Interpolative Boolean Networks
Directory of Open Access Journals (Sweden)
Vladimir Dobrić
2017-01-01
Full Text Available Boolean networks are used for modeling and analysis of complex systems of interacting entities. Classical Boolean networks are binary and they are relevant for modeling systems with complex switch-like causal interactions. More descriptive power can be provided by the introduction of gradation in this model. If this is accomplished by using conventional fuzzy logics, the generalized model cannot secure the Boolean frame. Consequently, the validity of the model’s dynamics is not secured. The aim of this paper is to present the Boolean consistent generalization of Boolean networks, interpolative Boolean networks. The generalization is based on interpolative Boolean algebra, the [0,1]-valued realization of Boolean algebra. The proposed model is adaptive with respect to the nature of input variables and it offers greater descriptive power as compared with traditional models. For illustrative purposes, IBN is compared to the models based on existing real-valued approaches. Due to the complexity of the most systems to be analyzed and the characteristics of interpolative Boolean algebra, the software support is developed to provide graphical and numerical tools for complex system modeling and analysis.
Adapted Boolean network models for extracellular matrix formation
Directory of Open Access Journals (Sweden)
Wollbold Johannes
2009-07-01
Full Text Available Abstract Background Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB. These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM. We applied three methods to analyse ECM regulation: data discretisation to filter out noise and to reduce complexity, Boolean network construction to implement logic relationships, and formal concept analysis (FCA for the formation of minimal, but complete rule sets from the data. Results First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFβ1 or by TNFα and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNF
Computing preimages of Boolean networks.
Klotz, Johannes; Bossert, Martin; Schober, Steffen
2013-01-01
In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.
An adaptable Boolean net trainable to control a computing robot
International Nuclear Information System (INIS)
Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.
1999-01-01
We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits
GLOBAL CONVERGENCE FOR THE XOR BOOLEAN NETWORKS
Ho, Juei-Ling
2009-01-01
Shih and Ho have proved a global convergent theorem for boolean network: if a map from $\\{0,1\\}^{n}$ to itself defines a boolean network has the conditions: (1) each column of the discrete Jacobian matrix of each element of $\\{0,1\\}^{n}$ is either a unit vector or a zero vector; (2) all the boolean eigenvalues of the discrete Jacobian matrix of this map evaluated at each element of $\\{0,1\\}^{n}$ are zero, then it has a unique fixed point and this boolean network is global convergent to the fi...
Stability of Boolean multilevel networks.
Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir
2012-09-01
The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
Reliable dynamics in Boolean and continuous networks
International Nuclear Information System (INIS)
Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P
2012-01-01
We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)
Random networks of Boolean cellular automata
Energy Technology Data Exchange (ETDEWEB)
Miranda, Enrique [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche
1990-01-01
Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author).
Random networks of Boolean cellular automata
International Nuclear Information System (INIS)
Miranda, Enrique
1990-01-01
Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author)
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Optimal stabilization of Boolean networks through collective influence
Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming
2018-03-01
Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.
The value of less connected agents in Boolean networks
Epstein, Daniel; Bazzan, Ana L. C.
2013-11-01
In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality
Nonlinear threshold Boolean automata networks and phase transitions
Demongeot, Jacques; Sené, Sylvain
2010-01-01
In this report, we present a formal approach that addresses the problem of emergence of phase transitions in stochastic and attractive nonlinear threshold Boolean automata networks. Nonlinear networks considered are informally defined on the basis of classical stochastic threshold Boolean automata networks in which specific interaction potentials of neighbourhood coalition are taken into account. More precisely, specific nonlinear terms compose local transition functions that define locally t...
Synchronization in an array of coupled Boolean networks
International Nuclear Information System (INIS)
Li, Rui; Chu, Tianguang
2012-01-01
This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results. -- Highlights: ► We analytically study synchronization in an array of coupled Boolean networks. ► The study is based on the algebraic representations of logical dynamics. ► A necessary and sufficient algebraic criterion for synchronization is established. ► It reveals some basic properties of a synchronized array of Boolean networks. ► A large mismatch between two coupled networks may result in the loss of synchrony.
Algebraic model checking for Boolean gene regulatory networks.
Tran, Quoc-Nam
2011-01-01
We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Complex network analysis of state spaces for random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)
2008-01-15
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.
Complex network analysis of state spaces for random Boolean networks
International Nuclear Information System (INIS)
Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya
2008-01-01
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two
Boolean network representation of contagion dynamics during a financial crisis
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-01-01
This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.
Controllability and observability of Boolean networks arising from biology
Li, Rui; Yang, Meng; Chu, Tianguang
2015-02-01
Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.
Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.
Mori, Fumito; Mochizuki, Atsushi
2017-07-14
Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.
Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles
Directory of Open Access Journals (Sweden)
Shah Imran
2011-07-01
Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our
Minimum energy control and optimal-satisfactory control of Boolean control network
International Nuclear Information System (INIS)
Li, Fangfei; Lu, Xiwen
2013-01-01
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks
Directory of Open Access Journals (Sweden)
Stalin Muñoz
2018-03-01
Full Text Available Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as “clause learning” considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Directory of Open Access Journals (Sweden)
Natalie Berestovsky
Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Directory of Open Access Journals (Sweden)
Wensheng Guo
Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.
Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.
Dallidis, Stylianos E; Karafyllidis, Ioannis G
2014-09-01
To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.
Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks
Gong, Xinwei
This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes
International Nuclear Information System (INIS)
Liu, M; Bassler, K E
2011-01-01
Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
International Nuclear Information System (INIS)
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.
2016-01-01
Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.
Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks
Directory of Open Access Journals (Sweden)
Liang Jinghang
2012-08-01
Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for
SETS, Boolean Manipulation for Network Analysis and Fault Tree Analysis
International Nuclear Information System (INIS)
Worrell, R.B.
1985-01-01
Description of problem or function - SETS is used for symbolic manipulation of set (or Boolean) equations, particularly the reduction of set equations by the application of set identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze non-coherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. 4. Method of solution - The SETS program is used to read, interpret, and execute the statements of a SETS user program which is an algorithm that specifies the particular manipulations to be performed and the order in which they are to occur. 5. Restrictions on the complexity of the problem - Any properly formed set equation involving the set operations of union, intersection, and complement is acceptable for processing by the SETS program. Restrictions on the size of a set equation that can be processed are not absolute but rather are related to the number of terms in the disjunctive normal form of the equation, the number of literals in the equation, etc. Nevertheless, set equations involving thousands and even hundreds of thousands of terms can be processed successfully
Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V
2017-04-01
We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.
An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks
Zheng, Desheng; Yang, Guowu; Li, Xiaoyu; Wang, Zhicai; Liu, Feng; He, Lei
2013-01-01
Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is significantly faster in computing attractors for empirical experimental systems. Availability The software package is available at https://sites.google.com/site/desheng619/download. PMID:23585840
Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C
2016-11-01
Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
2009-01-01
Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009
Analysis and control of Boolean networks a semi-tensor product approach
Cheng, Daizhan; Li, Zhiqiang
2010-01-01
This book presents a new approach to the investigation of Boolean control networks, using the semi-tensor product (STP), which can express a logical function as a conventional discrete-time linear system. This makes it possible to analyze basic control problems.
Identification of control targets in Boolean molecular network models via computational algebra.
Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard
2016-09-23
Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.
Neutral space analysis for a Boolean network model of the fission yeast cell cycle network
Directory of Open Access Journals (Sweden)
Gonzalo A Ruz
2014-01-01
Full Text Available BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the
Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae.
Directory of Open Access Journals (Sweden)
Maria Simak
Full Text Available The great amount of gene expression data has brought a big challenge for the discovery of Gene Regulatory Network (GRN. For network reconstruction and the investigation of regulatory relations, it is desirable to ensure directness of links between genes on a map, infer their directionality and explore candidate biological functions from high-throughput transcriptomic data. To address these problems, we introduce a Boolean Function Network (BFN model based on techniques of hidden Markov model (HMM, likelihood ratio test and Boolean logic functions. BFN consists of two consecutive tests to establish links between pairs of genes and check their directness. We evaluate the performance of BFN through the application to S. cerevisiae time course data. BFN produces regulatory relations which show consistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and specificity when compared with alternative methods of genetic network reverse engineering. Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for the identification of control mechanisms of regulatory processes, which is the special advantage of the proposed approach. In combination with low computational complexity, BFN can serve as an efficient screening tool to reconstruct genes relations on the whole genome level. In addition, the BFN approach is also feasible to a wide range of time course datasets.
Detecting small attractors of large Boolean networks by function-reduction-based strategy.
Zheng, Qiben; Shen, Liangzhong; Shang, Xuequn; Liu, Wenbin
2016-04-01
Boolean networks (BNs) are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behaviour of systems. A central aim of Boolean-network analysis is to find attractors that correspond to various cellular states, such as cell types or the stage of cell differentiation. This problem is NP-hard and various algorithms have been used to tackle it with considerable success. The idea is that a singleton attractor corresponds to n consistent subsequences in the truth table. To find these subsequences, the authors gradually reduce the entire truth table of Boolean functions by extending a partial gene activity profile (GAP). Not only does this process delete inconsistent subsequences in truth tables, it also directly determines values for some nodes not extended, which means it can abandon the partial GAPs that cannot lead to an attractor as early as possible. The results of simulation show that the proposed algorithm can detect small attractors with length p = 4 in BNs of up to 200 nodes with average indegree K = 2.
Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R
2017-01-01
Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-04-28
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
On the number of different dynamics in Boolean networks with deterministic update schedules.
Aracena, J; Demongeot, J; Fanchon, E; Montalva, M
2013-04-01
Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
Discovery of Boolean metabolic networks: integer linear programming based approach.
Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing
2018-04-11
Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".
Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes.
Directory of Open Access Journals (Sweden)
Herman F Fumiã
Full Text Available A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the currently known protein-protein interaction network. This system exhibits stationary protein activation patterns--attractors--dependent on the cell's microenvironment. These dynamical attractors were determined through simulations and their stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are not necessarily central in the network topology, but at least they are direct regulators of central components towards which converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Variances as order parameter and complexity measure for random Boolean networks
International Nuclear Information System (INIS)
Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel
2005-01-01
Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems
Variances as order parameter and complexity measure for random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)
2005-02-04
Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.
Super-transient scaling in time-delay autonomous Boolean network motifs
Energy Technology Data Exchange (ETDEWEB)
D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2016-09-15
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.
Damage Spreading in Spatial and Small-world Random Boolean Networks
Energy Technology Data Exchange (ETDEWEB)
Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.
2014-02-18
The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.
Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.
Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu
2009-07-01
The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.
Fisher information at the edge of chaos in random Boolean networks.
Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail
2011-01-01
We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.
Directory of Open Access Journals (Sweden)
Chao Luo
Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.
Attractor controllability of Boolean networks by flipping a subset of their nodes
Rafimanzelat, Mohammad Reza; Bahrami, Fariba
2018-04-01
The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.
Directory of Open Access Journals (Sweden)
Yih-Lon Lin
2013-01-01
Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.
Computational complexity of Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Korshunov, Aleksei D [Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)
2012-02-28
Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2010-01-01
Roč. 73, č. 7-9 (2010), s. 1394-1404 ISSN 0925-2312 R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * Hopfield neural Network * unsupervised learning * dimension reduction * data mining Subject RIV: IN - Informatics, Computer Science Impact factor: 1.429, year: 2010
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Directory of Open Access Journals (Sweden)
Shohag Barman
Full Text Available Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately.In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods.Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.
Szejka, Agnes; Drossel, Barbara
2010-02-01
We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by changing the attractor. Mutations change the connections between the nodes and the update functions. In order to investigate the influence of the type of update functions, we perform our simulations with canalizing as well as with threshold functions. We compare the properties of the fitness landscapes that result for different versions of the selection criterion and the update functions. We find that for all studied cases the fitness landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are able to fulfill the same task and are connected by neutral paths in network (“genotype”) space. We find furthermore a connection between the attractor length and the mutational robustness, and an extremely long memory of the initial evolutionary stage.
Chaudhuri, Arijit
2014-01-01
Combining the two statistical techniques of network sampling and adaptive sampling, this book illustrates the advantages of using them in tandem to effectively capture sparsely located elements in unknown pockets. It shows how network sampling is a reliable guide in capturing inaccessible entities through linked auxiliaries. The text also explores how adaptive sampling is strengthened in information content through subsidiary sampling with devices to mitigate unmanageable expanding sample sizes. Empirical data illustrates the applicability of both methods.
Boolean reasoning the logic of boolean equations
Brown, Frank Markham
2012-01-01
A systematic treatment of Boolean reasoning, this concise, newly revised edition combines the works of early logicians with recent investigations, including previously unpublished research results. Brown begins with an overview of elementary mathematical concepts and outlines the theory of Boolean algebras. Two concluding chapters deal with applications. 1990 edition.
Free Boolean Topological Groups
Directory of Open Access Journals (Sweden)
Ol’ga Sipacheva
2015-11-01
Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Designing Networks that are Capable of Self-Healing and Adapting
2017-04-01
from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...kg m –3 ) pound-force (lbf avoirdupois) 4.448 222 newton (N) Energy/Work/Power electron volt (eV) 1.602 177 × 10 –19 joule (J) erg 1 × 10 –7
International Nuclear Information System (INIS)
Korshunov, A D
2003-01-01
Monotone Boolean functions are an important object in discrete mathematics and mathematical cybernetics. Topics related to these functions have been actively studied for several decades. Many results have been obtained, and many papers published. However, until now there has been no sufficiently complete monograph or survey of results of investigations concerning monotone Boolean functions. The object of this survey is to present the main results on monotone Boolean functions obtained during the last 50 years
Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne
1988-01-01
The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.
Properties of Boolean orthoposets
Tkadlec, Josef
1993-10-01
A Boolean orthoposet is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0, then a ⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets. Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough and, on the other hand, enjoys some properties of Boolean algebras. In this paper we summarize results on Boolean orthoposets involving distributivity, set representation, properties of the state space, existence of Jauch-Piron states, and results concerning orthocompleteness and completion.
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Hildreth, Charles R.
1983-01-01
This editorial addresses the issue of whether or not to provide free-text, keyword/boolean search capabilities in the information retrieval mechanisms of online public access catalogs and discusses online catalogs developed prior to 1980--keyword searching, phrase searching, and precoordination and postcoordination. (EJS)
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Robust adaptive synchronization; dynamical network; multiple delays; multiple uncertainties. ... Networks such as neural networks, communication transmission networks, social rela- tionship networks etc. ..... a very good effect. Pramana – J.
Boolean gates on actin filaments
International Nuclear Information System (INIS)
Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew
2016-01-01
Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.
Boolean gates on actin filaments
Energy Technology Data Exchange (ETDEWEB)
Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)
2016-01-08
Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
Evolution of regulatory networks towards adaptability and stability in a changing environment
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Bugs, Cristhian A; Librelotto, Giovani R; Mombach, José C M
2011-12-22
We introduce a method to analyze the states of regulatory Boolean models that identifies important network states and their biological influence on the global network dynamics. It consists in (1) finding the states of the network that are most frequently visited and (2) the identification of variable and frozen nodes of the network. The method, along with a simulation that includes random features, is applied to the study of stomata closure by abscisic acid (ABA) in A. thaliana proposed by Albert and coworkers. We find that for the case of study, that the dynamics of wild and mutant networks have just two states that are highly visited in their space of states and about a third of all nodes of the wild network are variable while the rest remain frozen in True or False states. This high number of frozen elements explains the low cardinality of the space of states of the wild network. Similar results are observed in the mutant networks. The application of the method allowed us to explain how wild and mutants behave dynamically in the SS and determined an essential feature of the activation of the closure node (representing stomata closure), i.e. its synchronization with the AnionEm node (representing anion efflux at the plasma membrane). The dynamics of this synchronization explains the efficiency reached by the wild and each of the mutant networks. For the biological problem analyzed, our method allows determining how wild and mutant networks differ 'phenotypically'. It shows that the different efficiencies of stomata closure reached among the simulated wild and mutant networks follow from a dynamical behavior of two nodes that are always synchronized. Additionally, we predict that the involvement of the anion efflux at the plasma membrane is crucial for the plant response to ABA. The algorithm used in the simulations is available upon request.
Adaptive competitive learning neural networks
Directory of Open Access Journals (Sweden)
Ahmed R. Abas
2013-11-01
Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
Using Bayesian belief networks in adaptive management.
J.B. Nyberg; B.G. Marcot; R. Sulyma
2006-01-01
Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Adaptive Protocols for Mobile Wireless Networks
National Research Council Canada - National Science Library
Pursley, Michael B
2005-01-01
.... Research results are presented on adaptive, energy-efficient, distributed protocols for mobile wireless networks that must operate effectively over unreliable communication links in highly dynamic...
Epidemics in adaptive networks with community structure
Shaw, Leah; Tunc, Ilker
2010-03-01
Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.
Cryptographic Boolean functions and applications
Cusick, Thomas W
2009-01-01
Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Recruitment dynamics in adaptive social networks
International Nuclear Information System (INIS)
Shkarayev, Maxim S; Shaw, Leah B; Schwartz, Ira B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime). (paper)
Recruitment dynamics in adaptive social networks
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Direct adaptive control using feedforward neural networks
Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira
2003-01-01
ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...
Learning Transferable Features with Deep Adaptation Networks
Long, Mingsheng; Cao, Yue; Wang, Jianmin; Jordan, Michael I.
2015-01-01
Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation...
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...
Network measures for characterising team adaptation processes
Barth, S.K.; Schraagen, J.M.C.; Schmettow, M.
2015-01-01
The aim of this study was to advance the conceptualisation of team adaptation by applying social network analysis (SNA) measures in a field study of a paediatric cardiac surgical team adapting to changes in task complexity and ongoing dynamic complexity. Forty surgical procedures were observed by
Dynamical Adaptation in Terrorist Cells/Networks
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Ahmed, Zaki
2010-01-01
Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...
Adaptive Learning in Weighted Network Games
Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank
2017-01-01
This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for
Synchronization in complex networks with adaptive coupling
International Nuclear Information System (INIS)
Zhang Rong; Hu Manfeng; Xu Zhenyuan
2007-01-01
Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies
Adaptive Synchronization of Robotic Sensor Networks
Yıldırım, Kasım Sinan; Gürcan, Önder
2014-01-01
The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...
Epidemic spreading on preferred degree adaptive networks.
Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P
2012-01-01
We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = / and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.
Adaptive Networks Theory, Models and Applications
Gross, Thilo
2009-01-01
With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.
On Kolmogorov's superpositions and Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Beiu, V.
1998-12-31
The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.
Designing Networks that are Capable of Self-Healing and Adapting
2017-04-01
battlefield, and utility infrastructure in cities . Networks that are easy to repair after many breaks. The origi- nal networks (left), the networks after...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-15-78 Designing Networks that are...from statistical mechanics, combinatorics, boolean networks , and numerical simulations, and inspired by design principles from biological networks , we
In-Network Adaptation of Video Streams Using Network Processors
Directory of Open Access Journals (Sweden)
Mohammad Shorfuzzaman
2009-01-01
problem can be addressed, near the network edge, by applying dynamic, in-network adaptation (e.g., transcoding of video streams to meet available connection bandwidth, machine characteristics, and client preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can be used in different types of environments.
Adaptive-network models of collective dynamics
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge
Wireless sensor network adaptive cooling
Energy Technology Data Exchange (ETDEWEB)
Mitchell, T. [SynapSense Corp., Folsom, CA (United States)
2009-07-01
Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.
Emergent explosive synchronization in adaptive complex networks
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.
2015-12-01
The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.
Cooperative Media Streaming Using Adaptive Network Compression
DEFF Research Database (Denmark)
Møller, Janus Heide; Sørensen, Jesper Hemming; Krigslund, Rasmus
2008-01-01
as an adaptive hybrid between LC and MDC. In order to facilitate the use of MDC-CC, a new overlay network approach is proposed, using tree of meshes. A control system for managing description distribution and compression in a small mesh is implemented in the discrete event simulator NS-2. The two traditional...... approaches, MDC and LC, are used as references for the performance evaluation of the proposed scheme. The system is simulated in a heterogeneous network environment, where packet errors are introduced. Moreover, a test is performed at different network loads. Performance gain is shown over both LC and MDC....
Adaptive networks as second order governance systems
S.G. Nooteboom (Sibout); P.K. Marks (Peter)
2010-01-01
textabstractWe connect the idea of 'levers for change' with 'governance capacity' and propose 'adaptive networks' as an ideal type embedded in, and leveraging change in, governance systems. Discourses connect practices of citizens and companies with that governance system. Aware of
Boolean-Valued Belief Functions
Czech Academy of Sciences Publication Activity Database
Kramosil, Ivan
2002-01-01
Roč. 31, č. 2 (2002), s. 153-181 ISSN 0308-1079 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : Dempster-Schafer theory * Boolean algebra Subject RIV: BA - General Mathematics Impact factor: 0.241, year: 2002
Microcomputer Network for Computerized Adaptive Testing (CAT)
1984-03-01
PRDC TR 84-33 \\Q.�d-33- \\ MICROCOMPUTER NETWOJlt FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ) Baldwin Quan Thomas A . Park Gary Sandahl John H...ACCEIIION NO NPRDC TR 84-33 4. TITLE (-d Sul>tlllo) MICROCOMP UTER NETWORK FOR COMPUTERIZED ADA PTIVE TESTING ( CAT ) 1. Q B. uan T. A . Park...adaptive testing ( CAT ) Bayesian sequential testing 20. ABSTitACT (Continuo on ro•••• aide II noco .. _, _., ld-tlly ,.,. t.loclt _._.) DO Computerized
Boolean modeling in systems biology: an overview of methodology and applications
International Nuclear Information System (INIS)
Wang, Rui-Sheng; Albert, Réka; Saadatpour, Assieh
2012-01-01
Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)
Network inference via adaptive optimal design
Directory of Open Access Journals (Sweden)
Stigter Johannes D
2012-09-01
Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.
Bursting endemic bubbles in an adaptive network
Sherborne, N.; Blyuss, K. B.; Kiss, I. Z.
2018-04-01
The spread of an infectious disease is known to change people's behavior, which in turn affects the spread of disease. Adaptive network models that account for both epidemic and behavioral change have found oscillations, but in an extremely narrow region of the parameter space, which contrasts with intuition and available data. In this paper we propose a simple susceptible-infected-susceptible epidemic model on an adaptive network with time-delayed rewiring, and show that oscillatory solutions are now present in a wide region of the parameter space. Altering the transmission or rewiring rates reveals the presence of an endemic bubble—an enclosed region of the parameter space where oscillations are observed.
Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M
2017-11-25
Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression
Optical programmable Boolean logic unit.
Chattopadhyay, Tanay
2011-11-10
Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.
Enhanced vaccine control of epidemics in adaptive networks
Shaw, Leah B.; Schwartz, Ira B.
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Quantum algorithms for testing Boolean functions
Directory of Open Access Journals (Sweden)
Erika Andersson
2010-06-01
Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.
Atomic switch networks as complex adaptive systems
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
Rational Verification in Iterated Electric Boolean Games
Directory of Open Access Journals (Sweden)
Youssouf Oualhadj
2016-07-01
Full Text Available Electric boolean games are compact representations of games where the players have qualitative objectives described by LTL formulae and have limited resources. We study the complexity of several decision problems related to the analysis of rationality in electric boolean games with LTL objectives. In particular, we report that the problem of deciding whether a profile is a Nash equilibrium in an iterated electric boolean game is no harder than in iterated boolean games without resource bounds. We show that it is a PSPACE-complete problem. As a corollary, we obtain that both rational elimination and rational construction of Nash equilibria by a supervising authority are PSPACE-complete problems.
Boolean Models of Biological Processes Explain Cascade-Like Behavior.
Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen
2016-01-29
Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.
Adaptive Filtering Using Recurrent Neural Networks
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
A Holistic Management Architecture for Large-Scale Adaptive Networks
National Research Council Canada - National Science Library
Clement, Michael R
2007-01-01
This thesis extends the traditional notion of network management as an indicator of resource availability and utilization into a systemic model of resource requirements, capabilities, and adaptable...
Boolean integral calculus for digital systems
Tucker, J. H.; Tapia, M. A.; Bennett, A. W.
1985-01-01
The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of 'integrating' (i.e., realizing) the function, if it exists, are presented. Boolean integral calculus has applications in design of logic circuits.
On Boolean functions with generalized cryptographic properties
Braeken, A.; Nikov, V.S.; Nikova, S.I.; Preneel, B.; Canteaut, A.; Viswanathan, K.
2004-01-01
By considering a new metric, we generalize cryptographic properties of Boolean functions such as resiliency and propagation characteristics. These new definitions result in a better understanding of the properties of Boolean functions and provide a better insight in the space defined by this metric.
Adaptive training of feedforward neural networks by Kalman filtering
International Nuclear Information System (INIS)
Ciftcioglu, Oe.
1995-02-01
Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.)
Public goods games on adaptive coevolutionary networks
Pichler, Elgar; Shapiro, Avi M.
2017-07-01
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, reap public goods benefits, which are shares of the contributions amplified by a synergy factor. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a complex network in which players adapt to their environment in order to increase individual payoffs relative to past payoffs parameterized by greediness. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players' strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
Opinion dynamics on an adaptive random network
Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.
2009-04-01
We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.
Evolution of Cooperation in Adaptive Social Networks
Segbroeck, Sven Van; Santos, Francisco C.; Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M.
Humans are organized in societies, a phenomenon that would never have been possible without the evolution of cooperative behavior. Several mechanisms that foster this evolution have been unraveled over the years, with population structure as a prominent promoter of cooperation. Modern networks of exchange and cooperation are, however, becoming increasingly volatile, and less and less based on long-term stable structure. Here, we address how this change of paradigm aspects the evolution of cooperation. We discuss analytical and numerical models in which individuals can break social ties and create new ones. Interactions are modeled as two-player dilemmas of cooperation. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. This individual capacity of forming new links or severing inconvenient ones can effectively change the nature of the game. We address random formation of new links and local linking rules as well as different individual capacities to maintain social interactions. We conclude by discussing how adaptive social networks can become an important step towards more realistic models of cultural dynamics.
Mining TCGA data using Boolean implications.
Directory of Open Access Journals (Sweden)
Subarna Sinha
Full Text Available Boolean implications (if-then rules provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression from the glioblastoma (GBM and ovarian serous cystadenoma (OV data sets from The Cancer Genome Atlas (TCGA. We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/.
Epidemics in Adaptive Social Networks with Temporary Link Deactivation
Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.
2013-04-01
Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.
Networked Airborne Communications Using Adaptive Multi Beam Directional Links
2016-03-05
Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach
Adaptive Mobile Positioning in WCDMA Networks
Directory of Open Access Journals (Sweden)
Dong B.
2005-01-01
Full Text Available We propose a new technique for mobile tracking in wideband code-division multiple-access (WCDMA systems employing multiple receive antennas. To achieve a high estimation accuracy, the algorithm utilizes the time difference of arrival (TDOA measurements in the forward link pilot channel, the angle of arrival (AOA measurements in the reverse-link pilot channel, as well as the received signal strength. The mobility dynamic is modelled by a first-order autoregressive (AR vector process with an additional discrete state variable as the motion offset, which evolves according to a discrete-time Markov chain. It is assumed that the parameters in this model are unknown and must be jointly estimated by the tracking algorithm. By viewing a nonlinear dynamic system such as a jump-Markov model, we develop an efficient auxiliary particle filtering algorithm to track both the discrete and continuous state variables of this system as well as the associated system parameters. Simulation results are provided to demonstrate the excellent performance of the proposed adaptive mobile positioning algorithm in WCDMA networks.
LTE Adaptation for Mobile Broadband Satellite Networks
Directory of Open Access Journals (Sweden)
Bastia Francesco
2009-01-01
Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.
How adaptation shapes spike rate oscillations in recurrent neuronal networks
Directory of Open Access Journals (Sweden)
Moritz eAugustin
2013-02-01
Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.
Totally optimal decision trees for Boolean functions
Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail
2016-01-01
We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters
Representing Boolean Functions by Decision Trees
Chikalov, Igor
2011-01-01
A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms
Transitions from Trees to Cycles in Adaptive Flow Networks
DEFF Research Database (Denmark)
Martens, Erik Andreas; Klemm, Konstantin
2017-01-01
. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real......-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...
Transitions from Trees to Cycles in Adaptive Flow Networks
DEFF Research Database (Denmark)
Martens, Erik Andreas; Klemm, Konstantin
2017-01-01
-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...... principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real...
Boolean models of biosurfactants production in Pseudomonas fluorescens.
Directory of Open Access Journals (Sweden)
Adrien Richard
Full Text Available Cyclolipopeptides (CLPs are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene (plcC and not restored by plcC complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Network on Target: Remotely Configured Adaptive Tactical Networks
National Research Council Canada - National Science Library
Bordetsky, Alex; Bourakov, Eugene
2006-01-01
The emerging tactical networks represent complex network-centric systems, in which multiple sensors, unmanned vehicles, and geographically distributed units of highly mobile decision makers, transfer...
Lifetime Maximizing Adaptive Power Control in Wireless Sensor Networks
National Research Council Canada - National Science Library
Sun, Fangting; Shayman, Mark
2006-01-01
...: adaptive power control. They focus on the sensor networks that consist of a sink and a set of homogeneous wireless sensor nodes, which are randomly deployed according to a uniform distribution...
Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism
DEFF Research Database (Denmark)
Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu
2012-01-01
Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...
Transitions from Trees to Cycles in Adaptive Flow Networks
Directory of Open Access Journals (Sweden)
Erik A. Martens
2017-11-01
Full Text Available Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances. We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.
Adaptive nonlinear control using input normalized neural networks
International Nuclear Information System (INIS)
Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong
2008-01-01
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small
Collaborative Trust Networks in Engineering Design Adaptation
DEFF Research Database (Denmark)
Atkinson, Simon Reay; Maier, Anja; Caldwell, Nicholas
2011-01-01
); applying the Change Prediction Method (CPM) tool. It posits the idea of the ‘Networks-in-Being’ with varying individual and collective characteristics. [Social] networks are considered to facilitate information exchange between actors. At the same time, networks failing to provide trusted-information can...... hinder effective communication and collaboration. Different combinations of trust may therefore improve or impair the likelihood of information flow, transfer and subsequent action (cause and effect). This paper investigates how analysing different types of network-structures-in-being can support......Within organisations, decision makers have to rely on collaboration with other actors from different disciplines working within highly dynamic and distributed associated networks of varying size and scales. This paper develops control and influence networks within Design Structure Matrices (DSM...
Stochastic analysis of epidemics on adaptive time varying networks
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Adaptive Protocols for Mobile Wireless Networks
National Research Council Canada - National Science Library
Pursley, Michael B
2005-01-01
Results are reported for basic research in mobile wireless communication networks for tactical applications including investigations of new methods for error-control coding and decoding, modulation...
Two Expectation-Maximization Algorithms for Boolean Factor Analysis
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
2014-01-01
Roč. 130, 23 April (2014), s. 83-97 ISSN 0925-2312 R&D Projects: GA ČR GAP202/10/0262 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean Factor analysis * Binary Matrix factorization * Neural networks * Binary data model * Dimension reduction * Bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014
Adapting Bayes Network Structures to Non-stationary Domains
DEFF Research Database (Denmark)
Nielsen, Søren Holbech; Nielsen, Thomas Dyhre
2008-01-01
When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN is gradu...
Complexity and network dynamics in physiological adaptation: An integrated view
Baffy, Gyorgy; Loscalzo, Joseph
2014-01-01
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of t...
Network on Target: Remotely Configured Adaptive Tactical Networks
National Research Council Canada - National Science Library
Bordetsky, Alex; Bourakov, Eugene
2006-01-01
.... The node mobility as well as ad hoc network topology reconfiguration becomes a powerful control option, which network operators or intelligent management agents could apply to provide for self...
On the Adaptive Design Rules of Biochemical Networks in Evolution
Directory of Open Access Journals (Sweden)
Bor-Sen Chen
2007-01-01
Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.
Specification and Support of Adaptable Networked Multimedia
D.C.A. Bulterman (Dick)
1993-01-01
htmlabstractAccessing multimedia information in a networked environment introduces problems that don't exist when the same information is accessed locally. These problems include: competing for network resources within and across applications, synchronizing data arrivals from various sources within
Network-topology-adaptive quantum conference protocols
International Nuclear Information System (INIS)
Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan
2011-01-01
As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)
Interference mitigation through adaptive power control in wireless sensor networks
Chincoli, M.; Bacchiani, C.; Syed, Aly; Exarchakos, G.; Liotta, A.
2016-01-01
Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counter-productive
Adaptive Capacity Management in Bluetooth Networks
DEFF Research Database (Denmark)
Son, L.T.
, such as limited wireless bandwidth operation, routing, scheduling, network control, etc. Currently Bluetooth specification particularly does not describe in details about how to implement Quality of Service and Resource Management in Bluetooth protocol stacks. These issues become significant, when the number...... of Bluetooth devices is increasing, a larger-scale ad hoc network, scatternet, is formed, as well as the booming of Internet has demanded for large bandwidth and low delay mobile access. This dissertation is to address the capacity management issues in Bluetooth networks. The main goals of the network capacity...... capacity allocation, network traffic control, inter-piconet scheduling, and buffer management. First, after a short presentation about Bluetooth technology, and QoS issues, queueing models and a simulation-based buffer management have been constructed. Then by using analysis and simulation, it shows some...
Detection of network attacks based on adaptive resonance theory
Bukhanov, D. G.; Polyakov, V. M.
2018-05-01
The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.
Adaptive intelligent power systems: Active distribution networks
International Nuclear Information System (INIS)
McDonald, Jim
2008-01-01
Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems
Time scales in evolutionary game on adaptive networks
Energy Technology Data Exchange (ETDEWEB)
Cong, Rui, E-mail: congrui0000@126.com [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wu, Te; Qiu, Yuan-Ying [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wang, Long [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing (China)
2014-02-01
Most previous studies concerning spatial games have assumed strategy updating occurs with a fixed ratio relative to interactions. We here set up a coevolutionary model to investigate how different ratio affects the evolution of cooperation on adaptive networks. Simulation results demonstrate that cooperation can be significantly enhanced under our rewiring mechanism, especially with slower natural selection. Meanwhile, slower selection induces larger network heterogeneity. Strong selection contracts the parameter area where cooperation thrives. Therefore, cooperation prevails whenever individuals are offered enough chances to adapt to the environment. Robustness of the results has been checked under rewiring cost or varied networks.
Dynamic Virtual LANs for Adaptive Network Security
National Research Council Canada - National Science Library
Merani, Diego; Berni, Alessandro; Leonard, Michel
2004-01-01
The development of Network-Enabled capabilities in support of undersea research requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards...
Engineering Issues for an Adaptive Defense Network
National Research Council Canada - National Science Library
Piszcz, Alan; Orlans, Nicholas; Eyler-Walker, Zachary; Moore, David
2001-01-01
.... The primary issue was the capability to detect and defend against DDoS. Experimentation was performed with a packet filtering firewall, a network Quality of Service manager, multiple DDoS tools, and traffic generation tools...
Adaptive Sampling in Autonomous Marine Sensor Networks
National Research Council Canada - National Science Library
Eickstedt, Donald P
2006-01-01
... oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new...
Adaptive Capacity Management in Bluetooth Networks
Son, L.T.
2004-01-01
With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low power, and low cost mobile ad hoc solution for the global interconnection of all mobile devices. To implement Bluetooth network as a true mobile ad hoc wireless network operating in short radio range, h...
Boolean integration. [applied to switching network synthesis
Tucker, J. H.; Tapia, M. A.; Bennett, A. W.
1976-01-01
This paper presents the necessary and sufficient conditions for a given differential expression to be compatibly integrable and it presents the necessary and sufficient conditions for a given expression to be exactly integrable. Methods are given for integrating a differential expression when it is exactly integrable and when it is compatibly integrable. The physical interpretation is given of the integral of order k, of a differential expression, and it is shown that any differential expression of the proper form is integrable by parts.
Enhancement of large fluctuations to extinction in adaptive networks
Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.
2018-01-01
During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.
Connection adaption for control of networked mobile chaotic agents.
Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S
2017-11-22
In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.
Time-adaptive and history-adaptive multicriterion routing in stochastic, time-dependent networks
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
2009-01-01
We compare two different models for multicriterion routing in stochastic time-dependent networks: the classic "time-adaptive'' model and the more flexible "history-adaptive'' one. We point out several properties of the sets of efficient solutions found under the two models. We also devise a method...
Information encryption systems based on Boolean functions
Directory of Open Access Journals (Sweden)
Aureliu Zgureanu
2011-02-01
Full Text Available An information encryption system based on Boolean functions is proposed. Information processing is done using multidimensional matrices, performing logical operations with these matrices. At the basis of ensuring high level security of the system the complexity of solving the problem of building systems of Boolean functions that depend on many variables (tens and hundreds is set. Such systems represent the private key. It varies both during the encryption and decryption of information, and during the transition from one message to another.
Extending the Lifetime of Sensor Networks through Adaptive Reclustering
Directory of Open Access Journals (Sweden)
Gianluigi Ferrari
2007-06-01
Full Text Available We analyze the lifetime of clustered sensor networks with decentralized binary detection under a physical layer quality-of-service (QoS constraint, given by the maximum tolerable probability of decision error at the access point (AP. In order to properly model the network behavior, we consider four different distributions (exponential, uniform, Rayleigh, and lognormal for the lifetime of a single sensor. We show the benefits, in terms of longer network lifetime, of adaptive reclustering. We also derive an analytical framework for the computation of the network lifetime and the penalty, in terms of time delay and energy consumption, brought by adaptive reclustering. On the other hand, absence of reclustering leads to a shorter network lifetime, and we show the impact of various clustering configurations under different QoS conditions. Our results show that the organization of sensors in a few big clusters is the winning strategy to maximize the network lifetime. Moreover, the observation of the phenomenon should be frequent in order to limit the penalties associated with the reclustering procedure. We also apply the developed framework to analyze the energy consumption associated with the proposed reclustering protocol, obtaining results in good agreement with the performance of realistic wireless sensor networks. Finally, we present simulation results on the lifetime of IEEE 802.15.4 wireless sensor networks, which enrich the proposed analytical framework and show that typical networking performance metrics (such as throughput and delay are influenced by the sensor network lifetime.
Extending the Lifetime of Sensor Networks through Adaptive Reclustering
Directory of Open Access Journals (Sweden)
Ferrari Gianluigi
2007-01-01
Full Text Available We analyze the lifetime of clustered sensor networks with decentralized binary detection under a physical layer quality-of-service (QoS constraint, given by the maximum tolerable probability of decision error at the access point (AP. In order to properly model the network behavior, we consider four different distributions (exponential, uniform, Rayleigh, and lognormal for the lifetime of a single sensor. We show the benefits, in terms of longer network lifetime, of adaptive reclustering. We also derive an analytical framework for the computation of the network lifetime and the penalty, in terms of time delay and energy consumption, brought by adaptive reclustering. On the other hand, absence of reclustering leads to a shorter network lifetime, and we show the impact of various clustering configurations under different QoS conditions. Our results show that the organization of sensors in a few big clusters is the winning strategy to maximize the network lifetime. Moreover, the observation of the phenomenon should be frequent in order to limit the penalties associated with the reclustering procedure. We also apply the developed framework to analyze the energy consumption associated with the proposed reclustering protocol, obtaining results in good agreement with the performance of realistic wireless sensor networks. Finally, we present simulation results on the lifetime of IEEE 802.15.4 wireless sensor networks, which enrich the proposed analytical framework and show that typical networking performance metrics (such as throughput and delay are influenced by the sensor network lifetime.
Epidemics on adaptive networks with geometric constraints
Shaw, Leah; Schwartz, Ira
2008-03-01
When a population is faced with an epidemic outbreak, individuals may modify their social behavior to avoid exposure to the disease. Recent work has considered models in which the contact network is rewired dynamically so that susceptibles avoid contact with infectives. We consider extensions in which the rewiring is subject to constraints that preserve key properties of the social network structure. Constraining to a fixed degree distribution destroys previously observed bistable behavior. The most effective rewiring strategy is found to depend on the spreading rate.
Dynamics of epidemic diseases on a growing adaptive network.
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-10
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Scalable Lunar Surface Networks and Adaptive Orbit Access
Wang, Xudong
2015-01-01
Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.
Adaptive mechanism-based congestion control for networked systems
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
Razzaque, Mohammad Abdur; Javadi, Saeideh S.; Coulibaly, Yahaya; Hira, Muta Tah
2015-01-01
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2014-12-29
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
Designing Networked Adaptive Interactive Hybrid Systems
Kester, L.J.H.M.
2008-01-01
Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under
Adaptive Importance Sampling Simulation of Queueing Networks
de Boer, Pieter-Tjerk; Nicola, V.F.; Rubinstein, N.; Rubinstein, Reuven Y.
2000-01-01
In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a
Adaptive neural network motion control for aircraft under uncertainty conditions
Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.
2018-02-01
We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.
Adaptive traffic control systems for urban networks
Directory of Open Access Journals (Sweden)
Radivojević Danilo
2017-01-01
Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.
Epidemic spreading on contact networks with adaptive weights.
Zhu, Guanghu; Chen, Guanrong; Xu, Xin-Jian; Fu, Xinchu
2013-01-21
The heterogeneous patterns of interactions within a population are often described by contact networks, but the variety and adaptivity of contact strengths are usually ignored. This paper proposes a modified epidemic SIS model with a birth-death process and nonlinear infectivity on an adaptive and weighted contact network. The links' weights, named as 'adaptive weights', which indicate the intimacy or familiarity between two connected individuals, will reduce as the disease develops. Through mathematical and numerical analyses, conditions are established for population extermination, disease extinction and infection persistence. Particularly, it is found that the fixed weights setting can trigger the epidemic incidence, and that the adaptivity of weights cannot change the epidemic threshold but it can accelerate the disease decay and lower the endemic level. Finally, some corresponding control measures are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.
A candidate multimodal functional genetic network for thermal adaptation
Directory of Open Access Journals (Sweden)
Katharina C. Wollenberg Valero
2014-09-01
Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and
Adaptation of coordination mechanisms to network structures
Directory of Open Access Journals (Sweden)
Herwig Mittermayer
2008-12-01
Full Text Available The coordination efficiency of Supply Chain Management is determined by two opposite poles: benefit from improved planning results and associated coordination cost. The centralization grade, applied coordination mechanisms and IT support have influence on both categories. Therefore three reference types are developed and subsequently detailed in business process models for different network structures. In a simulation study the performance of these organization forms are compared in a process plant network. Coordination benefit is observed if the planning mode is altered by means of a demand planning IT tool. Coordination cost is divided into structural and activity-dependent cost. The activity level rises when reactive planning iterations become necessary as a consequence of inconsistencies among planning levels. Some characteristic influence factors are considered to be a reason for uninfeasible planning. In this study the effect of capacity availability and stochastic machine downtimes is investigated in an uncertain demand situation. Results that if the network runs with high overcapacity, central planning is less likely to increase benefit enough to outweigh associated cost. Otherwise, if capacity constraints are crucial, a central planning mode is recommendable. When also unforeseen machine downtimes are low, the use of sophisticated IT tools is most profitable.
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
Directory of Open Access Journals (Sweden)
Mohammad Abdur Razzaque
2014-12-01
Full Text Available Wireless body sensor networks (WBSNs for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS, in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
Scalable Harmonization of Complex Networks With Local Adaptive Controllers
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Herzallah, R.
2017-01-01
Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Fee dback * Fee dforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf
Beyond-CMOS Device Benchmarking for Boolean and Non-Boolean Logic Applications
Pan, Chenyun; Naeemi, Azad
2017-01-01
The latest results of benchmarking research are presented for a variety of beyond-CMOS charge- and spin-based devices. In addition to improving the device-level models, several new device proposals and a few majorly modified devices are investigated. Deep pipelining circuits are employed to boost the throughput of low-power devices. Furthermore, the benchmarking methodology is extended to interconnect-centric analyses and non-Boolean logic applications. In contrast to Boolean circuits, non-Bo...
Radio propagation and adaptive antennas for wireless communication networks
Blaunstein, Nathan
2014-01-01
Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,
A complexity theory based on Boolean algebra
DEFF Research Database (Denmark)
Skyum, Sven; Valiant, Leslie
1985-01-01
A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...
Evolutionary Algorithms for Boolean Queries Optimization
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.
2006-01-01
Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics
Boolean Queries Optimization by Genetic Algorithms
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav
2005-01-01
Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research
Practical algorithms for linear boolean-width
ten Brinke, C.B.; van Houten, F.J.P.; Bodlaender, H.L.
2015-01-01
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the
Practical algorithms for linear Boolean-width
ten Brinke, C.B.; van Houten, F.J.P.; Bodlaender, H.L.
2015-01-01
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Social Networking Adapted for Distributed Scientific Collaboration
Karimabadi, Homa
2012-01-01
Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and
Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes
Directory of Open Access Journals (Sweden)
Cocco Giuseppe
2010-01-01
Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.
Neural network based adaptive control for nonlinear dynamic regimes
Shin, Yoonghyun
Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.
In-network adaptation of SHVC video in software-defined networks
Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos
2016-04-01
Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and
Adaptive filtering for hidden node detection and tracking in networks.
Hamilton, Franz; Setzer, Beverly; Chavez, Sergio; Tran, Hien; Lloyd, Alun L
2017-07-01
The identification of network connectivity from noisy time series is of great interest in the study of network dynamics. This connectivity estimation problem becomes more complicated when we consider the possibility of hidden nodes within the network. These hidden nodes act as unknown drivers on our network and their presence can lead to the identification of false connections, resulting in incorrect network inference. Detecting the parts of the network they are acting on is thus critical. Here, we propose a novel method for hidden node detection based on an adaptive filtering framework with specific application to neuronal networks. We consider the hidden node as a problem of missing variables when model fitting and show that the estimated system noise covariance provided by the adaptive filter can be used to localize the influence of the hidden nodes and distinguish the effects of different hidden nodes. Additionally, we show that the sequential nature of our algorithm allows for tracking changes in the hidden node influence over time.
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Compensation for unmatched uncertainty with adaptive RBF network
African Journals Online (AJOL)
Robust control for nonlinear uncertain systems has been solved for matched uncertainty but has not been completely solved yet for unmatched uncertainty. This paper developed a new method in which an adaptive radial basis function neural network is used to compensate for the effects of unmatched uncertainty in the ...
Adaptive dynamic capacity borrowing in road-covering mobile networks
Ule, A.; Boucherie, Richardus J.; Li, W.; Pan, Y.
2006-01-01
This paper introduces adaptive dynamic capacity borrowing strategies for wireless networks covering a road. In a F/TDMA-based model, road traffic prediction models are used to characterise the movement of hot spots, such as traffic jams, and subsequently to predict the teletraffic load offered to
Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks
DEFF Research Database (Denmark)
Fafoutis, Xenofon; Dragoni, Nicola
2012-01-01
ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever-ch...
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
Energy Technology Data Exchange (ETDEWEB)
Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain
Czech Academy of Sciences Publication Activity Database
Frolov, A.; Húsek, Dušan; Polyakov, P.Y.
2016-01-01
Roč. 27, č. 3 (2016), s. 538-550 ISSN 2162-237X R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:67985807 Keywords : associative memory * bars problem (BP) * Boolean factor analysis (BFA) * data mining * dimension reduction * Hebbian learning rule * information gain * likelihood maximization (LM) * neural network application * recurrent neural network * statistics Subject RIV: IN - Informatics, Computer Science Impact factor: 6.108, year: 2016
Genetic adaptation of the antibacterial human innate immunity network
Directory of Open Access Journals (Sweden)
Lazarus Ross
2011-07-01
Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.
Genetic adaptation of the antibacterial human innate immunity network.
Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume
2011-07-11
Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.
Adaptive Moving Object Tracking Integrating Neural Networks And Intelligent Processing
Lee, James S. J.; Nguyen, Dziem D.; Lin, C.
1989-03-01
A real-time adaptive scheme is introduced to detect and track moving objects under noisy, dynamic conditions including moving sensors. This approach integrates the adaptiveness and incremental learning characteristics of neural networks with intelligent reasoning and process control. Spatiotemporal filtering is used to detect and analyze motion, exploiting the speed and accuracy of multiresolution processing. A neural network algorithm constitutes the basic computational structure for classification. A recognition and learning controller guides the on-line training of the network, and invokes pattern recognition to determine processing parameters dynamically and to verify detection results. A tracking controller acts as the central control unit, so that tracking goals direct the over-all system. Performance is benchmarked against the Widrow-Hoff algorithm, for target detection scenarios presented in diverse FLIR image sequences. Efficient algorithm design ensures that this recognition and control scheme, implemented in software and commercially available image processing hardware, meets the real-time requirements of tracking applications.
DEFF Research Database (Denmark)
Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani
2014-01-01
This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...
International Development Research Centre (IDRC) Digital Library (Canada)
building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash
2018-04-24
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Network Experiences Lead to the Adaption of a Firm’s Network Competence
Directory of Open Access Journals (Sweden)
Bianka Kühne
2011-12-01
Full Text Available Networks become increasingly important as external sources of innovation for firms. Through networks firms get incontact with different actors with whom they can exchange information and collaborate. A firm’s ability to be asuccessful network actor depends on its network competence. This term can be defined as having the necessaryknowledge, skills and qualifications for networking as well as using them effectively. In this paper we investigate thelink between a firm’s network competence and the benefits resulting from it in a two‐way direction. First, thenetwork competence of the firm facilitates the adoption of information from other network actors which may leadto innovation success. Second the perceived network benefits shall in their turn influence the network competenceof the firm. Consequently, firms will adapt their network strategy corresponding their experiences. The objective ofthis paper is to investigate the dynamics of networking and its influence on the firm’s network competence. For thisexploratory research 3 Belgian networks are examined. In‐depth interviews are used in combination with semistructuredinterview guides to conduct the research. Our results indicate that some firms perceive benefits fromtheir network efforts, for others it is more a burden. Furthermore, in some of our cases we found that positiveexperiences with clear benefits motivate the firm to enhance its network competence. This is illustrated by the factthat collaborations are more frequently initiated, trust is more easily build, firms are more open to communicateinformation and the confidentiality threshold is overcome.
Classical Boolean logic gates with quantum systems
International Nuclear Information System (INIS)
Renaud, N; Joachim, C
2011-01-01
An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, α = {α 1 , ..., α N }, is used to control well-identified parameters of the Hamiltonian of the system noted H 0 (α). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.
Totally optimal decision trees for Boolean functions
Chikalov, Igor
2016-07-28
We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.
Boolean representations of simplicial complexes and matroids
Rhodes, John
2015-01-01
This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context. Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean represent...
Spontaneous formation of dynamical groups in an adaptive networked system
International Nuclear Information System (INIS)
Li Menghui; Guan Shuguang; Lai, C-H
2010-01-01
In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.
SVC VIDEO STREAM ALLOCATION AND ADAPTATION IN HETEROGENEOUS NETWORK
Directory of Open Access Journals (Sweden)
E. A. Pakulova
2016-07-01
Full Text Available The paper deals with video data transmission in format H.264/SVC standard with QoS requirements satisfaction. The Sender-Side Path Scheduling (SSPS algorithm and Sender-Side Video Adaptation (SSVA algorithm were developed. SSPS algorithm gives the possibility to allocate video traffic among several interfaces while SSVA algorithm dynamically changes the quality of video sequence in relation to QoS requirements. It was shown that common usage of two developed algorithms enables to aggregate throughput of access networks, increase parameters of Quality of Experience and decrease losses in comparison with Round Robin algorithm. For evaluation of proposed solution, the set-up was made. The trace files with throughput of existing public networks were used in experiments. Based on this information the throughputs of networks were limited and losses for paths were set. The results of research may be used for study and transmission of video data in heterogeneous wireless networks.
Information Retrieval on social network: An Adaptive Proof
Elveny, M.; Syah, R.; Elfida, M.; Nasution, M. K. M.
2018-01-01
Information Retrieval has become one of the areas for studying to get the trusty information, with which the recall and precision become the measurement form that represents it. Nevertheless, development in certain scientific fields make it possible to improve the performance of the Information Retrieval. In this case, through social networks whereby the role of social actor degrees plays a role. This is an implication of the query in which co-occurrence becomes an indication of social networks. An adaptive approach we use by involving this query in sequence to a stand-alone query, it has proven the relationship among them.
Adaptive Reference Control for Pressure Management in Water Networks
DEFF Research Database (Denmark)
Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal
2015-01-01
Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....
Adaptive Smoothing in fMRI Data Processing Neural Networks
DEFF Research Database (Denmark)
Vilamala, Albert; Madsen, Kristoffer Hougaard; Hansen, Lars Kai
2017-01-01
in isolation. With the advent of new tools for deep learning, recent work has proposed to turn these pipelines into end-to-end learning networks. This change of paradigm offers new avenues to improvement as it allows for a global optimisation. The current work aims at benefitting from this paradigm shift...... by defining a smoothing step as a layer in these networks able to adaptively modulate the degree of smoothing required by each brain volume to better accomplish a given data analysis task. The viability is evaluated on real fMRI data where subjects did alternate between left and right finger tapping tasks....
Adaptation in Food Networks: Theoretical Framework and Empirical Evidences
Directory of Open Access Journals (Sweden)
Gaetano Martino
2013-03-01
Full Text Available The paper concerns the integration in food networks under a governance point of view. We conceptualize the integration processes in terms of the adaptation theory and focus the issues related under a transaction cost economics perspective. We conjecture that the allocation of decisions rights between the parties to a transaction is a key instrument in order to cope with the sources of basic uncertainty in food networks: technological innovation, sustainability strategies, quality and safety objectives. Six case studies are proposed which contribute to corroborate our conjecture. Managerial patters based on a joint decision approach also are documented
Unlimited multistability and Boolean logic in microbial signalling
DEFF Research Database (Denmark)
Kothamachu, Varun B; Feliu, Elisenda; Cardelli, Luca
2015-01-01
The ability to map environmental signals onto distinct internal physiological states or programmes is critical for single-celled microbes. A crucial systems dynamics feature underpinning such ability is multistability. While unlimited multistability is known to arise from multi-site phosphorylation...... seen in the signalling networks of eukaryotic cells, a similarly universal mechanism has not been identified in microbial signalling systems. These systems are generally known as two-component systems comprising histidine kinase (HK) receptors and response regulator proteins engaging in phosphotransfer...... further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two...
ADAPTIVE GOSSIP BASED PROTOCOL FOR ENERGY EFFICIENT MOBILE ADHOC NETWORK
Directory of Open Access Journals (Sweden)
S. Rajeswari
2012-03-01
Full Text Available In Gossip Sleep Protocol, network performance is enhanced based on energy resource. But energy conservation is achieved with the reduced throughput. In this paper, it has been proposed a new Protocol for Mobile Ad hoc Network to achieve reliability with energy conservation. Based on the probability (p values, the value of sleep nodes is fixed initially. The probability value can be adaptively adjusted by Remote Activated Switch during the transmission process. The adaptiveness of gossiping probability is determined by the Packet Delivery Ratio. For performance comparison, we have taken Routing overhead, Packet Delivery Ratio, Number of dropped packets and Energy consumption with the increasing number of forwarding nodes. We used UDP based traffic models to analyze the performance of this protocol. We analyzed TCP based traffic models for average end to end delay. We have used the NS-2 simulator.
Adaptive PID control based on orthogonal endocrine neural networks.
Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D
2016-12-01
A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive local routing strategy on a scale-free network
International Nuclear Information System (INIS)
Feng, Liu; Han, Zhao; Ming, Li; Yan-Bo, Zhu; Feng-Yuan, Ren
2010-01-01
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies. (general)
Naming game with biased assimilation over adaptive networks
Fu, Guiyuan; Zhang, Weidong
2018-01-01
The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.
Adaptive enhanced sampling by force-biasing using neural networks
Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.
2018-04-01
A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press
Adaptive comanagement of a marine protected area network in Fiji.
Weeks, Rebecca; Jupiter, Stacy D
2013-12-01
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network
Directory of Open Access Journals (Sweden)
Kazuhiko Hiramoto
2018-01-01
Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.
Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt
2013-09-01
Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Adaptive multi-resolution Modularity for detecting communities in networks
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
LAMAN: Load Adaptable MAC for Ad Hoc Networks
Directory of Open Access Journals (Sweden)
Realp Marc
2005-01-01
Full Text Available In mobile ad hoc radio networks, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency. In this paper, the load adaptable medium access control for ad hoc networks (LAMAN protocol is described. LAMAN is a novel decentralized multipacket MAC protocol designed following a cross-layer approach. Basically, this protocol is a hybrid CDMA-TDMA-based protocol that aims at throughput maximization in multipacket communication environments by efficiently combining contention and conflict-free protocol components. Such combination of components is used to adapt the nodes' access priority to changes on the traffic load while, at the same time, accounting for the multipacket reception (MPR capability of the receivers. A theoretical analysis of the system is developed presenting closed expressions of network throughput and packet delay. By simulations the validity of our analysis is shown and the performances of a LAMAN-based system and an Aloha-CDMA-based one are compared.
An adaptive routing strategy for packet delivery in complex networks
International Nuclear Information System (INIS)
Zhang, Huan; Liu, Zonghua; Tang, Ming; Hui, P.M.
2007-01-01
We present an efficient routing approach for delivering packets in complex networks. On delivering a message from a node to a destination, a node forwards the message to a neighbor by estimating the waiting time along the shortest path from each of its neighbors to the destination. This projected waiting time is dynamical in nature and the path through which a message is delivered would be adapted to the distribution of messages in the network. Implementing the approach on scale-free networks, we show that the present approach performs better than the shortest-path approach and another approach that takes into account of the waiting time only at the neighboring nodes. Key features in numerical results are explained by a mean field theory. The approach has the merit that messages are distributed among the nodes according to the capabilities of the nodes in handling messages
Adaptive Decision-Making Scheme for Cognitive Radio Networks
Alqerm, Ismail
2014-05-01
Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.
Adaptive Management of Computing and Network Resources for Spacecraft Systems
Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)
2000-01-01
It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.
Traffic Adaptive MAC Protocols in Wireless Body Area Networks
Directory of Open Access Journals (Sweden)
Farhan Masud
2017-01-01
Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.
Adaptive control of a PWR core power using neural networks
International Nuclear Information System (INIS)
Arab-Alibeik, H.; Setayeshi, S.
2005-01-01
Reactor power control is important because of safety concerns and the call for regular and appropriate operation of nuclear power plants. It seems that the load-follow operation of these plants will be unavoidable in the future. Discrepancies between the real plant and the model used in controller design for load-follow operation encourage one to use auto-tuning and (or) adaptive techniques. Neural network technology shows great promise for addressing many problems in non-model-based adaptive control methods. Also, there has been a great attention to inverse control especially in the neural and fuzzy control context. Fortunately, online adaptation eliminates some limitations of inverse control and its shortcomings for real world applications. We use a neural adaptive inverse controller to control the power of a PWR reactor. The stability of the system and convergence of the controller parameters are guaranteed during online adaptation phase provided the controller is near the plant's real inverse after offline training period. The performance of the controller is verified using nonlinear simulations in diverse operating conditions
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2018-04-05
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.
Large Sets in Boolean and Non-Boolean Groups and Topology
Directory of Open Access Journals (Sweden)
Ol’ga V. Sipacheva
2017-10-01
Full Text Available Various notions of large sets in groups, including the classical notions of thick, syndetic, and piecewise syndetic sets and the new notion of vast sets in groups, are studied with emphasis on the interplay between such sets in Boolean groups. Natural topologies closely related to vast sets are considered; as a byproduct, interesting relations between vast sets and ultrafilters are revealed.
Vector Boolean Functions: applications in symmetric cryptography
Álvarez Cubero, José Antonio
2015-01-01
Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa...
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons
Directory of Open Access Journals (Sweden)
Tanguy Fardet
2018-02-01
Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.
Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games
Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.
Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then
Boolean orthoposets and two-valued states on them
Tkadlec, Josef
1992-06-01
A Boolean orthoposet (see e.g. [2]) is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0 then a⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets (see e.g. [8]). Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough (see [4,3]) and on the other hand, enjoys some properties of Boolean algebras [4,8,5]. In quantum logic theory an important role is played by so-called Jauch-Piron states [1,6,7]. In this paper we clarify the connection between Boolean orthoposets and orthoposets with "enough" two-valued Jauch-Piron states. Further, we obtain a characterization of Boolean orthoposets in terms of two-valued states.
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Ultra Low Energy FDSOI Asynchronous Reconfiguration Network for Adaptive Circuits
Directory of Open Access Journals (Sweden)
Soundous Chairat
2017-05-01
Full Text Available This paper introduces a plug-and-play on-chip asynchronous communication network aimed at the dynamic reconfiguration of a low-power adaptive circuit such as an internet of things (IoT system. By using a separate communication network, we can address both digital and analog blocks at a lower configuration cost, increasing the overall system power efficiency. As reconfiguration only occurs according to specific events and has to be automatically in stand-by most of the time, our design is fully asynchronous using handshake protocols. The paper presents the circuit’s architecture, performance results, and an example of the reconfiguration of frequency locked loops (FLL to validate our work. We obtain an overall energy per bit of 0.07 pJ/bit for one stage, in a 28 nm Fully Depleted Silicon On Insulator (FDSOI technology at 0.6 V and a 1.1 ns/bit latency per stage.
Epidemic spreading on adaptively weighted scale-free networks.
Sun, Mengfeng; Zhang, Haifeng; Kang, Huiyan; Zhu, Guanghu; Fu, Xinchu
2017-04-01
We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.
Strategic tradeoffs in competitor dynamics on adaptive networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric
2017-08-08
Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.
Adaptive control of call acceptance in WCDMA network
Directory of Open Access Journals (Sweden)
Milan Manojle Šunjevarić
2013-10-01
Full Text Available In this paper, an overview of the algorithms for access control in mobile wireless networks is presented. A review of adaptive control methods of accepting a call in WCDMA networks is discussed, based on the overview of the algorithms used for this purpose, and their comparison. Appropriate comments and conculsions in comparison with the basic characteristics of these algorithms are given. The OVSF codes are explained as well as how the allocation method influences the capacity and probability of blocking.. Introduction We are witnessing a steady increase in the number of demands placed upon modern wireless networks. New applications and an increasing number of users as well as user activities growth in recent years reinforce the need for an efficient use of the spectrum and its proper distribution among different applications and classes of services. Besides humans, the last few years saw different computers, machines, applications, and, in the future, many other devices, RFID applications, and finally networked objects, as a new kind of wireless networks "users". Because of the exceptional rise in the number of users, the demands placed upon modern wireless networks are becoming larger, and spectrum management plays an important role. For these reasons, choosing an appropriate call admission control algorithm is of great importance. Multiple access and resource management in wireless networks Radio resource management of mobile networks is a set of algorithms to manage the use of radio resources with the aim is to maximize the total capacity of wireless systems with equal distribution of resources to users. Management of radio resources in cellular networks is usually located in the base station controller, the base station and the mobile terminal, and is based on decisions made on appropriate measurement and feedback. It is often defined as the maximum volume of traffic load that the system can provide for some of the requirements for the
Directory of Open Access Journals (Sweden)
Jens Christian Claussen
2017-06-01
Full Text Available The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.
PATHLOGIC-S: a scalable Boolean framework for modelling cellular signalling.
Directory of Open Access Journals (Sweden)
Liam G Fearnley
Full Text Available Curated databases of signal transduction have grown to describe several thousand reactions, and efficient use of these data requires the development of modelling tools to elucidate and explore system properties. We present PATHLOGIC-S, a Boolean specification for a signalling model, with its associated GPL-licensed implementation using integer programming techniques. The PATHLOGIC-S specification has been designed to function on current desktop workstations, and is capable of providing analyses on some of the largest currently available datasets through use of Boolean modelling techniques to generate predictions of stable and semi-stable network states from data in community file formats. PATHLOGIC-S also addresses major problems associated with the presence and modelling of inhibition in Boolean systems, and reduces logical incoherence due to common inhibitory mechanisms in signalling systems. We apply this approach to signal transduction networks including Reactome and two pathways from the Panther Pathways database, and present the results of computations on each along with a discussion of execution time. A software implementation of the framework and model is freely available under a GPL license.
Trajanovski, S.; Guo, D.; Van Mieghem, P.F.A.
2015-01-01
The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways:
Adapting Mobile Beacon-Assisted Localization in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Wei Dong
2009-04-01
Full Text Available The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL, to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL and Arrival and Departure Overlap (ADO when both of them use only a single mobile beacon for localization in static WSNs.
Adapting mobile beacon-assisted localization in wireless sensor networks.
Teng, Guodong; Zheng, Kougen; Dong, Wei
2009-01-01
The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN) applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL) approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL), to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL) and Arrival and Departure Overlap (ADO) when both of them use only a single mobile beacon for localization in static WSNs.
Directory of Open Access Journals (Sweden)
M. E. Migabo
2017-01-01
Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.
International Nuclear Information System (INIS)
Li, Lixiang; Li, Weiwei; Kurths, Jürgen; Luo, Qun; Yang, Yixian; Li, Shudong
2015-01-01
For the reason that the uncertain complex dynamic network with multi-link is quite close to various practical networks, there is superiority in the fields of research and application. In this paper, we focus upon pinning adaptive synchronization for uncertain complex dynamic networks with multi-link against network deterioration. The pinning approach can be applied to adapt uncertain coupling factors of deteriorated networks which can compensate effects of uncertainty. Several new synchronization criterions for networks with multi-link are derived, which ensure the synchronized states to be local or global stable with uncertainty and deterioration. Results of simulation are shown to demonstrate the feasibility and usefulness of our method
Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.
Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj
2016-01-01
The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.
Representing Boolean Functions by Decision Trees
Chikalov, Igor
2011-01-01
A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.
Message passing for quantified Boolean formulas
International Nuclear Information System (INIS)
Zhang, Pan; Ramezanpour, Abolfazl; Zecchina, Riccardo; Zdeborová, Lenka
2012-01-01
We introduce two types of message passing algorithms for quantified Boolean formulas (QBF). The first type is a message passing based heuristics that can prove unsatisfiability of the QBF by assigning the universal variables in such a way that the remaining formula is unsatisfiable. In the second type, we use message passing to guide branching heuristics of a Davis–Putnam–Logemann–Loveland (DPLL) complete solver. Numerical experiments show that on random QBFs our branching heuristics give robust exponential efficiency gain with respect to state-of-the-art solvers. We also manage to solve some previously unsolved benchmarks from the QBFLIB library. Apart from this, our study sheds light on using message passing in small systems and as subroutines in complete solvers
Synthesizing biomolecule-based Boolean logic gates.
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2013-02-15
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
Multipath Detection Using Boolean Satisfiability Techniques
Directory of Open Access Journals (Sweden)
Fadi A. Aloul
2011-01-01
Full Text Available A new technique for multipath detection in wideband mobile radio systems is presented. The proposed scheme is based on an intelligent search algorithm using Boolean Satisfiability (SAT techniques to search through the uncertainty region of the multipath delays. The SAT-based scheme utilizes the known structure of the transmitted wideband signal, for example, pseudo-random (PN code, to effectively search through the entire space by eliminating subspaces that do not contain a possible solution. The paper presents a framework for modeling the multipath detection problem as a SAT application. It also provides simulation results that demonstrate the effectiveness of the proposed scheme in detecting the multipath components in frequency-selective Rayleigh fading channels.
Synthesizing Biomolecule-based Boolean Logic Gates
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2012-01-01
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Optical reversible programmable Boolean logic unit.
Chattopadhyay, Tanay
2012-07-20
Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.
Boolean Operations with Prism Algebraic Patches
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2009-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Adaptive contact networks change effective disease infectiousness and dynamics.
Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M
2010-08-19
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).
A recurrent neural network for adaptive beamforming and array correction.
Che, Hangjun; Li, Chuandong; He, Xing; Huang, Tingwen
2016-08-01
In this paper, a recurrent neural network (RNN) is proposed for solving adaptive beamforming problem. In order to minimize sidelobe interference, the problem is described as a convex optimization problem based on linear array model. RNN is designed to optimize system's weight values in the feasible region which is derived from arrays' state and plane wave's information. The new algorithm is proven to be stable and converge to optimal solution in the sense of Lyapunov. So as to verify new algorithm's performance, we apply it to beamforming under array mismatch situation. Comparing with other optimization algorithms, simulations suggest that RNN has strong ability to search for exact solutions under the condition of large scale constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Probabilistic Broadcasting over Dense Wireless Ad Hoc Networks
Directory of Open Access Journals (Sweden)
Victor Gau
2010-01-01
Full Text Available We propose an idle probability-based broadcasting method, iPro, which employs an adaptive probabilistic mechanism to improve performance of data broadcasting over dense wireless ad hoc networks. In multisource one-hop broadcast scenarios, the modeling and simulation results of the proposed iPro are shown to significantly outperform the standard IEEE 802.11 under saturated condition. Moreover, the results also show that without estimating the number of competing nodes and changing the contention window size, the performance of the proposed iPro can still approach the theoretical bound. We further apply iPro to multihop broadcasting scenarios, and the experiment results show that within the same elapsed time after the broadcasting, the proposed iPro has significantly higher Packet-Delivery Ratios (PDR than traditional methods.
Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase I
National Aeronautics and Space Administration — Innovative network architecture, protocols, and algorithms are proposed for both lunar surface networks and orbit access networks. Firstly, an overlaying...
Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds
Johnson, C. E.
2017-12-01
Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.
An Adaptive Channel Model for VBLAST in Vehicular Networks
Directory of Open Access Journals (Sweden)
Ghassan M. T. Abdalla
2009-01-01
Full Text Available The wireless transmission environment in vehicular ad hoc systems varies from line of sight with few surroundings to rich Rayleigh fading. An efficient communication system must adapt itself to these diverse conditions. Multiple antenna systems are known to provide superior performance compared to single antenna systems in terms of capacity and reliability. The correlation between the antennas has a great effect on the performance of MIMO systems. In this paper we introduce a novel adaptive channel model for MIMO-VBLAST systems in vehicular ad hoc networks. Using the proposed model, the correlation between the antennas was investigated. Although the line of sight is ideal for single antenna systems, it severely degrades the performance of VBLAST systems since it increases the correlation between the antennas. A channel update algorithm using single tap Kalman filters for VBLAST in flat fading channels has also been derived and evaluated. At 12 dB Es/N0, the new algorithm showed 50% reduction in the mean square error (MSE between the actual channel and the corresponding updated estimate compared to the MSE without update. The computational requirement of the proposed algorithm for a p×q VBLAST is 6p×q real multiplications and 4p×q real additions.
A transition calculus for Boolean functions. [logic circuit analysis
Tucker, J. H.; Bennett, A. W.
1974-01-01
A transition calculus is presented for analyzing the effect of input changes on the output of logic circuits. The method is closely related to the Boolean difference, but it is more powerful. Both differentiation and integration are considered.
Discrete rate and variable power adaptation for underlay cognitive networks
Abdallah, Mohamed M.
2010-01-01
We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.
Disruption and adaptation of urban transport networks from flooding
Directory of Open Access Journals (Sweden)
Pregnolato Maria
2016-01-01
Full Text Available Transport infrastructure networks are increasingly vulnerable to disruption from extreme rainfall events due to increasing surface water runoff from urbanization and changes in climate. Impacts from such disruptions typically extend far beyond the flood footprint, because of the interconnection and spatial extent of modern infrastructure. An integrated flood risk assessment couples high resolution information on depth and velocity from the CityCAT urban flood model with empirical analysis of vehicle speeds in different depths of flood water, to perturb a transport accessibility model and determine the impact of a given event on journey times across the urban area. A case study in Newcastle-upon-Tyne (UK shows that even minor flooding associate with a 1 in 10 year event can cause traffic disruptions of nearly half an hour. Two adaptation scenarios are subsequently tested (i hardening (i.e. flood protection a single major junction, (ii introduction of green roofs across all buildings. Both options have benefits in terms of reduced disruption, but for a 1 in 200 year event greening all roofs in the city provided only three times the benefit of protecting one critical road junction, highlighting the importance of understanding network attributes such as capacity and flows.
Control of beam halo-chaos using neural network self-adaptation method
International Nuclear Information System (INIS)
Fang Jinqing; Huang Guoxian; Luo Xiaoshu
2004-11-01
Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)
Adaptive training of neural networks for control of autonomous mobile robots
Steur, E.; Vromen, T.; Nijmeijer, H.; Fossen, T.I.; Nijmeijer, H.; Pettersen, K.Y.
2017-01-01
We present an adaptive training procedure for a spiking neural network, which is used for control of a mobile robot. Because of manufacturing tolerances, any hardware implementation of a spiking neural network has non-identical nodes, which limit the performance of the controller. The adaptive
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Adaptive approach to global synchronization of directed networks with fast switching topologies
International Nuclear Information System (INIS)
Qin Buzhi; Lu Xinbiao
2010-01-01
Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.
Efficient community-based control strategies in adaptive networks
International Nuclear Information System (INIS)
Yang Hui; Tang Ming; Zhang Haifeng
2012-01-01
Most studies on adaptive networks concentrate on the properties of steady state, but neglect transient dynamics. In this study, we pay attention to the emergence of community structure in the transient process and the effects of community-based control strategies on epidemic spreading. First, by normalizing the modularity, we investigate the evolution of community structure during the transient process, and find that a strong community structure is induced by the rewiring mechanism in the early stage of epidemic dynamics, which, remarkably, delays the outbreak of disease. We then study the effects of control strategies started at different stages on the prevalence. Both immunization and quarantine strategies indicate that it is not ‘the earlier, the better’ for the implementation of control measures. And the optimal control effect is obtained if control measures can be efficiently implemented in the period of a strong community structure. For the immunization strategy, immunizing the susceptible nodes on susceptible–infected links and immunizing susceptible nodes randomly have similar control effects. However, for the quarantine strategy, quarantining the infected nodes on susceptible–infected links can yield a far better result than quarantining infected nodes randomly. More significantly, the community-based quarantine strategy performs better than the community-based immunization strategy. This study may shed new light on the forecast and the prevention of epidemics among humans. (paper)
Adaptive control using neural networks and approximate models.
Narendra, K S; Mukhopadhyay, S
1997-01-01
The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.
An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip
DEFF Research Database (Denmark)
Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl
2005-01-01
decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0...
Adaptive robotic control driven by a versatile spiking cerebellar network.
Directory of Open Access Journals (Sweden)
Claudia Casellato
Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Adaptive robotic control driven by a versatile spiking cerebellar network.
Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio
2014-01-01
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
The Indigenous Phenology Network: Engage, Observe, and Adapt to Change
Miller, B. W.; Davíd-Chavez, D. M.; Elevitch, C.; Hamilton, A.; Hatfield, S. C.; Jones, K. D.; Rabin, R.; Rosemartin, A.; Souza, M. K.; Sparrow, E.
2017-12-01
The Indigenous Phenology Network (IPN) is a grassroots organization whose participants are interested in understanding changes to seasonality and timing of life cycle events, and forecasting impacts to lands and species of importance to native peoples. The group focuses on building relationships, ensuring benefit to indigenous communities, and integrating indigenous and western knowledge systems. The IPN's work is guided by the Relational Doctrine, a set of principles founded on the notion that all things are connected. This multimedia presentation and dialogue will bring together IPN members and their experiences in diverse communities and landscapes facing impacts from a changing climate and extreme weather events. Impacts on water supply, vegetation, wildlife, and living conditions, and ideas for minimizing and responding to the projected impacts of continued change will be discussed in the context of multi-generational, place-based traditional knowledge and community resilience. Scalable, community-based gardens, for example, provide a sustainable source of traditional, locally grown food, most valuable in times of disaster when supplies from the outside world are unavailable. Following the concept of Victory Gardens, the model of small-scale agroforestry (VICTree Gardens - Virtually Interconnected Community Tree Gardens), being implemented in Hawaii, has the potential to provide a diverse diet of food grown in very limited space. Gardens build resilience by connecting people with each other, with local food, and with nature. We envision community-based projects which will apply local, multi-generational knowledge to adapt the gardens to changing environments. Going forward, direct observation of garden conditions can be combined with satellite and ground-based measurements of environmental conditions, such as soil moisture, soil and air temperature, precipitation, and phenology, to further assess and manage these gardens in the context of the surrounding
Breast image feature learning with adaptive deconvolutional networks
Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.
2012-03-01
Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
Energy Technology Data Exchange (ETDEWEB)
Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)
2009-12-28
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
International Nuclear Information System (INIS)
Xu Yuhua; Zhou Wuneng; Fang Jian'an; Lu Hongqian
2009-01-01
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams
DEFF Research Database (Denmark)
Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif
1999-01-01
The combinational logic-level equivalence problem is to determine whether two given combinational circuits implement the same Boolean function. This problem arises in a number of CAD applications, for example when checking the correctness of incremental design changes (performed either manually...... or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...... similarities between the two circuits that are compared. These properties make BEDs suitable for verifying the equivalence of combinational circuits. BEDs can be seen as an intermediate representation between circuits (which are compact) and OBDDs (which are canonical).Based on a large number of combinational...
Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.
Zhang, Jianming; Sclaroff, Stan
2016-05-01
We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.
Adaptive Naive Bayes classification for wireless sensor networks
Zwartjes, G.J.
2017-01-01
Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed
Discrete rate and variable power adaptation for underlay cognitive networks
Abdallah, Mohamed M.; Salem, Ahmed H.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2010-01-01
We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power
Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata.
Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk
2015-11-01
We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours' values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level.
Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin
2016-01-01
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.
Directory of Open Access Journals (Sweden)
Shahaboddin Shamshirband
Full Text Available Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean, Intruder Rear sensors active (boolean, Agent Front sensors active (boolean, Agent Rear sensors active (boolean, RSSI signal intensity/strength (integer, Elapsed time (in seconds, Distance between Agent and Intruder (m, Angle of Agent relative to Intruder (angle between vehicles °, Altitude difference between Agent and Intruder (m influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles ° is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.
Exploring Educational and Cultural Adaptation through Social Networking Sites
Ryan, Sherry D.; Magro, Michael J.; Sharp, Jason H.
2011-01-01
Social networking sites have seen tremendous growth and are widely used around the world. Nevertheless, the use of social networking sites in educational contexts is an under explored area. This paper uses a qualitative methodology, autoethnography, to investigate how social networking sites, specifically Facebook[TM], can help first semester…
A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.
Li, Yuhong; Gong, Guanghong; Li, Ni
2018-01-01
In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.
A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks
Li, Yuhong
2018-01-01
In this paper, we propose a novel algorithm—parallel adaptive quantum genetic algorithm—which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes. PMID:29554140
A Boolean Approach to Airline Business Model Innovation
DEFF Research Database (Denmark)
Hvass, Kristian Anders
Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...... innovation, introduce Boolean minimization methods to the field, and propose alternative business model activities to North American carriers striving for positive operating results....
Refinement monoids, equidecomposability types, and boolean inverse semigroups
Wehrung, Friedrich
2017-01-01
Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.
Energy Technology Data Exchange (ETDEWEB)
Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang
2011-07-12
This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks
Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence
2012-08-29
Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential
Mobilization and Adaptation of a Rural Cradle-to-Career Network
Directory of Open Access Journals (Sweden)
Sarah J. Zuckerman
2016-10-01
Full Text Available This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based social capital facilitated mobilization. Where networks were absent and where distrust and different values were evident, mobilization faltered. Three network adaptations were discovered: Special rural community organizing strategies, district-level action planning, and a theory of action focused on out-of-school factors. All three were attributable to the composition of mobilized stakeholders and this network’s rural social geography. These findings illuminate the importance of social geography in the development and advancement of rural cradle-to-career networks.
NEURAL NETWORKS CONTROL OF THE HYBRID POWER UNIT BASED ON THE METHOD OF ADAPTIVE CRITICS
Directory of Open Access Journals (Sweden)
S. Serikov
2012-01-01
Full Text Available The formal statement of the optimization problem of hybrid vehicle power unit control is given. Its solving by neural networks method application on the basis of adaptive critic is considered.
Learn-and-Adapt Stochastic Dual Gradients for Network Resource Allocation
Chen, Tianyi; Ling, Qing; Giannakis, Georgios B.
2017-01-01
Network resource allocation shows revived popularity in the era of data deluge and information explosion. Existing stochastic optimization approaches fall short in attaining a desirable cost-delay tradeoff. Recognizing the central role of Lagrange multipliers in network resource allocation, a novel learn-and-adapt stochastic dual gradient (LA-SDG) method is developed in this paper to learn the sample-optimal Lagrange multiplier from historical data, and accordingly adapt the upcoming resource...
Malcom, Jacob W
2011-04-25
Ecologists have increasingly come to understand that evolutionary change on short time-scales can alter ecological dynamics (and vice-versa), and this idea is being incorporated into community ecology research programs. Previous research has suggested that the size and topology of the gene network underlying a quantitative trait should constrain or facilitate adaptation and thereby alter population dynamics. Here, I consider a scenario in which two species with different genetic architectures compete and evolve in fluctuating environments. An important trade-off emerges between adaptive accuracy and adaptive speed, driven by the size of the gene network underlying the ecologically-critical trait and the rate of environmental change. Smaller, scale-free networks confer a competitive advantage in rapidly-changing environments, but larger networks permit increased adaptive accuracy when environmental change is sufficiently slow to allow a species time to adapt. As the differences in network characteristics increase, the time-to-resolution of competition decreases. These results augment and refine previous conclusions about the ecological implications of the genetic architecture of quantitative traits, emphasizing a role of adaptive accuracy. Along with previous work, in particular that considering the role of gene network connectivity, these results provide a set of expectations for what we may observe as the field of ecological genomics develops.
Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks.
Gong, Yubing; Xu, Bo; Wu, Ya'nan
2013-09-01
In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.
A model for evaluating sharing policies for network-assisted HTTP adaptive streaming
J.W.M. Kleinrouweler (Jan Willem); S. Cabrero Barros (Sergio); R.D. van der Mei (Rob); P.S. Cesar Garcia (Pablo Santiago)
2016-01-01
textabstractHTTP adaptive streaming (HAS) has become the dominant technology for streaming video over the Internet. It gained popularity because of its ability to adapt the video quality to the current network conditions and other appealing properties such as usage of off-the-shelf HTTP servers and
A model for evaluating sharing policies for network-assisted HTTP adaptive streaming
Kleinrouweler, Jan Willem; Cabrero, Sergio; van der Mei, Rob; Cesar Garcia, P.S.
2016-01-01
HTTP adaptive streaming (HAS) has become the dominant technology for streaming video over the Internet. It gained popularity because of its ability to adapt the video quality to the current network conditions and other appealing properties such as usage of off-the-shelf HTTP servers and easy
Directory of Open Access Journals (Sweden)
A.M. Ibrahim
2016-09-01
Full Text Available This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC. The scheme adapts to system changes; new relays settings are obtained as generation-level or system-topology changes. The developed adaptive scheme is applied on the IEEE 30-bus test system for both single- and multi-DG existence where results are shown and discussed.
Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen
2015-04-01
In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should
Confluence of an extension of combinatory logic by Boolean constants
DEFF Research Database (Denmark)
Czajka, Łukasz
2017-01-01
We show confluence of a conditional term rewriting system CL-pc1, which is an extension of Combinatory Logic by Boolean constants. This solves problem 15 from the RTA list of open problems. The proof has been fully formalized in the Coq proof assistant....
On the Road to Genetic Boolean Matrix Factorization
Czech Academy of Sciences Publication Activity Database
Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.
2007-01-01
Roč. 17, č. 6 (2007), s. 675-688 ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007
Document Ranking in E-Extended Boolean Logic
Czech Academy of Sciences Publication Activity Database
Holub, M.; Húsek, Dušan; Pokorný, J.
1996-01-01
Roč. 4, č. 7 (1996), s. 3-17 ISSN 1310-0513. [Annual Colloquium on IR Research /19./. Aberdeen, 08.04.1997-09.04.1997] R&D Projects: GA ČR GA102/94/0728 Keywords : information retrieval * document ranking * extended Boolean logic
Free Boolean algebras over unions of two well orderings
Czech Academy of Sciences Publication Activity Database
Bonnet, R.; Faouzi, L.; Kubiś, Wieslaw
2009-01-01
Roč. 156, č. 7 (2009), s. 1177-1185 ISSN 0166-8641 Institutional research plan: CEZ:AV0Z10190503 Keywords : Well quasi orderings * Poset algebras * Superatomic Boolean algebras * Compact distributive lattices Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2009
Boolean comparative analysis of qualitative data : a methodological note
Romme, A.G.L.
1995-01-01
This paper explores the use of Boolean logic in the analysis of qualitative data, especially on the basis of so-called process theories. Process theories treat independent variables as necessary conditions which are binary rather than variable in nature, while the dependent variable is a final
Parallel object-oriented term rewriting : the booleans
Rodenburg, P.H.; Vrancken, J.L.M.
As a first case study in parallel object-oriented term rewriting, we give two implementations of term rewriting algorithms for boolean terms, using the parallel object-oriented features of the language Pool-T. The term rewriting systems are specified in the specification formalism
A Construction of Boolean Functions with Good Cryptographic Properties
2014-01-01
be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum
Adaptive Relay Activation in the Network Coding Protocols
DEFF Research Database (Denmark)
Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank
2015-01-01
State-of-the-art Network coding based routing protocols exploit the link quality information to compute the transmission rate in the intermediate nodes. However, the link quality discovery protocols are usually inaccurate, and introduce overhead in wireless mesh networks. In this paper, we presen...
Adaptive Dynamics, Control, and Extinction in Networked Populations
2015-07-09
network geometries. From the pre-history of paths that go extinct, a density function is created from the prehistory of these paths, and a clear local...density plots of Fig. 3b. Using the IAMM to compute the most probable path and comparing it to the prehistory of extinction events on stochastic networks
Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks
DEFF Research Database (Denmark)
Di Mauro, Alessio; Dragoni, Nicola
2015-01-01
Energy Harvesting - Wireless Sensor Networks (EH-WSNs) constitute systems of networked sensing nodes that are capable of extracting energy from the environment and that use the harvested energy to operate in a sustainable state. Sustainability, seen as design goal, has a significant impact...
Directory of Open Access Journals (Sweden)
Joshua Rodewald
2016-10-01
Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.
Todd, David M.
The Support Development Group is an approach which explores and develops a theory for the relationship between network characteristics and notions of psychosocial adaptation. The approach is based on the assumption that teaching people to view their social world in network terms can be helpful to them. The Support Development Workshop is presented…
Towards adaptive security for convergent wireless sensor networks in beyond 3G environments
DEFF Research Database (Denmark)
Mitseva, Anelia; Aivaloglou, Efthimia; Marchitti, Maria-Antonietta
2010-01-01
The integration of wireless sensor networks with different network systems gives rise to many research challenges to ensure security, privacy and trust in the overall architecture. The main contribution of this paper is a generic security, privacy and trust framework providing context-aware adapt...
Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks
International Nuclear Information System (INIS)
Sigala, R; Smerieri, A; Camorani, P; Schüz, A; Erokhin, V
2013-01-01
Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the ‘one input-one output’ memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments. (paper)
Cooperative adaptive cruise control : tradeoffs between control and network specifications
Oncu, S.; Wouw, van de N.; Nijmeijer, H.
2011-01-01
In this study, we consider a Cooperative Adaptive Cruise Control (CACC) system which regulates inter-vehicle distances in a vehicle string. Improved performance can be achieved by utilizing information exchange between vehicles through wireless communication besides local sensor measurements.
Yang, S; Wang, D
2000-01-01
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
Directory of Open Access Journals (Sweden)
Tat-Bao-Thien Nguyen
2014-01-01
Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.
International Nuclear Information System (INIS)
Zu Yun-Xiao; Zhou Jie
2012-01-01
Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)
Lag Synchronization Between Two Coupled Networks via Open-Plus-Closed-Loop and Adaptive Controls
International Nuclear Information System (INIS)
Tong-Chun Hu; Yong-Qing Wu; Shi-Xing Li
2016-01-01
In this paper, we study lag synchronization between two coupled networks and apply two types of control schemes, including the open-plus-closed-loop (OPCL) and adaptive controls. We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes. With the designed controllers, we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma. Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures. (paper)
Analysis and Design of Adaptive OCDMA Passive Optical Networks
Hadi, Mohammad; Pakravan, Mohammad Reza
2017-07-01
OCDMA systems can support multiple classes of service by differentiating code parameters, power level and diversity order. In this paper, we analyze BER performance of a multi-class 1D/2D OCDMA system and propose a new approximation method that can be used to generate accurate estimation of system BER using a simple mathematical form. The proposed approximation provides insight into proper system level analysis, system level design and sensitivity of system performance to the factors such as code parameters, power level and diversity order. Considering code design, code cardinality and system performance constraints, two design problems are defined and their optimal solutions are provided. We then propose an adaptive OCDMA-PON that adaptively shares unused resources of inactive users among active ones to improve upstream system performance. Using the approximated BER expression and defined design problems, two adaptive code allocation algorithms for the adaptive OCDMA-PON are presented and their performances are evaluated by simulation. Simulation results show that the adaptive code allocation algorithms can increase average transmission rate or decrease average optical power consumption of ONUs for dynamic traffic patterns. According to the simulation results, for an adaptive OCDMA-PON with BER value of 1e-7 and user activity probability of 0.5, transmission rate (optical power consumption) can be increased (decreased) by a factor of 2.25 (0.27) compared to fixed code assignment.
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
International Nuclear Information System (INIS)
Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang
2009-01-01
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation
Directory of Open Access Journals (Sweden)
Hong SeungHo
2011-01-01
Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.
Adaptive control of nonlinear system using online error minimum neural networks.
Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei
2016-11-01
In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Decision-Making Scheme for Cognitive Radio Networks
Alqerm, Ismail; Shihada, Basem
2014-01-01
Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy
Method for designing networking adaptive interactive hybrid systems
Kester, L. J.H.M.
2010-01-01
Advances in network technologies enable distributed systems, operating in complex physical environments, to co-ordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public
Adaptive and Reactive Security for Wireless Sensor Networks
National Research Council Canada - National Science Library
Stankovic, John A
2007-01-01
.... WSNs are also susceptible to malicious, non-random security attacks. For example, a wireless sensor network deployed in remote regions to detect and classify targets could be rendered inoperative by various security attacks...
Creating networking adaptive interactive hybrid systems : A methodic approach
Kester, L.J.
2011-01-01
Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defense, crisis management, traffic management, public
A comparative study of two neural networks for document retrieval
International Nuclear Information System (INIS)
Hui, S.C.; Goh, A.
1997-01-01
In recent years there has been specific interest in adopting advanced computer techniques in the field of document retrieval. This interest is generated by the fact that classical methods such as the Boolean search, the vector space model or even probabilistic retrieval cannot handle the increasing demands of end-users in satisfying their needs. The most recent attempt is the application of the neural network paradigm as a means of providing end-users with a more powerful retrieval mechanism. Neural networks are not only good pattern matchers but also highly versatile and adaptable. In this paper, we demonstrate how to apply two neural networks, namely Adaptive Resonance Theory and Fuzzy Kohonen Neural Network, for document retrieval. In addition, a comparison of these two neural networks based on performance is also given
Directory of Open Access Journals (Sweden)
Yang Fang
2014-01-01
Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.
Optical implementations of associative networks with versatile adaptive learning capabilities.
Fisher, A D; Lippincott, W L; Lee, J N
1987-12-01
Optical associative, parallel-processing architectures are being developed using a multimodule approach, where a number of smaller, adaptive, associative modules are nonlinearly interconnected and cascaded under the guidance of a variety of organizational principles to structure larger architectures for solving specific problems. A number of novel optical implementations with versatile adaptive learning capabilities are presented for the individual associative modules, including holographic configurations and five specific electrooptic configurations. The practical issues involved in real optical architectures are analyzed, and actual laboratory optical implementations of associative modules based on Hebbian and Widrow-Hoff learning rules are discussed, including successful experimental demonstrations of their operation.
Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)
DEFF Research Database (Denmark)
Mihovska, Albena D.; Prasad, Neeli R.
2007-01-01
Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Gustafsson, Finn; Holstein-Rathlou, N.-H.
2003-01-01
Adequate function of the microcirculation is vital to any tissue. To maintain an optimal function, microvascular networks must be able to adapt structurally to changes in the physical environment. Here we present a mathematical network model based on vessel wall mechanics. We assume based...... diameter, until equilibrium is restored. The model explains several of the key features observed experimentally in the microcirculation in normotension and hypertension. Most importantly, it suggests a scenario where overall network structure and network hemodynamics depend on adaptation to local...... hemodynamic stimuli in the individual vessel. Simulated results show emanating microvascular networks with properties similar to those observed in vivo. The model points to an altered endothelial function as a key factor in the development of vascular changes characteristic of hypertension....
Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks
DEFF Research Database (Denmark)
Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert
2013-01-01
In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...
Adaptive Probabilistic Routing in Wireless Ad Hoc Networks
Hasan, Affaf; Liaqat, Ismail
2013-01-01
The goal of this thesis work is to analyze how design elements and wireless attributes affect opportunistic routing, and in this context develop a new protocol. The algorithm developed aims to improve opportunistic elements in comparison to a well-known opportunistic protocol Simple Opportunistic Adaptive Routing (SOAR).
Directory of Open Access Journals (Sweden)
Kirstie Cadger
2016-07-01
Full Text Available Social ties play an important role in agricultural knowledge exchange, particularly in developing countries with high exposure to agriculture development interventions. Institutions often facilitate agricultural training projects, with a focus on agroecological practices, such as agroforestry and agrobiodiversity. The structural characteristics of social networks amongst land managers influences decision-making to adopt such adaptive agroecoloigcal practice; however, the extent of knowledge transfer beyond direct project participants is often unknown. Using a social network approach, we chart the structure of agrarian knowledge networks (n = 131 in six communities, which have been differentially exposed to agriculture development interventions in Ghana. Farmer network size, density and composition were distinctly variable; development project-affiliated farmers were embedded in larger networks, had non-affiliated farmers within their networks, were engaged in more diverse agricultural production and reported adopting and adapting agroecological practice more frequently. Such bridging ties that link across distinctive groups in a network can expose network members to new and innovative agroecological practices, such as increasing agrobiodiversity, thus, contributing to livelihood strategies that mitigate environmental and market risk. Furthermore, we show that these knowledge networks were crop-specific where network size varied given the type of crop produced. Such factors, which may influence the rate and extent of agroecological knowledge diffusion, are critical for the effectiveness of land management practices as well as the persistence of agriculture development interventions.
An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks
Directory of Open Access Journals (Sweden)
Jian Dong
2014-09-01
Full Text Available The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen’s classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen’s model. Moreover, B-AFD has better adaptability to P2P network.
An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks
Dong, Jian; Ren, Xiao; Zuo, Decheng; Liu, Hongwei
2014-01-01
The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P) networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS) can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen's classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD) is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen's model. Moreover, B-AFD has better adaptability to P2P network. PMID:25198005
Using social network analysis to evaluate health-related adaptation decision-making in Cambodia.
Bowen, Kathryn J; Alexander, Damon; Miller, Fiona; Dany, Va
2014-01-30
Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or 'shadow networks') in the context of climate change adaptation policy and activities. The health governance 'map' in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks
Directory of Open Access Journals (Sweden)
Xiao-Li Li
2014-01-01
Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.
Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks
International Nuclear Information System (INIS)
Gong Yubing; Wang Li; Xu Bo
2012-01-01
In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.
Multilayer Networks of Self-Interested Adaptive Units.
1987-07-01
used the magnitude of the hidden unit’s single output weight as an indication of influence, though, as Klopf and Gose 1261 showed, other measures might...Rochester, NY, 1983. 125] M. I. Jordan. Personal communication. 1261 A. H. Klopf and E. Gose . An evolutionary pattern recognition network. IEEE
Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks
CSIR Research Space (South Africa)
Masonta, M
2015-09-01
Full Text Available Spectrum decision is the ability of a cognitive radio (CR) system to select the best available spectrum band to satisfy dynamic spectrum access network (DSAN) users¿ quality of service (QoS) requirements without causing harmful interference...
Adaptive, Tactical Mesh Networking: Control Base MANET Model
2010-09-01
pp. 316–320 Available: IEEE Xplore , http://ieeexplore.ieee.org [Accessed: June 9, 2010]. [5] N. Sidiropoulos, “Multiuser Transmit Beamforming...Mobile Mesh Segments of TNT Testbed .......... 11 Figure 5. Infrastructure and Ad Hoc Mode of IEEE 802.11................................ 13 Figure...6. The Power Spectral Density of OFDM................................................ 14 Figure 7. A Typical IEEE 802.16 Network
Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks
DEFF Research Database (Denmark)
Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee
2014-01-01
information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...
Adaptive Information Access in Multiple Applications Support Wireless Sensor Network
DEFF Research Database (Denmark)
Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee
2012-01-01
Nowadays, due to wide applicability of Wireless Sensor Network (WSN) added by the low cost sensor devices, its popularity among the researchers and industrialists are very much visible. A substantial amount of works can be seen in the literature on WSN which are mainly focused on application...
Efficient computation in adaptive artificial spiking neural networks
D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)
2017-01-01
textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Creep-induced anisotropy in covalent adaptable network polymers.
Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai
2017-10-11
Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.
Disruption prediction with adaptive neural networks for ASDEX Upgrade
International Nuclear Information System (INIS)
Cannas, B.; Fanni, A.; Pautasso, G.; Sias, G.
2011-01-01
In this paper, an adaptive neural system has been built to predict the risk of disruption at ASDEX Upgrade. The system contains a Self Organizing Map, which determines the 'novelty' of the input of a Multi Layer Perceptron predictor module. The answer of the MLP predictor will be inhibited whenever a novel sample is detected. Furthermore, it is possible that the predictor produces a wrong answer although it is fed with known samples. In this case, a retraining procedure will be performed to update the MLP predictor in an incremental fashion using data coming from both the novelty detection, and from wrong predictions. In particular, a new update is performed whenever a missed alarm is triggered by the predictor. The performance of the adaptive predictor during the more recent experimental campaigns until November 2009 has been evaluated.
Crowd counting via scale-adaptive convolutional neural network
Zhang, Lu; Shi, Miaojing; Chen, Qiaobo
2017-01-01
The task of crowd counting is to automatically estimate the pedestrian number in crowd images. To cope with the scale and perspective changes that commonly exist in crowd images, state-of-the-art approaches employ multi-column CNN architectures to regress density maps of crowd images. Multiple columns have different receptive fields corresponding to pedestrians (heads) of different scales. We instead propose a scale-adaptive CNN (SaCNN) architecture with a backbone of fixed small receptive fi...
Polymeric electrochemical element for adaptive networks: Pulse mode
International Nuclear Information System (INIS)
Smerieri, Anteo; Berzina, Tatiana; Erokhin, Victor; Fontana, M. P.
2008-01-01
An electrochemically controlled polymeric heterojunction working as a memristor, i.e., having memory properties, was investigated in pulse mode, mimicking synaptic behavior of signal transmission in biological systems. Influence of parameters such as pulse duration, interval between pulses, and value of potential base level was analyzed. Learning capabilities were shown to be reversible and repeatable for both potentiation and inhibition of signal transmission. The adaptive behavior of the element was investigated and was shown to be more efficient than the dc mode
Adaptation of brain functional and structural networks in aging.
Directory of Open Access Journals (Sweden)
Annie Lee
Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.
Adaptation of brain functional and structural networks in aging.
Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi
2015-01-01
The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.
Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.
Inoue, Masayo; Kaneko, Kunihiko
2013-04-01
Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components.
Lovrics, Anna
2014-11-14
We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.
Profile-based adaptive anomaly detection for network security.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann
2005-11-01
As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress
Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network
Directory of Open Access Journals (Sweden)
Yundi Chu
2015-01-01
Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.
Directory of Open Access Journals (Sweden)
Guilin Zheng
2011-03-01
Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
Scalable and Media Aware Adaptive Video Streaming over Wireless Networks
Directory of Open Access Journals (Sweden)
Béatrice Pesquet-Popescu
2008-07-01
Full Text Available This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.
A simple mechanical system for studying adaptive oscillatory neural networks
DEFF Research Database (Denmark)
Jouffroy, Guillaume; Jouffroy, Jerome
Central Pattern Generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so...... that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....
Azhoni, A.; Holman, I.; Jude, S.
2014-12-01
Adaptation to climate change for water management involves complex interactions between different actors and sectors. The need to understand the relationships between key stakeholder institutions (KSIs) is increasingly recognized. The complexity of water management in India has meant that enhancing adaptive capacity through improved inter-institutional networks remains a challenge for both government and non-governmental institutions. To analyse such complex inter-actions this study has used Social Network and Stakeholder Analysis tools to quantify the participation of, and interactions between, each KSI in the climate change adaptation and water discourse based on keyword analysis of their online presence. Using NodeXL, a Social Network Analysis tool, network diagrams have been used to evaluate the inter-relationships between these KSIs. Semi-structured interviews were conducted with twenty-five KSIs to identify the main barriers to adaptation and to triangulate the findings of the e-documents analysis. The analysis found that there is an inverse relationship between institutions' reference to water and climate change in their web-documents. Most institutions emphasize mitigation rather than adaptation. Bureaucratic delays, poor coordination between the KSIs, unclear policies and systemic deficiencies are identified as key barriers to improving adaptive capacity within water management to climate change. However, the increasing attention being given to the perceived climate change impacts on the water sector and improving the inter-institutional networks are some of the opportunities for Indian water institutions. Although websites of Union Government Institutions seldom directly hyperlink to one another, they are linked through "bridging" websites which have the potential to act as brokers for enhancing adaptive capacity. The research has wider implications for analysis of complex inter-disciplinary and inter-institutional issues involving multi stakeholders.
Boolean Functions with a Simple Certificate for CNF Complexity
Czech Academy of Sciences Publication Activity Database
Čepek, O.; Kučera, P.; Savický, Petr
2012-01-01
Roč. 160, 4-5 (2012), s. 365-382 ISSN 0166-218X R&D Projects: GA MŠk(CZ) 1M0545 Grant - others:GA ČR(CZ) GP201/07/P168; GA ČR(CZ) GAP202/10/1188 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean functions * CNF representations Subject RIV: BA - General Mathematics Impact factor: 0.718, year: 2012
Elements of Boolean-Valued Dempster-Shafer Theory
Czech Academy of Sciences Publication Activity Database
Kramosil, Ivan
2000-01-01
Roč. 10, č. 5 (2000), s. 825-835 ISSN 1210-0552. [SOFSEM 2000 Workshop on Soft Computing. Milovy, 27.11.2000-28.11.2000] R&D Projects: GA ČR GA201/00/1489 Institutional research plan: AV0Z1030915 Keywords : Boolean algebra * belief function * Dempster-Shafer theory * Dempster combination rule * nonspecifity degree Subject RIV: BA - General Mathematics
Dissolution of covalent adaptable network polymers in organic solvent
Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.
2017-12-01
It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.
Adaptive Home System Using Wireless Sensor Network And Multi Agent System
Jayarani Kamble; Prof.Nandini Dhole
2014-01-01
Smart Home is an emerging technology growing continuously which includes number of new technologies which helps to improve human’s quality of living. This paper proposes an adaptive home system for optimum utilization of power, through Artificial Intelligence and Wireless Sensor network. Artificial Intelligence is a technology for developing adaptive system that can perceive the enviornmrnt, learn from the environment and can make decision using Rule based system.Zigbee is a w...
Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks
Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai
2017-09-01
Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.
3D Boolean operations in virtual surgical planning.
Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun
2017-10-01
Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.
Energy Technology Data Exchange (ETDEWEB)
Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)
2010-04-05
This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.
A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks
Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207
Selective adaptation in networks of heterogeneous populations: model, simulation, and experiment.
Directory of Open Access Journals (Sweden)
Avner Wallach
2008-02-01
Full Text Available Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus increases the system's sensitivity to rare stimuli. These phenomena were explained in previous work as a result of complex interactions between the various subpopulations of the network. A formal description and analysis of neuronal systems, however, is hindered by the network's heterogeneity and by the multitude of processes taking place at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is sufficiently general to apply to different biological systems, and was demonstrated in two different cases.
Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft
Directory of Open Access Journals (Sweden)
Yanchao Yin
2017-01-01
Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.
Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.
2017-07-01
Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by
Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia
Directory of Open Access Journals (Sweden)
Kathryn J. Bowen
2014-01-01
Full Text Available Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’ in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.
Adaptive capacity of geographical clusters: Complexity science and network theory approach
Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria
This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.
Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.
Dao, Nhu-Ngoc; Kim, Joongheon; Park, Minho; Cho, Sungrae
2016-01-01
The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS) technique. Software-defined networking (SDN), on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP) mechanism to protect the controller from the Denial of Service (DoS) attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.
Implementation Issues of Adaptive Energy Detection in Heterogeneous Wireless Networks
Sobron, Iker; Eizmendi, Iñaki; Martins, Wallace A.; Diniz, Paulo S. R.; Ordiales, Juan Luis; Velez, Manuel
2017-01-01
Spectrum sensing (SS) enables the coexistence of non-coordinated heterogeneous wireless systems operating in the same band. Due to its computational simplicity, energy detection (ED) technique has been widespread employed in SS applications; nonetheless, the conventional ED may be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing ED algorithms from theoretical and simulation viewpoints relies on several assumptions and simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements imposed by real propagation environments. This work addresses those problems by dealing with practical implementation issues of adaptive least mean square (LMS)-based ED algorithms. The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS convergence in time-varying environments. Several implementation guidelines are provided and, additionally, an empirical assessment and validation with a software defined radio-based hardware is carried out. Experimental results show good performance in terms of probabilities of detection (Pd>0.9) and false alarm (Pf∼0.05) in a range of low signal-to-noise ratios around [-4,1] dB, in both single-node and cooperative modes. The proposed sensing methodology enables a seamless monitoring of the radio electromagnetic spectrum in order to provide band occupancy information for an efficient usage among several wireless communications systems. PMID:28441751
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander
2015-04-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.
International Nuclear Information System (INIS)
Sun Mei; Zeng Changyan; Tao Yangwei; Tian Lixin
2009-01-01
Based on the comparison theorem for the stability of impulsive control system, adaptive-impulsive synchronization in drive-response networks of continuous systems with time-delay and non-time-delay is investigated. And the continuous control input, the simple updated laws and a linear impulsive controller are proposed. Moreover, two numerical examples are presented to verify the effectiveness and correctness of the theorem, using the energy resource system and Lue's system as the nodes of the networks.
Adaptive Priority-Based Downlink Scheduling for WiMAX Networks
Wu, Shih-Jung; Huang, Shih-Yi; Huang, Kuo-Feng
2012-01-01
Supporting quality of service (QoS) guarantees for diverse multimedia services are the primary concerns for WiMAX (IEEE 802.16) networks. A scheduling scheme that satisfies QoS requirements has become more important for wireless communications. We propose a downlink scheduling scheme called adaptive priority-based downlink scheduling (APDS) for providing QoS guarantees in IEEE 802.16 networks. APDS comprises two major components: priority assignment and resource allocation. Different service-...
2016-12-22
for the global pattern. A network view has proven useful in modeling a supply - chain for patterns of interaction. Queuing theory can be used to...phenomena. Second, operations management and supply - chain management lack metrics for evolution and dynamism in supply networks. Third, developing...robust theories in the presence of 14 adaptation is a formidable task. Supply - chain management theory can be built by identifying CAS phenomena and
Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices
Lim, Suhwan; Bae, Jong-Ho; Eum, Jai-Ho; Lee, Sungtae; Kim, Chul-Heung; Kwon, Dongseok; Park, Byung-Gook; Lee, Jong-Ho
2017-01-01
In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network (HW-DNN) using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron net...
An adaptive distributed admission approach in Bluetooth network with QoS provisions
DEFF Research Database (Denmark)
Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun
2002-01-01
In this paper, a method of adaptive distributed admission with end-to-end Quality of Service (QoS) provisions for real time and non real time tra°cs in Blue-tooth networks is highlighted, its mathematic background is analyzed and a simulation with bursty tra°c sources, Interrupted Bernoulli Process...... (IBP), is carried out. The simulation results show that the performance of Bluetooth network is improved when applying the distributed admission method...
Software for Adapting Dspz Receivers to the Uran Interferometer Network
Isaeva, E. A.; Lytvynenko, O. A.; Shepelev, V. A.
More than 10 years ago, URAN interferometer network (Megn A.V.,1997; Konovalenko A.A., 2014) had been equipped with newly designed receivers with a pass band extended up to 250 kHz and software rejection of interferences (Rashkovskii, 2012). The broadening of bandwidth of received signal increase the sensitivity of the receivers significantly and let us to investigate the angular structure about one hundred radio sources. A software package had been developed that allows: preparing a program of observations, carrying out observations automatically, making data cross-correlation, calculating visibility functions for all pairs of antennae, and fitting models of an angular structure of the sources. Data storage formats were elaborated for each stage of recording or processing. At present, new digital radio astronomy receiver DSPZ have been developed by IRA NASU (Zakharenko, 2016). The receiver allows recording an entire bandwidth of signals of a decameter range from 8 to 32 MHz. It is used at UTR-2 and URAN radio telescopes operated in a single dish mode. Application of the receivers for interferometer observation with the URAN network provides additional advantages in accuracy and sensitivity of studies. In this report we consider the data formats and synchronization methods used in URAN equipment and DSPZ receivers, and discuss algorithms of their transformation. Newly elaborated software is described, that allows selecting a set of frequency bands of signals recorded with DSPZ and converting them to the form used by the URAN software. This approach allows us to carry out the interferometer observations in an the extended frequency range provided by DSPZ and to use as much as possible the software package developed for the URAN network for data reduction.
EXTERNALITIES IN EXCHANGE NETWORKS AN ADAPTATION OF EXISTING THEORIES OF EXCHANGE NETWORKS
Dijkstra, Jacob
2009-01-01
The present paper extends the focus of network exchange research to externalities in exchange networks. Externalities of exchange are defined as direct effects on an actor's utility, of an exchange in which this actor is not involved. Existing theories in the field of network exchange do not inform
An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments
Directory of Open Access Journals (Sweden)
Xiaohong Li
2018-03-01
Full Text Available Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users select optimal networks to access is challenging. Prior implementations of network selection are usually applicable for the environment with static radio resources, while they cannot handle the unpredictable dynamics in 5G network environments. To this end, this paper considers both the fluctuation of radio resources and the variation of user demand. We model the access network selection scenario as a multiagent coordination problem, in which a bunch of rationally terminal users compete to maximize their benefits with incomplete information about the environment (no prior knowledge of network resource and other users’ choices. Then, an adaptive learning based strategy is proposed, which enables users to adaptively adjust their selections in response to the gradually or abruptly changing environment. The system is experimentally shown to converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal. Extensive simulation results show that our approach achieves significantly better performance compared with two learning and non-learning based approaches in terms of load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness performance under the condition with non-compliant terminal users.
An Adaptive Power Efficient Packet Scheduling Algorithm for Wimax Networks
R Murali Prasad; P. Satish Kumar
2010-01-01
Admission control schemes and scheduling algorithms are designed to offer QoS services in 802.16/802.16e networks and a number of studies have investigated these issues. But the channel condition and priority of traffic classes are very rarely considered in the existing scheduling algorithms. Although a number of energy saving mechanisms have been proposed for the IEEE 802.16e, to minimize the power consumption of IEEE 802.16e mobile stations with multiple real-time connections has not yet be...
Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.
Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai
2017-08-02
Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.
On the Computation of Comprehensive Boolean Gröbner Bases
Inoue, Shutaro
We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.
Yin, Jun; Yang, Yuwang; Wang, Lei
2016-04-01
Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.
Molecular networks of human muscle adaptation to exercise and age.
Directory of Open Access Journals (Sweden)
Bethan E Phillips
2013-03-01
Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to
Voter dynamics on an adaptive network with finite average connectivity
Mukhopadhyay, Abhishek; Schmittmann, Beate
2009-03-01
We study a simple model for voter dynamics in a two-party system. The opinion formation process is implemented in a random network of agents in which interactions are not restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships, so that there is no history dependence in the model. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion and with opponents. Using simulations and analytic arguments, we determine the final steady states and the relaxation into these states for different system sizes. In contrast to earlier studies, the average connectivity (``degree'') of each agent is constant here, independent of the system size. This has significant consequences for the long-time behavior of the model.
Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms
International Nuclear Information System (INIS)
Sheng Li; Yang Huizhong; Lou Xuyang
2009-01-01
This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.
International Nuclear Information System (INIS)
Zhou Jin; Chen Tianping; Xiang Lan
2006-01-01
This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate
International Nuclear Information System (INIS)
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-01-01
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. (paper)
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
Linking Climate Risk, Policy Networks and Adaptation Planning in Public Lands
Lubell, M.; Schwartz, M.; Peters, C.
2014-12-01
Federal public land management agencies in the United States have engaged a variety of planning efforts to address climate adaptation. A major goal of these efforts is to build policy networks that enable land managers to access information and expertise needed for responding to local climate risks. This paper investigates whether the perceived and modeled climate risk faced by different land managers is leading to larger networks or more participating in climate adaptation. In theory, the benefits of climate planning networks are larger when land managers are facing more potential changes. The basic hypothesis is tested with a survey of public land managers from hundreds of local and regional public lands management units in the Southwestern United States, as well as other stakeholders involved with climate adaptation planning. All survey respondents report their perceptions of climate risk along a variety of dimensions, as well as their participation in climate adaptation planning and information sharing networks. For a subset of respondents, we have spatially explicity GIS data about their location, which will be linked with downscaled climate model data. With the focus on climate change, the analysis is a subset of the overall idea of linking social and ecological systems.
Ros, S.; Robles-Gomez, A.; Hernandez, R.; Caminero, A. C.; Pastor, R.
2012-01-01
This paper outlines the adaptation of a course on the management of network services in operating systems, called NetServicesOS, to the context of the new European Higher Education Area (EHEA). NetServicesOS is a mandatory course in one of the official graduate programs in the Faculty of Computer Science at the Universidad Nacional de Educacion a…
1991-06-01
Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent
Adaptive and Decentralized Operator Placement for In-Network Query Processing
DEFF Research Database (Denmark)
Bonfils, B; Bonnet, Philippe
2003-01-01
. In this paper, we show that this problem is a variant of the task assignment problem for which polynomial algorithms have been developed. These algorithms are however centralized and cannot be used in a sensor network. We describe an adaptive and decentralized algorithm that progressively refines the placement...
Largenet2: an object-oriented programming library for simulating large adaptive networks.
Zschaler, Gerd; Gross, Thilo
2013-01-15
The largenet2 C++ library provides an infrastructure for the simulation of large dynamic and adaptive networks with discrete node and link states. The library is released as free software. It is available at http://biond.github.com/largenet2. Largenet2 is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. gerd@biond.org
A Comprehensive Review on Adaptability of Network Forensics Frameworks for Mobile Cloud Computing
Directory of Open Access Journals (Sweden)
Suleman Khan
2014-01-01
Full Text Available Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.
A comprehensive review on adaptability of network forensics frameworks for mobile cloud computing.
Khan, Suleman; Shiraz, Muhammad; Wahab, Ainuddin Wahid Abdul; Gani, Abdullah; Han, Qi; Rahman, Zulkanain Bin Abdul
2014-01-01
Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.
A Comprehensive Review on Adaptability of Network Forensics Frameworks for Mobile Cloud Computing
Abdul Wahab, Ainuddin Wahid; Han, Qi; Bin Abdul Rahman, Zulkanain
2014-01-01
Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC. PMID:25097880
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear adaptive PID control for greenhouse environment based on RBF network.
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.
Directory of Open Access Journals (Sweden)
Wang Chao
2016-03-01
Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.
Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.
González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier
2017-06-02
Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.
Adaptive control of dynamical synchronization on evolving networks with noise disturbances
Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen
2018-02-01
In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.
Abba, Sani; Lee, Jeong-A
2015-08-18
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks
Abba, Sani; Lee, Jeong-A
2015-01-01
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236
Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control
Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong
2017-09-01
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council
Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration
Alena, Richard I.; Lee, Charles
2004-01-01
Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive online state-of-charge determination based on neuro-controller and neural network
Energy Technology Data Exchange (ETDEWEB)
Shen Yanqing, E-mail: network_hawk@126.co [Department of Automation, Chongqing Industry Polytechnic College, Jiulongpo District, Chongqing 400050 (China)
2010-05-15
This paper presents a novel approach using adaptive artificial neural network based model and neuro-controller for online cell State of Charge (SOC) determination. Taking cell SOC as model's predictive control input unit, radial basis function neural network, which can adjust its structure to prediction error with recursive least square algorithm, is used to simulate battery system. Besides that, neuro-controller based on Back-Propagation Neural Network (BPNN) and modified PID controller is used to decide the control input of battery system, i.e., cell SOC. Finally this algorithm is applied for the SOC determination of lead-acid batteries, and results of lab tests on physical cells, compared with model prediction, are presented. Results show that the ANN based battery system model adaptively simulates battery system with great accuracy, and the predicted SOC simultaneously converges to the real value quickly within the error of +-1 as time goes on.
Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates
Directory of Open Access Journals (Sweden)
Chih-Hong Kao
2011-01-01
Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.
DEFF Research Database (Denmark)
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin
2015-01-01
correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...... dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural...... mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...
Directory of Open Access Journals (Sweden)
Chuan Zhu
2014-01-01
Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.
A cascade reaction network mimicking the basic functional steps of adaptive immune response.
Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong
2015-10-01
Biological systems use complex 'information-processing cores' composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.
Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks
Wu, Zhengping; Wu, Hao
With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.
Zhu, Chuan; Wang, Yao; Han, Guangjie; Rodrigues, Joel J P C; Lloret, Jaime
2014-01-01
This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.
Directory of Open Access Journals (Sweden)
Yepeng Ni
2016-01-01
Full Text Available We consider the problem of streaming media transmission in a heterogeneous network from a multisource server to home multiple terminals. In wired network, the transmission performance is limited by network state (e.g., the bandwidth variation, jitter, and packet loss. In wireless network, the multiple user terminals can cause bandwidth competition. Thus, the streaming media distribution in a heterogeneous network becomes a severe challenge which is critical for QoS guarantee. In this paper, we propose a context-aware adaptive streaming media distribution system (CAASS, which implements the context-aware module to perceive the environment parameters and use the strategy analysis (SA module to deduce the most suitable service level. This approach is able to improve the video quality for guarantying streaming QoS. We formulate the optimization problem of QoS relationship with the environment parameters based on the QoS testing algorithm for IPTV in ITU-T G.1070. We evaluate the performance of the proposed CAASS through 12 types of experimental environments using a prototype system. Experimental results show that CAASS can dynamically adjust the service level according to the environment variation (e.g., network state and terminal performances and outperforms the existing streaming approaches in adaptive streaming media distribution according to peak signal-to-noise ratio (PSNR.
Peng, Jinzhu; Dubay, Rickey
2011-10-01
In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.
Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin
2011-01-01
In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes.
Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong
2015-03-01
This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.
Efficient Dynamic Adaptation Strategies for Object Tracking Tree in Wireless Sensor Network
Directory of Open Access Journals (Sweden)
CHEN, M.
2012-12-01
Full Text Available Most object tracking trees are established using the predefined mobility profile. However, when the real object's movement behaviors and query rates are different from the predefined mobility profile and query rates, the update cost and query cost of object tracking tree may increase. To upgrade the object tracking tree, the sink needs to send very large messages to collect the real movement information from the network, introducing a very large message overhead, which is referred to as adaptation cost. The Sub Root Message-Tree Adaptive procedure was proposed to dynamically collect the real movement information under the sub-tree and reconstruct the sub-tree to provide good performance based on the collected information. The simulation results indicates that the Sub Root Message-Tree Adaptive procedure is sufficient to achieve good total cost and lower adaptation cost.
Optimal region of latching activity in an adaptive Potts model for networks of neurons
International Nuclear Information System (INIS)
Abdollah-nia, Mohammad-Farshad; Saeedghalati, Mohammadkarim; Abbassian, Abdolhossein
2012-01-01
In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)–adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise–adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred
Wang, Wei; Guyet, Thomas; Quiniou, René
2014-01-01
In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.
Wang, Wei
2014-06-22
In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.
Bebop to the Boolean boogie an unconventional guide to electronics
Maxfield, Clive
2003-01-01
From reviews of the first edition:""If you want to be reminded of the joy of electronics, take a look at Clive (Max) Maxfield's book Bebop to the Boolean Boogie.""--Computer Design ""Lives up to its title as a useful and entertaining technical guide....well-suited for students, technical writers, technicians, and sales and marketing people.""--Electronic Design""Writing a book like this one takes audacity! ... Maxfield writes lucidly on a variety of complex topics without 'writing down' to his audience."" --EDN""A highly readable, well-illustrated guided tour
A boolean optimization method for reloading a nuclear reactor
International Nuclear Information System (INIS)
Misse Nseke, Theophile.
1982-04-01
We attempt to solve the problem of optimal reloading of fuel assemblies in a PWR, without any assumption on the fuel nature. Any loading is marked by n 2 boolean variables usub(ij). The state of the reactor is characterized by his Ksub(eff) and the related power distribution. The resulting non-linear allocation problems are solved throught mathematical programming technics combining the simplex algorithm and an extension of the Balas-Geoffrion's one. Some optimal solutions are given for PWR with assemblies of different enrichment [fr
Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui
2011-01-01
To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.
An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships
Directory of Open Access Journals (Sweden)
Jin Sun
2017-03-01
Full Text Available The strapdown fiber optic gyrocompass (strapdown FOGC system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC.
Mata-Machuca, Juan L.; Aguilar-López, Ricardo
2018-01-01
This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.
The Optimization of the Data Packet Length in Adaptive Radio Networks
Directory of Open Access Journals (Sweden)
Anatolii P. Voiter
2017-10-01
Full Text Available Background. Development of methods and means of the adaptive management of the radio networks bandwidth with competitive access to the radio channel. Objective. The aim of the paper is to determine the packet length effect on the effective radio networks transmission rate with taking into account the parameters, formats, and procedures of the physical and link levels at using the MAC protocol with a rigid strategy of competitive access to the radio channel. Methods. The goal is achieved by creating and analyzing the mathematical model of the effective transmission rate in radio networks. The model is described by the equation for the effective transmission rate, which is the function of both the probability of the conflict-free transmission of the MAC protocol and the coefficient of the data packet size deviation from the optimal for LLC protocol. Results. It is proved that there is the optimal deviation of the data packet length for each MAC protocol traffic intensity value, which provides the most effective transfer rate. This makes the possibility for adaptive management of the radio bandwidth by applying a pre-calculated deviation of the data packet size in dependence on the traffic intensity. Conclusions. The proposed mathematical model is the tool for calculation of both the radio bandwidth network capacity and the optimal deviation of the data packet length at adaptive management of competitive access to a radio channel with a rigid strategy at conditions of the significant fluctuation in traffic intensity.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Macroscopic description of complex adaptive networks coevolving with dynamic node states
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Trajanovski, Stojan; Guo, Dongchao; Van Mieghem, Piet
2015-09-01
The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
International Nuclear Information System (INIS)
Husam Fayiz, Al Masri
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms. (paper)
Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao
2017-09-01
This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.
An Energy-Efficient Adaptive Clustering Protocol for Wireless Sensor Network
Directory of Open Access Journals (Sweden)
Lü Tao
2013-05-01
Full Text Available An energy-efficient adaptive clustering hierarchy EEACH in wireless sensor networks based on LEACH and LEACH-C is proposed in this paper. The main consideration is the LEACH cluster structure, each cluster is not uniform energy consumption; LEACH-C using a centralized algorithm can achieve better clustering, but do not contribute to the implementation of distributed. In EEACH, we analyzed the effects of different numbers of cluster member node on the network energy consumption; and re-planning time slice to balance the energy consumption of each cluster; and avoid the energy hole problem by reasonable cluster head selection algorithm. Its objective is to balance the energy consumption and maximize the network lifetime. Analysis and simulation results show that EEACH provides more uniform energy consumption among nodes and can prolong network lifetime compared to LEACH and LEACH-C.
International Nuclear Information System (INIS)
Muhammad, K.; Jan, Z.; Khan, Z
2015-01-01
Wireless Sensor Networks (WSNs) are memory and bandwidth limited networks whose main goals are to maximize the network lifetime and minimize the energy consumption and transmission cost. To achieve these goals, different techniques of compression and clustering have been used. However, security is an open and major issue in WSNs for which different approaches are used, both in centralized and distributed WSNs' environments. This paper presents an adaptive cryptographic scheme for secure transmission of various sensitive parameters, sensed by wireless sensors to the fusion center for further processing in WSNs such as military networks. The proposed method encrypts the sensitive captured data of sensor nodes using various encryption procedures (bitxor operation, bits shuffling, and secret key based encryption) and then sends it to the fusion center. At the fusion center, the received encrypted data is decrypted for taking further necessary actions. The experimental results with complexity analysis, validate the effectiveness and feasibility of the proposed method in terms of security in WSNs. (author)
Directory of Open Access Journals (Sweden)
Bahita Mohamed
2011-01-01
Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.
Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network
DEFF Research Database (Denmark)
Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe
2016-01-01
and smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly......Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
Zhang, Lei; Zheng, Wenbin; Song, Aiguo
2018-04-01
In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.
An adaptive wavelet-network model for forecasting daily total solar-radiation
International Nuclear Information System (INIS)
Mellit, A.; Benghanem, M.; Kalogirou, S.A.
2006-01-01
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model
Complexity classifications for different equivalence and audit problems for Boolean circuits
BÃ¶hler, Elmar; Creignou, Nadia; Galota, Matthias; Reith, Steffen; Schnoor, Henning; Vollmer, Heribert
2010-01-01
We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.
BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool
Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.
2006-01-01
BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…
Iglič, Hajdeja; Rus, Andrej
2014-01-01
This article deals with the process of elite adaptation in Slovenia in the period between 1988 and 1995. While negotiated settlement between the old and new elites in Slovenia contributed to high reproduction rates of Slovenian old elites, there was significant change going on within the new and old elites. By looking at their ego networks, we show that the debate on elite reproduction is overlooking an important aspect of change, i.e. the adaptation of elites. We analyze changes in the compo...
Adaptive neural network/expert system that learns fault diagnosis for different structures
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
Directory of Open Access Journals (Sweden)
Abbas Ajorkar
2015-04-01
Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.
Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Christodoulou, Christos G.
1994-03-01
This paper presents an analog circuit design and implementation for an adaptive resonance theory neural network architecture called the augmented ART1 neural network (AART1-NN). Practical monolithic operational amplifiers (Op-Amps) LM741 and LM318 are selected to implement the circuit, and a simple compensation scheme is developed to adjust the Op-Amp electrical characteristics to meet the design requirement. A 7-node prototype circuit has been designed and verified using the Pspice circuit simulator run on a Sun workstation. Results simulated from the AART1-NN circuit using the LM741, LM318, and ideal Op-Amps are presented and compared.
End to end adaptive congestion control in TCP/IP networks
Houmkozlis, Christos N
2012-01-01
This book provides an adaptive control theory perspective on designing congestion controls for packet-switching networks. Relevant to a wide range of disciplines and industries, including the music industry, computers, image trading, and virtual groups, the text extensively discusses source oriented, or end to end, congestion control algorithms. The book empowers readers with clear understanding of the characteristics of packet-switching networks and their effects on system stability and performance. It provides schemes capable of controlling congestion and fairness and presents real-world app
On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network
DEFF Research Database (Denmark)
Alizadeh, Tohid
2008-01-01
This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....
Adaptive Security in ODMAC for Multihop Energy Harvesting Wireless Sensor Networks
DEFF Research Database (Denmark)
Di Mauro, Alessio; Fafoutis, Xenofon; Dragoni, Nicola
2015-01-01
Energy Harvesting Wireless Sensor Networks (EH-WSNs) represent an interesting new paradigm where individual nodes forming a network are powered by energy sources scavenged from the surrounding environment. This technique provides numerous advantages, but also new design challenges. Securing...... the communications under energy constraints represents one of these key challenges. The amount of energy available is theoretically infinite in the long run but highly variable over short periods of time, and managing it is a crucial aspect. In this paper we present an adaptive approach for security in multihop EH...
Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games
Directory of Open Access Journals (Sweden)
Gijs Kant
2012-10-01
Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation
Directory of Open Access Journals (Sweden)
Yuzheng Yang
2014-01-01
Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.
Li, Jin-Na; Er, Meng-Joo; Tan, Yen-Kheng; Yu, Hai-Bin; Zeng, Peng
2015-09-01
This paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design. Then, a sufficient condition for stochastic stability in terms of Linear Matrix Inequalities (LMIs) is given. Moreover, an adaptive tracking controller is designed such that the sampling period tracks a desired sampling period, which represents a significant contribution. Finally, experimental results are given to illustrate the effectiveness and advantages of the proposed scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
International Nuclear Information System (INIS)
Mai, Huanhuan; Liao, Xiaofeng; Song, Gangbing
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller. (paper)
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.
Emergence of a multilayer structure in adaptive networks of phase oscillators
International Nuclear Information System (INIS)
Makarov, V.V.; Koronovskii, A.A.; Maksimenko, V.A.; Hramov, A.E.; Moskalenko, O.I.; Buldú, J.M.; Boccaletti, S.
2016-01-01
We report on self-organization of adaptive networks, where topology and dynamics evolve in accordance to a competition between homophilic and homeostatic mechanisms, and where links are associated to a vector of weights. Under an appropriate balance between the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges due to the adaptive evolution, resulting in different link weights at each layer, i.e. different components of the weights’ vector. In parallel, synchronized clusters at each layer are formed, which may overlap or not, depending on the values of the coupling strengths. Only when intra- and inter- layer coupling strengths are high enough, all layers reach identical final topologies, collapsing the system into, in fact, a monolayer network. The relationships between such steady state topologies and a set of dynamical network’s properties are discussed.
Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A
2014-01-01
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...
The Brain’s Default Network and its Adaptive Role in Internal Mentation
Andrews-Hanna, Jessica R.
2013-01-01
During the many idle moments that comprise daily life, the human brain increases its activity across a set of midline and lateral cortical brain regions known as the “default network.” Despite the robustness with which the brain defaults to this pattern of activity, surprisingly little is known about the network’s precise anatomical organization and adaptive functions. To provide insight into these questions, this article synthesizes recent literature from structural and functional imaging with a growing behavioral literature on mind wandering. Results characterize the default network as a set of interacting hubs and subsystems that play an important role in “internal mentation” – the introspective and adaptive mental activities in which humans spontaneously and deliberately engage in everyday. . PMID:21677128
Autoregressive Integrated Adaptive Neural Networks Classifier for EEG-P300 Classification
Directory of Open Access Journals (Sweden)
Demi Soetraprawata
2013-06-01
Full Text Available Brain Computer Interface has a potency to be applied in mechatronics apparatus and vehicles in the future. Compared to the other techniques, EEG is the most preferred for BCI designs. In this paper, a new adaptive neural network classifier of different mental activities from EEG-based P300 signals is proposed. To overcome the over-training that is caused by noisy and non-stationary data, the EEG signals are filtered and extracted using autoregressive models before passed to the adaptive neural networks classifier. To test the improvement in the EEG classification performance with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis. The experiment results show that the all subjects achieve a classification accuracy of 100%.
Directory of Open Access Journals (Sweden)
Hui Zhou
2015-08-01
Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.
Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System
Directory of Open Access Journals (Sweden)
Xin Zhang
2014-01-01
Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.
Directory of Open Access Journals (Sweden)
Pim Vugteveen
2015-03-01
Full Text Available We elaborate the necessary conceptual and strategic elements for developing an effective adaptive monitoring network to support Integrated Coastal Management (ICM in a multiuser nature reserve in the Dutch Wadden Sea Region. We discuss quality criteria and enabling actions essential to accomplish and sustain monitoring excellence to support ICM. The Wadden Sea Long-Term Ecosystem Research project (WaLTER was initiated to develop an adaptive monitoring network and online data portal to better understand and support ICM in the Dutch Wadden Sea Region. Our comprehensive approach integrates ecological and socioeconomic data and links research-driven and policy-driven monitoring for system analysis using indicators of pressures, state, benefits, and responses. The approach and concepts we elaborated are transferable to other coastal regions to accomplish ICM in complex social-ecological systems in which scientists, multisectoral stakeholders, resource managers, and governmental representatives seek to balance long-term ecological, economic, and social objectives within natural limits.
Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks
Directory of Open Access Journals (Sweden)
Chien-Peng Ho
2007-03-01
Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.
Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W
2015-05-15
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.
International Nuclear Information System (INIS)
Song Yu-Rong; Jiang Guo-Ping; Gong Yong-Wang
2013-01-01
In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR-SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 − p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively. (general)
Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.
Armao, Joseph J; Lehn, Jean-Marie
2016-10-17
Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electromagnetic compatibility of PLC adapters for in-home/domestic networks
Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek
2018-01-01
The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].
Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter
2014-05-01
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.