WorldWideScience

Sample records for adapting present combustion

  1. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    Directory of Open Access Journals (Sweden)

    Nidhi Arora

    2013-07-01

    Full Text Available A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed in this paper to alleviate combustion process. The method involves recording the time-varying flow of fuel components in combustion chamber. A Fuzzy Neural Network is trained for around 40 fuels to ascertain the required amount of air to form a standard mix to produce non-harmful gases and about 12 fuels are used for testing the network’s performance. The network then adaptively determines the additional/subtractive amount of air required for proper combustion. Mean square error calculation ensures the effectiveness of the network’s performance.

  2. High temperature combustion facility: present capabilities and future prospects

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ginsberg, T.; Ciccarelli, G.

    1995-01-01

    The high-temperature combustion facility constructed and operated by the Department of Advanced Technology of Brookhaven National Laboratory to support and promote research in the area of hydrogen combustion phenomena in mixtures prototypical to light-water reactor containment atmospheres under potential severe accident conditions is reported. The facility can accommodate combustion research activities encompassing the fields of detonation physics, flame acceleration, and low-speed deflagration in a wide range of combustible gas mixtures at initial temperatures up to 700 K and post-combustion pressures up to 100 atmospheres. Some preliminary test results are presented that provide further evidence that the effect of temperature is to increase the sensitivity of hydrogen-air-steam mixtures to undergo detonation [ru

  3. Supporting Adaptive and Adaptable Hypermedia Presentation Semantics

    NARCIS (Netherlands)

    D.C.A. Bulterman (Dick); L. Rutledge (Lloyd); L. Hardman (Lynda); J.R. van Ossenbruggen (Jacco)

    1999-01-01

    textabstractHaving the content of a presentation adapt to the needs, resources and prior activities of a user can be an important benefit of electronic documents. While part of this adaptation is related to the encodings of individual data streams, much of the adaptation can/should be guided by the

  4. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows

    International Nuclear Information System (INIS)

    Gao, X.; Groth, C.P.T.

    2005-01-01

    A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the κ-ψ turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including cold- and hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows. (author)

  5. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  6. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  7. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-01-01

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  8. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-12-12

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  9. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  10. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    Science.gov (United States)

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. AN ALGORITHM OF ADAPTIVE TORQUE CONTROL IN INJECTOR INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    D. N. Gerasimov

    2015-07-01

    Full Text Available Subject of Research. Internal combustion engine as a plant is a highly nonlinear complex system that works mostly in dynamic regimes in the presence of noise and disturbances. A number of engine characteristics and parameters is not known or known approximately due to the complex structure and multimode operating of the engine. In this regard the problem of torque control is not trivial and motivates the use of modern techniques of control theory that give the possibility to overcome the mentioned problems. As a consequence, a relatively simple algorithm of adaptive torque control of injector engine is proposed in the paper. Method. Proposed method is based on nonlinear dynamic model with parametric and functional uncertainties (static characteristics which are suppressed by means of adaptive control algorithm with single adjustable parameter. The algorithm is presented by proportional control law with adjustable feedback gain and provides the exponential convergence of the control error to the neighborhood of zero equilibrium. It is shown that the radius of the neighborhood can be arbitrary reduced by the change of controller design parameters. Main Results. A dynamical nonlinear model of the engine has been designed for the purpose of control synthesis and simulation of the closed-loop system. The parameters and static functions of the model are identified with the use of data aquired during Federal Test Procedure (USA of Chevrolet Tahoe vehicle with eight cylinders 5,7L engine. The algorithm of adaptive torque control is designed, and the properties of the closed-loop system are analyzed with the use of Lyapunov functions approach. The closed-loop system operating is verified by means of simulation in the MatLab/Simulink environment. Simulation results show that the controller provides the boundedness of all signals and convergence of the control error to the neighborhood of zero equilibrium despite significant variations of engine speed. The

  12. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  13. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  14. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  15. Teaching Audience Adaptation Using Connected Presentations and Teamwork

    Science.gov (United States)

    Opt, Susan K.

    2017-01-01

    Courses: Introduction to Communication, Public Speaking, Persuasion, Business Communication. Objective: This activity increases students' understanding of audience adaptation and improves their ability to adapt presentations to specific audiences.

  16. Time Optimized Algorithm for Web Document Presentation Adaptation

    DEFF Research Database (Denmark)

    Pan, Rong; Dolog, Peter

    2010-01-01

    Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...... content-optimized and time-optimized algorithms for information presentation adaptation for different devices based on its hierarchical model. The model is formalized in order to experiment with different algorithms.......Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...

  17. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    Science.gov (United States)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  18. Combustion of soybean oil and diesel mixtures for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  19. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  20. Overview of the EBFGT installation solutions applicable for flue gases from various fuels combustion

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Pawelec, A.; Zimek, Z.; Licki, J.

    2011-01-01

    The overview of the solutions used in EBFGT process and adaptation of process parameters for flue gas from combustion of various fuels was presented. The inlets parameters of flue gas from four fuels with high emission of pollutants, process parameters and process constrain were analysed. Also the main problems of this technology and their solutions were presented. (author)

  1. Overview of the EBFGT installation solutions applicable for flue gases from various fuels combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G.; Tyminski, B.; Pawelec, A.; Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, J. [Institute of Atomic Energy, Otwock-Świerk (Poland)

    2011-07-01

    The overview of the solutions used in EBFGT process and adaptation of process parameters for flue gas from combustion of various fuels was presented. The inlets parameters of flue gas from four fuels with high emission of pollutants, process parameters and process constrain were analysed. Also the main problems of this technology and their solutions were presented. (author)

  2. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  3. Micro-combustion calorimetry employing a Calvet heat flux calorimeter

    International Nuclear Information System (INIS)

    Rojas-Aguilar, Aaron; Valdes-Ordonez, Alejandro

    2004-01-01

    Two micro-combustion bombs developed from a high pressure stainless steel vessel have been adapted to a Setaram C80 Calvet calorimeter. The constant of each micro-bomb was determined by combustions with benzoic acid NIST 39j, giving for the micro-combustion bomb in the measurement sensor k m =(1.01112±0.00054) and for the micro-combustion bomb in the reference sensor k r =(1.00646±0.00059) which means an uncertainty of less than 0.06 per cent for calibration. The experimental methodology to get results of combustion energy of organic compounds with a precision also better than 0.06 per cent is described by applying this micro-combustion device to the measurement of the enthalpy of combustion of the succinic acid, giving Δ c H compfn m (cr, T=298.15 K)=-(1492.89 ± 0.77) kJ · mol -1

  4. Engineering the presentation layer of adaptable web information systems

    NARCIS (Netherlands)

    Fiala, Z.; Frasincar, F.; Hinz, M.; Houben, G.J.P.M.; Barna, P.; Meissner, K.; Koch, N.; Fraternali, P.; Wirsing, M.

    2004-01-01

    Engineering adaptable Web Information Systems (WIS) requires systematic design models and specification frameworks. A complete model-driven methodology like Hera distinguishes between the conceptual, navigational, and presentational aspects of WIS design and identifies different adaptation hot-spots

  5. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  6. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  7. Corrosion in CO2 Post-Combustion Capture with Alkanolamines – A Review

    Directory of Open Access Journals (Sweden)

    Kittel J.

    2014-09-01

    Full Text Available CO2 capture and storage plays an important part in industrial strategies for the mitigation of greenhouse gas emissions. CO2 post-combustion capture with alkanolamines is well adapted for the treatment of large industrial point sources using combustion of fossil fuels for power generation, like coal or gas fired power plants, or the steel and cement industries. It is also one of the most mature technologies to date, since similar applications are already found in other types of industries like acid gas separation, although not at the same scale. Operation of alkanolamine units for CO2 capture in combustion fumes presents several challenges, among which corrosion control plays a great part. It is the aim of this paper to present a review of current knowledge on this specific aspect. In a first part, lessons learnt from several decades of use of alkanolamines for natural gas separation in the oil and gas industry are discussed. Then, the specificities of CO2 post-combustion capture are presented, and their consequences on corrosion risks are discussed. Corrosion mitigation strategies, and research and development efforts to find new and more efficient solvents are also highlighted. In a last part, concerns about CO2 transport and geological storage are discussed, with recommendations on CO2 quality and concentration of impurities.

  8. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  9. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  10. Present status and perspectives of Co-combustion in German power plants

    Energy Technology Data Exchange (ETDEWEB)

    Richers, U.; Seifert, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Chemie]|[Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Programm Nachhaltigkeit, Energie- und Umwelttechnik; Scheurer, W.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2002-05-01

    Various approaches to the future waste management policy in Germany are currently under discussion. One problem arising in this connection is the suitability of existing furnaces for the co-combustion of waste. The use of sewage treatment sludge in power plants is already being practiced on a technical scale. Co-combustion in power plants is of interest also because of the CO{sub 2} problem, as renewable resources can also be used for this purpose. This article documents the technical status of co-combustion in Germany and the available quantities of selected supplementary fuels. Moreover, experience accumulated in German coal fired power plants in using supplementary fuels is compiled. Future possibilities are assessed. (orig.) [German] Fuer die zukuenftige Ausrichtung der Abfallentsorgung gibt es verschiedene Moeglichkeiten, die in der Bundesrepublik Deutschland diskutiert werden. Eine Fragestellung in diesem Zusammenhang ist die Eignung bestehender Feuerungsanlagen fuer die Mitverbrennung von Abfallstoffen. Der Einsatz von Klaerschlamm in Kraftwerken wird bereits grosstechnisch praktiziert. Die Mitverbrennung in Kraftwerken ist zusaetzlich aufgrund der CO{sub 2}-Problematik von Interesse, denn nachwachsende Rohstoffe eignen sich ebenfalls zur Mitverbrennung. In dieser Arbeit werden der technische Stand der Mitverbrennung in der Bundesrepublik Deutschland und die dort zur Verfuegung stehenden Mengen ausgewaehlter Zusatzbrennstoffe dokumentiert. Ausserdem werden die Erfahrungen aus deutschen Kraftwerken beim Einsatz von Zusatzbrennstoffen zusammengestellt. Die zukuenftigen Moeglichkeiten werden abgeschaetzt. (orig.)

  11. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  12. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  13. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  14. Presentation of the health impact evaluation study of atmospheric emissions of a major coal combustion installation

    International Nuclear Information System (INIS)

    Bonnard, R.

    2004-12-01

    In the framework of a working group on the major installations, a study has been realized on a today coal combustion installation. The direct risk by inhalation and the risks bond to indirect exposure of atmospheric releases were analyzed. The calculation method is explained and the uncertainties are discussed to present the results. (A.L.B.)

  15. An adaptive least-squares global sensitivity method and application to a plasma-coupled combustion prediction with parametric correlation

    Science.gov (United States)

    Tang, Kunkun; Massa, Luca; Wang, Jonathan; Freund, Jonathan B.

    2018-05-01

    We introduce an efficient non-intrusive surrogate-based methodology for global sensitivity analysis and uncertainty quantification. Modified covariance-based sensitivity indices (mCov-SI) are defined for outputs that reflect correlated effects. The overall approach is applied to simulations of a complex plasma-coupled combustion system with disparate uncertain parameters in sub-models for chemical kinetics and a laser-induced breakdown ignition seed. The surrogate is based on an Analysis of Variance (ANOVA) expansion, such as widely used in statistics, with orthogonal polynomials representing the ANOVA subspaces and a polynomial dimensional decomposition (PDD) representing its multi-dimensional components. The coefficients of the PDD expansion are obtained using a least-squares regression, which both avoids the direct computation of high-dimensional integrals and affords an attractive flexibility in choosing sampling points. This facilitates importance sampling using a Bayesian calibrated posterior distribution, which is fast and thus particularly advantageous in common practical cases, such as our large-scale demonstration, for which the asymptotic convergence properties of polynomial expansions cannot be realized due to computation expense. Effort, instead, is focused on efficient finite-resolution sampling. Standard covariance-based sensitivity indices (Cov-SI) are employed to account for correlation of the uncertain parameters. Magnitude of Cov-SI is unfortunately unbounded, which can produce extremely large indices that limit their utility. Alternatively, mCov-SI are then proposed in order to bound this magnitude ∈ [ 0 , 1 ]. The polynomial expansion is coupled with an adaptive ANOVA strategy to provide an accurate surrogate as the union of several low-dimensional spaces, avoiding the typical computational cost of a high-dimensional expansion. It is also adaptively simplified according to the relative contribution of the different polynomials to the total

  16. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  17. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustors

    Science.gov (United States)

    Ryan, T. W., III; Harlowe, W. W.; Schwab, S.

    1992-01-01

    The work was based on adapting an apparatus and procedure developed at Southwest Research Institute for rating the ignition quality of fuels for diesel engines. Aluminum alkyls and various Lewis-base adducts of these materials, both neat and mixed 50/50 with pure JP-10 hydrocarbon, were injected into the combustion bomb using a high-pressure injection system. The bomb was pre-charged with air that was set at various initial temperatures and pressures for constant oxygen density. The ignition delay times were determined for the test materials at these different initial conditions. The data are presented in absolute terms as well as comparisons with the parent alkyls. The relative heats of reaction of the various test materials were estimated based on a computation of the heat release, using the pressure data recorded during combustion in the bomb. In addition, the global reaction rates for each material were compared at a selected tmperature and pressure.

  18. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  19. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  20. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    International Nuclear Information System (INIS)

    Courteau, R.; Bose, T.K.

    2004-01-01

    Piezoelectric transducers offer an effective, non-intrusive way to monitor dynamic cylinder pressure in internal combustion engines. Devices dedicated to this purpose are appearing on the market, often in the form of spark plugs with embedded piezo elements. Dynamic cylinder pressure is typically used to provide diagnostic functions, or to help map an engine after it is designed. With the advent of powerful signal processor chips, it is now possible to embed enough computing power in the engine controller to perform auto tuning based on the signals provided by such transducers. Such functionality is very useful if the fuel characteristics vary between fill ups, as is often the case with alternative fuels. We propose here an algorithm for self-adaptive tuning based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. (author)

  1. A review of active control approaches in stabilizing combustion systems in aerospace industry

    Science.gov (United States)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin

    2018-02-01

    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  2. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  3. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  4. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  5. Simulation Of The Internal-Combustion Engine

    Science.gov (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  6. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin, E-mail: jxliu@rcees.ac.cn

    2015-01-15

    Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.

  7. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis

    International Nuclear Information System (INIS)

    Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin

    2015-01-01

    Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others

  8. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  9. Computationally efficient implementation of combustion chemistry in parallel PDF calculations

    International Nuclear Information System (INIS)

    Lu Liuyan; Lantz, Steven R.; Ren Zhuyin; Pope, Stephen B.

    2009-01-01

    In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling, 1 (1997) 41-63; L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, Journal of Computational Physics 228 (2009) 361-386] substantially speeds up the chemistry calculations on each processor. To improve the parallel efficiency of large ensembles of such calculations in parallel computations, in this work, the ISAT algorithm is extended to the multi-processor environment, with the aim of minimizing the wall clock time required for the whole ensemble. Parallel ISAT strategies are developed by combining the existing serial ISAT algorithm with different distribution strategies, namely purely local processing (PLP), uniformly random distribution (URAN), and preferential distribution (PREF). The distribution strategies enable the queued load redistribution of chemistry calculations among processors using message passing. They are implemented in the software x2f m pi, which is a Fortran 95 library for facilitating many parallel evaluations of a general vector function. The relative performance of the parallel ISAT strategies is investigated in different computational regimes via the PDF calculations of multiple partially stirred reactors burning methane/air mixtures. The results show that the performance of ISAT with a fixed distribution strategy strongly depends on certain computational regimes, based on how much memory is available and how much overlap exists between tabulated information on different processors. No one fixed strategy consistently achieves good performance in all the regimes. Therefore, an adaptive distribution strategy, which blends PLP, URAN and PREF, is devised and implemented. It yields consistently good performance in all regimes. In the adaptive parallel

  10. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  11. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  12. Analysis of knocking combustion with the aid of pressure sensors; Einsatz von Drucksensoren zur Beurteilung klopfender Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, J.; Walter, T. [Kistler AG, Winterthur (Switzerland); Bertola, A.; Wolfer, P.; Hoewing, J. [Kistler Instrumente GmbH, Ostfildern (Germany); Gossweiler, C. [Fachhochschule Nordwestschweiz (Switzerland). ITFE; Rothe, M.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2006-07-01

    Depending on its frequency and intensity, knocking combustion can cause engine damage due to excessive thermal or mechanical stress on components. During knocking combustion, the cylinder pressure signal is overlaid with high-frequency pressure oscillations. Reliable detection of the knock timing and quantification of the knock intensity based on local measurement of the cylinder pressure demand for particular care, especially when it comes to selecting and adapting the sensor technology and also during the evaluation process using customary knock analysis methods. This publication examines various types of cylinder pressure sensors, how they are installed in the combustion chamber, the effect of sensor positioning and assesses them with regard to accuracy. Finally, on the basis of the test results, recommendations are given for selecting sensors and adapting them within the combustion chamber. A crucial factor for pressure measurement during knocking combustion is the sensor position within the combustion chamber. The sensor type is of secondary importance; at most, cavities between the combustion chamber and the sensor may influence the measuring signal. To assess the sensitivity of the knock evaluation algorithms to various mounting positions and sensor types, it is advisable to carry out comparative measurements between different sensor positions and the measuring spark plug. (orig.)

  13. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  14. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.

    2016-01-01

    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  15. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  16. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  17. Feasibility of the adaptive and automatic presentation of tasks (ADAPT system for rehabilitation of upper extremity function post-stroke

    Directory of Open Access Journals (Sweden)

    Choi Younggeun

    2011-08-01

    Full Text Available Abstract Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Methods Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6 practiced four functional tasks (selected out of six in a pre-test with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. Results No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. Conclusions ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its

  18. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  19. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  20. Numerical analysis for controlling mixture heterogeneity to reduce abrupt combustion in diesel PCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Kazuie [Ritsumeikan University (Japan); Kojima, Takafumi [Takamatsu National College of Technology (Japan)

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, premixed charge compression ignition (PCCI), can improve the emissions performance of an engine over that of conventional diesel. The aim of this research is to develop a model to analyze the mixture formation in the PCCI combustion mode. A numerical model was developed and was applied to an engine and the results were compared to experimental results. It was found that the model results are in agreement with the experimental results. This paper presented a novel LES computer model and demonstrated that it is efficient in predicting the mixture formation in the PCCI combustion mode.

  1. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  2. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  3. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao; Jaasim, Mohammed; Vallinayagam, R.; Vedharaj, S.; Im, Hong G.; Johansson, Bengt.

    2017-01-01

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  4. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  5. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  6. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  7. 3d Modeling of Combustion for Di-Si Engines Modélisation 3D de la combustion dans les moteurs à injection directe d'essence

    Directory of Open Access Journals (Sweden)

    Duclos J. P.

    2006-12-01

    Full Text Available Direct injection of gasoline is a promising concept to reduce fuel consumption of SI engines. The development of GDI engines is difficult and 3D CFD is a way to support its design. It requires models able to describe the spray and its evaporation and combustion. This paper presents a model, the ECFM, that enables to compute combustion for stratified load in the GDI engines. This model is a development of the Coherent Flame Model which includes thermal expansion effects, and is coupled with a burnt/unburnt gases conditionnal thermodynamic properties description. The model is validated by comparing measurements and computations on the GDI Mitsubishi engine in production. L'injection directe d'essence (IDE est un concept prometteur pour les moteurs à allumage commandé. La mise au point de ce type de moteur est néanmoins délicate, et le calcul 3D des chambres de combustion est un moyen d'aider à leur conception. Ceci nécessite cependant de disposer de modèles adaptés, à même de décrire le jet d'essence, son évaporation et la combustion du mélange créé. Cet article présente un modèle ECFM de simulation de la combustion dans les moteurs IDE, y compris en fonctionnement stratifié. C'est un développement du modèle flamme cohérente qui comprend des effets d'expansion thermique et est couplé avec une description conditionnelle gaz frais/gaz brûlés des grandeurs thermodynamiques. Ce modèle a été validé par rapprochement de mesures et simulations sur le moteur GDI Mitsubishi.

  8. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  9. Thermogravimetric analysis of biowastes during combustion

    International Nuclear Information System (INIS)

    Otero, M.; Sanchez, M.E.; Gomez, X.; Moran, A.

    2010-01-01

    The combustion of sewage sludge (SS), animal manure (AM) and the organic fraction of municipal solid waste (OFMSW) was assessed and compared with that of a semianthracite coal (SC) and of a PET waste by thermogravimetric (TG) analysis. Differences were found in the TG curves obtained for the combustion of these materials accordingly to their respective proximate analysis. Non-isothermal thermogravimetric data were used to assess the kinetics of the combustion of these biowastes. The present paper reports on the application of the Vyazovkin model-free isoconversional method for the evaluation of the activation energy necessary for the combustion of these biowastes. The activation energy related to SS combustion (129.1 kJ/mol) was similar to that corresponding to AM (132.5 kJ/mol) while the OFMSW showed a higher value (159.3 kJ/mol). These values are quite higher than the one determined in the same way for the combustion of SC (49.2 kJ/mol) but lower than that for the combustion of a PET waste (165.6 kJ/mol).

  10. Mechanisms and characteristics of silicon combustion in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mukasian, A.S.; Martynenko, V.M.; Merzhanov, A.G.; Borovinskaia, I.P.; Blinov, M.IU.

    1986-10-01

    An experimental study is made of the principal characteristics of combustion in the system silicon-nitrogen associated with phase transitions of the first kind (silicon melting and silicon nitride dissociation). Concepts of the combustion mechanism are developed on the basis of elementary models of combustion of the second kind and filtering combustion theory. In particular, it is shown that, in the pressure range studied (10-20 MPa), filtering does not limit the combustion process. Details of the experimental procedure and results are presented. 22 references.

  11. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  12. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  13. The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A CFD based method is proposed for the simulation of hydrogen deflagration. Black-Right-Pointing-Pointer A dynamic grid adaptation method is proposed to resolve turbulent flame brush thickness. Black-Right-Pointing-Pointer The predictions obtained using this method is in good agreement with the static grid method. Black-Right-Pointing-Pointer TFC model results are in good agreement with large-scale homogeneous hydrogen-air experiments. - Abstract: During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive

  14. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  15. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  16. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Biorremediación para la degradación de hidrocarburos totales presentes en los sedimentos de una estación de servicio de combustible

    OpenAIRE

    Ñustez Cuartas, Diana Cristina

    2012-01-01

    En la presente investigación se evaluó el efecto de la Bioaumentación y Bioestimulación de sedimentos contaminados con hidrocarburos de la Estación de Servicio de Combustible INTEGRA de Dosquebradas – Risaralda - Colombia, estos sedimentos son producto del mantenimiento de las unidades de tratamiento de aguas residuales industriales, como son: la trampa de grasa, canales perimetrales de la zona de distribución y/o venta del combustible, canales perimetrales de la zona de llenado de tanques de...

  18. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  19. Artificial intelligence-based modeling and control of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, E.; Leppaekoski, K. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: enso.ikonen@oulu.fi

    2009-07-01

    AI-inspired techniques have a lot to offer when developing methods for advanced identification, monitoring, control and optimization of industrial processes, such as power plants. Advanced control methods have been extensively examined in the research of the Power Plant Automation group at the Systems Engineering Laboratory, e.g., in fuel inventory modelling, combustion power control, modelling and control of flue gas oxygen, drum control, modelling and control of superheaters, or in optimization of flue-gas emissions. Most engineering approaches to artificial intelligence (AI) are characterized by two fundamental properties: the ability to learn from various sources and the ability to deal with plant complexity. Learning systems that are able to operate in uncertain environments based on incomplete information are commonly referred to as being intelligent. A number of other approaches exist, characterized by these properties, but not easily categorized as AI-systems. Advanced control methods (adaptive, predictive, multivariable, robust, etc.) are based on the availability of a model of the process to be controlled. Hence identification of processes becomes a key issue, leading to the use of adaptation and learning techniques. A typical learning control system concerns a selection of learning techniques applied for updating a process model, which in turn is used for the controller design. When design of learning control systems is complemented with concerns for dealing with uncertainties or vaguenesses in models, measurements, or even objectives, particularly close connections exist between advanced process control and methods of artificial intelligence and machine learning. Needs for advanced techniques are typically characterized by the desire to properly handle plant non-linearities, the multivariable nature of the dynamic problems, and the necessity to adapt to changing plant conditions. In the field of fluidized bed combustion (FBC) control, the many promising

  20. Application of Pareto-efficient combustion modeling framework to large eddy simulations of turbulent reacting flows

    Science.gov (United States)

    Wu, Hao; Ihme, Matthias

    2017-11-01

    The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.

  1. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  2. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  3. Indoor air quality environmental information handbook: Combustion sources

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  4. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen [Key Lab. for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  5. Reactivity studies of rice husk combustion using TGA

    International Nuclear Information System (INIS)

    Ismail, A.F.; Shamsuddin, A.H.; Mahdi, F.M.A.

    2000-01-01

    The reactivity of rice husks combustion is systematically studied the thermogravimetric analyzer (TGA). The kinetic parameters are determined from the Arrhenius plots based on the data of weight loss over temperature at different combustion heating rates. The results of proximate analysis (the moisture, volatile matters, fixed carbon, and ash contents) are also presented in this paper. The effects of process conditions on the self-ignition phenomenon of rice husk combustion are quantified. Finally, these results and compared with results for coal combustion. This research is part of the work to determine the optimal process conditions of rice husk combustion for energy production. (Author)

  6. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  7. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  8. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  9. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  10. Proceedings of IEA combustion 2009 : IEA 31. task leaders meeting on energy conservation and emissions reduction in combustion

    International Nuclear Information System (INIS)

    2009-01-01

    The International Energy Agency (IEA) supports research and development in energy technology. This meeting provided a forum to discuss combustion processes, which is fundamental to achieving further improvements in fuel use efficiency, reducing the production of pollutants such as nitrogen oxides, and facilitating the transition to alternative fuels. The presentations demonstrated recent studies in improving the efficiency and fuel flexibility of automotive engines; improving the performance of industrial furnaces; emissions formation and control mechanisms; and fuel injection and fuel/air mixing. The conference also highlighted studies involving hydrogen combustion, alternative fuels, particulate diagnostics, fuel sprays, gas turbines, and advanced combustion processes such as homogeneous charge compression ignition (HCCI). The sessions were entitled: HCCI fuels; sprays; nanoparticle diagnostics; alternative fuels; hydrogen internal combustion engines; turbines; energy security; and collaborative task planning. All 45 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  11. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  12. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  13. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  14. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  15. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  16. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  17. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  18. Development of steam generators for combustion of biofuels up to 10 t/h

    Energy Technology Data Exchange (ETDEWEB)

    Bentzin, H

    1985-01-01

    Combustion parameters are compared for raw brown coal, rice hulls and coconut shells as fuel in small steam generators. Combustion of native biofuel is seen as a power generation alternative in developing countries. Experiments were conducted on a 6.5 t/h moving grate steam generator with a firing grate surface of 7.2 m/sup 2/. Combustion results are shown in a table. Technological modifications carried out in adapting brown coal-fired steam generators to biofuels are also listed. A series of small steam generators for combustion of brown coal, biofuels including wood chips, as well as heating oil as back-up has been developed by the Karl-Marx-Stadt Dampfkesselbau Plant, GDR, with steam capacities ranging from 3.2 to 10 t/h. Technical specifications and diagrams of this series design (DGK-3, DGK-45, DWK 2S) are given. A larger steam generator with 20 t/h steam capacity for combustion of raw brown coal, bagasse, wood chips with heating oil and for rice hulls as support fuels is being developed by the Berlin Dampferzeugerbau Plant, GDR. 5 references.

  19. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  20. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    , also emphasizing advanced engine concepts. Research results addressing combustion reaction mechanisms have been reported based on results from pyrolysis and oxidation reactors, shock tubes, rapid compression machines, and research engines. This work is complemented by the development of detailed combustion models with the support of chemical kinetics and quantum chemistry. This paper seeks to provide an introduction to and overview of recent results on alcohol combustion by highlighting pertinent aspects of this rich and rapidly increasing body of information. As such, this paper provides an initial source of references and guidance regarding the present status of combustion experiments on alcohols and models of alcohol combustion. © 2014 Elsevier Ltd. All rights reserved.

  1. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  2. Verification of Conditions for use of Combustion Products‘ Heat

    Directory of Open Access Journals (Sweden)

    Kažimírová Viera

    2015-06-01

    Full Text Available Presented contribution deals with the verification of conditions for use of combustion products‘ heat, generated by combustion of wood in a fireplace used in a household. It is necessary to know the temperature behaviour of the fireplace to determine the adequacy of the technical solution for using combustion products‘ heat. The combustion products‘ temperature at the upper part of the chimney is 80-120 °C. The dew point value was established to be below 51 °C. The average observed value of combustion product velocity is 1.6 m s-1. The volume flow rate of combustion products is 12 m3 h-1. Measured values allow for effective solution of the use of combustion products‘ heat.

  3. Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant : Post-combustion vs. Oxy-fuel Combustion Technology

    NARCIS (Netherlands)

    Gerbelová, Hana; Van Der Spek, Mijndert; Schakel, Wouter

    2017-01-01

    This research presents a preliminary techno-economic evaluation of CO2 capture integrated with a cement plant. Two capture technologies are evaluated, monoethanolamine (MEA) post-combustion CO2 capture and oxy-fuel combustion. Both are considered potential technologies that could contribute to

  4. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  5. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  6. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  7. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  8. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  9. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  10. From fuel to wheel: how modern fuels behave in combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, S.; Muether, M.; Fricke, F. [RWTH Aachen (Germany). Inst. for Combustion Engines; Kolbeck, A. [FEV Motorentechnik GmbH und Co KG, Aachen (Germany)

    2007-07-01

    Fuel consumption/CO{sub 2}-emission reduction for spark-ignited (SI) gasoline engines and pollutant emission reduction for compression-ignited (CI) Diesel engines remain the major challenges for future combustion engine research and development. Currently a variety of technological developments is followed. The fuel has significant influence on the fuel injection and mixing, the self-ignition behaviour and the subsequent combustion process, and hence has considerable impact on the engine conversion efficiency and the emission characteristics. Therefore, a very promising approach to improve the engine efficiency and to lower the pollutant emission is to optimize the fuel composition. Several diesel-like fuels with varying aromatic concentrations (mono-, di-, tri- and total aromatics) and oxygenating components have already shown potential for soot reduction in diesel engines, which is of interest when looking at future biofuel components, which will most likely have particular higher oxygen content. 2nd generation biofuels, e.g. ethanol for SI engines and Fischer-Tropsch diesel for CI engines, have already demonstrated their positive influence on the engine performance, when the combustion system is specifically adapted. The full potential for future high efficient and low emission combustion systems can only be exploited by a simultaneous optimisation of the fuel and the internal combustion engine. (orig.)

  11. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  12. Characteristic of combustion of Colombian gases

    International Nuclear Information System (INIS)

    Gil B, Edison; Maya, Ruben; Andres, Amel A.

    1996-01-01

    The variety of gas locations in the country, makes that the gas that will be distributed by the net of present gas pipeline a very different composition, what bears to that these they behave in a different way during its use. In this work the main characteristics of the combustion are calculated for the Colombian gases, basically the properties of the combustion and the characteristics of the smoke, as basic information for the design and operation of the gas teams and their certification. These properties were calculated with the special help software for combustion developed by the authors

  13. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  14. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  15. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  16. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  17. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  18. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2014-06-01

    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  19. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  20. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    Energy Technology Data Exchange (ETDEWEB)

    Biteau, H. [School of Engineering and Electronics, BRE Centre for Fire Safety Engineering, The University of Edinburgh, Edinburgh EH9 3JL (United Kingdom); Institut National de l' Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte (France); Fuentes, A. [Institut Universitaire des Systemes Thermiques Industriels (CNRS UMR 6595), Universite de Provence, 13453 Marseille Cedex 13 (France); Marlair, G. [Institut National de l' Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte (France); Torero, J.L. [School of Engineering and Electronics, BRE Centre for Fire Safety Engineering, The University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations were observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)

  1. Combustion Sensors: Gas Turbine Applications

    Science.gov (United States)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  2. Improvement of a combustion model in MELCOR code

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    1999-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using five different flame front shapes of fireball, prism, bubble, spherical jet, and plane jet. For validation of the proposed model, the results of the Battelle multi-compartment hydrogen combustion test were used. The selected test cases for the study were Hx-6, 13, 14, 20 and Ix-2 which had two, three or four compartments under homogeneous hydrogen concentration of 5 to 10 vol%. The proposed model could predict well the combustion behavior in multi-compartment containment geometry on the whole. MELCOR code, incorporating the present combustion model, can simulate combustion behavior during severe accident with acceptable computing time and some degree of accuracy. The applicability study of the improved MELCOR code to the actual reactor plants will be further continued. (author)

  3. An experimental and modeling study of n-octanol combustion

    KAUST Repository

    Cai, Liming

    2015-01-01

    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained in a jet stirred reactor for a range of initial conditions. A detailed kinetic model was developed to describe the oxidation of n-octanol at both low and high temperatures, and the model shows good agreement with the present dataset. The fuel\\'s combustion characteristics are compared to those of n-alkanes and to short chain alcohols to illustrate the effects of the hydroxyl moiety and the carbon chain length on important combustion properties. Finally, the results are discussed in detail. © 2014 The Combustion Institute.

  4. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  5. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  6. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  7. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  8. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  9. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  10. Boris Novozhilov: Life and contribution to the physics of combustion

    Science.gov (United States)

    Novozhilov, Vasily

    2018-04-01

    Professor Boris Novozhilov (1930-2017) passed away on February 19th, 2017 in Moscow. The present paper provides brief account of his life and contributions to the physics of combustion. From extensive scientific legacy left by Boris, several major achievements are discussed here: Zeldovich-Novozhilov (ZN) theory of unsteady solid propellant combustion, contributions to thermal explosion theory, the theory of spin combustion, discovery of propellant combustion transition to chaotic regimes through Feigenbaum period bifurcation scenario.

  11. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  12. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  13. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  14. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Kilpinen, P [Aabo Akademi, Turku (Finland)

    1997-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  15. Summary of Pressure Gain Combustion Research at NASA

    Science.gov (United States)

    Perkins, H. Douglas; Paxson, Daniel E.

    2018-01-01

    NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society

  16. Investigation of combustion characteristics of methane-hydrogen fuels

    Science.gov (United States)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  17. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  18. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  19. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  20. Research on combustion of black-liquor drops

    International Nuclear Information System (INIS)

    Macek, A.

    1999-01-01

    Black liquor, the major by-product of the kraft process for production of pulp, is one of the most important industrial fuels. It is burned in recovery boilers in the form of large spray drops (mm), with the objective of simultaneous recovery of heat and chemicals (sodium and sulfur). Even though black-liquor combustion in boilers has been practised for over half a century, research efforts toward improvement of combustion efficiency and abatement of environmental emissions are much more recent. The present paper addresses a specific aspect of that research, namely, elucidation of processes which occur during combustion of black-liquor drops in boiler-gas streams. The paper (a) gives a brief description of the kraft process, (b) reviews the experimental and theoretical (modeling) research advances on combustion of kraft-liquor drops during the 1980s and 1990s, (c) re-examines the results of an earlier combustion study in which black-liquor drops were observed in free flight at temperatures near those in recovery boilers, and (d) recommends input for the modeling of in-flight combustion of kraft-liquor drops in recovery boilers. (author)

  1. HASE - The Helsinki adaptive sample preparation line

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, V., E-mail: vesa.palonen@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 (Finland); Pesonen, A. [Laboratory of Chronology, Finnish Museum of Natural History, P.O. Box 64, FI-00014 (Finland); Herranen, T.; Tikkanen, P. [Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 (Finland); Oinonen, M. [Laboratory of Chronology, Finnish Museum of Natural History, P.O. Box 64, FI-00014 (Finland)

    2013-01-15

    We have designed and built an adaptive sample preparation line with separate modules for combustion, molecular sieve handling, CO{sub 2} gas cleaning, CO{sub 2} storage, and graphitization. The line is also connected to an elemental analyzer. Operation of the vacuum equipment, a flow controller, pressure sensors, ovens, and graphitization reactors are automated with a reliable NI-cRIO real-time system. Stepped combustion can be performed in two ovens at temperatures up to 900 Degree-Sign C. Depending on the application, CuO or O{sub 2}-flow combustion can be used. A flow controller is used to adjust the O{sub 2} flow and pressure during combustion. For environmental samples, a module for molecular sieve regeneration and sample desorption is attached to the line replacing the combustion module. In the storage module, CO{sub 2} samples can be stored behind a gas-tight diaphragm valve and either stored for later graphitization or taken for measurements with separate equipment (AMS gas ion source or a separate mass spectrometer). The graphitization module consists of four automated reactors, capable of graphitizing samples with masses from 3 mg down to 50 {mu}g.

  2. Study of experimental validation for combustion analysis of GOTHIC code

    International Nuclear Information System (INIS)

    Lee, J. Y.; Yang, S. Y.; Park, K. C.; Jeong, S. H.

    2001-01-01

    In this study, present lumped and subdivided GOTHIC6 code analyses of the premixed hydrogen combustion experiment at the Seoul National University and comparison with the experiment results. The experimental facility has 16367 cc free volume and rectangular shape. And the test was performed with unit equivalence ratio of the hydrogen and air, and with various location of igniter position. Using the lumped and mechanistic combustion model in GOTHIC6 code, the experiments were simulated with the same conditions. In the comparison between experiment and calculated results, the GOTHIC6 prediction of the combustion response does not compare well with the experiment results. In the point of combustion time, the lumped combustion model of GOTHIC6 code does not simulate the physical phenomena of combustion appropriately. In the case of mechanistic combustion model, the combustion time is predicted well, but the induction time of calculation data is longer than the experiment data remarkably. Also, the laminar combustion model of GOTHIC6 has deficiency to simulate combustion phenomena unless control the user defined value appropriately. And the pressure is not a proper variable that characterize the three dimensional effect of combustion

  3. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  4. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  5. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  7. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar

    2009-01-01

    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  8. Transport of CO2 and other combustion products in soils during slash-pile burns [Presentation

    Science.gov (United States)

    W. J. Massman; M. M. Nobles; G. Butters; S. J. Mooney

    2010-01-01

    The most obvious indication of transport of mass during a fire is flames and smoke. Furthermore it is well known that localized heating during the fire creates 3-D convective currents in the atmosphere and that these currents carry the combustion products away from the fire.

  9. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  10. Little evidence for fire-adapted plant traits in Mediterranean climate regions.

    Science.gov (United States)

    Bradshaw, S Don; Dixon, Kingsley W; Hopper, Stephen D; Lambers, Hans; Turner, Shane R

    2011-02-01

    As climate change increases vegetation combustibility, humans are impacted by wildfires through loss of lives and property, leading to an increased emphasis on prescribed burning practices to reduce hazards. A key and pervading concept accepted by most environmental managers is that combustible ecosystems have traditionally burnt because plants are fire adapted. In this opinion article, we explore the concept of plant traits adapted to fire in Mediterranean climates. In the light of major threats to biodiversity conservation, we recommend caution in deliberately increasing fire frequencies if ecosystem degradation and plant extinctions are to be averted as a result of the practice. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Gaussian process regression based optimal design of combustion systems using flame images

    International Nuclear Information System (INIS)

    Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng

    2013-01-01

    Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process

  12. Gasdynamic Model of Turbulent Combustion in TNT Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2010-01-08

    A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.

  13. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  14. Control of the low-load region in partially premixed combustion

    Science.gov (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  15. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  17. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  18. Turbulent Combustion Modeling Advances, New Trends and Perspectives

    CERN Document Server

    Echekki, Tarek

    2011-01-01

    Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...

  19. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  20. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    Science.gov (United States)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  1. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Combustion of stratified hydrogen-air mixtures in the 10.7 m3 Combustion Test Facility cylinder

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Greig, D.R.; Koroll, G.W.

    1996-01-01

    This paper presents preliminary results from hydrogen concentration gradient combustion experiments in a 10.7 m 3 cylinder. These gradients, also referred to as stratified mixtures, were formed from dry mixtures of hydrogen and air at atmospheric temperature. Combustion pressures, burn fractions and flame speeds in concentration gradients were compared with combustion of well-mixed gases containing equivalent amounts of hydrogen. The studied variables included the quantity of hydrogen in the vessel, the steepness of the concentration gradient, the igniter location, and the initial concentration of hydrogen at the bottom of the vessel. Gradients of hydrogen and air with average concentrations of hydrogen below the downward propagation limit produced significantly greater combustion pressures when ignited at the top of the vessel than well-mixed gases with the same quantity of hydrogen. This was the result of considerably higher burn fractions in the gradients than in the well-mixed gas tests. Above the downward propagation limit, gradients of hydrogen ignited at the top of the vessel produced nearly the same combustion pressures as under well-mixed conditions; both gradients and well-mixed gases had high burn fractions. Much higher flame speeds were observed in the gradients than the well-mixed gases. Gradients and well-mixed gases containing up to 14% hydrogen ignited at the bottom of the vessel produced nearly the same combustion pressures. Above 14% hydrogen, gradients produced lower combustion pressures than well-mixed gases having the same quantity of hydrogen. This can be attributed to lower burn fractions of fuel from the gradients compared with well-mixed gases with similar quantities of hydrogen. When ignited at the bottom of the vessel, 90% of a gradient's gases remained unburned until several seconds after ignition. The remaining gases were then consumed at a very fast rate. (orig.)

  3. Signal correlations in biomass combustion. An information theoretic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M.

    2013-09-01

    Increasing environmental and economic awareness are driving the development of combustion technologies to efficient biomass use and clean burning. To accomplish these goals, quantitative information about combustion variables is needed. However, for small-scale combustion units the existing monitoring methods are often expensive or complex. This study aimed to quantify correlations between flue gas temperatures and combustion variables, namely typical emission components, heat output, and efficiency. For this, data acquired from four small-scale combustion units and a large circulating fluidised bed boiler was studied. The fuel range varied from wood logs, wood chips, and wood pellets to biomass residue. Original signals and a defined set of their mathematical transformations were applied to data analysis. In order to evaluate the strength of the correlations, a multivariate distance measure based on information theory was derived. The analysis further assessed time-varying signal correlations and relative time delays. Ranking of the analysis results was based on the distance measure. The uniformity of the correlations in the different data sets was studied by comparing the 10-quantiles of the measured signal. The method was validated with two benchmark data sets. The flue gas temperatures and the combustion variables measured carried similar information. The strongest correlations were mainly linear with the transformed signal combinations and explicable by the combustion theory. Remarkably, the results showed uniformity of the correlations across the data sets with several signal transformations. This was also indicated by simulations using a linear model with constant structure to monitor carbon dioxide in flue gas. Acceptable performance was observed according to three validation criteria used to quantify modelling error in each data set. In general, the findings demonstrate that the presented signal transformations enable real-time approximation of the studied

  4. Characterisation of metal combustion with DUST code

    Energy Technology Data Exchange (ETDEWEB)

    García-Cascales, José R., E-mail: jr.garcia@upct.es [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Velasco, F.J.S. [Centro Universitario de la Defensa de San Javier, MDE-UPCT, C/Coronel Lopez Peña s/n, 30730 Murcia (Spain); Otón-Martínez, Ramón A.; Espín-Tolosa, S. [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Bentaib, Ahmed; Meynet, Nicolas; Bleyer, Alexandre [Institut de Radioprotection et Sûreté Nucléaire, BP 17, 92260 Fontenay-aux-Roses (France)

    2015-10-15

    Highlights: • This paper is part of the work carried out by researchers of the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security of France. • We have developed a code for the study of mobilisation and combustion that we have called DUST by using CAST3M, a multipurpose software for studying many different problems of Mechanical Engineering. • In this paper, we present the model implemented in the code to characterise metal combustion which describes the combustion model, the kinetic reaction rates adopted and includes a first comparison between experimental data and calculated ones. • The results are quite promising although suggest that improvement must be made on the kinetic of the reaction taking place. - Abstract: The code DUST is a CFD code developed by the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security, France (IRSN) with the objective to assess the dust explosion hazard in the vacuum vessel of ITER. Thus, DUST code permits the analysis of dust spatial distribution, remobilisation and entrainment, explosion, and combustion. Some assumptions such as particle incompressibility and negligible effect of pressure on the solid phase make the model quite appealing from the mathematical point of view, as the systems of equations that characterise the behaviour of the solid and gaseous phases are decoupled. The objective of this work is to present the model implemented in the code to characterise metal combustion. In order to evaluate its ability analysing reactive mixtures of multicomponent gases and multicomponent solids, two combustion problems are studied, namely H{sub 2}/N{sub 2}/O{sub 2}/C and H{sub 2}/N{sub 2}/O{sub 2}/W mixtures. The system of equations considered and finite volume approach are briefly presented. The closure relationships used are commented and special attention is paid to the reaction rate correlations used in the model. The numerical

  5. Vision based monitoring and characterisation of combustion flames

    International Nuclear Information System (INIS)

    Lu, G; Gilabert, G; Yan, Y

    2005-01-01

    With the advent of digital imaging and image processing techniques vision based monitoring and characterisation of combustion flames have developed rapidly in recent years. This paper presents a short review of the latest developments in this area. The techniques covered in this review are classified into two main categories: two-dimensional (2D) and 3D imaging techniques. Experimental results obtained on both laboratory- and industrial-scale combustion rigs are presented. Future developments in this area also included

  6. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  7. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  8. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  9. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  10. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  11. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    Science.gov (United States)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the

  12. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  13. Proceedings of the 2006 Combustion Institute Canadian Section spring technical meeting

    International Nuclear Information System (INIS)

    Devaud, C.; Weckman, E.; Lam, C.; Spike, E.

    2006-01-01

    This conference provided a networking opportunity for academic, government and industrial combustion researchers from across Canada. All aspects of combustion were discussed, particularly those related to new engine technologies that reduce exhaust gas emissions while maintaining performance. Major engine operating and fuelling control parameters that improve combustion efficiency were identified. The conference was divided into several sessions dealing with combustion emissions and pollutants such as soot and particulates; alternative fuels including biofuels and fuel cells; chemical kinetics; droplet and spray combustion; combustion synthesis of materials; detonations, explosions, fires, flammability, flares and incineration; environmental issues and hazard analysis; and, numerical modeling and simulation. The conference featured 61 presentations, of which 39 have been catalogued separately for inclusion in this database

  14. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  15. Experimental validation of large-eddy simulation for swirling methane-air non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H.; Xu, C.S. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    Large-eddy simulation of swirling methane-air non-premixed combustion was carried out using a Smagorinsky-Lilly subgrid scale stress model and a presumed-PDF fast-chemistry combustion model. The LES statistical results are validated by PIV, temperature and species concentration measurements made by the present authors. The results indicate that in the present case the presumed-PDF fast-chemistry combustion model is a fairish one. The instantaneous vorticity and temperature maps show clearly the development and the interaction between coherent structures and combustion.

  16. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  17. Politics for emissions reduction at large combustion plants

    International Nuclear Information System (INIS)

    Dragos, L.; Persu, I.; Predescu, I.

    2005-01-01

    This article presents the harmonization process of Romanian national legislation with EU directives for the establishment of measures for the emission reduction of air pollutants from large combustion plants. The quantity of SO 2 , NO x and dust emissions from big combustion installation during the period 1980 - 2003 is given. The characteristics of the native fuels are also presented. Recently a reorganization and restructuring of the electricity production from lignite are accomplished. It is emphasised in the paper that the use of lignite for energy production is necessary even if the additional costs implied by the compliance with Directive 2001/80/EC are high. Clean combustion technologies and equipment promoted by the OVM-ICCPET, Bucharest will be applied for the improvement of the burning process and reduction of the emissions

  18. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  19. A model for steady-state HNF combustion

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    A simple model for the combustion of solid monopropellants is presented. The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: high activation energy, and low activation energy. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of the model are compared with experimental results of Hydrazinium Nitroformate (HNF) combustion.

  20. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  1. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  2. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  3. An h-adaptive finite element method for turbulent heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carriington, David B [Los Alamos National Laboratory

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  4. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  5. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  6. Neuropsychological presentation and adaptive skills in high-functioning adolescents with visual impairment: A preliminary investigation.

    Science.gov (United States)

    Greenaway, R; Pring, L; Schepers, A; Isaacs, D P; Dale, N J

    2017-01-01

    Studies in infants and young children with congenital visual impairment (VI) have indicated early developmental vulnerabilities, conversely research with older children and adults have highlighted areas of cognitive strength. A minimal amount is known, however, about the possible combination of strengths and weaknesses in adolescence, and this present study therefore aims to explore the neuropsychological presentation and adaptive behavior profile in high-functioning adolescents with congenital VI. Participants completed a battery of commonly used neuropsychological measures assessing memory, executive function, and attention. The measures utilized focused on auditory neuropsychological function, because only subtests that could be completed with auditory administration were suitable for this sample. Parents completed standardized measures of adaptive behavior, executive function, and social communication. Compared to aged-based norms for normal sight, adolescents with VI demonstrated strengths in aspects of working memory and verbal memory. Furthermore, performance across the neuropsychological battery was within or above the average range for the majority of the sample. In contrast, parent-report measures indicated areas of weakness in adaptive functioning, social communication, and behavioral executive functioning. Overall, this study provides preliminary evidence that relative to fully sighted peers, high-functioning adolescents with VI present with an uneven profile of cognitive and adaptive skills, which has important implications for assessment and intervention.

  7. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  8. SPECIFIC FEATURES OF THE OXYFUEL COMBUSTION CONDITIONS IN A BUBBLING FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2016-08-01

    Full Text Available Oxyfuel combustion is a promising approach for capturing CO2 from power plants. This technology produces a flue gas with a high concentration of CO2. Our paper presents a verification of the oxyfuel combustion conditions in a bubbling fluidized bed combustor. It presents a theoretical analysis of oxyfuel combustion and makes a comparison with combustion using air. It is important to establish a proper methodology for stoichiometric calculations and for computing the basic characteristic fluidization properties. The methodology presented here has been developed for general purposes, and can be applied to calculations for combustion with air and with oxygen-enriched air, and also for full oxyfuel conditions. With this methodology, we can include any water vapour condensation during recirculation of the flue gas when dry flue gas recirculation is used. The paper contains calculations for a lignite coal, which is taken as a reference fuel for future research and for the experiments.

  9. Steam-moderated oxy-fuel combustion

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2010-01-01

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO 2 ) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO 2 and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO 2 sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of ∼8% for CO 2 sequestration when compared to air-fired power plant.

  10. Steam-moderated oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Adyar, Chennai 600 036 (India)

    2010-10-15

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO{sub 2}) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO{sub 2} and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO{sub 2} sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of {proportional_to}8% for CO{sub 2} sequestration when compared to air-fired power plant. (author)

  11. Contribution to the study of influence of hydrodynamic conditions on the combustion of a preliminary mixture in a enclosed medium; Contribution a l`etude de l`influence des conditions hydrodynamiques sur la combustion d`un melange prealable dans un milieu confine

    Energy Technology Data Exchange (ETDEWEB)

    Henry, J.D.

    1996-02-01

    This thesis is a study on the internal combustion of a pistons engine. the first chapter is devoted to the description of the experimental device and measurement means. The combustion chamber is described with its adaptation to new experimental conditions. The second chapter concerns the diagnosis means to interpret the hydrodynamic conditions by the cross checking of displays with the measures of flow speed by laser velocimetry. The third chapter gives the result of analysis on the process of the birth of a turbulent flow in a whirl movement. The study of the electric spark and the initial phase of the combustion, in media with or without movement, is in the last chapter. (N.C.)

  12. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  13. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  14. Combustion Modeling with the G-Equation Modélisation de la combustion avec l'équation de G

    Directory of Open Access Journals (Sweden)

    Peters N.

    2006-12-01

    Full Text Available Numerical investigations concerning the turbulent flame front propagation in Gasoline Direct Injection (GDI engines were made by implementing a flamelet model in the CFD code Fire. The advantage of this combustion model is the decoupling of the chemistry from the turbulent flow. For this purpose the combustion chamber has to be divided into a burned and an unburned area, which is realized by transporting a scalar field (G-Equation. The reference value defines the present averaged flame position. The complete reaction kinetics is calculated interactively with the CFD code in a one dimensional Representative Interactive Flamelet (RIF code. This combustion model was verified by simulating a 2. 0 l-2 V gasoline engine with homogeneous combustion where a parameter study was conducted to check the flamelet model for plausibility. Finally, the potential of this combustion model was investigated by simulating a hypothetical 2. 0 1-4 V GDI engine. Une investigation numérique relative à la propagation des fronts de flammes turbulents dans les moteurs à essence à injection directe (GDI a été menée en implantant un modèle de flameletdans le code 3D Fire. L'avantage de ce modèle de combustion est de découpler la chimie de l'écoulement turbulent en divisant la chambre de combustion en deux zones : brûlée et imbrûlée, à l'aide d'une équation de transport d'un scalaire (équation de G. Une valeur de référence de ce scalaire définit la position moyenne de la flamme. Une chimie complète est calculée interactivement avec le calcul 3D à l'aide d'un code monodimensionnel RIF (Representative Interactive Flamelet. Le modèle de combustion a été validé sur la simulation d'un moteur 2 litres à 2 soupapes en combustion homogène pour vérifier la représentativité de l'approche flamelet . Puis, le potentiel du modèle de combustion a été étudié en simulant un moteur modèle 2 litres 4 soupapes GDI.

  15. Fuel and Additive Characterization for HCCI Combustion

    International Nuclear Information System (INIS)

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-01-01

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included

  16. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension-fired po......The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension......-fired power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen....... The oxidant thus contains little or no nitrogen and a near-pure CO2 stream can be produced by cooling the flue gas to remove water. The change to the oxidant composition compared to combustion in air will induce significant changes to the combustion process. This Ph.D. thesis presents experimental...

  17. A review of oxy-fuel combustion in fluidized bed reactors

    CSIR Research Space (South Africa)

    Mathekga, HI

    2016-06-01

    Full Text Available Presently, there is no detailed review that summarizes the current knowledge status on oxy-fuel combustion in fluidized bed combustors. This paper reviewed the existing literature in heat transfer, char combustion and pollutant emissions oxy...

  18. Formation of Co2P in the combustion regime

    International Nuclear Information System (INIS)

    Muchaik, S.V.; Dubrov, A.N.; Lynchak, K.A.

    1983-01-01

    Combustion of the system Co-P produces the compounds Co 2 P, CoP and CoP 3 , the first two being producible in the combustion regime, while for synthesis of stoichiometric Co 2 P at normal argon pressure, an original mixture with a certain excess of phosphorus is required. The present experiments were performed with electrolytic cobalt powder and red phosphorus. As the Co-P mixture is diluted by the final product (Co 2 P) there is a decrease in combustion temperature and rate, unaccompanied by any of the anomalies seen with dilution by cobalt. It can be suggested that although the combustion in the Co-P system and, possibly, i-- other phosphide systems, is not gasless in its kinetic aspects the combustion mechanism is similar to that in gasless systems. It is shown that formation of the phosphide Co=3''P and specimens wyth composition Co-Co 2 P in the combustion regime occurs with participation of a lIqui] phase of eutectic composition. Combustion occurs in a self-oscillating regime. The temperature for Co 2 P formation is close to its melting point, and the process activation energy comprises 205 kJ/mole

  19. Evaluating the acute effects of oral, non-combustible potential reduced exposure products marketed to smokers.

    Science.gov (United States)

    Cobb, C O; Weaver, M F; Eissenberg, T

    2010-10-01

    Non-combustible potential reduced exposure products (PREPs; eg, Star Scientific's Ariva; a variety of other smokeless tobacco products) are marketed to reduce the harm associated with smoking. This marketing occurs despite an absence of objective data concerning the toxicant exposure and effects of these PREPs. Methods used to examine combustible PREPs were adapted to assess the acute effects of non-combustible PREPs for smokers. 28 overnight abstinent cigarette smokers (17 men, 14 non-white) each completed seven, Latin-squared ordered, approximately 2.5 h laboratory sessions that differed by product administered: Ariva, Marlboro Snus (Philip Morris, USA), Camel Snus (RJ Reynolds, Winston-Salem, North Carolina, USA), Commit nicotine lozenge (GlaxoSmithKline; 2 mg), own brand cigarettes, Quest cigarettes (Vector Tobacco; delivers very low levels of nicotine) and sham smoking (ie, puffing on an unlit cigarette). In each session, the product was administered twice (separated by 60 min), and plasma nicotine levels, expired air CO and subjective effects were assessed regularly. Non-combustible products delivered less nicotine than own brand cigarettes, did not expose smokers to CO and failed to suppress tobacco abstinence symptoms as effectively as combustible products. While decreased toxicant exposure is a potential indicator of harm reduction potential, a failure to suppress abstinence symptoms suggests that currently marketed non-combustible PREPs may not be a viable harm reduction strategy for US smokers. This study demonstrates how clinical laboratory methods can be used to evaluate the short-term effects of non-combustible PREPs for smokers.

  20. Inkjet-based adaptive planarization (Conference Presentation)

    Science.gov (United States)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    that should have been polished away. Preventive techniques like dummy fill and patterned resist can be used to reduce the variation in pattern density. These techniques increase the complexity of the planarization process and significantly limit the device design flexibility. Contact Planarization (CP) has also been reported as an alternative to the CMP processing [7], [8]. A substrate is spin coated with a photo curable material and pre baked to remove residual solvent. An ultra-flat surface or an optical flat is pressed on the spin-coated wafer. The material is forced to reflow. Pressure is used to spread out material evenly and achieve global planarization. The substrate is then exposed to UV radiation to harden the photo curable material. Although attractive, this process is not adaptive as it does not account for differences in surface topography of the wafer and the optical flat, nor can it address all the parasitics that arise during the process itself. The optical flat leads to undesirable planarization of even the substrate nominal shape and nanotopography, which corrupts the final film thickness profile. Hence, it becomes extremely difficult to eliminate this signature to a desirable extent without introducing other parasitic signatures. An example of this is shown in Figure 1. In this paper, a novel adaptive planarization process has been presented that potentially addresses the problems associated with planarization of varying pattern density, even in the presence of pre-existing substrate topography [9]. This process is called Inkjet-enabled Adaptive Planarization (IAP). The IAP process uses an inverse optimization scheme, built around a validated fluid mechanics-based forward model [10], that takes the pre-existing substrate topography and pattern layout as inputs. It then generates an inkjet drop pattern with a material distribution that is correlated with the desired planarization film profile. This allows a contiguous film to be formed with the desired

  1. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  2. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    International Nuclear Information System (INIS)

    Hayes, R.E.; Wanke, S.E.

    2008-01-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs

  3. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.E.; Wanke, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs.

  4. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik

    This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...... technique was an invaluable tool in the discussion of data obtained by gas analysis, and it allowed for estimation of combustion times in O2/CO2 where the high CO2 concentration prevents the use of the carbon mass balance for that purpose. During the project the data have been presented at a conference......, formed the basis of a publication and it is part of two PhD dissertations. The name of the conference the journal and the dissertations are listed below. - Joint Meeting of the Scandinavian-Nordic and French Sections of the Combustion Institute, Combustion of Char Particles under Oxy-Fuel Conditions...

  5. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  6. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  7. Optimized scheme in coal-fired boiler combustion based on information entropy and modified K-prototypes algorithm

    Science.gov (United States)

    Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu

    2018-06-01

    An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.

  8. Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  9. Towards control-oriented modeling of natural gas-diesel RCCI combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.S.G.; Willems, F.P.T.; Somers, L.M.T.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  10. The present state and future directions of PDF methods

    Science.gov (United States)

    Pope, S. B.

    1992-01-01

    The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.

  11. Combustion characterization of rape seed meal and suggestions for optimal use in combustion appliances; Foerbraenningskarakterisering av rapsmjoel och foerslag till optimalt nyttjande i olika foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hedman, Henry; Oehman, Marcus; Bostroem, Dan; Pettersson, Esbjoern; Pommer, Linda; Lindstroem, Erica; Backman, Rainer; Oehman, Rikard

    2007-12-15

    When rape oil is chemically extracted, rape seed meal, a solid residue remains. Currently, it is used as animal feed. Several plants for the production of rape methyl ester (RME, biodiesel) are in operation or under construction. Combustion properties have been studied for rape seed meal produced as a by product to rape-methyl esther (RME, biodiesel). Composition of the material has been measured, using proximate and ultimate analysis. The lower heating value was 18.2 +- 0.3 MJ/kg d.w. and the ash content was 7-8 percent d.w. The material is rich in nitrogen and sulphur. Concentrations of K, P, Ca and Mg are high in the fuel. Rape seed meal was mixed with bark and pelletised. Bark pellets were also used as a reference fuel. Pellets with 10 and 30 percent rape seed meal were produced. Material with 80 percent rape seed meal and 20 percent planer shavings was also pelletised. Wood had to be added to provide enough friction in the pelletising process, with adapted equipment rape seed meal could probably be easily pelletised). The material was studied using Thermo-Gravimetric Analysis (TGA), and compared with data from tests with wood powder. The pyrolysis of the rape seed meal has a characteristic temperature of 320 deg C. Devolatilisation starts at 150 deg C (at a lower temperature than for wood powder), and proceeds within a rather wide temperature range. The probable cause is the difference in organic content, in particular protein content. The result does not suggest that the material will be difficult to ignite. Experiments in a bench-scale fluidised bed (5 kW) showed that pellets containing only bark, and the mixture rape seed meal/wood had a bed agglomeration temperature well over the normal operational bed temperature. For the fuel mixtures rape seed meal and bark, the agglomeration temperature was slightly over the operational temperature. Particle emissions from fluidised bed combustion and grate combustion were, the latter simulated using a commercial

  12. CISCO - Combined Cycle with Integrated Sewage Sludge Combustion; Kombi-Anlage mit integrierter Klaerschlam-Verbrennung - CISCO (Combined Cycle with Integrated Sewage Sludge Combustion)

    Energy Technology Data Exchange (ETDEWEB)

    Vockrodt, S.; Leithner, R. [Technische Univ. Braunschweig (Germany). Inst. fuer Waerme- und Brennstofftechnik

    2004-12-01

    A new combined process is presented in which is sewage sludge is dried until it can be combusted, and the heat of combustion is used for sludge drying. (orig.) [German] Mit einer neuen Verfahrenskombination ist es moeglich, Klaerschlamm so weit zu trocknen, dass er verbrannt werden kann, wobei die Verbrennungswaerme zur Trocknung genutzt wird. (orig.)

  13. Chemical-looping combustion as a new CO{sub 2} management technology

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, Tobias; Lyngfelt, Anders [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Zafar, Qamar; Johansson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3-50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible at a low cost. Further, work is going on to adapt the technique for use with solid fuels and for hydrogen production. This paper presents an overview of the research performed on CLC and highlights the current status of the technology.

  14. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  15. Universal autoignition models for designer fuels in HCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Boulouchos, K.; Wright, Y.M. [LAV - Aerothermochemistry and Combustion Systems Laboratory - Institute of Energy Technology, ETH Zurich (Switzerland)], email: vandersickel@lav.mavt.ethz.ch

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, homogeneous charge compression ignition (HCCI), can improve the emissions performance of an engine in terms of NOx and soot release over that of diesel while maintaining the same efficiencies. However, problems of ignition timing control arise with HCCI. The aim of this paper is to determine how fuel properties impact the HCCI ignition process and operating range. This study was carried out as part of a collaboration among several universities and automotive companies and 10 fuels were investigated experimentally and numerically using Arrhenius' model and a lumped reaction model. The two ignition models were successfully adapted to describe the behavior of the studied fuels; atomizer engine experiments validated their results. Further work will be conducted to optimize the reaction mechanism for the remaining process fuels.

  16. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  17. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  18. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  19. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  20. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  1. L'évolution des combustibles pour moteurs thermiques Evolution of Fuels for Thermal Engines

    Directory of Open Access Journals (Sweden)

    Balaceanu J. C.

    2006-11-01

    Full Text Available Depuis la crise pétrolière, l'accroissement des prix et les craintes de pénurie ont conduit à adapter les moteurs aux combustibles disponibles. Si la situation apparaît comme moins tendue, l'industrie des machines thermiques, qui pendant longtemps a eu comme partenaire une industrie du pétrole très sûre, se trouve cependant confrontée à un marché des combustibles incertain dans son ravitaillement et surtout dans ses prix. Les progrès des moteurs diesel et des turbines à gaz, dûs à une meilleure adaptation à leur usage et aussi à l'évolution de la technologie, supposent que les combustibles n'apporteront aucune contrainte majeure en quantité ou en qualité. La modification des usages dévolus désormais au pétrole entraînera une réduction de la coupe lourde et un raffinage plus profond des bruts avec en particulier un développement du craquage catalytique et de la viscoréduction. Or, ces différentes opérations de conversion peuvent conduire à une détérioration de la qualité des combustibles moins grave pour le gazole que pour le fuel lourd. Dans les différents domaines impliqués, les parades technologiques sont en cours de développement. L'industrie des machines thermiques, qui poursuit l'amélioration des engins, et l'industrie du pétrole, qui recherche une réduction des prix des combustibles, sont donc conduites à un compromis optimal auquel elles ne peuvent accéder efficacement qu'en définissant les règles du jeu c'est-à-dire des spécifications internationales rigoureuses des combustibles. Since the oil crisis, the increase in prices and fears of a shortage have led to the adapting of engines to what fuels are available. Whereas the situation now seems somewhat less tense, the thermal machinery industry, which for a long time had a very reliable petroleum industry as its partner, nonetheless finds itself confronted with an uncertain fuel market with regard to supplies and especially to prices. Progress

  2. Tools for the efficient use of the gas: Combustion diagrams

    International Nuclear Information System (INIS)

    Amell Andres; Maya Ruben D

    1997-01-01

    In this work the results of an investigation carried out with the purpose of developing a fundamental tool related to the process of optimization of the combustion are presented: The combustion diagrams with the optimization are looked for using the maximum heat generated in the reaction and to avoid the production of pollutants, product of an incomplete combustion. This is carried out controlling the stability of the flame and the composition of the smoke by means of the adjustment of the ratio air/combustible basically and with a homogeneous mixture. A constant pursuit of the dry smoke allows to determine the presence of pollutants and to establish the combustion type. A valuable tool to establish the conditions in which this process is carried out, this is the combustion diagram; this diagram uses the values of the concentration of O2 and CO2 in the dry smoke, starting from the sampling of the products by an analyzer to determine the composition of these smoke, the percentage of air really used, the air in excess and the combustion type

  3. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  4. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  5. Wood combustion and NOx formation control

    International Nuclear Information System (INIS)

    Tewksbury, C.

    1991-01-01

    The control of wood combustion on stoker fed grates for optimum efficiency and the limiting of NO x (oxides of nitrogen) formation are not necessarily contradictory. This paper presents a matrix of air/fuel ratio control options, then discusses simple on-line monitoring techniques and the importance of operator training and alertness. The significance of uniform fuel feed and air distribution is emphasized. The relationships between combustion control and NO x formation are outlined both in theory and as tested. The experience of the McNeil Generating Station (the largest wood-fired, single boiler, stoker grate, utility electric generating station in the world) is used to demonstrate the theoretical principles. It has been observed that NO x emissions firing 100% whole tree chips with moisture contents as low as 40% by weight can be as low as 0.13 lb/MMBtu (MMBtu = 10 6 Btu) while still achieving a boiler efficiency in the range of 68% to 73% (in the high end of the design range) without the use of post-combustion treatment or flue gas recirculation (FGR). Problems of combustion and emissions control at steaming rates other than normal full-load are also examined. 2 figs., 4 tabs

  6. Methane combustion over lanthanum-based perovskite mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Arandiyan, Hamidreza [New South Wales Univ., Sydney (Australia). School of Chemical Engineering

    2015-11-01

    This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO{sub 3}). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO{sub 3}) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.

  7. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  8. Environmental considerations on the FBC combustion of dry sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI/DEECA, Lisboa (Portugal)

    2001-07-01

    This paper presents results of on-going research on the incineration of pre-dried granular sewage sludges using a FBC system. Co-combustion is compared with mono-combustion of sludges leads to minor emissions and higher retention of Cd, Pb, Cu, and Zn in the bottom ashes, when compared to co-combustion with coal. The leachability of the sludge is reduced through combustion, as none of the metals, Cd, Cr, Ca Ni, Ph, Zn, Co and Mn were leached from the bottom ashes. These findings may contribute to an improvement in the incineration of sewage sludges and to the development of applications for the ashes in civil engineering activities.

  9. Internet of Things Based Combustible Ice Safety Monitoring System Framework

    Science.gov (United States)

    Sun, Enji

    2017-05-01

    As the development of human society, more energy is requires to meet the need of human daily lives. New energies play a significant role in solving the problems of serious environmental pollution and resources exhaustion in the present world. Combustible ice is essentially frozen natural gas, which can literally be lit on fire bringing a whole new meaning to fire and ice with less pollutant. This paper analysed the advantages and risks on the uses of combustible ice. By compare to other kinds of alternative energies, the advantages of the uses of combustible ice were concluded. The combustible ice basic physical characters and safety risks were analysed. The developments troubles and key utilizations of combustible ice were predicted in the end. A real-time safety monitoring system framework based on the internet of things (IOT) was built to be applied in the future mining, which provide a brand new way to monitoring the combustible ice mining safety.

  10. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  11. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  12. Analysis regarding steam generator furnace's incident heat, temperature and composition of combustion gases; Analisis de calor incidente, temperatura y composicion de gases de combustion en hornos de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    In order to obtain more precise evaluations of the combustion process in the furnace of a steam generator a suction pyrometer has been integrated to measure the temperature of the combustion gases; an ellipsoidal radiometer to measure the incident heat by thermal radiation in the water walls; a water cooled probe to determine the particle concentration, as well as a water cooled probe to determine the composition of the combustion gases present. This document clarifies the form of use of these instruments and their engineering specifications, simultaneously presenting an analysis that considers, unlike others, the internal conditions of the furnace to obtain a more precise evaluation of the efficiency that the combustion process presents and bases for the taking of preventive actions in specific zones of the furnace. Thus, the present work exhibits instruments and techniques of analysis to study the phenomena occurring within a steam generator. [Spanish] Con el fin de obtener evaluaciones mas precisas del proceso de combustion en el horno de un generador de vapor, se ha integrado un pirometro de succion para medir la temperatura de los gases de combustion; un radiometro elipsoidal para medir el calor incidente por radiacion termica en las paredes del agua; una sonda enfriada con agua para determinar la concentracion de particulas, asi como una sonda refrigerada con agua para determinar la composicion de los gases de combustion presentes. Este documento aclara la forma de uso de estos instrumentos y sus especificaciones tecnicas, a la vez que presenta un analisis que considera, a diferencia de otros, las condiciones internas del horno para obtener una evaluacion mas precisa sobre la eficiencia del proceso de combustion y bases para la toma de acciones preventivas en zonas especificas del horno. Asi, el presente trabajo exhibe instrumentos y tecnicas de analisis para estudiar los fenomenos que ocurren dentro de un generador de vapor.

  13. The Evaluation of Solid Wastes Reduction with Combustion System in the Combustion Chamber

    International Nuclear Information System (INIS)

    Prayitno; Sukosrono

    2007-01-01

    The evaluation of solid wastes reduction with combustion system is used for weight reduction factor. The evaluation was done design system of combustion chamber furnace and the experiment was done by burning a certain weight of paper, cloth, plastic and rubber in the combustion chamber. The evaluation of paper wastes, the ratio of wastes (paper, cloth, plastic and rubber) against the factor of weight reduction (%) were investigated. The condition was dimension of combustion chamber furnace = 0.6 X 0.9 X 1.20 X 1 m with combustion chamber and gas chamber and reached at the wastes = 2.500 gram, oxygen pressure 0.5 Bar, wastes ratio : paper : cloth : plastic : rubber = 55 : 10 : 30 : 5, the reduction factor = 6.36 %. (author)

  14. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  15. Combustion strategy : United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  16. Optimal Bayesian Experimental Design for Combustion Kinetics

    KAUST Repository

    Huan, Xun

    2011-01-04

    Experimental diagnostics play an essential role in the development and refinement of chemical kinetic models, whether for the combustion of common complex hydrocarbons or of emerging alternative fuels. Questions of experimental design—e.g., which variables or species to interrogate, at what resolution and under what conditions—are extremely important in this context, particularly when experimental resources are limited. This paper attempts to answer such questions in a rigorous and systematic way. We propose a Bayesian framework for optimal experimental design with nonlinear simulation-based models. While the framework is broadly applicable, we use it to infer rate parameters in a combustion system with detailed kinetics. The framework introduces a utility function that reflects the expected information gain from a particular experiment. Straightforward evaluation (and maximization) of this utility function requires Monte Carlo sampling, which is infeasible with computationally intensive models. Instead, we construct a polynomial surrogate for the dependence of experimental observables on model parameters and design conditions, with the help of dimension-adaptive sparse quadrature. Results demonstrate the efficiency and accuracy of the surrogate, as well as the considerable effectiveness of the experimental design framework in choosing informative experimental conditions.

  17. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  18. Fluidized bed and pulverized coal combustion residues for secondary pavements

    International Nuclear Information System (INIS)

    Ghafoori, N.; Diawara, H.; Wang, L.

    2009-01-01

    The United States produced nearly 125 million tons of coal combustion products in 2006. These by-products include fly ash, flue gas desulphurization materials, bottom ash, boiler slag, and other power plant by-products. The expense associated with waste disposal, lack of disposal sites, and significant environmental damage linked with the disposal of coal combustion residues have encouraged innovative utilization strategies such as the fluidized bed combustion (FBC) unit. This paper presented the results of a laboratory investigation that examined the properties of composites developed with different proportions of pre-conditioned FBC spent bed, pulverized coal combustion fly ash, natural fine aggregate, and Portland cement. The purpose of the study was to examine the extent to which the by-product composites could replace currently used materials in secondary roads. The paper presented the research objectives and experimental programs, including matrix constituent and proportions; mixture proportions; and mixing, curing, sampling, and testing. The discussion of results centered around compressive strength and expansion by internal sulfate attack. It was concluded that with proper proportioning, by-products of pulverized and fluidized bed combustion promote binding of sand particles and provide adequate strength under various curing and moisture conditions 4 refs., 6 tabs.

  19. Ash quality and environmental quality assurance system in co-combustion - Co-combustion of forest industry waste

    International Nuclear Information System (INIS)

    Laine-Ylijoki, J.; Wahlstroem, M.

    2000-01-01

    The environmental acceptability and possible utilization of co-combustion ashes will have a significant influence on the wider use of co-combustion in the future. At present the correlation between currently used fuels, their mixture ratios, and quality variations in ashes are not known, which complicates the assessment of possible utilization and environmental acceptability of co-combustion ashes. The composition of ashes has also been found to vary significantly. Effective utilization requires that process variations to alter ash composition and quality variations are known in advance. The aim of the research was to characterize the fly ash from co- combustion of peat, wood and biological paper mill sludge produced under different fuel loadings, especially with and without sludge addition, ant to identify critical parameters influencing on the ash composition. The variations in the leaching properties of ashes collected daily were followed up. The environmental acceptability of the ashes produced under different fuel loadings, especially their suitability for use in road constructions, were evaluated. The project included also the preparation of laboratory reference material from ash material. Guidelines were developed for sampling, sample preparation and analysis, and leaching tests. Furthermore, a quality control system, including sampling strategies, sample analysis and leaching testing, was established

  20. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  1. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  2. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  3. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  4. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  5. Development of an empirical correlation for combustion durations in spark ignition engines

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2004-01-01

    Development of an empirical correlation for combustion duration is presented. For this purpose, the effects of variations in compression ratio engine speed, fuel/air equivalence ratio and spark advance on combustion duration have been determined by means of a quasi-dimensional SI engine cycle model previously developed by the authors. Burn durations at several engine operating conditions were calculated from the turbulent combustion model. Variations of combustion duration with each operating parameter obtained from the theoretical results were expressed by second degree polynomial functions. By using these functions, a general empirical correlation for the burn duration has been developed. In this correlation, the effects of engine operating parameters on combustion duration were taken into account. Combustion durations predicted by means of this correlation are in good agreement with those obtained from experimental studies and a detailed combustion model

  6. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  7. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  8. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  9. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals.

    Science.gov (United States)

    Dmitrienko, Margarita A; Nyashina, Galina S; Strizhak, Pavel A

    2017-09-15

    Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    Science.gov (United States)

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  11. Industry-identified combustion research needs: Special study

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.; Soelberg, N.R.; Kessinger, G.F.

    1995-11-01

    This report discusses the development and demonstration of innovative combustion technologies that improve energy conservation and environmental practices in the US industrial sector. The report includes recommendations by industry on R&D needed to resolve current combustion-related problems. Both fundamental and applied R&D needs are presented. The report assesses combustion needs and suggests research ideas for seven major industries, which consume about 78% of all energy used by industry. Included are the glass, pulp and paper, refinery, steel, metal casting, chemicals, and aluminum industries. Information has been collected from manufacturers, industrial operators, trade organizations, and various funding organizations and has been supplemented with expertise at the Idaho National Engineering Laboratory to develop a list of suggested research and development needed for each of the seven industries.

  12. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  13. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  14. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    International Nuclear Information System (INIS)

    Luo Siyi; Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun

    2010-01-01

    Based on biomass micron fuel (BMF) with particle size less than 250 μm, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  15. Particulate and gaseous emissions from residential biomass combustion

    International Nuclear Information System (INIS)

    Boman, Christoffer

    2005-04-01

    Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PICs). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for

  16. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    Science.gov (United States)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with

  17. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  18. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  19. On the influence of steam on combustion

    NARCIS (Netherlands)

    Derksen, M.A.F.

    2005-01-01

    In this thesis, a numerical simulation study is presented of the influence of steam on premixed and partially premixed combustion. Both laminar (premixed) and turbulent (partially premixed) calculations are presented. The laminar calculations were performed using a detailed chemical mechanism and

  20. The reduction of air pollution by improved combustion

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, S.W. [Pennsylvania Univ., Chemical Engineering Dept., Philadelphia, PA (United States)

    1997-12-31

    The contributions of combustion to air pollution and possible remedies are discussed. Control and reduction of air pollution from combustion is more feasible than from other sources because of its discrete localization. The gaseous products of combustion inevitably include H{sub 2}O and CO{sub 2}, NO and/or NO{sub 2} and may include N{sub 2}O, SO{sub 2}, SO{sub 3} and unburned and partially burned hydrocarbons. Soot, ash and other dispersed solids may also be present, but are not considered herein. Unburned and partially burned hydrocarbons are prima facie evidence of poor mechanics of combustion and should not be tolerated. On the other hand, NO{sub x}, SO{sub 2} and SO{sub 3} are unavoidable if the fuel contains nitrogen and sulfur. The best remedy in this latter case is to remove these species from the fuel. Otherwise their products of combustion must be removed by absorption, adsorption or reaction. NO{sub x} from the fixation of N{sub 2} in the air and CO may be minimized by advanced techniques of combustion. One such method is described in some detail. If CO{sub 2} must be removed this can be accomplished by absorption, adsorption or reaction, but precooling is necessary and the quantity is an order of magnitude greater than that of any of the other pollutants. (Author)

  1. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  2. 3rd International Workshop on Turbulent Spray Combustion

    CERN Document Server

    Gutheil, Eva

    2014-01-01

    This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...

  3. Dust Combustion Safety Issues for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  4. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Science.gov (United States)

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  5. Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles

    Directory of Open Access Journals (Sweden)

    M. Zeki YILMAZOĞLU

    2010-02-01

    Full Text Available Thermal power plants have a significant place big proportion in the production of electric energy. Thermal power plants are the systems which converts heat energy to mechanical energy and also mechanical energy to electrical energy. Heat energy is obtained from combustion process and as a result of this, some harmful emissions, like CO2, which are the reason for global warming, are released to atmosphere. The contribution of carbondioxide to global warming has been exposed by the previous researchs. Due to this fact, clean energy technologies are growing rapidly all around the world. Coal is generally used in power plants and when compared to other fossil energy sources unit electricity production cost is less than others. When reserve rate is taken into account, coal may be converted to energy in a more efficient and cleaner way. The aim for using the clean coal technologies are to eradicate the harmful emissions of coal and to store the carbondioxide, orginated from combustion, in different forms. In line with this aim, carbondioxide may be captured by either pre-combustion, by O2/CO2 recycling combustion systems or by post combustion. The integrated gasification combined cycles (IGCC are available in pre-combustion capture systems, whereas in O2/CO2 recycling combustion systems there are ultrasuper critical boiler technologies and finally flue gas washing systems by amines exists in post combustion systems. In this study, a pre-combustion CO2 capture process via oxygen blown gasifiers is compared with a conventional power plant in terms of CO2 emissions. Captured carbondioxide quantity has been presented as a result of the calculations made throughout the study.

  6. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  7. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  8. Engine combustion network (Ecn) : characterization and comparison of boundary conditions for different combustion vessels

    NARCIS (Netherlands)

    Meijer, M.; Somers, L.M.T.; Johnson, J.; Naber, J.; Lee, S.Y.; Malbec, L.M.; Bruneaux, G.; Pickett, L.M.; Bardi, M.; Payri, R.; Bazyn, T.

    2012-01-01

    The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels and/or performing computational fluid dynamics (CFD) simulation, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray

  9. Optimization of combustion chamber geometry for stoichiometric diesel combustion using a micro genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Wook

    2010-11-15

    This paper describes the optimization of combustion chamber geometry and engine operating conditions for stoichiometric diesel combustion, targeting lower gross indicated specific fuel consumption. The KIVA code, coupled with a micro genetic algorithm population of nine for each generation was used. The optimization variables were composed of ten variables related to the combustion chamber geometry and engine operating conditions. In addition, an auto mesh generator was developed for generating various kinds of combustion chambers, such as open-crater, re-entrant, deep, and shallow types. In addition, the computational models were validated against the experimental results for a stoichiometric process in terms of the combustion pressure history and emissions. Through the preset optimization, a 35% improvement in the gross indicated that specific fuel consumption was achieved. In addition, the optimization results showed that the optimum engine operating conditions employed a premixed charge compression ignition combustion regime with early injection and a narrow spray included angle. Furthermore, a higher boost pressure was used to prevent fuel film formation. (author)

  10. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  11. Experimental investigation of wood combustion in a fixed bed with hot air

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of

  12. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  13. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  14. Emergency response mobile robot for operations in combustible atmospheres

    Science.gov (United States)

    Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)

    1995-01-01

    A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.

  15. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, S.A. [Higher Technical Inst., Nicosia, Cyprus (Greece). Dept. of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. Al systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how Al techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of Al as a design tool in many areas of combustion engineering. (author)

  16. Microjet burners for molecular-beam sources and combustion studies

    Science.gov (United States)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  17. The role of CFD combustion modelling in hydrogen safety management – VI: Validation for slow deflagration in homogeneous hydrogen-air-steam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cutrono Rakhimov, A., E-mail: cutrono@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Visser, D.C., E-mail: visser@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, T., E-mail: tadej.holler@ijs.si [Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2017-01-15

    Highlights: • Deflagration of hydrogen-air-steam homogeneous mixtures is modeled in a medium-scale containment. • Adaptive mesh refinement is applied on flame front positions. • Steam effect influence on combustion modeling capabilities is investigated. • Mean pressure rise is predicted with 18% under-prediction when steam is involved. • Peak pressure is evaluated with 5% accuracy when steam is involved. - Abstract: Large quantities of hydrogen can be generated during a severe accident in a water-cooled nuclear reactor. When released in the containment, the hydrogen can create a potential deflagration risk. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor. Therefore, accurate prediction of these pressure loads is an important safety issue. In previous papers, we validated a Computational Fluid Dynamics (CFD) based method to determine the pressure loads from a fast deflagration. The combustion model applied in the CFD method is based on the Turbulent Flame Speed Closure (TFC). In our last paper, we presented the extension of this combustion model, Extended Turbulent Flame Speed Closure (ETFC), and its validation against hydrogen deflagration experiments in the slow deflagration regime. During a severe accident, cooling water will enter the containment as steam. Therefore, the effect of steam on hydrogen deflagration is important to capture in a CFD model. The primary objectives of the present paper are to further validate the TFC and ETFC combustion models, and investigate their capability to predict the effect of steam. The peak pressures, the trends of the flame velocity, and the pressure rise with an increase in the initial steam dilution are captured reasonably well by both combustion models. In addition, the ETFC model appeared to be more robust to mesh resolution changes. The mean pressure rise is evaluated with 18% under-prediction and the peak pressure is evaluated with 5

  18. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  19. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  20. Mixture preparation and combustion in an optically-accessible HCCI, diesel engine; La preparation du melange et de la combustion dans un moteur Diesel, HCCI a acces optique

    Energy Technology Data Exchange (ETDEWEB)

    Kashdan, J.; Bruneaux, G. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France)

    2006-07-01

    Planar laser-induced fluorescence (LIF) imaging techniques have been applied in order to study the mixture preparation and combustion process in a single cylinder, optically-accessible homogeneous charge, compression ignition (HCCI) engine. In particular, the influence of piston bowl geometry on the in-cylinder mixture distribution and subsequent combustion process has been investigated. A new optically-accessible piston design enabled the application of LIF diagnostics directly within the combustion chamber bowl. Firstly, laser-induced exciplex fluorescence (LIEF) was exploited in order to characterise the in-cylinder fuel spray and vapour distribution. Subsequently a detailed study of the two-stage HCCI combustion process was conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH{sub 2}O) which is present during the cool flame and LIF of the OH radical which is subsequently present in the reaction and burned gas zones at higher temperature. Finally, spectrometry measurements were performed with the objective of determining the origin of the emitting species of the chemiluminescence signal. The experiments were performed on a single cylinder optical engine equipped with a direct-injection, common rail injection system and narrow angle injector. The experimental results presented reveal the significant role of the combustion chamber geometry on the mixture preparation and combustion characteristics for late HCCI injection strategies particularly in such cases where liquid impingement is unavoidable. Planar LIF 355 imaging revealed the presence of the intermediate species formaldehyde allowing the temporal and spatial detection of auto-ignition precursors prior to the signal observed by chemiluminescence in the early stages of the cool flame. Formaldehyde was then rapidly consumed at the start of main combustion which was marked not only by the increase in the main heat release

  1. Underground treatment of combustible minerals

    Energy Technology Data Exchange (ETDEWEB)

    Sarapuu, E

    1954-10-14

    A process is described for treating oil underground, consisting in introducing several electrodes spaced one from the other in a bed of combustibles underground so that they come in electric contact with this bed of combustibles remaining insulated from the ground, and applying to the electrodes a voltage sufficient to produce an electric current across the bed of combustibles, so as to heat it and create an electric connection between the electrodes on traversing the bed of combustibles.

  2. The new energy processes and the new approaches of the combustion. The environmental impact decrease; Nouveaux procedes energetiques et nouvelles approches de la combustion. Reduction de l'impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, G. [CORIA, 76 - Mont Saint Aignan (France); Caillat, S. [Ecole des Mines de Douai, Dept. Energetique, 59 (France); Guillet, R. [Gaz de France, GDF DR, 93 - La Plaine Saint-Denis (France)] [and others

    2001-07-01

    During this day organized by the french society of the science of heat (SFT), seven papers have been presented. They deal with new processes of combustion leading to a better air quality for the environment. The first process concerns the wet combustion, an energy efficient and environmentally friendly technique, its properties and the DHC (hygrometric diagram of combustion) analysis. The flames mechanisms and the swirl process are presented in a second part with the analysis of the radiant heat transfers and the nitrogen oxides emissions. (A.L.B.)

  3. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  4. Adaptive system of supplying lubricant to the internal combustion engine

    Science.gov (United States)

    Barylnikova, E. P.; Kulakov, A. T.; Kulakov, O. A.

    2017-09-01

    This paper assesses the impact of reducing the pressure in the lubrication system on the failures of the crankshaft bearings. The method of adapting lubricating system of the diesel engine as the wear in operation and depending on the operation modes.

  5. Ammonium nitrate: combustion mechanism and the role of additives

    Energy Technology Data Exchange (ETDEWEB)

    Sinditskii, Valery P.; Egorshev, Viacheslav Yu.; Levshenkov, Anton I.; Serushkin, Valery V. [Department of Chemical Engineering, Mendeleev University of Chemical Technology, 9 Miusskaya Sq., 125047, Moscow (Russian Federation)

    2005-09-01

    This paper presents an analysis of the observed combustion behavior of AN mixtures with different additives, fuels, and energetic materials. It has been determined on the basis of flame structure investigation by fine tungsten-rhenium thermocouples that the surface temperature of AN is controlled by the dissociation reaction of the salt occurring at the surface. Results obtained have indicated that the leading reaction of combustion of AN doped with additives proceeds in the condensed phase up to pressures of 20-30 MPa. A reason for the inability of pure AN to burn is suggested and the role of additives in the combustion mechanism is discussed. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. Methodology for full comparative assessment of direct gross glycerin combustion in a flame tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Maturana, Aymer Yeferson; Pagliuso, Josmar D. [Dept. of Mechanical Engineering. Sao Carlos School of Engineering. University of Sao Paulo, Sao Carlos, SP (Brazil)], e-mails: aymermat@sc.usp.br, josmar@sc.usp.br

    2010-07-01

    This study is to develop a methodology to identify and evaluate the emissions and heat transfer associated to combustion of gross glycerin a by-product of the Brazilian biodiesel manufacture process as alternative energy source. It aims to increase the present knowledge on the matter and to contribute to the improvement of the economic and environmental perspective of biodiesel industry. This methodology was considered to be used for assessment of gross glycerin combustion from three different types of biodiesel (bovine tallow, palm and soy). The procedures for evaluation and quantification of emissions of sulphur and nitrogen oxides, total hydrocarbons, carbon monoxide, carbon dioxide, and acrolein were analyzed, described and standardized. Experimental techniques for mutagenic and toxic effects assessment of gases similarly were analyzed and standardized, as well as the calorific power, the associate heat transfer and fundamentals operational parameters. The methodology was developed, using a full-instrumented flame tube furnace, continuous gas analyzers, a chromatograph, automatic data acquisition systems and other auxiliary equipment. The mutagenic and toxic effects of the study was based on Tradescantia clone KU-20, using chambers of intoxication and biological analytical techniques previously developed and others were specially adapted. The benchmark for the initial set up was based on the performance evaluation of the previous equipment tested with diesel considering its behavior during direct combustion. Finally, the following factors were defined for the combustion of crude glycerin, configurations of equipment types, operational parameters such as air fuel ratio adiabatic temperature and other necessary aspect for successful application of the methodology. The developed and integrated methodology was made available to the concern industry, environmental authorities and researchers as procedures to access the viability of gross glycerin or similar fuels as

  7. NOx emissions and combustibility characteristics of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Arias, B.; Pis, J.J. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain). Dept. of Energy and Environment

    2001-07-01

    In this work, a series of coals with different origin and rank were blended and several aspects of the resultant blends were studied. This included determination of the grindability of individual coals and blends by means of the Hardgrove Grindability Index (HGI), and temperature programmed combustion test, which were carried out in a thermogravimetric analyser (TG) coupled to a quadruple mass spectrometer (MS) for evolved gas analysis. Special attention was paid to the combustibility parameters and the NO emissions during blends combustion. It was found that while some coal blends present interaction between the individual coals, others do not. This behaviour was assumed to be due to the differences in coal structure and functional groups composition. 18 refs., 11 figs., 2 tabs.

  8. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  9. Catalytic reduction of emissions from small scale wood combustion. State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Silversand, F.A. [Katator AB, Lund (Sweden)

    1998-12-31

    Small-scale combustion of big-fuel often results in excessive emissions of volatile organic compounds (VOC), polyaromatic compounds (PAM) and carbon monoxide (CO). These compounds have a negative impact on human health and urban air quality. The predominant volatile organic compounds present in flue gases from big-fuel combustion are propylene, ethylene, butadiene, methanol, ethanol, methane, phenol and benzene. The poor combustion performance of some wood stoves has in certain cases led to legislation against small-scale combustion of big-fuel in urban areas. Catalytic cleaning is one very efficient way of decreasing the environmental impacts of big-fuel combustion. Several studies concerning catalytic purification of flue gases from big-fuel combustion have been presented over the years. Several problems must be addressed when designing a catalyst for this application: Clogging problems from deposition of ashes and particulates in the catalyst; Catalyst poisoning by sulphur, phosphorus, alkali metals etc.; Catalyst fouling due to deposition of ashes and particulates; Catalyst overheating at high flue-gas temperatures and Poor catalyst performance during start-up Most studies have been focused on monolith-type catalysts and- the conversion of CO, VOC and PAH typically is above 80 %. The observed problems are associated with increased pressure drop due to catalyst clogging and decreased catalyst performance due to fouling and poisoning. In most cases precious metals, preferably Pt. have been used as active combustion catalyst. Precious metals have a high activity for the combustion of CO and hydrocarbons and a fair stability against poisoning with compounds present in flue gases from big-fuel, e.g. sulphur and alkali metals. The majority of the studies on precious metals have been focused on Pt. Rh and Pd, which are especially active in catalytic combustion. Some metal oxides are used in catalytic combustion, especially at low temperatures (e.g. in VOC abatement

  10. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  11. Reduction of NO{sub x} emissions from the combustion of hard coals ''RENOX''; Reduccion de Emisiones de NO{sub x} en la combustion de Carbones Antracitosos ''RENOX''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The present project, whose abbreviated name is RENOX, has the aim of reducing NO{sub x} emissions from the combustion of hard coals or coals with low volatile matter contents. It is applied to the combustion of these coals in arc boilers (or ''U'' boilers), where the necessary combination of long presence times and high hearth temperatures facilitates the high NO{sub x} levels reached. The intended reduction in emissions is approached through the application of primary combustion measures, also known as adjustment or refining of combustion. This solution is adopted for two reasons: due to its efficiency in environmental and economic terms, and because it is an unavoidable step if the levels to be attained require the installation of specific gas crubbing systems (secondary measures). The practical nature of RENOX has led to the development of the project in two phases, corresponding to two logical stages: phase 1, associated with the RNA project, on the characterization of emissions and combustion, complex numeric modelling of flows inside the boiler, and determination of the viability and scope of the optimization of emissions, and phase 2, the OPTINOXproject, which follows the methodology and lessons of the first phase and, as a natural continuation of this, deals with the design, development, manufacturing and validation of a computerized system that processes real time data on the boiler where it is installed to monitor, supervise and control the commercial operation of the plant, optimizing its combustion efficiency and/or NO{sub x} emissions. The practical objective of this project is represented by the construction of a validated prototype to demonstrate the OPTINOX system, which is capable of determining operating and control strategies that can minimize NO{sub x} emissions without unfavourably affecting the productivity and specific consumption of the units. Phase 1 development activities took place in groups 3, 4 and 5 of Compostilla II thermal power

  12. Experimental studies of the influence of fuel properties and operational conditions on stoking when combusting fuels in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Fabiana; Kolb, T.; Seifert, H.; Gehrmann, Hans-Joachim [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Technical Chemistry (ITC)

    2013-09-01

    Besides from knowledge about pollutant emission, knowledge of the combustion behavior of fuels plays a major role in the operation and optimization of combustion plants for waste and biomass. If the fuel is exchanged partly or completely in existing or newly designed grate-type combustion plants, adaptation of technical parameters is usually based on purely empirical studies. In the KLEAA fixed-bed reactor of KIT, Institute for Technical Chemistry (ITC), quantitative data on the combustion behavior can be determined from experimental investigations on the laboratory scale. Based on the characteristics obtained, the combustion behavior on a continuous grate can be estimated, This estimation is based on the assumption that no back mixing of the fuel occurs on the grate. Depending on the type of grate, however, stoking and back mixing play an important role. To improve the quality of the characteristics determined in KLEAA and enhance their transferability to the continuous process, it is necessary to determine the influence of fuel properties and operation conditions on stoking. Work is aimed at further developing the characteristics model taking into account a stoking factor describing the combustion behavior of a non-stoked fixed bed compared to a stoked fixed bed. The main task is to make a systematic study of the major parameters influencing stoking (e.g. stroke length, stroke frequency, geometry of the stoking unit, and fuel properties) in a fixed-bed reactor. The results shall be presented in the form of a semi-empirical equation. It is recommended to first study a model fuel, whose fuel properties are defined exactly and can be adjusted variably. Then, a stoking factor shall be derived from the studies. Possibly, a dimension analysis may be helpful. Finally, the results obtained are to be verified for residue-derived fuel. (orig.)

  13. Metallic aluminum in combustion; Metalliskt aluminium i foerbraenningen

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Rainer; Berg, Magnus; Bostroem, Dan; Hirota, Catherine; Oehman, Marcus; Oehrstroem, Anna

    2007-06-15

    Although aluminum is easily oxidized and melts at temperatures lower than those common in combustion, it can pass through the combustion chamber almost unscathed. If one performs calculations of thermodynamic equilibriums, conditions under which this could happen are extreme in comparison to those generally found in a furnace. Metallic aluminum may yet be found in rather large concentrations in fly ashes. There are also indications that metallic aluminum is present in deposits inside the furnaces. The objectives for the present investigation are better understanding of the behavior of the metallic aluminum in the fuel when it passes through an incinerator and to suggest counter/measures that deal with the problems associated with it. The target group is primary incineration plants using fuel that contains aluminum foil, for example municipal waste, industrial refuse or plastic reject from cardboard recycling. Combustion experiments were performed in a bench scale reactor using plastic reject obtained from the Fiskeby Board mill. First the gas velocity at which a fraction of the reject hovers was determined for the different fuel fractions, yielding a measure for their propensity to be carried over by the combustion gases. Second fractions rich in aluminum foils were combusted with time, temperature and gas composition as parameters. The partially combusted samples were analyzed using SEM/EDS. The degree of oxidation was determined using TGA/DTA. Reference material from full scale incinerators was obtained by collecting fly ash samples from five plants and analyzing them using XRD and SEM/EDS. The results show that thin aluminum foils may easily be carried over from the furnace. Furthermore, it was very difficult to fully oxidize the metallic flakes. The oxide layer on the surface prevents further diffusion of oxygen to the molten core of the flake. The contribution of these flakes to the build of deposits in a furnace is confirmed by earlier investigations in pilot

  14. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  15. Photographic investigation into the mechanism of combustion in irregular detonation waves

    Science.gov (United States)

    Kiyanda, C. B.; Higgins, A. J.

    2013-03-01

    Irregular detonations are supersonic combustion waves in which the inherent multi-dimensional structure is highly variable. In such waves, it is questionable whether auto-ignition induced by shock compression is the only combustion mechanism present. Through the use of high-speed schlieren and self-emitted light photography, the velocity of the different components of detonation waves in a {{ CH}}_4+2{ O}_2 mixture is analyzed. The observed burn-out of unreacted pockets is hypothesized to be due to turbulent combustion.

  16. GOTHIC-3D applicability to hydrogen combustion analysis

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Lee, Jin Yong; Park, Goon Cherl; Yoo, Ho Jong; Kim, Hyeong Taek; Lee, Byung Chul; Oh, Seung Jong

    2005-01-01

    Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling of large- and small-scale facilities was introduced through sensitivity studies on cell size and burn modeling parameters. Use of a turbulent burn option of the eddy dissipation concept enabled scale-free applications. Lowering the burn parameter values for the flame thickness and the burn temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default burn modeling parameters for large-scale facilities. However, the code needs further modifications of its burn modeling parameters to be applied to either small-scale facilities or extremely fast transients

  17. Assessment of combustion and related issues in the DWPF and ITP waste tanks

    International Nuclear Information System (INIS)

    Ginsberg, T.

    1994-04-01

    This report presents a review of the safety analyses described in the DWPF Safety Analysis Report, the combustion analysis of the ITP Tanks 48 and 49, and presents conclusions drawn from interviews staff on issues related to accident analysis, in particular on issues related to combustion phenomena. The major objectives of this report are to clarify the issues related to the modes of combustion and expected loads on process vessels and structures and, in addition, to offer recommendations which would improve the defense-in-depth posture of the DWPF

  18. Indoor combustion and asthma.

    Science.gov (United States)

    Belanger, Kathleen; Triche, Elizabeth W

    2008-08-01

    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  19. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  20. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  1. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1999-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  2. Combustion aerosols from potassium-containing fuels

    International Nuclear Information System (INIS)

    Balzer Nielsen, Lars

    1998-01-01

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW Th pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using chemical

  3. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  4. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  5. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  6. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  7. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  8. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Soteris A. Kalogirou, [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. AI systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how AI techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of AI as a design tool in many areas of combustion engineering. 109 refs., 31 figs., 11 tabs.

  9. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  10. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm

  11. In-cylinder pressure-based direct techniques and time frequency analysis for combustion diagnostics in IC engines

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.; Galleani, L.

    2015-01-01

    Highlights: • Direct pressure-based techniques have been applied successfully to spark-ignition engines. • The burned mass fraction of pressure-based techniques has been compared with that of 2- and 3-zone combustion models. • The time frequency analysis has been employed to simulate complex diesel combustion events. - Abstract: In-cylinder pressure measurement and analysis has historically been a key tool for off-line combustion diagnosis in internal combustion engines, but online applications for real-time condition monitoring and combustion management have recently become popular. The present investigation presents and compares different low computing-cost in-cylinder pressure based methods for the analyses of the main features of combustion, that is, the start of combustion, the end of combustion and the crankshaft angle that responds to half of the overall burned mass. The instantaneous pressure in the combustion chamber has been used as an input datum for the described analytical procedures and it has been measured by means of a standard piezoelectric transducer. Traditional pressure-based techniques have been shown to be able to predict the burned mass fraction time history more accurately in spark ignition engines than in diesel engines. The most suitable pressure-based techniques for both spark ignition and compression ignition engines have been chosen on the basis of the available experimental data. Time–frequency analysis has also been applied to the analysis of diesel combustion, which is richer in events than spark ignited combustion. Time frequency algorithms for the calculation of the mean instantaneous frequency are computationally efficient, allow the main events of the diesel combustion to be identified and provide the greatest benefits in the presence of multiple injection events. These algorithms can be optimized and applied to onboard diagnostics tools designed for real control, but can also be used as an advanced validation tool for

  12. Benchmarking the internal combustion engine and hydrogen

    International Nuclear Information System (INIS)

    Wallace, J.S.

    2006-01-01

    The internal combustion engine is a cost-effective and highly reliable energy conversion technology. Exhaust emission regulations introduced in the 1970's triggered extensive research and development that has significantly improved in-use fuel efficiency and dramatically reduced exhaust emissions. The current level of gasoline vehicle engine development is highlighted and representative emissions and efficiency data are presented as benchmarks. The use of hydrogen fueling for IC engines has been investigated over many decades and the benefits and challenges arising are well-known. The current state of hydrogen-fueled engine development will be reviewed and evaluated against gasoline-fueled benchmarks. The prospects for further improvements to hydrogen-fueled IC engines will be examined. While fuel cells are projected to offer greater energy efficiency than IC engines and zero emissions, the availability of fuel cells in quantity at reasonable cost is a barrier to their widespread adaptation for the near future. In their current state of development, hydrogen fueled IC engines are an effective technology to create demand for hydrogen fueling infrastructure until fuel cells become available in commercial quantities. During this transition period, hydrogen fueled IC engines can achieve PZEV/ULSLEV emissions. (author)

  13. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Dept. of Mechanical Engineering

    2004-02-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters. (author)

  14. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2004-01-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters

  15. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  16. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  17. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  18. Combustion modelling of a fuel oil flame; Modelisation de la combustion d`une flamme de fuel

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Mechitouan, N.

    1996-10-01

    The combustion modelling of a fuel oil flame has been realised in the scope of the R and D `Combustion Turbines`. This report presents the results of the 2D simulation of a fuel oil flame (n-octane), at atmospherical pressure, without swirl, realised using the Eulerian two-phase flow software Melodif. This calculation has been defined in collaboration with IFP, using experimental data from the IFRP. The hollow cone spray of liquid fuel is injected in the middle of the combustion chamber, with a co-flowing annular air. The furnace diameter is 2 meter and its length is 6,25 meter. A large recirculation zone is induced by the air flow, and leads to take into account the whole furnace, in order to avoid some problems with the limit conditions at the outlet. This calculation deals with droplets evaporation, gaseous phase combustion and radiation heat transfer. Predictions concerning gaseous axial mean velocity and mean temperature gradient in the flame, are in good agreement with measurements. However the temperature is too low in the peripheral zone of the flow. This is probably due to the fact that heat exchanges at the wall furnace are not correctly represented, because of a lack of detailed limit conditions for the walls. The mean radial velocity is not so well predicted, but this measurement is also quite difficult in a strongly longitudinal flow. The results concerning the dispersed phase will not be compared, because no measurements on the liquid fuel were available. As it has been experimentally observed, the simulation shows that the fuel oil spray quickly evaporates as it enters the combustion chamber. This result allows to propose to use an homogeneous approach (hypothesis of no-slipping between the two phases) in an Eulerian one-phase flow code, in case of a 3D simulation of liquid fuel turbine. (authors)

  19. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  20. Quality Determination of Biomass for Combustion

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2013-01-01

    A high content of minerals in biomass feedstock may cause fouling, slagging, and corrosion in the furnace during combustion. Here, a new pressurized microwave digestion method for biomass digestion prior to elemental analysis is presented. This high-throughput method is capable of processing...

  1. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  2. Experimental study of improvement on combustion control of fluidized bed combustion chamber; Ryudosho shokyakuro no nenshosei no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Izumiya, T.; Baba, K.; Koshida, H.; Uetani, J.; Furuta, M.

    1998-10-29

    Nippon Steel Corporation has carried out an experimental study using the Yawata waste incinerator plant in order to improve combustion control of a fluidized bed combustion chamber. For controlling the forming of dioxin, combustion control is very important in addition to conventional methods. In this paper, we report two studies about improvements on combustion control. In the first study, we verified improvement on combustion control by modifying gas flow at the freeboard. The operational results of the experiments were studied using the numerical model of the combustion chamber. The modification of gas flow at freeboard was confirmed to be effective to obtain a compact design of fluidized bed combustion chamber for municipal waste. In the second, study we improved combustion control for sewage combustion with municipal waste. In burning municipal waste and sewage, it is especially required to take combustion control into careful consideration. In this experiment, we developed a new device for supplying sewage for the appropriate controlling combustion, and verified its effectiveness to combustion control and an effective reduction of dioxin. (author)

  3. Calculation of combustible waste fraction (CWF) estimates used in organics safety issue screening

    International Nuclear Information System (INIS)

    Heasler, P.G.; Gao, F.; Toth, J.J.

    1998-08-01

    This report describes how in-tank measurements of moisture (H 2 O) and total organic carbon (TOC) are used to calculate combustible waste fractions (CWF) for 138 of the 149 Hanford single shell tanks. The combustible waste fraction of a tank is defined as that proportion of waste that is capable of burning when exposed to an ignition source. These CWF estimates are used to screen tanks for the organics complexant safety issue. Tanks with a suitably low fraction of combustible waste are classified as safe. The calculations in this report determine the combustible waste fractions in tanks under two different moisture conditions: under current moisture conditions, and after complete dry out. The first fraction is called the wet combustible waste fraction (wet CWF) and the second is called the dry combustible waste fraction (dry CWF). These two fractions are used to screen tanks into three categories: if the wet CWF is too high (above 5%), the tank is categorized as unsafe; if the wet CWF is low but the dry CWF is too high (again, above 5%), the tank is categorized as conditionally safe; finally, if both the wet and dry CWF are low, the tank is categorized as safe. Section 2 describes the data that was required for these calculations. Sections 3 and 4 describe the statistical model and resulting fit for dry combustible waste fractions. Sections 5 and 6 present the statistical model used to estimate wet CWF and the resulting fit. Section 7 describes two tests that were performed on the dry combustible waste fraction ANOVA model to validate it. Finally, Section 8 presents concluding remarks. Two Appendices present results on a tank-by-tank basis

  4. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  5. FY1994 annual report on the advanced combustion science in microgravity field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Researches were implemented continuously from the previous year on combustion equipment which enables advanced combustion technologies by studying combustion in a microgravity field, for the purpose of preventing environmental pollution caused by diversification of energy sources and exhaust gasses. In joint studies with NASA, research was conducted at both ends concerning the interaction of fuel droplets in a microgravity field; namely, high pressure combustion of binary fuel sprays at NASA against interaction in high pressure spray combustion of binary fuel at Japan side, and ignition and flame spread in microgravity field at NASA against combustion characteristics of organic solid fuels at Japan side. In fiscal 1994, in addition to the test equipment built in the previous year, a fuel droplet combustion test device was manufactured, as were a gas sampling and analyzing device, particle speed measuring device, and laser induced fluorescence measuring device. The tests using these measuring devices and microgravity test equipment were carried out 112 times, thereby establishing the measuring method of flame structure which was an objective of the present year. (NEDO)

  6. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  7. Combustion means for solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Murase, D.

    1987-09-23

    A combustion device for solid fuel, suitable for coal, coke, charcoal, coal-dust briquettes etc., comprising:- a base stand with an opening therein, an imperforate heat resistant holding board locatable to close said opening; a combustion chamber standing on the base stand with the holding board forming the base of the combustion chamber; a wiper arm pivoted for horizontal wiping movement over the upper surface of the holding board; an inlet means at a lower edge of said chamber above the base stand, and/or in a surrounding wall of said chamber, whereby combustion air may enter as exhaust gases leave the combustion chamber; an exhaust pipe for the exhaust gases; generally tubular gas-flow heat-exchange ducting putting the combustion chamber and exhaust pipe into communication; and means capable of moving the holding board into and out of the opening for removal of ash or other residue. The invention can be used for a heating system in a house or in a greenhouse or for a boiler.

  8. A Physics and Tabulated Chemistry Based Compression Ignition Combustion Model: from Chemistry Limited to Mixing Limited Combustion Modes Un modèle de combustion à allumage par compression basé sur la physique et la chimie tabulée : des modes de combustion contrôlés par la chimie jusqu’aux modes contrôlés par le mélange

    Directory of Open Access Journals (Sweden)

    Bordet N.

    2011-11-01

    Full Text Available This paper presents a new 0D phenomenological approach to predict the combustion process in multi injection Diesel engines operated under a large range of running conditions. The aim of this work is to develop a physical approach in order to improve the prediction of in-cylinder pressure and heat release. Main contributions of this study are the modeling of the premixed part of the Diesel combustion with a further extension of the model for multi-injection strategies. In the present model, the rate of heat release due to the combustion for the premixed phase is related to the mean reaction rate of fuel which is evaluated by an approach based on tabulated local reaction rate of fuel and on the determination of the Probability Density Function (PDF of the mixture fraction (Z, in order to take into consideration the local variations of the fuel-air ratio. The shape of the PDF is presumed as a standardized β-function. Mixture fraction fluctuations are described by using a transport equation for the variance of Z. The standard mixture fraction concept established in the case of diffusion flames is here adapted to premixed combustion to describe inhomogeneity of the fuel-air ratio in the control volume. The detailed chemistry is described using a tabulated database for reaction rates and cool flame ignition delay as a function of the progress variable c. The mixing-controlled combustion model is based on the calculation of a characteristic mixing frequency which is a function of the turbulence density, and on the evolution of the available fuel vapor mass in the control volume. The developed combustion model is one sub-model of a thermodynamic model based on the mathematical formulation of the conventional two-zone approach. In addition, an extended sub-model for multi injection is developed to take into account interactions between each spray by describing their impact on the mixture formation. Numerical results from simulations are compared with

  9. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  10. Combustion of Waste Wood. Second phase of the collaboration project on waste wood combustion

    International Nuclear Information System (INIS)

    Andersson, Annika; Andersson, Christer; Eriksson, Jan; Hemstroem, Bengt; Jungstedt, Jenny; Kling, Aasa; Bahr, Bo von; Ekvall, Annika; Eskilsson, David; Tullin, Claes; Harnevie, Henrik; Sieurin, Jan; Keihaes, Juha; Mueller, Christian; Berg, Magnus; Wikman, Karin

    2003-08-01

    Combustion of waste wood has during the last decade increased dramatically and this has resulted in a number of Swedish plants using this fuel, e.g. Handeloe P11 (Norrkoeping) and ldbaecken P3 (Nykoeping), and yet other plants that are under construction (e.g. Nynaeshamn). The experience from these plants are that waste wood combustion results in a number of operational problems. To some extent these problems are different compared with the problems related to combustion of other biofuels but the situation is not directly comparable to waste incinerators. The problems are mainly related to slagging and fouling of heat exchanger surfaces and accelerated corrosion at relatively low temperature compared to the situation for ordinary biofuels. In some cases an increase in the emissions of specific substances can also result in difficulties to fulfil the EC-directive on waste combustion. Within previous projects the main problems related to combustion of waste wood have been identified and to some extent the cause of these problems has been clarified. One result of this reported investigation is a deeper understanding of the actual causes of these problems. However, the most important result is a number of recommendations for different measures on how to achieve disturbance-free combustion of waste wood. These recommendations actually summarises the most important possible solutions on how to achieve a disturbance-free operation and a lower maintenance cost for boilers combusting waste wood and can thereby be regarded as a short summery of the whole project: 1) Improving fuel quality by Improved sorting at the source and Sieving of the fuel -> Reducing the amount of metals and chlorine and Separation of fines and thereby reducing the amount of metals. 2) Combustion modifications by Avoiding reducing conditions at the heat exchanger surfaces -> Minimising slagging, fouling and corrosion. 3) Additives or co-combustion by Addition of sulphur with the fuel; Injection of

  11. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  12. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  13. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ronda, A., E-mail: alirg@ugr.es [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Della Zassa, M. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy); Martín-Lara, M.A.; Calero, M. [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Canu, P. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy)

    2016-05-05

    Highlights: • The fate of Pb during combustion at two scales of investigation was studied. • Results from combustion in a flow reactor and in the thermobalance were consistent. • The Pb contained in the solid remained in the ashes. • The Pb does not interfere in the use of OTP as fuel. • The combustion of Pb(II)-loaded OTP does not cause environmental hazards. - Abstract: The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10{sup 2} larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards.

  14. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  15. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... hypophthalmus inhabits the Mekong river system covering two climate zones during its life cycle and migrating more than 2000 km from hatching in northern Laos to its adult life in the southern delta region. It is a facultative air-breather with well-developed gills and air-breathing organ and an unusual...... circulatory bauplan. Here we examine the question of its optimal temperature through aspects of its cardio respiratory physiology including temperature effects on blood oxygen binding, ventilation and blood gasses, stereological measures of cardiorespiratory system, metabolic rate and growth. Comparing...

  16. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  17. Experimental study of the kinetics of dry, forward combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.W.; Buthod, A.P.; Allag, O.

    1979-02-01

    Results are presented of an experimental investigation of dry, forward combustion with two main objectives, viz, (1) to develop a method for determining the kinetic perameters of fuel laydown and burnoff from combustion tube data, and (2) to evaluate them for a particular crude-sand mixture. In the light of past experimental work, a two-step chain reaction model is postulated in which fuel laydown and burnoff are considered as competitive kinetic reactions. Laboratory equipment consisting of a combustion tube assembly and sampling probe, a flow control system, an electronic control assembly, and a fluid analysis system are described in detail. The sampling probe provides a novel method for taking fluid samples at selected interior points within the combustion cell. Six experimental runs were performed using a 27/sup 0/ API Prudhoe Bay crude. Analyses of the data indicte that, in addition to the coke residue, some light ends of the crude enter into the total fuel consumed by the burning zone. The use of the moveable sampling probe permitted the reconstruction of CO + CO/sub 2/ production rate curves as functions of time and distance. A technique is presented for solving the integral equation and estimating the activation energies, pre-exponential factors, and some associated constants for fuel deposition and combustion. It was found that operating pressure has essentially no effect on the exponential energy, but it does affect the preexponential (or frequency) factor. It is concluded that the essential phenomena of forward combustion can be adequately depicted by the two-step chain reaction concept, and that kinetic data,or their bounds, can be determined from combustion tube data.

  18. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical

  19. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  20. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  1. Multi-User Hardware Solutions to Combustion Science ISS Research

    Science.gov (United States)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  2. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    Science.gov (United States)

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of

  3. Gas-phase reactions at combustion and gasification

    International Nuclear Information System (INIS)

    Hupa, M.; Kilpinen, P.; Chowdhury, K.; Brink, A.; Mueller, C.

    1995-01-01

    Formation and destruction of gaseous nitrogen pollutants at combustion (NO x , N 2 O) and gasification (NH 3 , HCN) are studied based on detailed chemical kinetic modelling and experiments in laboratory reactors. During 1994 the following topics have been studied: (a) nitrogen reactions in pressurized combustion processes (in co-operation with the LIEKKI projects 202 and 204), (b) NO x reduction by staging techniques in CO 2 , rich combustion processes, (c) HCN reactions at pyrolysis, (d) formation of soot precursors in a blast furnace (in co-operation with the SULA project 103) (e) incorporation of better NO x description into furnace models, (in co-operation with the LIEKKI project Y01). NH 3 conversion to N 2 in gasification product gases, (in co-operation with the LIEKKI project 203). In this report, some results of the items (a-c) will be presented. The results of items (d-f) are described in the reports by the co-operation projects. (author)

  4. An emergency response mobile robot for operations in combustible atmospheres

    Science.gov (United States)

    Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)

    1993-01-01

    A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.

  5. Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2013-01-01

    Highlights: • High costs of biogas purification and low calorific value of biogas are the main obstacles of biogas utilization. • The energy of biogas can be extracted by flameless combustion without any modification in burner or combustion system. • The efficiency of biogas flameless combustion and conventional combustion were 53% and 32% respectively. • The temperature inside the biogas flameless chamber is uniform. • In biogas flameless combustion, NO x and CO 2 formation decrease drastically in comparison with traditional combustion. - Abstract: Biogas generated in the anaerobic digestion of biomass and organic wastes by micro-organisms can be applied for heating, transportation and power generation as a renewable energy source. However, low calorific value (LCV) of biogas is one the most important bottlenecks of biogas conversion into electrical or thermal energy. Indeed, the presence of corrosive gases such as H 2 S and water vapor in biogas components makes some dilemmas in biogas purification and utilization. In order to obtain the efficient biogas utilization method, different biogas resources, physical and chemical properties of biogas and biogas combustion characteristics should be considered. In this paper biogas was utilized in lab-scale flameless combustion furnace and the performance of flameless combustion chamber fueled by biogas has been presented. Results demonstrated that flameless combustion is one of the best feasible strategies for biogas utilization. Uniformity of temperature in the flameless furnace increases the durability of refractory and related equipment. Simplicity of the flameless burner, pollutant formation reduction and fuel consumption decreases are the main causes of biogas flameless combustion supremacy

  6. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  7. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  8. Experimental research on combustion fluorine retention using calcium-based sorbents during coal combustion (II)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Q.; Ma, X.; Liu, J.; Wu, X.; Zhou, J.; Cen, K. [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering

    2008-12-15

    Fluoride pollution produced by coal burning can be controlled with the calcium-based sorbent combustion fluorine technique in which calcium-based sorbents are mixed with the coal or sprayed into the combustion chamber. In a fixed bed tube furnace combustion experiment using one calcium-based natural mineral, limestone and one calcium-based building material, it was shown that the calcium-based sorbent particle grain size and pore structure have a big influence on the combustion fluorine retention effect. Reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development. 8 refs., 1 fig., 5 tabs.

  9. Combustion of cork waste in a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Miranda, M.; Cabrita, I. [Dept. de Tecnologias de Combustao, ITE-INETI, Lisboa (Portugal); Abelha, P. [Coaltec e Ambiente, Lisboa (Portugal)

    1999-07-01

    There is currently an ongoing joint project between Portugal and Spain, which is being funded by the FAIR programme. The principal objective of the FAIR project is to investigate the application of the fluidised bed combustion (FBC) technology to burn cork wastes with the aim of overcoming the difficulties currently experienced in the cork processing industries. The combustion studies at INETI were carried out using the 300 kW{sub th} circulating fluidised bed facility. The combustor is square in cross section with each side being 0.3 m long. The combustor height is 5 m. The temperatures in the bed, the riser and that of the flue gases leaving the reactor were continuously monitored. The combustion gases leaving the reactor passed through the recycling cyclone first to capture most of particulates elutriated out of the combustor. The solid particles were intermittently collected for analysis to determine the amount of carbon present, which helped the combustion efficiency to be calculated. Instantaneous measurements of O{sub 2}, CO, CO{sub 2}, NO{sub x}, N{sub 2}O and SO{sub 2} present levels in the flue gases were also carried out. The combustion tests were done with both the cork waste dust and granular virgin cork. The difference is that cork dust gets contaminated during the process due to the use of various additives. Most of the combustion took place in the riser where the temperature was at times up to 523 K above that of the bed. The unburned carbon level was low ranging from about 1.5 to 2.% suggesting that most of the particles burned to completion in the riser. (orig.)

  10. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Biorremediación para la degradación de hidrocarburos totales presentes en los sedimentos de una estación de servicio de combustible

    OpenAIRE

    Ñústez Cuartas, Diana Cristina; Paredes Cuervo, Diego; Cubillos Vargas, Janneth

    2014-01-01

    En la presente investigación, se evaluó el efecto de la Bioaumentación y Bioestimulación de los sedimentos contaminados con hidrocarburos (HTP) de una Estación de Servicio de Combustible (EDS), provenientes del mantenimiento de las unidades de tratamiento de aguas residuales industriales, como son: la trampa de grasa, canales perimetrales y desarenador del lavado vehicular. Para el desarrollo del trabajo, se utilizaron ocho mesocosmos, compuestos por canastas de polietileno de alta densidad, ...

  12. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  13. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  14. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  15. Energetic study of combustion instabilities and genetic optimisation of chemical kinetics; Etude energetique des instabilites thermo-acoustiques et optimisation genetique des cinetiques reduites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ch.E.

    2005-12-15

    Gas turbine burners are now widely operated in lean premixed combustion mode. This technology has been introduced in order to limit pollutants emissions (especially the NO{sub x}), and thus comply with environment norms. Nevertheless, the use of lean premixed combustion decreases the stability margin of the flames. The flames are then more prone to be disturbed by flow disturbances. Combustion instabilities are then a major problem of concern for modern gas turbine conception. Some active control systems have been used to ensure stability of gas turbines retro-fitted to lean premixed combustion. The current generation of gas turbines aims to get rid of these control devices getting stability by a proper design. To do so, precise and adapted numerical tools are needed even it is impossible at the moment to guarantee the absolute stability of a combustion chamber at the design stage. Simulation tools for unsteady combustion are now able to compute the whole combustion chamber. Its intrinsic precision, allows the Large Eddy Simulation (LES) to take into account numerous phenomena involved in combustion instabilities. Chemical modelling is an important element for the precision of reactive LES. This study includes the description of an optimisation tools for the reduced chemical kinetics. The capacity of the LES to capture combustion instabilities in gas turbine chamber is also demonstrated. The acoustic energy analysis points out that the boundary impedances of the combustion systems are of prime importance for their stability. (author)

  16. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  17. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  18. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  19. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  20. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  1. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  2. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  3. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  4. Magnox Fuel Cycles; Cycles des combustibles gaines de magnox; Toplivnye tsikly magnoks; Ciclos de combustible magnox

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. [United Kingdom Atomic Energy Authority, Risley, Warrington, Lancs (United Kingdom)

    1963-10-15

    The interaction between reactivity flux and temperature distributions and irradiation patterns caused by different refuelling policies is considered and present calculation methods outlined. Various refuelling schemes for both batch and continuous discharge systems are compared. The problem of the efficient irradiation of the first charge is considered together with delayed onset refuelling and shuffling schemes. The economic advantages and problems of using non-natural uranium in flattened reactors are discussed. The practical consideration of on-load refuelling schemes on new reactors are considered and reference is made to the experience gained on Bradwell and Berkeley. The effect of the variation of fuel cost and endurance on fuel-cycle economics is outlined. (author) [French] L'auteur etudie en premier lieu l'interaction entre les distributions de la temperature du flux et de la reactivite, d'une part, et le regime de l'irradiation, d'autre part, dans le cas de differents programmes de rechargement du combustible et il decrit brievement les methodes de calcul actuelles. Il compare ensuite differents programmes de rechargement du combustible pour le dechargement par lots et le dechargement continu. Il etudie le probleme de l'irradiation effica ce de la premiere charge dans le cadre de programmes de remplacement et de deplacement des cartouches a action retardee. Il analyse les avantages economiques de l'utilisatio n d'uranium non naturel dans les reacteurs a flux aplati et les problemes qu'elle pose. Il examine les aspects pratiques des programmes de rechargement en marche pour les nouveaux reacteurs, en se referant a l'experience acquise au moyen des reacteurs de Bradwell et de Berkeley. Enfin, il decrit brievement les effets des variations du cout et de la resistance du combustible sur l'economie des cycles de combustible. (author) [Spanish] La memoria estudia la interaccion entre el flujo de reactividad y la distribucion de temperaturas, asi como los

  5. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    International Nuclear Information System (INIS)

    Steve Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Cliff Smith

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this fifth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was further tested in the LES code. The use of multiple trees and periodic tree dumping was investigated. Implementation of the Linear Eddy Model (LEM) for subgrid chemistry was finished for serial applications. Validation of the model on a backstep reacting case was performed. Initial calculations of the SimVal experiment were performed for various barrel lengths, equivalence ratio, combustor shapes, and turbulence models. The effects of these variables on combustion instability was studied. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. Next quarter, the 2nd consortium meeting will be held at CFDRC. LES software development and testing will continue. Alpha testing of the code will be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for chemical kinetics speed-up in CFD-ACE+, should be accomplished

  6. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1998-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  7. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  8. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    Science.gov (United States)

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  10. Fifteenth combustion research conference

    International Nuclear Information System (INIS)

    1993-01-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers

  11. The Heat of Combustion of Tobacco and Carbon Oxide Formation

    Directory of Open Access Journals (Sweden)

    Norman AB

    2014-12-01

    Full Text Available Recent studies demonstrated a relationship between mass burn rates of straight-grade cigarettes and heats of combustion of the tobacco materials. In the present work, relationships between measured heats of combustion and elemental composition of the tobacco materials were further analyzed. Heats of combustion measured in oxygen were directly correlated with the carbon and hydrogen content of the tobacco materials tested. Ash content of the materials was inversely related to the heats of combustion. The water insoluble residues from exhaustively extracted tobacco materials showed higher heats of combustion and higher carbon content than the non-extracted materials, confirming a direct relationship between carbon content and heat of combustion. A value for the heat of formation of tobacco was estimated (1175 cal/g from the heat of combustion data and elemental analysis results. The estimated value for heat of formation of tobacco appears to be constant regardless of the material type. Heat values measured in air were uniformly lower than the combustion heats in oxygen, suggesting formation of CO and other reaction products. Gases produced during bomb calorimetry experiments with five tobacco materials were analyzed for CO and CO2 content. When the materials were burned in oxygen, no CO was found in the gases produced. Measured heats of combustion matched estimates based on CO2 found in the gas and conversion of the sample hydrogen content to water. Materials burned in air produced CO2 (56% to 77% of the sample carbon content and appreciable amounts of CO (7% to 16% of the sample carbon content. Unburned residue containing carbon and hydrogen was found in the air combustion experiments. Estimated heat values based on amounts of CO and CO2 found in the gas and water formed from the hydrogen lost during combustion in air were higher than the measured values. These observations indicate formation of products containing hydrogen when the materials

  12. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  13. A new combustion route to γ-Fe2O3 synthesis

    Indian Academy of Sciences (India)

    A new combustion route for the synthesis of -Fe2O3 is reported by employing purified -Fe2O3 as aprecursor in the present investigation. This synthesis which is similar to a self propagation combustion reaction, involves fewer steps, a shorter overall processing time, is a low energy reaction without the need of any ...

  14. Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation

    International Nuclear Information System (INIS)

    Kim, Kyung Min; Yun, Nam Geon; Jeon, Yun Heung; Lee, Dong Hyun; Cho, Yung Hee

    2010-01-01

    Prediction of temperature distributions on hot components is important in development of a gas turbine combustion liner. The present study investigated conjugated heat transfer to obtain temperature distributions in a combustion liner with six combustion nozzles. 3D numerical simulations using FVM commercial codes, Fluent and CFX were performed to calculate combustion and heat transfer distributions. The temperature distributions in the combustor liner were calculated by conjugation of conduction and convection (heat transfer coefficients) obtained by combustion and cooling flow analysis. The wall temperature was the highest on the attachment points of the combustion gas from combustion nozzles, but the temperature gradient was high at the after shell section with low wall temperature

  15. Modeling and simulating combustion and generation of NOx

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    2007-01-01

    This paper deals with the modeling and simulation of combustion processes and generation of NO x in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion. (author)

  16. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  17. Multi-zone modelling of PCCI combustion

    NARCIS (Netherlands)

    Egüz, U.; Somers, L.M.T.; Leermakers, C.A.J.; Goey, de L.P.H.

    2011-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) combustion is a promising concept for the diesel combustion. Although EDI PCCI assures very low soot and NO xemission levels, the injection is uncoupled from combustion, which narrows down the operating conditions. The main

  18. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  19. An improved combustion apparatus for the determination of organically bound tritium in environmental samples

    International Nuclear Information System (INIS)

    Du, Lin; Shan, Jian; Ma, Yu-Hua; Wang, Ling; Qin, Lai-Lai; Pi, Li; Zeng, You-Shi; Xia, Zheng-Hai; Wang, Guang-Hua; Liu, Wei

    2016-01-01

    This paper reports an improved combustion apparatus for the determination of organically bound tritium in environmental samples. The performance of this apparatus including the recovery rate and reproducibility was investigated by combusting lettuce and pork samples. To determine the factors for the different recovery rates of lettuce and pork and investigate whether the samples were completely oxidized, the ashes and exhaust gases produced by the combustion were analyzed. The results indicate that the apparatus showed an excellent performance in the combustion of environmental samples. Thus, the improvements conducted in this study were effective. - Highlights: • Three major improvements were made to develop the combustion apparatus for OBT. • The recovery is higher and more stable than that of current equipment. • Little hydrogen was present in the ashes and exhaust after combustion.

  20. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Liu, Yan; Lei, Fulin; Xiao, Yunhan

    2014-01-01

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH ∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NO x and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NO x but lower CO emissions, while the increase of equivalence ratio led to the increase of NO x and the decrease of CO emissions

  1. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  2. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods

    International Nuclear Information System (INIS)

    Collet, S.

    2000-02-01

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  3. Modelling the effects of heat loss and fuel/air mixing on turbulent combustion in gas turbine combustion systems

    NARCIS (Netherlands)

    Gövert, S.

    2016-01-01

    The present study is concerned with the development and validation of a simulation framework for the accurate prediction of turbulent reacting flows at reduced computational costs. Therefore, a combustion model based on the tabulation of laminar premixed flamelets is employed. By compilation of

  4. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  5. Combustible dusts: a serious industrial hazard.

    Science.gov (United States)

    Joseph, Giby

    2007-04-11

    After investigating three fatal explosions in manufacturing plants, the U.S. Chemical Safety and Hazard Investigation Board (CSB) has concluded: The explosive hazard of combustible dust is not well known, and helping industry to understand this hazard is a priority. Prompted by these three incidents in North Carolina, Kentucky and Indiana and the need to increase the hazard awareness, CSB is conducting a study to examine the nature and scope of dust explosion risks in industry and to identify initiatives that may be necessary to more effectively prevent combustible dust fires and explosions. Such initiatives may include regulatory action, voluntary consensus standards, or other measures that could be taken by industry, labor, government, and other parties. A critical task of the dust study is analyzing past incidents to determine the severity of the problem within industry. The analysis is focusing on the number of incidents, injuries and fatalities, industrial sectors affected, and regulatory oversight. This paper presents the preliminary findings from CSBs analysis of combustible dust incidents over the past 25 years. This paper has not been approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of any Board-approved report mentioned in this paper. Any material in the paper that did not originate in a Board-approved report is solely the responsibility of the authors and does not represent an official finding, conclusion, or position of the Board.

  6. Emission and combustion characteristics of multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no nensho to haishutsubutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Miyamoto, T; Tsujimura, K [New A.C.E. Institute Co. Ltd., Tokyo (Japan); Kobayashi, S; Shimizu, K [Japan Automobile Research Institute, Tsukuba (Japan)

    1997-10-01

    A new concept of multiple stage diesel combustion was studied by means of engine test, combustion observation and numerical simulation, in order to reduce NOx emissions at high load conditions. With this concept, the premixed combustion occurs under the fuel lean conditions and the diffusion combustion occurs under the high temperature conditions. As seen in the result of combustion observation, a first stage combustion occurs with no luminous flame. A second stage combustion occurs with a luminous flame after very short ignition delay period. However the luminous flame is disappeared immediately. Because cylinder temperature is high, and hence soot oxidizes immediately. 5 refs., 11 figs., 1 tab.

  7. Big data extraction with adaptive wavelet analysis (Presentation Video)

    Science.gov (United States)

    Qu, Hongya; Chen, Genda; Ni, Yiqing

    2015-04-01

    Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.

  8. Iodine release from sodium pool combustion

    International Nuclear Information System (INIS)

    Sagawa, N.; Fukushima, Y.; Yokota, N.; Akagane, K.; Mochizuki, K.

    1979-01-01

    Iodine release associated with sodium pool combustion was determined by heating 20 gr sodium containing sodium iodide, which was labelled with 131 I and dissolved in the sodium in concentration of 1∼1,000 ppm, to burn on a nickel crucible in conditioned atmosphere in a closed vessel of 0.4 m 3 . Oxygen concentration was changed in 5∼21% and humidity in 0∼89% by mixing nitrogen gas and air. Combustion products were trapped by a Maypack filter composed of particle filters, copper screens and activated charcoal beds and by a glass beads pack cooled by liquid argon. Iodine collected on these filter elements was determined by radio-gas chromatography. When the sodium sample burned in the atmosphere of air at room temperature, the release fractions observed were 6∼33% for sodium and 1∼20% for iodine added in the sodium. The release iodine was present in aerosol at a ratio of 98%, and the remainder in the gas form. The release fraction of iodine trended to decrease as oxygen concentration and humidity in the atmosphere increased. No organic iodide was detected in the combustion products. (author)

  9. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc.), Collectible Concepts Group, Inc., Communitronics of... is a lack of current and accurate information concerning the securities of Clean Energy Combustion...

  10. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  11. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  12. Corn Stover and Wheat Straw Combustion in a 176-kW Boiler Adapted for Round Bales

    Directory of Open Access Journals (Sweden)

    Joey Villeneuve

    2013-11-01

    Full Text Available Combustion trials were conducted with corn stover (CS and wheat straw (WS round bales in a 176-kW boiler (model Farm 2000. Hot water (80 °C stored in a 30,000-L water tank was transferred to a turkey barn through a plate exchanger. Gross calorific value measured in the laboratory was 17.0 and 18.9 MJ/kg DM (dry matter for CS and WS, respectively. Twelve bales of CS (1974 kg DM total, moisture content of 13.6% were burned over a 52-h period and produced 9.2% ash. Average emissions of CO, NOx and SO2 were 2725, 9.8 and 2.1 mg/m3, respectively. Thermal efficiency was 40.8%. For WS, six bales (940 kg DM total, MC of 15% were burned over a 28-h period and produced 2.6% ash. Average emissions of CO, NOx and SO2 were 2210, 40.4 and 3.7 mg/m3, respectively. Thermal efficiency was 68.0%. A validation combustion trial performed a year later with 90 CS bales confirmed good heating performance and the potential to lower ash content (6.2% average.

  13. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  14. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant

    Science.gov (United States)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan

    2017-07-01

    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  15. Turbulent combustion and DDT events as an upper bound for hydrogen mitigation techniques

    International Nuclear Information System (INIS)

    Dorofeev, S.B.

    1997-01-01

    A brief review is presented on the limiting conditions for fast combustion regimes (accelerated flames, fast turbulent deflagrations, and DDT events), and on their effect on confining structures. Main attention is given to hydrogen-air-steam mixtures typical for severe accidents in nuclear power plants. Comparison is made of the pressure loads resulting from different combustion regimes. Transient wave processes are shown to be very important for description of the pressure loads. Different limiting conditions are discussed for DDT being the most dangerous combustion event. Possibility of DDT is shown to be limited by the geometrical scale. Detailed description is presented for DDT criterion based on the minimum scale requirement for detonation formation. This criterion gives a conservative estimate that DDT is impossible, if characteristic size of combustible mixture is less than 7 detonation cell widths of the mixture. Conditions limiting possibility of flame acceleration are also discussed. (author)

  16. Control device for combustible gas concentration

    International Nuclear Information System (INIS)

    Osawa, Yasuo.

    1988-01-01

    Purpose: To control the concentration of combustible gases such as hydrogen evolved in a reactor container upon loss-of-coolant accidents. Constitution: Combustible gases evolved from the lower area of a drywell in which a combustible atmosphere is liable to be formed locally are taken out through a take-out pipeway to the outside of a reactor container and processed by a hydrogen-oxygen recombiner. Combustible gases in other areas of the drywell are also introduced to the lower area of the drywell and then taken-out externally for procession. Further, combustible gases in the suppression chamber are introduced by the opening of a vacuum breaking valve through a gas supply pipe to the lower area of the drywell and fluids in the drywell are stirred and diluted with fluids exhausted from the gas supply pipe. Disposition of such take-out pipeway and gas supply pipe can reduce the possibility of forming local combustible atmosphere to improve the integrity of the reactor container. (Kamimura, M.)

  17. Adaptation to permafrost in the Canadian north: Present and future

    International Nuclear Information System (INIS)

    Woo Mingko; Rouse, W.R.; Young, K.L.; Lewkowicz, A.G.

    1993-01-01

    Human-induced climate warming is believed to be imminent, although its exact magnitude is uncertain. Such a warming will have a dramatic effect on permafrost, which underlies about half of Canada's land mass. Adaptation of the land to climatic warming will include diminution of permafrost both in lateral and vertical extent, with concomitant responses in the landscape such as development of thermokarst, slides and slumping in hilly terrain, and altering of hydrologic regimes. Since northern development has relied on special techniques that preserve permafrost to ensure foundation stability, climatic warming will demand adjustment in engineering designs for new facilities and alteration of maintenance procedures for existing facilities. Recommendations are presented for future research, both on permafrost and its linkages to climatic and other environmental factors, and on risk analyses of engineering projects

  18. Techniques de combustion Combustin Techniques

    Directory of Open Access Journals (Sweden)

    Perthuis E.

    2006-11-01

    Full Text Available L'efficacité d'un processus de chauffage par flamme est étroitement liée à la maîtrise des techniques de combustion. Le brûleur, organe essentiel de l'équipement de chauffe, doit d'une part assurer une combustion complète pour utiliser au mieux l'énergie potentielle du combustible et, d'autre part, provoquer dans le foyer les conditions aérodynamiques les plus propices oux transferts de chaleur. En s'appuyant sur les études expérimentales effectuées à la Fondation de Recherches Internationales sur les Flammes (FRIF, au Groupe d'Étude des Flammes de Gaz Naturel (GEFGN et à l'Institut Français du Pétrole (IFP et sur des réalisations industrielles, on présente les propriétés essentielles des flammes de diffusion aux combustibles liquides et gazeux obtenues avec ou sans mise en rotation des fluides, et leurs répercussions sur les transferts thermiques. La recherche des températures de combustion élevées conduit à envisager la marche à excès d'air réduit, le réchauffage de l'air ou son enrichissement à l'oxygène. Par quelques exemples, on évoque l'influence de ces paramètres d'exploitation sur l'économie possible en combustible. The efficiency of a flame heating process is closely linked ta the mastery of, combustion techniques. The burner, an essential element in any heating equipment, must provide complete combustion sa as to make optimum use of the potential energy in the fuel while, at the same time, creating the most suitable conditions for heat transfers in the combustion chamber. On the basis of experimental research performed by FRIF, GEFGN and IFP and of industrial achievements, this article describesthe essential properties of diffusion flames fed by liquid and gaseous fuels and produced with or without fluid swirling, and the effects of such flames on heat transfers. The search for high combustion temperatures means that consideration must be given to operating with reduced excess air, heating the air or

  19. Experimental study of the heat of combustion of electrical cables: Pitcairn/calorimetre test bench; Etude experimentale sur la combustion de cables electriques: le banc d`essais Pitcairn/calorimetre

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, B.; Bosseboeuf, G.

    1995-11-01

    The R and D has been developing for about ten years, through the MAGIC software, a modeling program on the propagation of fire in power plants. The potential fuels in a power plant are mainly limited to the oils existing in engines and control systems, and electric cables. Those cables present a complex combustion due to their fire-resistant design. In order to study that combustion, two test benches, the PITCAIRN oven and the CALORIMETRE EDF/CNRS have been linked. This report presents briefly the experimental installation, then it comments on the first experimental data obtained with two types of samples, a PVC and an EPR-Hypalon cable. The tested cables are selected from those commonly used in French Nuclear Power Plants. They present complex components (fire-retarding chemical agents, mechanical reinforcement). The data show that the behavior of those cables cannot be reduced to a mass loss rate associated to a constant Heat of Combustion. The Heat of Combustion of the PVC cable tested varies little at the beginning of the pyrolysis from 5 kJ.g{sup -1} to 10 kJ.g{sup -1}, then increases quickly up to 30 kJ.g{sup -1}. In the same way, the EPR-Hypalon cable shows a continuous and slow increase of the Heat of Combustion from 1 kJ.g{sup -1} to 20 kJ.g{sup -1} during the pyrolysis, then rises quickly up to 40 kJ.g{sup -1} at the end. Those data corroborate the thesis of the dilution of flammable species by fire-retarding agents, which lower the Heat of combustion but seems to disappear at the end of the pyrolysis. (authors). 7 refs., 6 figs.

  20. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  1. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  2. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  3. Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis

    Science.gov (United States)

    Eberhart, C. J.; Casiano, M. J.

    2015-01-01

    Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.

  4. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  5. TOPICAL REVIEW: Plasma assisted ignition and combustion

    Science.gov (United States)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  6. Detection of spontaneous combustion underground by measuring CO levels

    Energy Technology Data Exchange (ETDEWEB)

    Boutonnat, M; Jeger, M

    1980-01-01

    It is essential to detect spontaneous combustion as soon as it occurs so as to prevent such outbreaks from becoming a serious conflagration. At present CO detection is the basic method used. States the need for setting up additional measuring points (in air returns from working palces and in return airways in general). Where possible measuring instruments should be placed near zones where there is a particularly high risk of spontaneous combustion. Measurement should be undertaken on a continuous basis or as frequently as possible and must be capable of distinguishing between extraneous CO (shotfiring and diesel motors) and CO emanating from outbreaks of spontaneous combustion. The article describes two instruments developed by CERCHAR: the remote-control CO monitors type C and CSD. Both devices make use of a UNOR analyser.

  7. Modelling of NO formation in the combustion of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Backreedy, R.I.; Jones, J.M.; Pis, J.J.; Pourkashanian, M.; Rubiera, F.; Williams, A. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain)

    2002-03-01

    Coal blending is becoming of increasing importance in power stations firing pulverised coal as a result of increasing competition, stricter emission legislation and is an attractive way of improving plant economic and combustion performance. Presently, the two general methods used by power station operators to assess or predict the performance of an unknown coal blend to be fired in power station boilers are by the use of experimental large scale rig tests or correlation indices derived from experience of firing other coal blends in the power station environment. The first is expensive and the second is of doubtful accuracy in some cases. This paper evaluates the application of mathematical modelling of the combustion of a series of binary coal blends in the test situation of a drop tube reactor to predict the NO emissions and degree of char burnout. Its applicability to low NOx burners used in power stations is discussed and it is concluded that present mathematical coal combustion models are not developed sufficiently to enable an adequate description of the binary blends and the physical and chemical processes, which may include interactions, during combustion of the blend. This means that accurate predictions cannot be made. 20 refs., 4 figs., 5 tabs.

  8. Computational fluid dynamics (CFD) analysis of an industrial gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Thiago Koichi; Fontes, Carlo Eduardo; Ropelato, Karolline [Engineering Simulation and Scientic Software Ltda. (ESSS), Rio de Janeiro, RJ (Brazil)], E-mails: anzai, carlos.fontes, ropelato@esss.com.br; Silva, Luis Fernando Figueira da; Huapaya, Luis Enrique Alva [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: luisfer.luisalva@esp.puc-rio.br

    2010-07-01

    The accurate determination of pollutant emission from gas turbine combustors is a crucial problem in situations when such equipment is subject to long periods of operation away from the design point. In such operating conditions, the flow field structure may also drastically differ from the design point one, leading to the presence of undesirable hot spots or combustion instabilities, for instance. A priori experiments on all possible operation conditions is economically unfeasible, therefore, models that allow for the prediction of combustion behavior in the full operation range could be used to instruct power plant operators on the best strategies to be adopted. Since the direct numerical simulation of industrial combustors is beyond reach of the foreseeable computational resources, simplified models should be used for such purpose. This works presents the results of the application to an industrial gas turbine combustion chamber of the CFD technique to the prediction of the reactive flow field. This is the first step on the coupling of reactive CFD results with detailed chemical kinetics modeling using chemical reactor networks, toward the goal of accurately predicting pollutant emissions. The CFD model considers the detailed geometrical information of such a combustion chamber and uses actual operating conditions, calibrated via an overall gas turbine thermodynamical simulation, as boundary conditions. This model retains the basic information on combustion staging, which occurs both in diffusion and lean premixed modes. The turbulence has been modeled using the SST-CC model, which is characterized by a well established regime of accurate predictive capability. Combustion and turbulence interaction is accounted for by using the Zimont et al. model, which makes use of on empirical expression for the turbulent combustion velocity for the closure of the progress variable transport equation. A high resolution scheme is used to solve the advection terms of the

  9. Hydraulic modelling of the CARA Fuel element; Desarrollo hidraulico del combustible CARA

    Energy Technology Data Exchange (ETDEWEB)

    Brasnarof, Daniel O; Juanico, Luis [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Disenios Avanzados y Evaluacion Economica; Giorgi, M [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; Ghiselli, Alberto M; Zampach, Ruben; Fiori, Jose M; Yedros, Pablo A [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Ensayos no Destructivos

    2004-07-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10{sup 4} and 1,5x10{sup 5}) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [Spanish] Con el objeto de validar la similitud hidraulica del elemento combustible CARA con los actuales combustibles de Atucha y Embalse, se realizaron ensayos de perdida de carga en el circuito CBP del CAC con un nuevo diseno de separador de mejor desempeno hidraulico. Se presenta aqui el analisis de los mismos, de los cuales se validaron modelos de base racional para estimar las restricciones hidraulicas de los distintos componentes estructurales (separadores, grillas y barras combustibles) en funcion del flujo refrigerante. Se estimo asi la caida de presion del CARA dentro del canal combustible Embalse en condiciones nominales de reactor, siendo la misma similar al del combustible actual de 37 barras. (autor)

  10. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.

    Science.gov (United States)

    Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P

    2016-05-05

    The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  12. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  13. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  14. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration

  16. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  17. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  18. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  19. Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI

    KAUST Repository

    Vallinayagam, R.

    2018-03-20

    The scope of this research study pertains to compare the combustion and emission behavior between naphtha and dieseline at different combustion modes. In this study, US dieseline (50% US diesel + 50% RON 91 gasoline) and EU dieseline (45% EU diesel + 55% RON 97 gasoline) with derived cetane number (DCN) of 36 are selected for experimentation in an optical engine. Besides naphtha and dieseline, PRF60 is also tested as a surrogate fuel for naphtha. For the reported fuel with same RON = 60, the effect of physical properties on combustion homogeneity when moving from homogenized charge compression ignition (HCCI) to compression ignition (CI) combustion is studied.The combustion phasing of naphtha at an intake air temperature of 95 °C is taken as the baseline data. The engine experimental results show that higher and lower intake air temperature is required for dieseline mixtures to have same combustion phasing as that of naphtha at HCCI and CI conditions due to the difference in the physical properties. Especially at HCCI mode, due to wider distillation range of dieseline, the evaporation of the fuel is affected so that the gas phase mixture becomes too lean to auto-ignite. However, at partially premixed combustion (PPC) conditions, all test fuels required almost same intake air temperature to match up with the combustion phasing of baseline naphtha. From the rate of heat release and combustion images, it was found that naphtha and PRF60 showed improved premixed combustion when compared dieseline mixtures. The stratification analysis shows that combustion is more stratified for dieseline whereas it is premixed for naphtha and PRF60. The level of stratification linked with soot emission showed that soot concentration is higher at stratified CI combustion whereas near zero soot emissions were noted at PPC mode.

  20. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  1. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    Science.gov (United States)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the

  2. Burning Questions in Gravity-Dependent Combustion Science

    Science.gov (United States)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  3. Micro-propulsion and micro-combustion; Micropropulsion microcombustion

    Energy Technology Data Exchange (ETDEWEB)

    Ribaud, Y.; Dessornes, O.

    2002-10-01

    The AAAF (french space and aeronautic association) organized at Paris a presentation on the micro-propulsion. The first part was devoted to the thermal micro-machines for micro drones, the second part to the micro-combustion applied to micro-turbines. (A.L.B.)

  4. Deformation analysis of rotary combustion engine housings

    Science.gov (United States)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  5. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  6. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  7. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity

    Science.gov (United States)

    Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo

    2018-03-01

    This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.

  8. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  9. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  10. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  11. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  12. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  13. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  14. Characterisation of laser ignition in hydrogen-air mixtures in a combustion bomb

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Dhananjay Kumar; Agarwal, Avinash Kumar [Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Weinrotter, Martin; Wintner, Ernst [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna (Austria); Iskra, Kurt [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2009-03-15

    Laser-induced spark ignition of lean hydrogen-air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen-air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones. (author)

  15. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  16. EXPERIMENTAL STUDY OF HOMOGENEOUS MIXTURE COMPRESSION IGNITION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    ANTHONY OSWALDO ROQUE CCACYA

    2010-01-01

    Com o intuito de reduzir as emissões e melhorar a combustão em uma maior faixa de rotação e carga de um motor, foi proposto o estudo da combustão por compressão de misturas homogêneas (HCCI), este processo apresenta altas eficiências e baixas emissões, principalmente de NOx e fuligem. Assim, o objetivo do presente trabalho é a determinação das faixas de operação estável em um motor diesel, de alta taxa de compressão (20:1). O combustível utilizado foi gasolina tipo A, tendo em vista a sua gra...

  17. Vibration combustion as a prospect for utilizing firewood contaminated with radiocesium

    Science.gov (United States)

    Polezhaev, Yu. V.; Geshele, V. D.; Raskatov, I. P.; Solov'ev, V. N.; Pleshchankov, I. G.; Bida, L. A.; Levchuk, A. S.; Fokina, G. I.

    2013-01-01

    We present results of experimental investigation relevant to vibration combustion of solid fuel specimens in a Rijke tube and the interpretation of the combustion mechanism on the basis of "energy" approach. The decrease in the flame temperature is noted, which can be used to reduce the yield of low-boiling mineral components of ash, e.g., radioactive 137Cs isotope, in the volatile phase. The distribution of 137Cs in thermal conversions of firewood has been studied with the aid of computational-experimental methods, and the use of vibration combustion for utilizing the firewood contaminated with radiocesium has been suggested to decrease the emission of 137Cs into the surrounding medium.

  18. Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends

    International Nuclear Information System (INIS)

    Zhou, Nan; Huo, Ming; Wu, Han; Nithyanandan, Karthik; Lee, Chia-fon F.; Wang, Qingnian

    2014-01-01

    Highlights: • Combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends. • Feasibility of ABE to be blended directly with diesel in engine. • Conventional and low temperature combustion in constant volume chamber. • ABE–diesel blends can suppress the soot formation and achieve better combustion. - Abstract: The combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends were studied in a constant volume chamber under both conventional diesel combustion and low temperature combustion (LTC) conditions. In this work, 20 vol.% ABE without water (ABE20) was mixed with diesel and the vol.% of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The advantageous combustion characteristics of ABE-diesel include higher oxygen content which promotes soot oxidation compared to pure diesel; longer ignition delay and soot lift-off length allowing more air entrainment upstream of the spray jet thus providing better air–fuel mixing. Based on the analysis, it is found that at low ambient temperature of 800 K and ambient oxygen of 11%, ABE20 presented close-to-zero soot luminosity with better combustion efficiency compared to D100 suggesting that ABE, an intermediate product during ABE fermentation, is a very promising alternative fuel to be directly used in diesel engines especially under LTC conditions. Meanwhile, ABE–diesel blends contain multiple components possessing drastically different volatilities, which greatly favor the occurrence of micro-explosion. This feature may result in better atomization and air–fuel mixing enhancement, which all contribute to the better combustion performance of ABE20 at LTC conditions

  19. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  20. Present limits to heat-adaptability in corals and population-level responses to climate extremes.

    Directory of Open Access Journals (Sweden)

    Bernhard M Riegl

    Full Text Available Climate change scenarios suggest an increase in tropical ocean temperature by 1-3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33-35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as "critically endangered". We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years.

  1. Combustion modeling in waste tanks

    International Nuclear Information System (INIS)

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  2. Effects of stepwise gas combustion on NOx generation

    International Nuclear Information System (INIS)

    Woperane Seredi, A.; Szepesi, E.

    1999-01-01

    To decrease NO x emission from gas boilers, the combustion process of gas has been modified from continuous combustion to step-wise combustion. In this process the combustion temperature, the temperature peaks in the flame, the residence time of combustion products in the high-temperature zone and the oxygen partial pressure are changed advantageously. Experiments were performed using multistage burners, and the NO x emission was recorded. It was found that the air factor of the primary combustion space has a determining effect on the NO x reduction. (R.P.)

  3. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  4. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  5. Avaliação do desempenho de um aquecedor para aves adaptado para utilizar biogás como combustível Birds heater adaptation and performance using biogas as fuel

    Directory of Open Access Journals (Sweden)

    Tânia M. B. Santos

    2007-12-01

    Full Text Available Desenvolveu-se ensaio para avaliar a adaptação (diâmetro do injetor e o desempenho (consumo e eficiência de aquecimento de um aquecedor tipo campânula, adaptado para queimar biogás. Foi testado um aquecedor comum que, queimando gás liquefeito de petróleo (GLP, opera à baixa pressão (28 cm.c.a., com capacidade calorífica de 5.024 kJ h-1 e recomendado para 500 aves. O aquecedor foi avaliado com o combustível original (GLP, sem qualquer modificação no injetor de gás, e após adaptação para o funcionamento a biogás. Na adaptação, foi mantida a mesma grelha do queimador principal, aumentando-se a perfuração do injetor para permitir o funcionamento e a avaliação. Foram avaliados cinco injetores com perfurações de 1,0053; 1,5080; 1,5708; 1,7672 e 1,980 mm². Também se variaram as pressões do biogás na entrada do aquecedor de 10; 12; 15; 17 e 20 cm de coluna d'água (cm.c.a.. Os resultados indicaram que as expressões de cálculo teórico e parâmetros propostos na bibliografia podem ser utilizados com segurança na adaptação de aquecedores do tipo campânula utilizados em aviários; que a adaptação é de simples execução, indicando a viabilidade da utilização dos aquecedores já existentes em granjas e no mercado, e que as temperaturas do ar foram semelhantes às obtidas com o combustível original (GLP.It was carried out a trial to evaluate the adaptation (injector diameter and performance (biogas consumption and heating efficiency of a heating adapted to burn biogas. It was tried a common heater, burning liquefied petroleum gas (LPG, operating with low gas pressure (28 cm water column, with calorific capacity of 5024 kJ/h and recommended for 500 birds. The heater was evaluated with the original fuel (LPG without any modification in the gas injector and after adapting to biogas burning. Five injectors were evaluated with drillings of 1,0053; 1,5080; 1,5708; 1,7672 and 1,980 mm2. It also was varied the biogas

  6. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  7. Specifics of phytomass combustion in small experimental device

    Science.gov (United States)

    Lenhard, Richard; Mičieta, Jozef; Jandačka, Jozef; Gavlas, Stanislav

    2015-05-01

    A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass), which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  8. Specifics of phytomass combustion in small experimental device

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2015-01-01

    Full Text Available A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass, which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  9. PM From the Combustion of heavy fuel oils

    KAUST Repository

    Elbaz, Ayman M.

    2018-03-30

    This work presents an experimental study investigating the formation and oxidation of particulate matter from the combustion of heavy fuel oil, HFO, droplets. The study includes results from both a falling droplet in a drop tube furnace and a suspended droplet in a heated convective flow. The falling droplets in a heated coflow air with variable temperature path and velocity were combusted and the resulting particles, cenospheres, were collected. To characterize the microstructure of these particles, scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analysis were used. The particles were found to have either a porous or a skeleton/membrane morphology. The percentage of particles of either type appears to be related to the thermal history, which was controlled by the heated co-flow velocity. In the suspended droplet experiments, by suspending the droplet on a thermocouple, the temperature inside the droplet was measured while simultaneously imaging the various burning phases. A number of specific phases were identified, from liquid to solid phase combustion are presented and discussed. The droplet ignition temperature was seen to be independent of the droplet size. However, the liquid phase ignition delay time and the droplet lifetime were directly proportional to the initial droplet diameter.

  10. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    Science.gov (United States)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  11. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  12. Numerical prediction of flow, heat transfer, turbulence and combustion

    CERN Document Server

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  13. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  14. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  15. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Science.gov (United States)

    Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława

    2017-10-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  16. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Directory of Open Access Journals (Sweden)

    Junga Robert

    2017-01-01

    Full Text Available This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel and a blend of coal with laying hens mature (CLHM were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC. Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20% and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  17. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  18. Study of the degradation of power generation combustion components at elevated temperature

    International Nuclear Information System (INIS)

    Castrejon, J.; Serna, S.; Wong-Moreno, A.; Fragiel, A.; Lopez-Lopez, D.

    2006-01-01

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components

  19. Study of the degradation of power generation combustion components at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Castrejon, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico); Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico)]. E-mail: aserna@uaem.mx; Wong-Moreno, A. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico); Fragiel, A. [Centro de Ciencias de la Materia Condensada-UNAM, Km 7 Carretera Tijuana-Ensenada, C.P. 22800, Ensenada, Baja California (Mexico); Lopez-Lopez, D. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico)

    2006-01-15

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components.

  20. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  2. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  3. Multilevel processes and cultural adaptation: Examples from past and present small-scale societies

    OpenAIRE

    Reyes-García, V.; Balbo, A. L.; Gomez-Baggethun, E.; Gueze, M.; Mesoudi, A.; Richerson, P.; Rubio-Campillo, X.; Ruiz-Mallén, I.; Shennan, S.

    2016-01-01

    Cultural adaptation has become central in the context of accelerated global change with authors increasingly acknowledging the importance of understanding multilevel processes that operate as adaptation takes place. We explore the importance of multilevel processes in explaining cultural adaptation by describing how processes leading to cultural (mis)adaptation are linked through a complex nested hierarchy, where the lower levels combine into new units with new organizations, functions, and e...

  4. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  5. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  6. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  7. Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application

    Directory of Open Access Journals (Sweden)

    Deiterding Ralf

    2011-12-01

    Full Text Available Structured adaptive mesh refinement (SAMR techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  8. Numerical simulation of a liquid droplet combustion experiment focusing on ignition process

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1999-11-01

    SPHINCS (Sodium Fire phenomenology IN multi-Cell System) computer program has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The program can deal with spray combustion and pool surface combustion. In this report the authors investigate a single droplet combustion phenomena focusing on an ignition process. The spray combustion model of SPHINCS is as follows. The liquid droplet-burning rate after ignition is based on the D-square law and a diffusion flame assumption. Before the droplet is ignited, the burning rate is evaluated by mass flux of oxidizer gases. Forced convection effect that skews the sphere shape of the flame zone surrounding a droplet is taken into consideration. It enhances the burning rate. The chemical equilibrium theory is used to determine the resultant fraction of reaction products of Na-O 2 -H 2 O system. It is noted that users have to give an ignition temperature based on empirical evidences. According to this model, it is obvious that a smaller liquid droplet with higher initial temperature tends to burn more easily. What is observed in a recent experiment is that the smallest liquid droplet (2mm diameter) did not ignited of itself and larger droplets (3.7mm and 4.5mm diameter) burnt at 300degC initial temperature. The current model for liquid droplet combustion cannot predict the experimental results. Therefore, in the present study, a surface reaction model has been developed to predict the ignition process. The model has been used to analyze a combustion experiment of a stationary liquid droplet. The authors investigate the validity of the physical modeling of the liquid droplet combustion and surface reaction. It has been found, as the results, that the model can predict the influence of the initial temperature on the temperature lower limit for spontaneous ignition and ignition delay time. Also investigated is the influence of the moisture on the ignition phenomena. From the present study, it has

  9. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods; Facteurs d'emission. Emissions de dioxines, de furanes et d'autres polluants liees a la combustion de bois naturels et adjuvantes

    Energy Technology Data Exchange (ETDEWEB)

    Collet, S

    2000-02-15

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  10. Producer for vegetal combustibles for internal-combustion motors

    Energy Technology Data Exchange (ETDEWEB)

    1943-12-28

    A producer is described for internal-combustion motors fed with wood or agricultural byproducts characterized by the fact that its full operation is independent of the degree of wetness of the material used.

  11. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  12. Possibility analysis of combustion of torrefied biomass in 140 t/h PC boiler

    Directory of Open Access Journals (Sweden)

    Jagodzińska Katarzyna

    2016-01-01

    Full Text Available The study attempts to evaluate the impact of combustion of torrefied willow (Latin: Salix viminalis and palm kernel shell (Latin: Elaeis guineensis on the heat exchange in a 140 t/h PC boiler through an analysis of 6 cases for different boiler loads (60 %, 75 % and 100 % and a comparison with coal combustion. The analysis is premised on a 0-dimensional model based on the method presented in [15, 16, 17] and long-standing experimental measurements. Inter alia, the following results are presented: the temperature distribution of flue gases and the working medium (water/steam in characteristic points of the boiler as well as heat transfer coefficients for each element thereof. The temperature distribution of both fluids and the heat transfer coefficients are similar for all analysed fuels for each boiler load. However, the flue gas temperature at the outlet is higher in the case of torrefied biomass combustion. Due to that, there is an increase in the stack loss, which involves a decrease in the boiler efficiency. The conclusion is that torrefied biomass combustion is possible in a PC boiler without the need to change the boiler construction. However, it would be less effective than coal combustion.

  13. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    mechanisms and the newly developed radiation model were all included. The IFRF 0.8 MW oxy-NG flame-based CFD results were compared with the available experimental data. The most widely used 2-step global mechanism was found not applicable to oxy-fuel combustion modeling. New global multi-step combustion mechanisms applicable to oxy-fuel combustion modeling were identified and recommended, which is of particular interest for industrial applications. Due to the very small grid size and time step size required by a reliable LES, it is not possible to obtain statistically steady LES results of such a 0.8 MW flame within quite some months. Only preliminary LES results are presented. (LN)

  14. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  15. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  16. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  17. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  18. Investigation of bluff-body micro-flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • The temperature uniformity of the micro-flameless combustion increases when a triangular bluff-body is applied. • The velocity and temperature of exhaust gases are higher in micro-flameless combustion compared to the conventional mode. • The rate of fuel–oxidizer consumption in micro-flameless mode is lower than conventional micro-combustion. - Abstract: Characteristics of lean premixed conventional micro-combustion and lean non-premixed flameless regime of methane/air are investigated in this paper by solving three-dimensional governing equations. At moderate equivalence ratio (∅ = 0.5), standard k–ε and the eddy-dissipation concept are employed to simulate temperature distribution and combustion stability of these models. The effect of bluff-body on the temperature distribution of both conventional and flameless mode is developed. The results show that in the premixed conventional micro-combustion the stability of the flame is increased when a triangular bluff-body is applied. Moreover, micro-flameless combustion is more stable when bluff-body is used. Micro-flameless mode with bluff-body and 7% O 2 concentration (when N 2 is used as diluent) illustrated better performance than other cases. The maximum temperature in premixed conventional micro-combustion and micro-flameless combustion was recorded 2200 K and 1520 K respectively. Indeed, the flue gas temperature of conventional mode and flameless combustion was 1300 K and 1500 K respectively. The fluctuation of temperature in the conventional micro-combustor wall has negative effects on the combustor and reduces the lifetime of micro-combustor. However, in the micro-flameless mode, the wall temperature is moderate and uniform. The rate of fuel–oxidizer consumption in micro-flameless mode takes longer time and the period of cylinders recharging is prolonged

  19. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    International Nuclear Information System (INIS)

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  20. Status report for anticipated transients without scram for Combustion Engineering reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The NRC staff review of Combustion ATWS analyses included the anticipated transients expected to occur, the initial conditions and system parameters assumed in the analyses, the reliability of systems, the analytical techniques, the results of transient analysis of ATWS events and the design of the Reactor Protection System. Using the requirements of WASH-1270 as a guideline, the staff reviewed each relevant aspect of the Combustion model and analysis. The discussion of anticipated transients is presented, and the initial conditions, system parameters, and operating systems assumed in the analyses of these transients are discussed. The analytical techniques and computer programs are reviewed. An independent calculation conducted by the staff using the RELAP-3B code to determine the pressure within the reactor coolant pressure boundary during a complete loss of main feedwater ATWS event is described. A set of standard problems is defined for all pressurized water reactor vendors and the Regulatory staff to insure acceptability of computer codes used in all systems transient analyses. The model for calculating water discharge through primary valves is described. The comparison of the Combustion analyses to the requirements of WASH-1270 is presented. Certain outstanding issues are identified which require that Combustion or the applicant provide additional information or modify existing designs

  1. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  2. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    Science.gov (United States)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  3. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy

    2017-02-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  4. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy; Roberts, William L.

    2017-01-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  5. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Trevor S [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Xu Hongming [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Richardson, Steve [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Wyszynski, Miroslaw L [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom); Megaritis, Thanos [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom)

    2006-07-15

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  6. Heavy metals behavior during monocombustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.H.; Abelha, P.; Oliveira, J.F.S.; Cabrita, I.; Gulyurtlu, I. [DEECA, INETI, Lisbon (Portugal)

    2005-04-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of monocombustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants, and heavy metals behavior. It was found that the mineral matter of sludge was essentially retained as bottom ash. The production of fine ash was small during the monocombustion but was high during co-combustion due to the tendency of coal to produce fine ash, which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in monocombustion; however, most of the metals were retained in the ash and their emissions were found to be below the regulated levels. Hg was completely volatilized. However, during combustion trials involving coal, Hg was captured in the cyclone ash at temperatures below 300{sup o}C. During sludge monocombustion the retention of Hg in cyclone ash containing low loss on ignition (LOI) was not enough to decrease emissions below the EU regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ash were also compared with the new regulatory limits for landfill disposal in the European Union (EU).

  7. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    Science.gov (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  8. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  9. Combustion control and sensors: a review

    International Nuclear Information System (INIS)

    Docquier, N.; Candel, S.

    2002-01-01

    There is an increased interest in the application of control to combustion. The objective is to optimize combustor operation, monitor the process and alleviate instabilities and their severe consequences. One wishes to improve the system performance, for example by reducing the levels of pollutant emissions or by smoothing the pattern factor at the combustor exhaust. In other cases, the aim is to extend the stability domain by reducing the level of oscillation induced by coupling between resonance modes and combustion. As combustion systems have to meet increasingly more demanding air pollution standards, their design and operation becomes more complex. The trend towards reduced NO x levels has led to new developments in different fields. Automotive engines and gas turbine combustors are considered in this article. In the first case, complex exhaust aftertreatment is being applied and dedicated engine control systems are required to ensure and maintain high pollutant conversion efficiency. For gas turbines, premixed combustors, which operate at lower local temperatures than conventional systems have been designed. In both cases, monitoring and control of the operating point of the process have to be achieved with great precision to obtain the full benefits of the NO x reduction scheme. For premixed combustors operating near the lean stability limit, the flame is more susceptible to blowout, oscillation or flashback. Research is now carried out to reduce these dynamical problems with passive and active control methods. In addition to a broad range of fundamental problems raised by Active Combustion Control (ACC) and Operating Point Control (OPC), there are important technological issues. This paper contains a review of some facets of combustion control and focuses on the sensors that take or could take part to combustion control solutions. The current status of ACC and OPC is presented together with the associated control concepts. The state of the art in sensors is

  10. The rheodynamics and combustion of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burdukov, A.P.; Popov, V.I.; Tomilov, V.G.; Fedosenko, V.D. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Thermophysics (Siberian Branch, Russian Academy of Science)

    2002-05-01

    Investigation methods for characteristics of movement along the tubes, combustion dynamics and gasification of separate drops were developed for the coal-water mixtures (CWM). The following parameters were determined on the basis of laser heating: thermometric, pyrometric and concentration dynamics of single-drop combustion, complete combustion times, duration of temperature phases of combustion, as well as the moment and temperature of ignition. Information on the combustion mass velocity and gasification products was also obtained using laser heating. 6 refs., 13 figs., 1 tab.

  11. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  12. Multi-objective optimization of p-xylene oxidation process using an improved self-adaptive differential evolution algorithm

    Institute of Scientific and Technical Information of China (English)

    Lili Tao; Bin Xu; Zhihua Hu; Weimin Zhong

    2017-01-01

    The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [1]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta-neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob-lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application of ISADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.

  13. Bifurcation, pattern formation and chaos in combustion

    International Nuclear Information System (INIS)

    Bayliss, A.; Matkowsky, B.J.

    1991-01-01

    In this paper problems in gaseous combustion and in gasless condensed phase combustion are studied both analytically and numerically. In gaseous combustion we consider the problem of a flame stabilized on a line source of fuel. The authors find both stationary and pulsating axisymmetric solutions as well as stationary and pulsating cellular solutions. The pulsating cellular solutions take the form of either traveling waves or standing waves. Transitions between these patterns occur as parameters related to the curvature of the flame front and the Lewis number are varied. In gasless condensed phase combustion both planar and nonplanar problems are studied. For planar condensed phase combustion we consider two models: accounts for melting and does not. Both models are shown to exhibit a transition from uniformly to pulsating propagating combustion when a parameter related to the activation energy is increased. Upon further increasing this parameter both models undergo a transition to chaos: by intermittency and by a period doubling sequence. In nonplanar condensed phase combustion the nonlinear development of a branch of standing wave solutions is studied and is shown to lead to relaxation oscillations and subsequently to a transition to quasi-periodicity

  14. Burns resulting from spontaneous combustion of electronic cigarettes: a case series

    OpenAIRE

    Sheckter, Clifford; Chattopadhyay, Arhana; Paro, John; Karanas, Yvonne

    2016-01-01

    Background Electronic cigarette (e-cigarette) sales have grown rapidly in recent years, coinciding with a public perception that they are a safer alternative to traditional cigarettes. However, there have been numerous media reports of fires associated with e-cigarette spontaneous combustion. Case Presentation Three severe burns caused by spontaneous combustion of e-cigarettes within a 6-month period were treated at the Santa Clara Valley Medical Center Burn Unit. Patients sustained partial a...

  15. Optimizing diesel combustion behaviour with tailor-made fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Florian; Heuser, Benedikt [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Klankermayer, Juergen [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie; Pischinger, Stefan

    2013-06-01

    Modem biofuels offer a vast potential to decrease engine out emissions while at the same time allowing a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence ''Tailor-Made Fuels from Biomass'' was installed at RWTH Aachen University. Since the start of the work in the cluster a whole variety of possible fuel candidates were identified and investigated, eventually leading to the definition of 2-methyltetrahydrofurane (2-MTHF) as a tailor-made biofuel for passenger car diesel engines. With 2-MTHF, a nearly soot-free combustion can be realized. This soot-free combustion behavior can partially be explained by the low self-ignition tendency and the therefore observed long ignition delays. Hereby, a good mixture preparation can be realized. This long ignition delay also results in high HC- and CO emissions, though, which are partially accompanied by increased noise emissions. In this work, the addition of di-n-butylether (DNBE) to 2-MTHF to reduce the described disadvantages will be analyzed. DNBE, a fuel that can be obtained via a reaction pathway defined in TMFB, is characterized by an extremely high Cetane number (CN- 100) and therefore very high self-ignitability. The effects of different mixtures of DNBE and 2-MTHF from 0% to 100% especially on the HC- and CO- and noise emissions will be carefully analyzed. In addition, the overall emission performance will be compared to standard EN590 Diesel as reference fuel. The results show that an adapted addition of DNBE to 2-MTHF can lead to a significant reduction of HC-, CO- and noise emissions while not sacrificing the benefits gained from the 2-MTHF's long ignition delays with regard to the particulate emissions. It can be proven that the use of two tailored biofuels with different self-ignitability such as 2-MTHF and DNBE allows to tailor the

  16. Presentation of the health impact evaluation study of atmospheric emissions of a major coal combustion installation; Mise a jour de l'etude d'evaluation de l'impact sur la sante des rejets atmospheriques des tranches charbon d'une grande installation de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, R

    2004-12-15

    In the framework of a working group on the major installations, a study has been realized on a today coal combustion installation. The direct risk by inhalation and the risks bond to indirect exposure of atmospheric releases were analyzed. The calculation method is explained and the uncertainties are discussed to present the results. (A.L.B.)

  17. An Assessment of Combustion Dynamics in a Low-Nox, Second-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.

    2015-01-01

    Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.

  18. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  19. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  20. Flow and Combustion in Advanced Gas Turbine Combustors

    CERN Document Server

    Janicka, Johannes; Schäfer, Michael; Heeger, Christof

    2013-01-01

    With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts.