adaptive system are analyzed via a theoretical derivation. The impact of the adaptive gain is discussed through simulation. An experimental rig based on dSPACE is designed to test the validity of the rotor orientation system. The experimental results show that the relative vibration amplitude of the rotor using the L 1 adaptive controller will be reduced to ∼50% of that in the initial state, which is a 10% greater reduction than can be achieved with the nonadaptive controller. The control approach in this paper is of some significance to solve the orientation control problem in a low-speed vertical rotor with uncertainties and nonlinearities.

  9. Bayesian selective response-adaptive design using the historical control.

    Science.gov (United States)

    Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P

    2018-06-13

    High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

  10. Adaptive control system having hedge unit and related apparatus and methods

    Science.gov (United States)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  11. Rotor Field Oriented Control with adaptive Iron Loss Compensation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1999-01-01

    It is well known from the literature that iron loses in an induction motor implies field angle estimation errors and hence detuning problems. In this paper a new method for estimating the iron loss resistor in an induction motor is presented. The method is based on a traditional dynamic model...... controlled in a Field Oriented Control scheme. This deviation is used to force a MIT-rule based adaptive estimator. An adaptive compensator containing the developed estimator is introduced and verified by simulations and tested by real time experiments....

  12. Synchronization of generalized Henon map by using adaptive fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.

  13. Synchronization of generalized Henon map by using adaptive fuzzy controller

    International Nuclear Information System (INIS)

    Xue Yueju; Yang Shiyuan

    2003-01-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization

  14. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  15. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  16. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  17. Adaptive Feature Based Control of Compact Disk Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Vidal, Enrique Sanchez

    2005-01-01

    Many have experienced the problem that their Compact Disc players have difficulties playing Compact Discs with surface faults like scratches and fingerprints. The cause of this is due to the two servo control loops used to keep the Optical Pick-up Unit focused and radially on the information track...... of the Compact Disc. The problem is to design servo controllers which are well suited for handling surface faults which disturb the position measurement and still react sufficiently against normal disturbances like mechanical shocks. In previous work of the same authors a feature based control scheme for CD......-players playing CDs with surface fault is derived and described. This feature based control scheme uses precomputed base to remove the surface fault influence from the position measurements. In this paper an adaptive version of the feature based control scheme is proposed and described. This adaptive scheme can...

  18. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  19. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  20. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  1. Comparison of Conventional Closed-Loop Controller with an Adaptive Controller for a Disturbed Thermodynamic System

    DEFF Research Database (Denmark)

    Alphinas, Robert A.; Hansen, Hans Henrik; Tambo, Torben

    2017-01-01

    Non-adaptive proportional controllers suffer from the ability to handle a system disturbance leading to a large steady-state error and undesired transient behavior. On the other hand, they are easy to implement and tune. This article examines whether an adaptive controller based on the MIT...

  2. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  3. Adaptive Wavelet Coding Applied in a Wireless Control System.

    Science.gov (United States)

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  4. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  5. Anticipation and the adaptive control of safety margins in driving

    NARCIS (Netherlands)

    van der Hulst, M.; Meijman, T.F.; Rothengatter, J.A.

    Driving is a task that requires the timely detection of critical events and relevant changes in traffic circumstances. Adaptation of speed and safety margins allows drivers to control the time available to react to potential hazards. One of the basic safety margins in driving is the time headway

  6. Interference mitigation through adaptive power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, M.; Bacchiani, C.; Syed, Aly; Exarchakos, G.; Liotta, A.

    2016-01-01

    Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counter-productive

  7. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  8. Driving characteristics and adaptive cruise control : A naturalistic driving study

    NARCIS (Netherlands)

    Schakel, W.J.; Gorter, C.M.; de Winter, J.C.F.; van Arem, B.

    2017-01-01

    With the increasing number of vehicles equipped with Adaptive Cruise Control (ACC), it becomes important to assess its impact on traffic flow efficiency, in particular with respect to capacity and queue discharge rate. Simulation studies and surveys suggest that ACC has both positive and negative

  9. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    user

    The paper developed artificial intelligence technique adaptive neuro-fuzzy ... system is highly appreciated and essential in most of our daily life. ... It can construct an input-output mapping based on human knowledge and specific input-output data ... fuzzy controllers to produce desirable internal temperature and air quality, ...

  10. Liquid-crystal intraocular adaptive lens with wireless control

    NARCIS (Netherlands)

    Simonov, A.N.; Vdovine, G.V.; Loktev, M.

    2007-01-01

    We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.

  11. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever-ch...

  12. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  13. Adaptive Sliding Mode Control of MEMS AC Voltage Reference Source

    Directory of Open Access Journals (Sweden)

    Ehsan Ranjbar

    2017-01-01

    Full Text Available The accuracy of physical parameters of a tunable MEMS capacitor, as the major part of MEMS AC voltage reference, is of great importance to achieve an accurate output voltage free of the malfunctioning noise and disturbance. Even though strenuous endeavors are made to fabricate MEMS tunable capacitors with desiderated accurate physical characteristics and ameliorate exactness of physical parameters’ values, parametric uncertainties ineluctably emerge in fabrication process attributable to imperfections in micromachining process. First off, this paper considers applying an adaptive sliding mode controller design in the MEMS AC voltage reference source so that it is capable of giving off a well-regulated output voltage in defiance of jumbling parametric uncertainties in the plant dynamics and also aggravating external disturbance imposed on the system. Secondly, it puts an investigatory comparison with the designed model reference adaptive controller and the pole-placement state feedback one into one’s prospective. Not only does the tuned adaptive sliding mode controller show remarkable robustness against slow parameter variation and external disturbance being compared to the pole-placement state feedback one, but also it immensely gets robust against the external disturbance in comparison with the conventional adaptive controller. The simulation results are promising.

  14. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  15. Adaptive semi-active control of buildings under seismic solicitations

    International Nuclear Information System (INIS)

    Roberti, V.; Jezequel, L.

    1993-01-01

    This paper describes an adaptive semi-active control method whereby nonlinear distributed systems are identified by their dynamical response. Approximate procedures are proposed which take into account the nonlinear behavior of the dynamic system considered. It is shown that only slight knowledge of nonlinearities is needed to apply feedback and feedforward control laws. The method is implemented to a simple example of a building with three degrees of freedom and the numerical results are analyzed

  16. Adaptive Control of the Chaotic System via Singular System Approach

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2014-01-01

    Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.

  17. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Microgrid Stability Controller Based on Adaptive Robust Total SMC

    OpenAIRE

    Su, Xiaoling; Han, Minxiao; Guerrero, Josep M.; Sun, Hai

    2015-01-01

    This paper presents a microgrid stability controller (MSC) in order to provide existing distributed generation units (DGs) the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding...

  19. Multivariable robust adaptive controller using reduced-order model

    Directory of Open Access Journals (Sweden)

    Wei Wang

    1990-04-01

    Full Text Available In this paper a multivariable robust adaptive controller is presented for a plant with bounded disturbances and unmodeled dynamics due to plant-model order mismatches. The robust stability of the closed-loop system is achieved by using the normalization technique and the least squares parameter estimation scheme with dead zones. The weighting polynomial matrices are incorporated into the control law, so that the open-loop unstable or/and nonminimum phase plants can be handled.

  20. Adaptive piezoelectric sensoriactuators for active structural acoustic control

    Science.gov (United States)

    Vipperman, Jeffrey Stuart

    1997-09-01

    A new transducer technology with application to active control systems, modal analysis, and autonomous system health monitoring, is brought to fruition in this work. It has the advantages of being lightweight, potentially cost-effective, self-tuning, has negligible dynamics, and most importantly (from a robustness perspective), it provides a colocated sensor/actuator pair. The transducer consists of a piezoceramic element which serves as both an actuator and a sensor and will be referred to in this work as a sensoriactuator. Simple, adaptive signal processing in conjunction with a voltage controlled amplifier, reference capacitor, and a common-mode rejection circuit extract the mechanical response from the total response of the piezoelectric sensoriactuator for sensing. The digital portion of the adaptive piezoelectric sensoriactuator merely serves to tune the circuit, avoiding the potentially destabilizing effects of introducing a digital delay in the signal path, when used for feedback control applications. Adaptive compensation of the sensoriactuator is necessary since the signal to noise ratio is typically greater than 40 dB, making it prohibitive to tune the circuit manually. In addition, the constitutive properties of piezoceramics vary with time and environment, necessitating that the circuit be periodically re-tuned. The analog portion of the hardware is based upon op-amp circuits and an AD632 analog multiplier chip, which serves as both a voltage controlled amplifier (VCA) and a common mode rejection (CMR) circuit. A single coefficient least-mean square (LMS) adaptive filter continuously adjusts the gain of the VCA circuit as necessary. Nonideal behavior of piezoceramics is discussed along with methods to counter the consequential deterioration in circuit performance. A multiple input multiple output (MIMO) implementation of the adaptive piezoelectric sensoriactuator is developed using orthogonal white noise training signals for each sensoriactuator. Two

  1. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  2. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  3. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Science.gov (United States)

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  4. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small

  5. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  6. A novel adaptive force control method for IPMC manipulation

    International Nuclear Information System (INIS)

    Hao, Lina; Sun, Zhiyong; Su, Yunquan; Gao, Jianchao; Li, Zhi

    2012-01-01

    IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable. (paper)

  7. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    Science.gov (United States)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  8. Adaptive control in multi-threaded iterated integration

    International Nuclear Information System (INIS)

    Doncker, Elise de; Yuasa, Fukuko

    2013-01-01

    In recent years we have developed a technique for the direct computation of Feynman loop-integrals, which are notorious for the occurrence of integrand singularities. Especially for handling singularities in the interior of the domain, we approximate the iterated integral using an adaptive algorithm in the coordinate directions. We present a novel multi-core parallelization scheme for adaptive multivariate integration, by assigning threads to the rule evaluations in the outer dimensions of the iterated integral. The method ensures a large parallel granularity as each function evaluation by itself comprises an integral over the lower dimensions, while the application of the threads is governed by the adaptive control in the outer level. We give computational results for a test set of 3- to 6-dimensional integrals, where several problems exhibit a loop integral behavior.

  9. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    Science.gov (United States)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  10. Embedded intelligent adaptive PI controller for an electromechanical system.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2016-09-01

    In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Adaptive suboptimal second-order sliding mode control for microgrids

    Science.gov (United States)

    Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella

    2016-09-01

    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.

  12. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Science.gov (United States)

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  13. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  14. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  15. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  16. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  17. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  18. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  19. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    Science.gov (United States)

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  20. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    OpenAIRE

    Wu, Zhonghua; Lu, Jingchao; Shi, Jingping; Liu, Yang; Zhou, Qing

    2017-01-01

    This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) tech...

  1. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  2. The adaptive cruise control vehicles in the cellular automata model

    International Nuclear Information System (INIS)

    Jiang Rui; Wu Qingsong

    2006-01-01

    This Letter presented a cellular automata model where the adaptive cruise control vehicles are modelled. In this model, the constant time headway policy is adopted. The fundamental diagram is presented. The simulation results are in good agreement with the analytical ones. The mixture of ACC vehicles with manually driven vehicles is investigated. It is shown that with the introduction of ACC vehicles, the jam can be suppressed

  3. Synthesis of adaptive traffic control discrete neminimalno-phase system

    Directory of Open Access Journals (Sweden)

    В.М. Азарсков

    2007-01-01

    Full Text Available  An adaptive approach to synthesizing the digital tracking system with direct set-point coupling is extended under conditions when a plant is non-minimum phase. Some bounded set of belonging of servo drive unknown parameters vector is believed to be known. The object’s model non-singularity condition is established. The asymptotical properties of control system are studied. Simulation results are given.

  4. Laser diodes for sensing applications: adaptive cruise control and more

    Science.gov (United States)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  5. Control algorithms and applications of the wavefront sensorless adaptive optics

    Science.gov (United States)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  6. Retrospective Cost Adaptive Control with Concurrent Closed-Loop Identification

    Science.gov (United States)

    Sobolic, Frantisek M.

    Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive control algorithm for stabilization, command following, and disturbance rejection. RCAC is known to work on systems given minimal modeling information which is the leading numerator coefficient and any nonminimum-phase (NMP) zeros of the plant transfer function. This information is normally needed a priori and is key in the development of the filter, also known as the target model, within the retrospective performance variable. A novel approach to alleviate the need for prior modeling of both the leading coefficient of the plant transfer function as well as any NMP zeros is developed. The extension to the RCAC algorithm is the use of concurrent optimization of both the target model and the controller coefficients. Concurrent optimization of the target model and controller coefficients is a quadratic optimization problem in the target model and controller coefficients separately. However, this optimization problem is not convex as a joint function of both variables, and therefore nonconvex optimization methods are needed. Finally, insights within RCAC that include intercalated injection between the controller numerator and the denominator, unveil the workings of RCAC fitting a specific closed-loop transfer function to the target model. We exploit this interpretation by investigating several closed-loop identification architectures in order to extract this information for use in the target model.

  7. Neural controller for adaptive movements with unforeseen payloads.

    Science.gov (United States)

    Kuperstein, M; Wang, J

    1990-01-01

    A theory and computer simulation of a neural controller that learns to move and position a link carrying an unforeseen payload accurately are presented. The neural controller learns adaptive dynamic control from its own experience. It does not use information about link mass, link length, or direction of gravity, and it uses only indirect uncalibrated information about payload and actuator limits. Its average positioning accuracy across a large range of payloads after learning is 3% of the positioning range. This neural controller can be used as a basis for coordinating any number of sensory inputs with limbs of any number of joints. The feedforward nature of control allows parallel implementation in real time across multiple joints.

  8. Robust Adaptive Reactive Power Control for Doubly Fed Induction Generator

    Directory of Open Access Journals (Sweden)

    Huabin Wen

    2014-01-01

    Full Text Available The problem of reactive power control for mains-side inverter (MSI in doubly fed induction generator (DFIG is studied in this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the correctness and benefits of the control scheme.

  9. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.

    Science.gov (United States)

    Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela

    2014-06-01

    The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Quasi-adaptive fuzzy heating control of solar buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, M.M. [Faculty of Industrial Education, Cairo (Egypt); Danaher, S. [University of Northumbria, Newcastle upon Tyne, (United Kingdom). School of Engineering; Underwood, C.P. [University of Northumbria, Newcastle upon Tyne (United Kingdom). School of Built Environment and Sustainable Cities Research Institute

    2006-12-15

    Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need to develop control solutions that permit simple and transparent set-up and commissioning procedures. This paper addresses the development and testing of a quasi-adaptive fuzzy logic control method that addresses these issues. The controller is developed in two steps. A feed-forward neural network is used to predict the internal air temperature, in which a singular value decomposition (SVD) algorithm is used to remove the highly correlated data from the inputs of the neural network to reduce the network structure. The fuzzy controller is then designed to have two inputs: the first input being the error between the set-point temperature and the internal air temperature and the second the predicted future internal air temperature. The controller was implemented in real-time using a test cell with controlled ventilation and a modulating electric heating system. Results, compared with validated simulations of conventionally controlled heating, confirm that the proposed controller achieves superior tracking and reduced overheating when compared with the conventional method of control. (author)

  11. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    Science.gov (United States)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  12. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  13. On flexible CAD of adaptive control and identification algorithms

    DEFF Research Database (Denmark)

    Christensen, Anders; Ravn, Ole

    1988-01-01

    a total redesign of the system within each sample. The necessary design parameters are evaluated and a decision vector is defined, from which the identification algorithm can be generated by the program. Using the decision vector, a decision-node tree structure is built up, where the nodes define......SLLAB is a MATLAB-family software package for solving control and identification problems. This paper concerns the planning of a general-purpose subroutine structure for solving identification and adaptive control problems. A general-purpose identification algorithm is suggested, which allows...

  14. Robust synchronization of chaotic systems via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Yan, J.-J.; Hung, M.-L.; Chiang, T.-Y.; Yang, Y.-S.

    2006-01-01

    This Letter investigates the synchronization problem for a general class of chaotic systems. Using the sliding mode control technique, an adaptive control law is established to guarantee synchronization of the master and slave systems even when unknown parameters and external disturbances are present. In contrast to the previous works, the structure of slave system is simple and need not be identical to the master system. Furthermore, a novel proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. An illustrative example of Chua's circuit is given to demonstrate the effectiveness of the proposed synchronization scheme

  15. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  16. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  17. Model-Free Adaptive Control Algorithm with Data Dropout Compensation

    Directory of Open Access Journals (Sweden)

    Xuhui Bu

    2012-01-01

    Full Text Available The convergence of model-free adaptive control (MFAC algorithm can be guaranteed when the system is subject to measurement data dropout. The system output convergent speed gets slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation. The missing data is first estimated using the dynamical linearization method, and then the estimated value is introduced to update control input. The convergence analysis of the proposed MFAC algorithm is given, and the effectiveness is also validated by simulations. It is shown that the proposed algorithm can compensate the effect of the data dropout, and the better output performance can be obtained.

  18. Generalized projective synchronization of chaotic systems via adaptive learning control

    International Nuclear Information System (INIS)

    Yun-Ping, Sun; Jun-Min, Li; Hui-Lin, Wang; Jiang-An, Wang

    2010-01-01

    In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov–Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. (general)

  19. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  20. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  1. Adaptive control theory of concentration in the uranium enrichment plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake; Miyagawa, Hiroshi; Yokoyama, Kaoru; Nakakura, Hiroyuki

    1999-01-01

    This paper presents the new adaptive control of concentration in the uranium enrichment plant. The purpose of this control system is average concentration control in production tram. As a result the accuracy and practical use of this control system have already been confirmed by the operation of the uranium enrichment demonstration plant. Three elements of technology are required to this method. The first is the measurement of the concentration using product flow quantity change. This technology shall be called 'Qp difference to Xp transform method'. The second is the relationship between temperature change and flow quantity using G.M.D.H. (Groupe Method of Data Handling) and the third is the estimation of temperature change using AR (Auto-regressive) model. (author)

  2. Non-linear and adaptive control of a refrigeration system

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2011-01-01

    are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed......In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... capacities ensures a high energy efficiency. The level of liquid filling is indirectly measured by the superheat. Introduction of variable speed compressors and electronic expansion valves enables the use of more sophisticated control algorithms, giving a higher degree of performance and just as important...

  3. Adaptive Control of Electromagnetic Suspension System by HOPF Bifurcation

    Directory of Open Access Journals (Sweden)

    Aming Hao

    2013-01-01

    Full Text Available EMS-type maglev system is essentially nonlinear and unstable. It is complicated to design a stable controller for maglev system which is under large-scale disturbance and parameter variance. Theory analysis expresses that this phenomenon corresponds to a HOPF bifurcation in mathematical model. An adaptive control law which adjusts the PID control parameters is given in this paper according to HOPF bifurcation theory. Through identification of the levitated mass, the controller adjusts the feedback coefficient to make the system far from the HOPF bifurcation point and maintain the stability of the maglev system. Simulation result indicates that adjusting proportion gain parameter using this method can extend the state stability range of maglev system and avoid the self-excited vibration efficiently.

  4. Distributed adaptive droop control for DC distribution systems

    DEFF Research Database (Denmark)

    Nasirian, Vahidreza; Davoudi, Ali; Lewis, Frank

    2016-01-01

    Summary form only given: A distributed-adaptive droop mechanism is proposed for secondary/primary control of dc microgrids. The conventional secondary control that adjusts the voltage set point for the local droop mechanism is replaced by a voltage regulator. A current regulator is also added...... to fine-tune the droop coefficient for different loading conditions. The voltage regulator uses an observer that processes neighbors' data to estimate the average voltage across the microgrid. This estimation is further used to generate a voltage correction term to adjust the local voltage set point...... with the proposed controller engaged. A low-voltage dc microgrid prototype is used to verify the controller performance, link-failure resiliency, and the plug-and-play capability....

  5. Microgrid Stability Controller Based on Adaptive Robust Total SMC

    DEFF Research Database (Denmark)

    Su, Xiaoling; Han, Minxiao; Guerrero, Josep M.

    2015-01-01

    This paper presents a microgrid stability controller (MSC) in order to provide existing DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics....... The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing DG’s output power. When the microgrid is operating...... and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC) system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances...

  6. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    Science.gov (United States)

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Fibradapt trademark: Adaptive Wind Turbine Control System; Fibradapt trademark: Adaptive Wind Turbine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, J.-Th. [Wind Force Engineering and Consulting GmbH, Bremerhaven (Germany)

    2004-07-01

    The technology of Time Division Multiplexing (TDM) is compared with conventional strain gauge technologies in practical operation in a wind power system. Load cycles in the rotor blade were measured during plant life, and the data were used in plant control. The system is a tool in technical project management and financial management of a wind park. (orig.)

  8. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    Science.gov (United States)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  9. Design and implementation of adaptive inverse control algorithm for a micro-hand control system

    Directory of Open Access Journals (Sweden)

    Wan-Cheng Wang

    2014-01-01

    Full Text Available The Letter proposes an online tuned adaptive inverse position control algorithm for a micro-hand. First, the configuration of the micro-hand is discussed. Next, a kinematic analysis of the micro-hand is investigated and then the relationship between the rotor position of micro-permanent magnet synchronous motor and the tip of the micro-finger is derived. After that, an online tuned adaptive inverse control algorithm, which includes an adaptive inverse model and an adaptive inverse control, is designed. The online tuned adaptive inverse control algorithm has better performance than the proportional–integral control algorithm does. In addition, to avoid damaging the object during the grasping process, an online force control algorithm is proposed here as well. An embedded micro-computer, cRIO-9024, is used to realise the whole position control algorithm and the force control algorithm by using software. As a result, the hardware circuit is very simple. Experimental results show that the proposed system can provide fast transient responses, good load disturbance responses, good tracking responses and satisfactory grasping responses.

  10. Adaptive precompensators for flexible-link manipulator control

    Science.gov (United States)

    Tzes, Anthony P.; Yurkovich, Stephen

    1989-01-01

    The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.

  11. Adaptive dynamic programming with applications in optimal control

    CERN Document Server

    Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang

    2017-01-01

    This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...

  12. Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy

    NARCIS (Netherlands)

    Mullakkal Babu, F.A.; Wang, M.; van Arem, B.; Happee, R.; Rosetti, R.; Wolf, D.

    2016-01-01

    Current Full Range Adaptive Cruise Control (FRACC) systems switch between separate adaptive cruise control and collision avoidance systems. This can lead to jerky responses and discomfort during the transition between the two control modes. We propose a Full Range Adaptive Cruise Control (FRACC)

  13. Adaptive control for solar energy based DC microgrid system development

    Science.gov (United States)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  14. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  15. Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity

    Science.gov (United States)

    Bocchini, G. M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P. E.; Ruscic, M.; Papadopoulos, G. A.; Rische, M.; Friederich, W.

    2018-06-01

    This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity

  16. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  17. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  18. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  19. Nonlinear Robust Disturbance Attenuation Control Design for Static Var Compensator in Power System

    Directory of Open Access Journals (Sweden)

    Ting Liu

    2013-01-01

    Full Text Available The problem of designing an adaptive backstepping controller for nonlinear static var compensator (SVC system is addressed adopting two perspectives. First, instead of artificially assuming an upper bound or inequality scaling, the minimax theory is used to treat the external unknown disturbances. The system is insensitive to effects of large disturbances due to taking into account the worst case disturbance. Second, a parameter projection mechanism is introduced in adaptive control to force the parameter estimate within a prior specified interval. The proposed controller handles the nonlinear parameterization without compromising control smoothness and at the same time the parameter estimate speed is improved and the robustness of system is strengthened. Considering the short-circuit ground fault and mechanical power perturbation, a simulation study is carried out. The results show the effectiveness of the proposed control method.

  20. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  1. Adaptive chaos control and synchronization in only locally Lipschitz systems

    International Nuclear Information System (INIS)

    Lin Wei

    2008-01-01

    In the existing results on chaos control and synchronization based on the adaptive controlling technique (ACT), a uniform Lipschitz condition on a given dynamical system is always assumed in advance. However, without this uniform Lipschitz condition, the ACT might be failed in both theoretical analysis and in numerical experiment. This Letter shows how to utilize the ACT to get a rigorous control for the system which is not uniformly Lipschitz but only locally Lipschitz, and even for the system which has unbounded trajectories. In fact, the ACT is proved to possess some limitation, which is actually induced by the nonlinear degree of the original system. Consequently, a piecewise ACT is proposed so as to improve the performance of the existing techniques

  2. Distributed Adaptive Droop Control for DC Distribution Systems

    DEFF Research Database (Denmark)

    Nasirian, Vahidreza; Davoudi, Ali; Lewis, Frank

    2014-01-01

    A distributed-adaptive droop mechanism is proposed for secondary/primary control of dc Microgrids. The conventional secondary control, that adjusts the voltage set point for the local droop mechanism, is replaced by a voltage regulator. A current regulator is then added to fine-tune the droop...... coefficient for different loading conditions. The voltage regulator uses an observer that processes neighbors’ data to estimate the average voltage across the Microgrid. This estimation is further used to generate a voltage correction term to adjust the local voltage set point. The current regulator compares...... engaged. A low-voltage dc Microgrid prototype is used to verify the controller performance, link-failure resiliency, and the plug-andplay capabilities....

  3. Active Inference, homeostatic regulation and adaptive behavioural control.

    Science.gov (United States)

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  5. ADEX optimized adaptive controllers and systems from research to industrial practice

    CERN Document Server

    Martín-Sánchez, Juan M

    2015-01-01

    This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...

  6. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    KAUST Repository

    Chaoui, Hicham; Khayamy, Mehdy; Aljarboua, Abdullah Abdulaziz

    2017-01-01

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory

  7. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    Science.gov (United States)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  8. Rasgrf2 controls dopaminergic adaptations to alcohol in mice.

    Science.gov (United States)

    Easton, Alanna C; Rotter, Andrea; Lourdusamy, Anbarasu; Desrivières, Sylvane; Fernández-Medarde, Alberto; Biermann, Teresa; Fernandes, Cathy; Santos, Eugenio; Kornhuber, Johannes; Schumann, Gunter; Müller, Christian P

    2014-10-01

    Alcohol abuse leads to serious health problems with no effective treatment available. Recent evidence suggests a role for ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) in alcoholism. Rasgrf2 is a calcium sensor and MAPK/ERK activating protein, which has been linked to neurotransmitter release and monoaminergic receptor adaptations. Rasgrf2 knock out (KO) mice do not develop a dopamine response in the nucleus accumbens after an alcohol challenge and show a reduced consumption of alcohol. The present study aims to further characterise the role of Rasgrf2 in dopaminergic activation beyond the nucleus accumbens following alcohol treatment. Using in vivo microdialysis we found that alcohol induces alterations in dopamine levels in the dorsal striatum between wildtype (WT) and Rasgrf2 KO mice. There was no difference in the expression of dopamine transporter (DAT), dopamine receptor regulating factor (DRRF), or dopamine D2 receptor (DRD2) mRNA in the brain between Rasgrf2 KO and WT mice. After sub-chronic alcohol treatment, DAT and DRRF, but not DRD2 mRNA expression differed between WT and Rasgrf2 KO mice. Brain adaptations were positively correlated with splenic expression levels. These data suggest that Rasgrf2 controls dopaminergic signalling and adaptations to alcohol also in other brain regions, beyond the nucleus accumbens. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Application of adaptive fuzzy control technology to pressure control of a pressurizer

    Institute of Scientific and Technical Information of China (English)

    YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai

    2005-01-01

    A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.

  10. Direct model reference adaptive control with application to flexible robots

    Science.gov (United States)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  11. Adaptive control using neural networks and approximate models.

    Science.gov (United States)

    Narendra, K S; Mukhopadhyay, S

    1997-01-01

    The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.

  12. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    OpenAIRE

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  13. Career success criteria and locus of control as indicators of adaptive readiness in the career adaptation model.

    OpenAIRE

    Zhou, W.; Guan, Y.; Xin, L.; Mak, M.C.K.; Deng, Y.

    2016-01-01

    The present research had two goals. The first goal was to identify additional individual characteristics that may contribute to adaptive readiness. The second goal was to test if these characteristics fit the career adaptation model of readiness to resources to responses. We examined whether career success criteria (measured at Time 1) and career locus of control (measured at Time 1) would contribute to adaptivity and predict university students’ career decision-making self-efficacy (measured...

  14. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Science.gov (United States)

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  15. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    International Nuclear Information System (INIS)

    Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing

    2015-01-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)

  16. Robust sawtooth period control based on adaptive online optimization

    International Nuclear Information System (INIS)

    Bolder, J.J.; Witvoet, G.; De Baar, M.R.; Steinbuch, M.; Van de Wouw, N.; Haring, M.A.M.; Westerhof, E.; Doelman, N.J.

    2012-01-01

    The systematic design of a robust adaptive control strategy for the sawtooth period using electron cyclotron current drive (ECCD) is presented. Recent developments in extremum seeking control (ESC) are employed to derive an optimized controller structure and offer practical tuning guidelines for its parameters. In this technique a cost function in terms of the desired sawtooth period is optimized online by changing the ECCD deposition location based on online estimations of the gradient of the cost function. The controller design does not require a detailed model of the sawtooth instability. Therefore, the proposed ESC is widely applicable to any sawtoothing plasma or plasma simulation and is inherently robust against uncertainties or plasma variations. Moreover, it can handle a broad class of disturbances. This is demonstrated by time-domain simulations, which show successful tracking of time-varying sawtooth period references throughout the whole operating space, even in the presence of variations in plasma parameters, disturbances and slow launcher mirror dynamics. Due to its simplicity and robustness the proposed ESC is a valuable sawtooth control candidate for any experimental tokamak plasma, and may even be applicable to other fusion-related control problems. (paper)

  17. Efficient community-based control strategies in adaptive networks

    International Nuclear Information System (INIS)

    Yang Hui; Tang Ming; Zhang Haifeng

    2012-01-01

    Most studies on adaptive networks concentrate on the properties of steady state, but neglect transient dynamics. In this study, we pay attention to the emergence of community structure in the transient process and the effects of community-based control strategies on epidemic spreading. First, by normalizing the modularity, we investigate the evolution of community structure during the transient process, and find that a strong community structure is induced by the rewiring mechanism in the early stage of epidemic dynamics, which, remarkably, delays the outbreak of disease. We then study the effects of control strategies started at different stages on the prevalence. Both immunization and quarantine strategies indicate that it is not ‘the earlier, the better’ for the implementation of control measures. And the optimal control effect is obtained if control measures can be efficiently implemented in the period of a strong community structure. For the immunization strategy, immunizing the susceptible nodes on susceptible–infected links and immunizing susceptible nodes randomly have similar control effects. However, for the quarantine strategy, quarantining the infected nodes on susceptible–infected links can yield a far better result than quarantining infected nodes randomly. More significantly, the community-based quarantine strategy performs better than the community-based immunization strategy. This study may shed new light on the forecast and the prevention of epidemics among humans. (paper)

  18. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  19. Adaptive Automatic Gauge Control of a Cold Strip Rolling Process

    Directory of Open Access Journals (Sweden)

    ROMAN, N.

    2010-02-01

    Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.

  20. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  1. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  2. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  3. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  4. Adaptive Test Schemes for Control of Paratuberculosis in Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Carsten Kirkeby

    Full Text Available Paratuberculosis is a chronic infection that in dairy cattle causes reduced milk yield, weight loss, and ultimately fatal diarrhea. Subclinical animals can excrete bacteria (Mycobacterium avium ssp. paratuberculosis, MAP in feces and infect other animals. Farmers identify the infectious animals through a variety of test-strategies, but are challenged by the lack of perfect tests. Frequent testing increases the sensitivity but the costs of testing are a cause of concern for farmers. Here, we used a herd simulation model using milk ELISA tests to evaluate the epidemiological and economic consequences of continuously adapting the sampling interval in response to the estimated true prevalence in the herd. The key results were that the true prevalence was greatly affected by the hygiene level and to some extent by the test-frequency. Furthermore, the choice of prevalence that will be tolerated in a control scenario had a major impact on the true prevalence in the normal hygiene setting, but less so when the hygiene was poor. The net revenue is not greatly affected by the test-strategy, because of the general variation in net revenues between farms. An exception to this is the low hygiene herd, where frequent testing results in lower revenue. When we look at the probability of eradication, then it is correlated with the testing frequency and the target prevalence during the control phase. The probability of eradication is low in the low hygiene herd, and a test-and-cull strategy should probably not be the primary strategy in this herd. Based on this study we suggest that, in order to control MAP, the standard Danish dairy farm should use an adaptive strategy where a short sampling interval of three months is used when the estimated true prevalence is above 1%, and otherwise use a long sampling interval of one year.

  5. A robust adaptive load frequency control for micro-grids.

    Science.gov (United States)

    Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav

    2016-11-01

    The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  7. Microgrid Stability Controller Based on Adaptive Robust Total SMC

    Directory of Open Access Journals (Sweden)

    Xiaoling Su

    2015-03-01

    Full Text Available This paper presents a microgrid stability controller (MSC in order to provide existing distributed generation units (DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances. The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing the DGs’ output power. When the microgrid is operating in islanded mode, it provides voltage and frequency support, while guaranteeing seamless transition between the two operation modes. Simulation and experimental results show the effectiveness of the proposed approach.

  8. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  9. Reef demise and back-stepping during the last interglacial, northeast Yucatan

    Science.gov (United States)

    Blanchon, Paul

    2010-06-01

    reef-tract, however, require that the demise of this reef was ecologically synchronous with initiation of the upper reef-tract, which had back-stepped 100 m into the lagoon. In this new position, the upper tract developed a reef crest that corresponded to a final sea-level position of +6 m. Reef flat development at +5 m and large in-place colonies of A. palmata at the base of the crest unit indicate, however, that sea level must have risen rapidly from +3 to more than +5 m to accommodate back-stepping. This sea-level jump created a higher energy wave field that mobilized back-reef and lagoonal sediments, and the resulting high sediment flux eroded lagoonal framework and prevented the recovery of the submerged lower reef crest. So this single jump in sea level was responsible not only for reef demise and back-stepping but also for marine erosion and suppression of subsequent reef development—features that elsewhere have been used to support multiple sea-level excursions during the last interglacial.

  10. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  11. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    Science.gov (United States)

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  12. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    Science.gov (United States)

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  13. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  14. Data adaptive control parameter estimation for scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Dinklage, Andreas [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Dose, Volker [Max-Planck- Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-07-01

    Bayesian experimental design quantifies the utility of data expressed by the information gain. Data adaptive exploration determines the expected utility of a single new measurement using existing data and a data descriptive model. In other words, the method can be used for experimental planning. As an example for a multivariate linear case, we apply this method for constituting scaling laws of fusion devices. In detail, the scaling of the stellarator W7-AS is examined for a subset of {iota}=1/3 data. The impact of the existing data on the scaling exponents is presented. Furthermore, in control parameter space regions of high utility are identified which improve the accuracy of the scaling law. This approach is not restricted to the presented example only, but can also be extended to non-linear models.

  15. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  16. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  17. Adaptive Test Schemes for Control of Paratuberculosis in Dairy Cows

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Græsbøll, Kaare; Nielsen, Søren Saxmose

    2016-01-01

    consequences of continuously adapting the sampling interval in response to the estimated true prevalence in the herd. The key results were that the true prevalence was greatly affected by the hygiene level and to some extent by the test-frequency. Furthermore, the choice of prevalence that will be tolerated...... through a variety of test-strategies, but are challenged by the lack of perfect tests. Frequent testing increases the sensitivity but the costs of testing are a cause of concern for farmers. Here, we used a herd simulation model using milk ELISA tests to evaluate the epidemiological and economic...... in a control scenario had a major impact on the true prevalence in the normal hygiene setting, but less so when the hygiene was poor. The net revenue is not greatly affected by the test-strategy, because of the general variation in net revenues between farms. An exception to this is the low hygiene herd, where...

  18. Programming adaptive control to evolve increased metabolite production.

    Science.gov (United States)

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  19. Cerebellar transcranial direct current stimulation improves adaptive postural control.

    Science.gov (United States)

    Poortvliet, Peter; Hsieh, Billie; Cresswell, Andrew; Au, Jacky; Meinzer, Marcus

    2018-01-01

    Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

    Directory of Open Access Journals (Sweden)

    Taochang Li

    2014-01-01

    Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

  1. Considering Variable Road Geometry in Adaptive Vehicle Speed Control

    Directory of Open Access Journals (Sweden)

    Xinping Yan

    2013-01-01

    Full Text Available Adaptive vehicle speed control is critical for developing Advanced Driver Assistance Systems (ADAS. Vehicle speed control considering variable road geometry has become a hotspot in ADAS research. In this paper, first, an exploration of intrinsic relationship between vehicle operation and road geometry is made. Secondly, a collaborative vehicle coupling model, a road geometry model, and an AVSC, which can respond to variable road geometry in advance, are developed. Then, based on H∞ control method and the minimum energy principle, a performance index is specified by a cost function for the proposed AVSC, which can explicitly consider variable road geometry in its optimization process. The proposed AVSC is designed by the Hamilton-Jacobi Inequality (HJI. Finally, simulations are carried out by combining the vehicle model with the road geometry model, in an aim of minimizing the performance index of the AVSC. Analyses of the simulation results indicate that the proposed AVSC can automatically and effectively regulate speed according to variable road geometry. It is believed that the proposed AVSC can be used to improve the economy, comfort, and safety effects of current ADAS.

  2. Improving Accuracy of Processing by Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    N. N. Barbashov

    2016-01-01

    Full Text Available When machining the work-pieces a range of scatter of the work-piece dimensions to the tolerance limit is displaced in response to the errors. To improve an accuracy of machining and prevent products from defects it is necessary to diminish the machining error components, i.e. to improve the accuracy of machine tool, tool life, rigidity of the system, accuracy of adjustment. It is also necessary to provide on-machine adjustment after a certain time. However, increasing number of readjustments reduces the performance and high machine and tool requirements lead to a significant increase in the machining cost.To improve the accuracy and machining rate, various devices of active control (in-process gaging devices, as well as controlled machining through adaptive systems for a technological process control now become widely used. Thus, the accuracy improvement in this case is reached by compensation of a majority of technological errors. The sensors of active control can provide improving the accuracy of processing by one or two quality classes, and simultaneous operation of several machines.For efficient use of sensors of active control it is necessary to develop the accuracy control methods by means of introducing the appropriate adjustments to solve this problem. Methods based on the moving average, appear to be the most promising for accuracy control, since they contain information on the change in the last several measured values of the parameter under control.When using the proposed method in calculation, the first three members of the sequence of deviations remain unchanged, therefore 1 1 x  x , 2 2 x  x , 3 3 x  x Then, for each i-th member of the sequence we calculate that way: , ' i i i x  x  k x , where instead of the i x values will be populated with the corresponding values ' i x calculated as an average of three previous members:3 ' 1  2  3  i i i i x x x x .As a criterion for the estimate of the control

  3. Exposure Control Using Adaptive Multi-Stage Item Bundles.

    Science.gov (United States)

    Luecht, Richard M.

    This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…

  4. Calculation of vehicle delay at signal-controlled intersections with adaptive traffic control algorithm

    Directory of Open Access Journals (Sweden)

    Andronov Roman

    2018-01-01

    Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.

  5. Discrete Model Reference Adaptive Control for Gimbal Servosystem of Control Moment Gyro with Harmonic Drive

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available The double-gimbal control moment gyro (DGCMG demands that the gimbal servosystem should have fast response and small overshoot. But due to the low and nonlinear torsional stiffness of harmonic drive, the gimbal servo-system has poor dynamic performance with large overshoot and low bandwidth. In order to improve the dynamic performance of gimbal servo-system, a model reference adaptive control (MRAC law is introduced in this paper. The model of DGCMG gimbal servo-system with harmonic drive is established, and the adaptive control law based on POPOV super stable theory is designed. The MATLAB simulation results are provided to verify the effectiveness of the proposed control algorithm. The experimental results indicate that the MRAC could increase the bandwidth of gimbal servo-system to 3 Hz and improve the dynamic performance with small overshoot.

  6. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Science.gov (United States)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  7. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.

  8. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  9. Interval type-2 fuzzy gain-adaptive controller of a Doubly Fed ...

    African Journals Online (AJOL)

    ... Interval Type-2 Fuzzy Gain Adaptive IP (IT2FGAIP) controller and a conventional IP controller ... and an adaptive IP controller is proposed for the speed control of DFIM in the presence of ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  10. Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2017-01-01

    This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

  11. Decentralized adaptive control of interconnected nonlinear systems with unknown control directions.

    Science.gov (United States)

    Huang, Jiangshuai; Wang, Qing-Guo

    2018-03-01

    In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner

    Energy Technology Data Exchange (ETDEWEB)

    S. Mahesh; D.P. Mishra [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-09-15

    The stability characteristics and emissions from turbulent LPG inverse diffusion flame (IDF) in a backstep burner are reported in this paper. The blow-off velocity of turbulent LPG IDF is observed to increase monotonically with fuel jet velocity. In contrast to normal diffusion flames (NDF), the flame in the present IDF burner gets blown out without getting lifted-off from the burner surface. The soot free length fraction, SFLF, defined as the ratio of visible premixing length, H{sub p}, to visible flame length, H{sub f}, is used for qualitative estimation of soot reduction in this IDF burner. The SFLF is found to increase with central air jet velocity indicating the occurrence of extended premixing zone in the vicinity of flame base. Interestingly, the soot free length fraction (SFLF) is found to be correlated well with the newly devised parameter, global momentum ratio. The peak value of EINOX happens to occur closer to stoichiometric overall equivalence ratio. 16 refs., 9 figs.

  13. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    Science.gov (United States)

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  15. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  16. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    Directory of Open Access Journals (Sweden)

    James Vaughn Kohl

    2013-06-01

    Full Text Available Background: The prenatal migration of gonadotropin-releasing hormone (GnRH neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods: This model details how chemical ecology drives adaptive evolution via: (1 ecological niche construction, (2 social niche construction, (3 neurogenic niche construction, and (4 socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH and systems biology. Results: Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion: An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively

  17. A Study on Mode Confusions in Adaptive Cruise Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Dae Ryong; Yang, Ji Hyun; Lee, Sang Hun [Kookmin University, Seoul (Korea, Republic of)

    2015-05-15

    Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions.

  18. A Study on Mode Confusions in Adaptive Cruise Control Systems

    International Nuclear Information System (INIS)

    Ahn, Dae Ryong; Yang, Ji Hyun; Lee, Sang Hun

    2015-01-01

    Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions

  19. Information-educational environment with adaptive control of learning process

    Science.gov (United States)

    Modjaev, A. D.; Leonova, N. M.

    2017-01-01

    Recent years, a new scientific branch connected with the activities in social sphere management developing intensively and it is called "Social Cybernetics". In the framework of this scientific branch, theory and methods of management of social sphere are formed. Considerable attention is paid to the management, directly in real time. However, the decision of such management tasks is largely constrained by the lack of or insufficiently deep study of the relevant sections of the theory and methods of management. The article discusses the use of cybernetic principles in solving problems of control in social systems. Applying to educational activities a model of composite interrelated objects representing the behaviour of students at various stages of educational process is introduced. Statistical processing of experimental data obtained during the actual learning process is being done. If you increase the number of features used, additionally taking into account the degree and nature of variability of levels of current progress of students during various types of studies, new properties of students' grouping are discovered. L-clusters were identified, reflecting the behaviour of learners with similar characteristics during lectures. It was established that the characteristics of the clusters contain information about the dynamics of learners' behaviour, allowing them to be used in additional lessons. The ways of solving the problem of adaptive control based on the identified dynamic characteristics of the learners are planned.

  20. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller.

    Science.gov (United States)

    Tan, U-Xuan; Latt, Win Tun; Widjaja, Ferdinan; Shee, Cheng Yap; Riviere, Cameron N; Ang, Wei Tech

    2009-03-16

    With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.