WorldWideScience

Sample records for ad animal model

  1. Sex Differences in the Cognitive and Hippocampal Effects of Streptozotocin in an Animal Model of Sporadic AD

    Directory of Open Access Journals (Sweden)

    Jian Bao

    2017-10-01

    Full Text Available More than 95% of Alzheimer's disease (AD belongs to sporadic AD (sAD, and related animal models are the important research tools for investigating the pathogenesis and developing new drugs for sAD. An intracerebroventricular infusion of streptozotocin (ICV-STZ is commonly employed to generate sporadic AD animal model. Moreover, the potential impact of sex on brain function is now emphasized in the field of AD. However, whether sex differences exist in AD animal models remains unknown. Here we reported that ICV-STZ remarkably resulted in learning and memory impairment in the Sprague-Dawley male rats, but not in the female rats. We also found tau hyperphosphorylation, an increase of Aβ40/42 as well as increase in both GSK-3β and BACE1 activities, while a loss of dendritic and synaptic plasticity was observed in the male STZ rats. However, STZ did not induce above alterations in the female rats. Furthermore, estradiol levels of serum and hippocampus of female rats were much higher than that of male rats. In conclusion, sex differences exist in this sporadic AD animal model (Sprague-Dawley rats induced by STZ, and this should be considered in future AD research.

  2. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  3. AdS2 models in an embedding superspace

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2003-01-01

    An embedding superspace, whose bosonic part is the flat (2+1)-dimensional embedding space for AdS 2 , is introduced. Superfields and several supersymmetric models are examined in the embedded AdS 2 superspace

  4. Modelling Farm Animal Welfare

    Science.gov (United States)

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Animal models of dementia

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2011-01-01

    This chapter aims to encourage scientists and others interested in the use of animal models of disease – specifically, in the study of dementia – to engage in ethical reflection. It opens with a general discussion of the moral acceptability of animal use in research. Three ethical approaches are ...

  6. Animal models of dementia

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2011-01-01

    This chapter aims to encourage scientists and others interested in the use of animal models of disease – specifically, in the study of dementia – to engage in ethical reflection. It opens with a general discussion of the moral acceptability of animal use in research. Three ethical approaches...

  7. Animal models of tinnitus.

    Science.gov (United States)

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  8. Animal models of sarcoidosis.

    Science.gov (United States)

    Hu, Yijie; Yibrehu, Betel; Zabini, Diana; Kuebler, Wolfgang M

    2017-03-01

    Sarcoidosis is a debilitating, inflammatory, multiorgan, granulomatous disease of unknown cause, commonly affecting the lung. In contrast to other chronic lung diseases such as interstitial pulmonary fibrosis or pulmonary arterial hypertension, there is so far no widely accepted or implemented animal model for this disease. This has hampered our insights into the etiology of sarcoidosis, the mechanisms of its pathogenesis, the identification of new biomarkers and diagnostic tools and, last not least, the development and implementation of novel treatment strategies. Over past years, however, a number of new animal models have been described that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outline the present status quo for animal models of sarcoidosis, comparing their pros and cons with respect to their ability to mimic the etiological, clinical and histological hallmarks of human disease and discuss their applicability for future research. Overall, the recent surge in animal models has markedly expanded our options for translational research; however, given the relative early stage of most animal models for sarcoidosis, appropriate replication of etiological and histological features of clinical disease, reproducibility and usefulness in terms of identification of new therapeutic targets and biomarkers, and testing of new treatments should be prioritized when considering the refinement of existing or the development of new models.

  9. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Trace minerals added to animal feeds. 582.80 Section 582.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Provisions § 582.80 Trace minerals added to animal feeds. These substances added to animal feeds as...

  10. Animal Models of Glaucoma

    Directory of Open Access Journals (Sweden)

    Rachida A. Bouhenni

    2012-01-01

    Full Text Available Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model.

  11. ANIMAL MODELS IN SURGICAL

    African Journals Online (AJOL)

    ASSEMBLED BY

    1 Dept.of Veterinary Surgery and Medicine 2Veterinary Teaching Hospital Ahmadu Bello University. Zaria .... unnecessary suffering., Administration of poisons .... way that humans are. Vivisection/ Surgical Training And Research. Animal model use: In both the human and veterinary medical practice, there continue to be ...

  12. Animal models of sepsis.

    Science.gov (United States)

    Fink, Mitchell P

    2014-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, the animal models that have been used for this purpose have often yielded misleading findings. It is likely that there are multiple reasons for the discrepancies between the results obtained in tests of pharmacological agents in animal models of sepsis and the outcomes of human clinical trials. One of important reason may be that the changes in gene expression, which are triggered by trauma or infection, are different in mice, a commonly used species for preclinical testing, and humans. Additionally, many species, including mice and baboons, are remarkably resistant to the toxic effects of bacterial lipopolysaccharide, whereas humans are exquisitely sensitive. New approaches toward the use of animals for sepsis research are being investigated. But, at present, results from preclinical studies of new therapeutic agents for sepsis must be viewed with a degree of skepticism.

  13. Model checking mobile ad hoc networks

    NARCIS (Netherlands)

    Ghassemi, Fatemeh; Fokkink, Wan

    2016-01-01

    Modeling arbitrary connectivity changes within mobile ad hoc networks (MANETs) makes application of automated formal verification challenging. We use constrained labeled transition systems as a semantic model to represent mobility. To model check MANET protocols with respect to the underlying

  14. Animal Models of Atherosclerosis

    Science.gov (United States)

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  15. Animal models of spondyloarthritis.

    Science.gov (United States)

    Lories, Rik J U

    2006-07-01

    The aim of this article is to review new insights into spondyloarthritis obtained in animal models during the last year. HLA-B27 misfolding has been demonstrated in HLA-B27/human beta2-microglobulin transgenic rats. HLA-B27 misfolding is associated with a typical unfolded protein stress response and with an interferon-response signature. Prebiotic treatment of these rats reduced colitis and arthritis. Proteoglycan-induced spondylitis is distinct from proteoglycan-induced arthritis. Specific susceptibility loci for proteoglycan-induced spondylitis have been demonstrated. Bone morphogenetic proteins are important in new cartilage and bone formation in ankylosing enthesitis. Psoriasis and psoriatic arthritis-like disease develops in conditional double JunB/c-Jun knockout mice. Insights into the molecular signaling pathways driving HLA-B27 associated spondylitis, autoimmune spondylitis, ankylosing enthesitis and psoriasis, resulting from animal models, identify new and specific therapeutic targets in spondyloarthritis.

  16. Animal models of sepsis

    OpenAIRE

    Fink, Mitchell P

    2013-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, ...

  17. Animal Models of Hemophilia

    Science.gov (United States)

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  18. Animal models of schizophrenia

    Science.gov (United States)

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  19. Queueing Models for Mobile Ad Hoc Networks

    NARCIS (Netherlands)

    de Haan, Roland

    2009-01-01

    This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of

  20. Animal Models of Neuropsychiatric Disorders

    Science.gov (United States)

    Nestler, Eric J.; Hyman, Steven E.

    2013-01-01

    Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many key symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression, and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported. PMID:20877280

  1. ANIMAL MODELS FOR IMMUNOTOXICITY

    Science.gov (United States)

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  2. Animal models of cerebral amyloid angiopathy.

    Science.gov (United States)

    Jäkel, Lieke; Van Nostrand, William E; Nicoll, James A R; Werring, David J; Verbeek, Marcel M

    2017-10-15

    Cerebral amyloid angiopathy (CAA), due to vascular amyloid β (Aβ) deposition, is a risk factor for intracerebral haemorrhage and dementia. CAA can occur in sporadic or rare hereditary forms, and is almost invariably associated with Alzheimer's disease (AD). Experimental (animal) models are of great interest in studying mechanisms and potential treatments for CAA. Naturally occurring animal models of CAA exist, including cats, dogs and non-human primates, which can be used for longitudinal studies. However, due to ethical considerations and low throughput of these models, other animal models are more favourable for research. In the past two decades, a variety of transgenic mouse models expressing the human Aβ precursor protein (APP) has been developed. Many of these mouse models develop CAA in addition to senile plaques, whereas some of these models were generated specifically to study CAA. In addition, other animal models make use of a second stimulus, such as hypoperfusion or hyperhomocysteinemia (HHcy), to accelerate CAA. In this manuscript, we provide a comprehensive review of existing animal models for CAA, which can aid in understanding the pathophysiology of CAA and explore the response to potential therapies. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Animal Models for Candidiasis

    Science.gov (United States)

    Conti, Heather R.; Huppler, Anna R.; Whibley, Natasha; Gaffen, Sarah L.

    2014-01-01

    Multiple forms of candidiasis are clinically important in humans. Established murine models of disseminated, oropharyngeal, vaginal, and cutaneous candidiasis caused by Candida albicans are described in this unit. Detailed materials and methods for C. albicans growth and detection are also described. PMID:24700323

  4. Research progress on animal models of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wen DONG

    2015-08-01

    Full Text Available Alzheimer's disease (AD is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  5. Animal Models of Bacterial Keratitis

    Science.gov (United States)

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  6. Animal models for human diseases.

    Science.gov (United States)

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  7. Animal models in myopia research.

    Science.gov (United States)

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. © 2015 Optometry

  8. Animal models of pituitary neoplasia

    OpenAIRE

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal mod...

  9. XX. Animal models of pneumocystosis

    DEFF Research Database (Denmark)

    Dei-Cas, E.; Brun-Pascaud, M.; Bille-Hansen, Vivi

    1998-01-01

    As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were...... a source of parasites taxonomically related to P. carinii sp. f hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown......, are important drawbacks of the corticosteroid-treated models. For these reasons, inoculated animal models of PCP were developed. The intratracheal inoculation of lung homogenates containing viable parasites in corticosteroid-treated non-latently infected rats resulted in extensive, reproducible Pneumocystis...

  10. Animal models of pituitary neoplasia

    Science.gov (United States)

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  11. Animal welfare and use of silkworm as a model animal.

    Science.gov (United States)

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  12. Small animal models of xenotransplantation.

    Science.gov (United States)

    Wang, Hao

    2012-01-01

    Organ transplantation has become a successful and acceptable treatment for end-stage organ failure. Such success has allowed transplant patients to resume a normal lifestyle. The demands for transplantation have been steadily increasing, as more patients and new diseases are being deemed eligible for treatment via transplantation. However, it is clear that human organs will never meet the increasing demand of transplantation. Therefore, scientists must continue to pursue alternative therapies and explore new treatments to meet the growing demand for the limited number of organs available. Transplanting organs from animals into humans (xenotransplantation) is one such therapy. The observed enthusiasm for xenotransplantation, irrespective of the severe shortage of human organs and tissues available for transplantation, can be said to stem from at least two factors. First, there is the possibility that animal organs and tissues might be less susceptible than those of humans to the recurrence of disease processes. Second, a xenograft might be used as a vehicle for introducing novel genes or biochemical processes which could be of therapeutic value for the transplant recipient.To date, millions of lives have been saved by organ transplantation. These remarkable achievements would have been impossible without experimental transplantation research in animal models. Presently, more than 95% of organ transplantation research projects are carried out using rodents, such as rats and mice. The key factor to ensure the success of these experiments lies in state-of-the art experimental surgery. Small animal models offer unique advantages for the mechanistic study of xenotransplantation rejection. Currently, multiple models have been developed for investigating the different stages of immunological barriers in xenotransplantation. In this chapter, we describe six valuable small animal models that have been used in xenotransplantation research. The methodology for the small animal

  13. Effects of chronic intake of vegetable protein added to animal or fish protein on renal hemodynamics.

    Science.gov (United States)

    Kitazato, Hiroji; Fujita, Hiroki; Shimotomai, Takashi; Kagaya, Eri; Narita, Takuma; Kakei, Masafumi; Ito, Seiki

    2002-01-01

    To examine whether chronic intake of vegetable protein added to animal protein diet affects renal hemodynamics or not, we studied effects of three kinds of diets containing various amounts of animal and vegetable protein with 1-week dietary program in each on renal hemodynamics. The crossover design of different amounts of vegetable protein added to the constant amount of animal protein was applied to two groups of 7 healthy individuals after the control dietary program. Renal function and 24 hours' urinary albumin excretion rate (AER) were examined on every 7th day of three consecutive 1-week dietary programs. Glomerular filtration rate (GFR; sodium thiosulphate clearance) and renal plasma flow (RPF) significantly decreased after decreasing the intake of animal protein by one third with keeping the amount of vegetable protein constant. The results when substituting vegetable protein for some of the animal protein in the diet without changing the total amount of protein were identical. The filtration fraction and AER did not change over the study periods regardless of dietary composition. The lack of an effect a 1-week intake of vegetable protein added to animal protein on GFR and RPF suggests that vegetable protein may be excluded from lists of restriction in low protein diet therapy in patients with renal insufficiency. Copyright 2002 S. Karger AG, Basel

  14. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  15. Animal models of papillomavirus pathogenesis.

    Science.gov (United States)

    Campo, M Saveria

    2002-11-01

    Tumorigenesis due to papillomavirus (PV) infection was first demonstrated in rabbits and cattle early last century. Despite the evidence obtained in animals, the role of viruses in human cancer was dismissed as irrelevant. It took a paradigm shift in the late 1970s for some viruses to be recognised as 'tumour viruses' in humans, and in 1995, more than 60 years after Rous's first demonstration of CRPV oncogenicity, WHO officially declared that 'HPV-16 and HPV-18 are carcinogenic to humans'. Experimental studies with animal PVs have been a determining factor in this decision. Animal PVs have been studied both as agents of disease in animals and as models of human PV infection. In addition to the study of PV infection in whole animals, in vitro studies with animal PV proteins have contributed greatly to the understanding of the mechanisms of cell transformation. Animal PVs cause distressing diseases in both farm and companion animals, such as teat papillomatosis in cattle, equine sarcoids and canine oral papillomatosis and there is an urgent need to understand the pathogenesis of these problematic infections. Persistent and florid teat papillomatosis in cows can lead to mastitis, prevent the suckling of calves and make milking impossible; heavily affected animals are culled and so occasionally are whole herds. Equine sarcoids are often recurrent and untreatable and lead to loss of valuable animals. Canine oral papillomatosis can be very extensive and persistent and lead to great distress. Thus the continuing research in the biology of animal PVs is amply justified. BPVs and CRPV have been for many years the model systems with which to study the biology of HPV. Induction of papillomas and their neoplastic progression has been experimentally demonstrated and reproduced in cattle and rabbits, and virus-cofactor interactions have been elucidated in these systems. With the advancements in molecular and cell culture techniques, the direct study of HPV has become less

  16. Animal Models of Zika Virus

    Science.gov (United States)

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  17. XX. Animal models of pneumocystosis

    DEFF Research Database (Denmark)

    Dei-Cas, E.; Brun-Pascaud, M.; Bille-Hansen, Vivi

    1998-01-01

    As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were...... the host immune response as well as Pneumocystis-surfactant interactions. Pigs and horses also develop spontaneous PCP. Treated with corticosteroids, piglets develop extensive PCP and could be used as a non-rodent model. Pneumocystis was detected in many non-human primates. Primates could represent...... a source of parasites taxonomically related to P. carinii sp. f hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown...

  18. Animal models of drug addiction.

    Science.gov (United States)

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-09-29

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  19. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.

    2014-01-01

    in non-ideal scenarios, we show that generally the estimation of models of this type is both feasible and ecologically informative. We illustrate the approach using real movement data from 11 reindeer (Rangifer tarandus). Results indicate a directional bias towards a group centroid for reindeer......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...

  20. Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Adrian Pullin

    2018-04-01

    Full Text Available A mobile ad hoc network (MANET is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR, destination-sequenced distance-vector routing (DSDV, and ad hoc n-demand distance vector routing (AODV. The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To

  1. Animal Models of Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Domenico Santoro

    2014-12-01

    Full Text Available Allergic diseases have great impact on the quality of life of both people and domestic animals. They are increasing in prevalence in both animals and humans, possibly due to the changed lifestyle conditions and the decreased exposure to beneficial microorganisms. Dogs, in particular, suffer from environmental skin allergies and develop a clinical presentation which is very similar to the one of children with eczema. Thus, dogs are a very useful species to improve our understanding on the mechanisms involved in people’s allergies and a natural model to study eczema. Animal models are frequently used to elucidate mechanisms of disease and to control for confounding factors which are present in studies with patients with spontaneously occurring disease and to test new therapies that can be beneficial in both species. It has been found that drugs useful in one species can also have benefits in other species highlighting the importance of a comprehensive understanding of diseases across species and the value of comparative studies. The purpose of the current article is to review allergic diseases across species and to focus on how these diseases compare to the counterpart in people.

  2. Animal Models of Periventricular Leukomalacia

    Science.gov (United States)

    Choi, Ehn-Kyoung; Park, Dongsun; Kim, Tae Kyun; Lee, Sun Hee; Bae, Dae-Kwon; Yang, Goeun; Yang, Yun-Hui; Kyung, Jangbeen; Kim, Dajeong; Lee, Woo Ryoung; Suh, Jun-Gyo; Jeong, Eun-Suk; Kim, Seung U.

    2011-01-01

    Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics. PMID:21826166

  3. The added value of business models

    NARCIS (Netherlands)

    Vliet, Harry van

    An overview of innovations in a particular area, for example retail developments in the fashion sector (Van Vliet, 2014), and a subsequent discussion about the probability as to whether these innovations will realise a ‘breakthrough’, has to be supplemented with the question of what the added value

  4. Animal models of RLS phenotypes.

    Science.gov (United States)

    Allen, Richard P; Donelson, Nathan C; Jones, Byron C; Li, Yuqing; Manconi, Mauro; Rye, David B; Sanyal, Subhabrata; Winkelmann, Juliane

    2017-03-01

    Restless legs syndrome (RLS) is a complex disorder that involves sensory and motor systems. The major pathophysiology of RLS is low iron concentration in the substantia nigra containing the cell bodies of dopamine neurons that project to the striatum, an area that is crucial for modulating movement. People who have RLS often present with normal iron values outside the brain; recent studies implicate several genes are involved in the syndrome. Like most complex diseases, animal models usually do not faithfully capture the full phenotypic spectrum of "disease," which is a uniquely human construct. Nonetheless, animal models have proven useful in helping to unravel the complex pathophysiology of diseases such as RLS and suggesting novel treatment paradigms. For example, hypothesis-independent genome-wide association studies (GWAS) have identified several genes as increasing the risk for RLS, including BTBD9. Independently, the murine homolog Btbd9 was identified as a candidate gene for iron regulation in the midbrain in mice. The relevance of the phenotype of another of the GWAS identified genes, MEIS1, has also been explored. The role of Btbd9 in iron regulation and RLS-like behaviors has been further evaluated in mice carrying a null mutation of the gene and in fruit flies when the BTBD9 protein is degraded. The BTBD9 and MEIS1 stories originate from human GWAS research, supported by work in a genetic reference population of mice (forward genetics) and further verified in mice, fish flies, and worms. Finally, the role of genetics is further supported by an inbred mouse strain that displays many of the phenotypic characteristics of RLS. The role of animal models of RLS phenotypes is also extended to include periodic limb movements. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Massive quiver matrix models for massive charged particles in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Curtis T.; Denef, Frederik [Department of Physics, Columbia University,538 West 120th Street, New York, New York 10027 (United States); Dzienkowski, Eric [Department of Physics, Broida Hall, University of California Santa Barbara,Santa Barbara, California 93106 (United States)

    2016-01-11

    We present a new class of N=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.

  6. Animal models and conserved processes

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-09-01

    Full Text Available Abstract Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is

  7. Animal models and conserved processes.

    Science.gov (United States)

    Greek, Ray; Rice, Mark J

    2012-09-10

    The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response

  8. Parathyroid diseases and animal models.

    Science.gov (United States)

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  9. Parathyroid diseases and animal models

    Directory of Open Access Journals (Sweden)

    Yasuo eImanishi

    2012-06-01

    Full Text Available Circulating calcium and phosphate are tightly regulated by 3 hormones: the active form of vitamin D (1,25-dihydroxyvitamin D, fibroblast growth factor (FGF-23, and parathyroid hormone (PTH. PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  10. Animal models for cancer cachexia.

    Science.gov (United States)

    Ballarò, Riccardo; Costelli, Paola; Penna, Fabio

    2016-12-01

    Cancer cachexia is a frequent syndrome that affects patient quality of life, anticancer treatment effectiveness, and overall survival. The lack of anticancer cachexia therapies likely relies on the complexity of the syndrome that renders difficult to design appropriate clinical trials and, conversely, on the insufficient knowledge of the underlying pathogenetic mechanisms. The aim of this review is to collect the most relevant latest information regarding cancer cachexia with a special focus on the experimental systems adopted for modeling the disease in translational studies. The scenario of preclinical models for the study of cancer cachexia is not static and is rapidly evolving in parallel with new prospective treatment options. The well established syngeneic models using rodent cancer cells injected ectopically are now used alongside new ones featuring orthotopic injection, human cancer cell or patient-derived xenograft, or spontaneous tumors in genetically engineered mice. The use of more complex animal models that better resemble cancer cachexia, ideally including also the administration of chemotherapy, will expand the understanding of the underlying mechanisms and will allow a more reliable evaluation of prospective drugs for translational purposes.

  11. Measuring Teacher Quality with Value-Added Modeling

    Science.gov (United States)

    Marder, Michael

    2012-01-01

    Using computers to evaluate teachers based on student test scores is more difficult than it seems. Value-added modeling is a genuinely serious attempt to grapple with the difficulties. Value-added modeling carries the promise of measuring teacher quality automatically and objectively, and improving school systems at minimal cost. The essence of…

  12. Chronobiology of ethanol: animal models.

    Science.gov (United States)

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Emergent spacetime, and a model for unitary gravitational collapse in AdS

    CERN Document Server

    Cantcheff, Marcelo Botta

    2011-01-01

    We propose a CFT unitary description of the gravitational collapse. The starting point is the model of a black hole in AdS proposed by Maldacena in arXiv: 0106112 [hep-th]. We show that by proposing a two-copies version of the AdS/CFT conjecture, the process of formation of black holes so as other spacetimes with horizons may be described as an unitary process in the dual field theory. In doing this, we construct a well defined framework to describe general spacetimes as entangled states, in terms of the spectrum of states on the exact Anti-de-Sitter background. As application, we show how the description of the Hawking-Page transition results simplified in this formalism and some novel aspects may be observed. Finally, a simplified analysis based on weakly coupled bulk fields is discussed.

  14. On 'Money' in ISLM and AD/AS Models

    OpenAIRE

    Thomas K. Rymes; Colin Rogers

    2000-01-01

    Hicks's ISLM model interpretation of Keynes's theory is subject to much controversy. In this paper, we focus upon the 'real balance' effect and its role in ISLM and AD/AS analyses. We shall argue that ISLM and AD/AS require 'nominal anchors'. We live in a world where, increasingly, the 'money' in the ISLM and AD/AS model no longer exists (as Keynes imperfectly understood in his TREATISE ON MONEy). There are no longer any nominal anchors, rather they have been replaced by discretionary policy....

  15. Comparison of fermented animal feed and mushroom growth media as two value-added options for waste Cassava pulp management.

    Science.gov (United States)

    Trakulvichean, Sivalee; Chaiprasert, Pawinee; Otmakhova, Julia; Songkasiri, Warinthorn

    2017-12-01

    Cassava is one of the main processed crops in Thailand, but this generates large amounts (7.3 million tons in 2015) of waste cassava pulp (WCP). The solid WCP is sold directly to farmers or pulp-drying companies at a low cost to reduce the burden of on-site waste storage. Using an integrated direct and environmental cost model, fermented animal feed and mushroom growth media were compared as added-value waste management alternatives for WCP to mitigate environmental problems. Primary and secondary data were collected from the literature, field data, and case studies. Data boundaries were restricted to a gate-to-gate scenario with a receiving capacity of 500 t WCP/d, and based on a new production unit being set up at the starch factory. The total production cost of each WCP utilization option was analyzed from the economic and environmental costs. Fermented animal feed was an economically attractive scenario, giving a higher net present value (NPV), lower investment cost and environmental impact, and a shorter payback period for the 10-year operational period. The selling price of mushrooms was the most sensitive parameter regarding the NPV, while the NPV for the price of fermented animal feed had the highest value in the best-case scenario.

  16. Towards a reliable animal model of migraine

    DEFF Research Database (Denmark)

    Olesen, Jes; Jansen-Olesen, Inger

    2012-01-01

    The pharmaceutical industry shows a decreasing interest in the development of drugs for migraine. One of the reasons for this could be the lack of reliable animal models for studying the effect of acute and prophylactic migraine drugs. The infusion of glyceryl trinitrate (GTN) is the best validated...... and most studied human migraine model. Several attempts have been made to transfer this model to animals. The different variants of this model are discussed as well as other recent models....

  17. Animal models in fetal medicine and obstetrics

    DEFF Research Database (Denmark)

    Dahl Andersen, Maria; Alstrup, Aage Kristian Olsen; Duvald, Christina Søndergaard

    2017-01-01

    Animal models remain essential to understand the fundamental mechanisms occurring in fetal medicine and obstetric diseases, such as intrauterine growth restriction, preeclampsia and gestational diabetes. These vary regarding the employed method used for induction of the disease, and vary regarding...... the animal characteristics (size, number of fetuses, placenta barrier type, etc). While none of these exactly mirrors the human condition, different pregnant animal models (mice, rats, guinea pigs, chinchillas, rabbits, sheep and pigs) are here described with respect to advantages and limitations...

  18. Animal models of cerebral arterial gas embolism

    NARCIS (Netherlands)

    Weenink, Robert P.; Hollmann, Markus W.; van Hulst, Robert A.

    2012-01-01

    Cerebral arterial gas embolism is a dreaded complication of diving and invasive medical procedures. Many different animal models have been used in research on cerebral arterial gas embolism. This review provides an overview of the most important characteristics of these animal models. The properties

  19. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.

    Science.gov (United States)

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-09-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. Copyright © 2016 the American Physiological Society.

  20. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis

    Science.gov (United States)

    Zhan, Xianbao; Wang, Fan; Bi, Yan

    2016-01-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. PMID:27418683

  1. Animal model and neurobiology of suicide.

    Science.gov (United States)

    Preti, Antonio

    2011-06-01

    Animal models are formidable tools to investigate the etiology, the course and the potential treatment of an illness. No convincing animal model of suicide has been produced to date, and despite the intensive study of thousands of animal species naturalists have not identified suicide in nonhuman species in field situations. When modeling suicidal behavior in the animal, the greatest challenge is reproducing the role of will and intention in suicide mechanics. To overcome this limitation, current investigations on animals focus on every single step leading to suicide in humans. The most promising endophenotypes worth investigating in animals are the cortisol social-stress response and the aggression/impulsivity trait, involving the serotonergic system. Astroglia, neurotrophic factors and neurotrophins are implied in suicide, too. The prevention of suicide rests on the identification and treatment of every element increasing the risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Animal Migraine Models for Drug Development

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Tfelt-Hansen, Peer; Olesen, Jes

    2013-01-01

    responses are likely to be behavioral, allowing multiple experiments in each individual animal. Distinction is made between acute and prophylactic models and how to validate each of them. Modern insight into neurobiological mechanisms of migraine is so good that it is only a question of resources...... for headache has almost come to a standstill partly because of a lack of valid animal models. Here we review previous models with emphasis on optimal characteristics of a future model. In addition to selection of animal species, the method of induction of migraine-like changes and the method of recording...

  3. Overview of Animal Models of Obesity

    Science.gov (United States)

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  4. Modeling service discovery in ad-hoc networks

    NARCIS (Netherlands)

    Liu, F.; Goering, P.T.H.; Heijenk, Geert

    2007-01-01

    A protocol for service discovery using attenuated Bloom filters has been proposed for ad-hoc networks. Based on our study, it can well save network bandwidth compared to conventional approaches. We have built both an analytical model and a simulation model to evaluate the performance of our novel

  5. Animal models of obesity and diabetes mellitus

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Clemmensen, Christoffer; Hofmann, Susanna M

    2018-01-01

    More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover...... available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models....

  6. Innovative research of AD HOC network mobility model

    Science.gov (United States)

    Chen, Xin

    2017-08-01

    It is difficult for researchers of AD HOC network to conduct actual deployment during experimental stage as the network topology is changeable and location of nodes is unfixed. Thus simulation still remains the main research method of the network. Mobility model is an important component of AD HOC network simulation. It is used to describe the movement pattern of nodes in AD HOC network (including location and velocity, etc.) and decides the movement trail of nodes, playing as the abstraction of the movement modes of nodes. Therefore, mobility model which simulates node movement is an important foundation for simulation research. In AD HOC network research, mobility model shall reflect the movement law of nodes as truly as possible. In this paper, node generally refers to the wireless equipment people carry. The main research contents include how nodes avoid obstacles during movement process and the impacts of obstacles on the mutual relation among nodes, based on which a Node Self Avoiding Obstacle, i.e. NASO model is established in AD HOC network.

  7. Ocular Manifestations of Alzheimer’s Disease in Animal Models

    Directory of Open Access Journals (Sweden)

    Miles Parnell

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia, and the pathological changes of senile plaques (SPs and neurofibrillary tangles (NFTs in AD brains are well described. Clinically, a diagnosis remains a postmortem one, hampering both accurate and early diagnosis as well as research into potential new treatments. Visual deficits have long been noted in AD patients, and it is becoming increasingly apparent that histopathological changes already noted in the brain also occur in an extension of the brain; the retina. Due to the optically transparent nature of the eye, it is possible to image the retina at a cellular level noninvasively and thus potentially allow an earlier diagnosis as well as a way of monitoring progression and treatment effects. Transgenic animal models expressing amyloid precursor protein (APP presenilin (PS and tau mutations have been used successfully to recapitulate the pathological findings of AD in the brain. This paper will cover the ocular abnormalities that have been detected in these transgenic AD animal models.

  8. Animal Models of Middle Ear Cholesteatoma

    Directory of Open Access Journals (Sweden)

    Tomomi Yamamoto-Fukuda

    2011-01-01

    Full Text Available Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.

  9. Animal models: an important tool in mycology.

    Science.gov (United States)

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  10. The development of expertise: animal models?

    Science.gov (United States)

    Helton, William S

    2004-01-01

    There is a continuing debate in the psychological literature between researchers who lean more toward learning theories of expertise development and those who lean more toward talent theories. However, the development of human expertise has not been open to direct experimental methods and will probably continue to elude experimentalists in the future. A promising alternative to direct experimental methods is to use human animal models, a possibility that researchers in expertise seem to have overlooked. However, there are studies in the animal behavior literature that address the development of nonhuman animal expertise without specifically referring to the topic as expertise. In the present study, the author discusses two nonhuman animal examples of expertise development that have been researched by ethologists. Nonhuman animal expertise development, unlike human expertise development, is subject to direct experimentation. The author thus recommends that researchers use nonhuman animals in their studies of expertise.

  11. Animal Models of Chemotherapy-induced Mucositis

    DEFF Research Database (Denmark)

    Sangild, Per T; Shen, René Liang; Pontoppidan, Peter Erik Lotko

    2018-01-01

    of CIM, and how to prevent it. Animal models allow highly controlled experimental conditions, detailed organ (e.g. GIT) insights, standardized, clinically-relevant treatment regimens and discovery of new biomarkers. Still, surprisingly few results from animal models have been translated into clinical CIM......Chemotherapy for cancer patients induces damaging tissue reactions along the epithelium of the gastrointestinal tract (GIT). This chemotherapy-induced mucositis (CIM) is a serious side effect of cytotoxic drugs and several animal models of CIM have been developed to help understand the progression...... mangement and treatments. The results obtained from specific animal models can be difficult to translate to the diverse range of CIM manifestations in patients that vary according to the antineoplastic drugs, dose, underlying (cancer) disease and patient characteristics (e.g. age, genetics, body...

  12. Lessons from animal models of osteoarthritis.

    NARCIS (Netherlands)

    Berg, W.B. van den

    2008-01-01

    Animal models of osteoarthritis (OA) provide valuable insight into pathogenetic pathways. Although OA is not an inflammatory disease, synovial activation clearly plays a role. Matrix metalloproteinases 3 (stromelysin) and 13 (collagenase) appear crucial, and a disintegrin and metalloproteinase with

  13. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  14. A cognitive model's view of animal cognition

    Directory of Open Access Journals (Sweden)

    Sidney D'MELLO, Stan FRANKLIN

    2011-08-01

    Full Text Available Although it is a relatively new field of study, the animal cognition literature is quite extensive and difficult to synthesize. This paper explores the contributions a comprehensive, computational, cognitive model can make toward organizing and assimilating this literature, as well as toward identifying important concepts and their interrelations. Using the LIDA model as an example, a framework is described within which to integrate the diverse research in animal cognition. Such a framework can provide both an ontology of concepts and their relations, and a working model of an animal’s cognitive processes that can compliment active empirical research. In addition to helping to account for a broad range of cognitive processes, such a model can help to comparatively assess the cognitive capabilities of different animal species. After deriving an ontology for animal cognition from the LIDA model, we apply it to develop the beginnings of a database that maps the cognitive facilities of a variety of animal species. We conclude by discussing future avenues of research, particularly the use of computational models of animal cognition as valuable tools for hypotheses generation and testing [Current Zoology 57 (4: 499–513, 2011].

  15. Modelling Mobility in Mobile AD-HOC Network Environments ...

    African Journals Online (AJOL)

    This paper presents and evaluates the stationary distribution for location, speed and pause time of a random waypoint mobility case. We show how to implement the random waypoint mobility model for ad-hoc networks without pausing, through a more efficient and reliable computer simulation, using MATrix LABoratory ...

  16. Animal models in motion sickness research

    Science.gov (United States)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  17. Ad hoc method for the assessment on listing and categorisation of animal diseases within the framework of the Animal Health Law

    DEFF Research Database (Denmark)

    More, Simon J.; Bøtner, Anette; Butterworth, Andrew

    2017-01-01

    addresses the ad hoc method developed for assessing any animal disease for the listing and categorisation of diseases within the Animal Health Law (AHL) framework. The assessment of individual diseases is addressed in distinct scientific opinions that are published separately. The assessment of Articles 5...... compiled by disease scientists. A mapping was developed to identify which parameters from Article 7 were needed to inform each Article 5, 8 and 9 criterion. Specifically, for Articles 5 and 9 criteria, a categorical assessment was performed, by applying an expert judgement procedure, based on the mapped...

  18. Final model of multicriterionevaluation of animal welfare

    DEFF Research Database (Denmark)

    Bonde, Marianne; Botreau, R; Bracke, MBM

    One major objective of Welfare Quality® is to propose harmonized methods for the overall assessment of animal welfare on farm and at slaughter that are science based and meet societal concerns. Welfare is a multidimensional concept and its assessment requires measures of different aspects. Welfare...... Quality® proposes a formal evaluation model whereby the data on animals or their environment are transformed into value scores that reflect compliance with 12 subcriteria and 4 criteria of good welfare. Each animal unit is then allocated to one of four categories: excellent welfare, enhanced welfare......, acceptable welfare and not classified. This evaluation model is tuned according to the views of experts from animal and social sciences, and stakeholders....

  19. Optogenetics in animal model of alcohol addiction

    Science.gov (United States)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  20. Cost-effectiveness analysis: adding value to assessment of animal health welfare and production.

    Science.gov (United States)

    Babo Martins, S; Rushton, J

    2014-12-01

    Cost-effectiveness analysis (CEA) has been extensively used in economic assessments in fields related to animal health, namely in human health where it provides a decision-making framework for choices about the allocation of healthcare resources. Conversely, in animal health, cost-benefit analysis has been the preferred tool for economic analysis. In this paper, the use of CEA in related areas and the role of this technique in assessments of animal health, welfare and production are reviewed. Cost-effectiveness analysis can add further value to these assessments, particularly in programmes targeting animal welfare or animal diseases with an impact on human health, where outcomes are best valued in natural effects rather than in monetary units. Importantly, CEA can be performed during programme implementation stages to assess alternative courses of action in real time.

  1. Oxymetazoline ototoxicity in a chinchilla animal model.

    Science.gov (United States)

    Daniel, Sam J; Akinpelu, Olubunmi V; Sahmkow, Sofia; Funnell, W Robert J; Akache, Fadi

    2012-01-01

    To investigate possible ototoxic effects of a one-time application of oxymetazoline drops in a chinchilla animal model with tympanostomy tubes. Study Design. A prospective, controlled animal study. The Research Institute of the Montreal's Children Hospital, McGill University Health Centre. Ventilation tubes were inserted in both ears of 12 animals. One ear was randomly assigned to receive oxymetazoline drops (0.5 mL). The contralateral ear did not receive any drops, serving as a control ear. Distortion product otoacoustic emissions were measured bilaterally for a wide range of frequencies (between 1 and 16 kHz) before and 1 day after the application of oxymetazoline in the experimental ears. Two months later, the animals were sacrificed and all cochleae were dissected out and processed for scanning electron microscopy. In this established chinchilla animal model, the measured distortion product otoacoustic emission amplitudes and the morphological appearance on scanning electron microscopy were similar for both control and experimental ears. Oxymetazoline did not cause ototoxicity in a chinchilla animal model 2 months after a single application via a tympanostomy tube.

  2. Animal models of preeclampsia; uses and limitations.

    LENUS (Irish Health Repository)

    McCarthy, F P

    2012-01-31

    Preeclampsia remains a leading cause of maternal and fetal morbidity and mortality and has an unknown etiology. The limited progress made regarding new treatments to reduce the incidence and severity of preeclampsia has been attributed to the difficulties faced in the development of suitable animal models for the mechanistic research of this disease. In addition, animal models need hypotheses on which to be based and the slow development of testable hypotheses has also contributed to this poor progress. The past decade has seen significant advances in our understanding of preeclampsia and the development of viable reproducible animal models has contributed significantly to these advances. Although many of these models have features of preeclampsia, they are still poor overall models of the human disease and limited due to lack of reproducibility and because they do not include the complete spectrum of pathophysiological changes associated with preeclampsia. This review aims to provide a succinct and comprehensive assessment of current animal models of preeclampsia, their uses and limitations with particular attention paid to the best validated and most comprehensive models, in addition to those models which have been utilized to investigate potential therapeutic interventions for the treatment or prevention of preeclampsia.

  3. Animal models for HIV cure research

    Directory of Open Access Journals (Sweden)

    Ben Bruno Policicchio

    2016-01-01

    Full Text Available The HIV-1/AIDS pandemic continues to spread unabated worldwide and no vaccine exists within our grasp. Effective antiretroviral therapy (ART has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for HIV infection will require multiple tools and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure or eliminating the reservoir altogether (sterilizing cure. Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new nonhuman primate and mouse models, along with a certain interest in the feline model, have the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  4. Animal Models for HIV Cure Research.

    Science.gov (United States)

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  5. Diabetes Mellitus Induces Alzheimer’s Disease Pathology: Histopathological Evidence from Animal Models

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kimura

    2016-04-01

    Full Text Available Alzheimer’s disease (AD is the major causative disease of dementia and is characterized pathologically by the accumulation of senile plaques (SPs and neurofibrillary tangles (NFTs in the brain. Although genetic studies show that β-amyloid protein (Aβ, the major component of SPs, is the key factor underlying AD pathogenesis, it remains unclear why advanced age often leads to AD. Interestingly, several epidemiological and clinical studies show that type II diabetes mellitus (DM patients are more likely to exhibit increased susceptibility to AD. Moreover, growing evidence suggests that there are several connections between the neuropathology that underlies AD and DM, and there is evidence that the experimental induction of DM can cause cognitive dysfunction, even in rodent animal models. This mini-review summarizes histopathological evidence that DM induces AD pathology in animal models and discusses the possibility that aberrant insulin signaling is a key factor in the induction of AD pathology.

  6. Large animal models for stem cell therapy.

    Science.gov (United States)

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  7. Economic value added model upon conditions of banking company

    Directory of Open Access Journals (Sweden)

    Vlasta Kašparovská

    2008-01-01

    Full Text Available The content of this article is the application of the economic value added model (EVA upon the conditions of a banking company. Due to the character of banking business, which is in a different structure of financial sheet, it is not possible to use the standard model EVA for this banking company. The base of this article is the outlined of basic principles of the EVA mode in a non-banking company. Basic specified banking activity dissimilarities are analysed and a directed methodology adjustment of a model such as this, so that it is possible to use it for a banking company.

  8. Entropic information of dynamical AdS/QCD holographic models

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)

    2016-11-10

    The Shannon based conditional entropy that underlies five-dimensional Einstein–Hilbert gravity coupled to a dilaton field is investigated in the context of dynamical holographic AdS/QCD models. Considering the UV and IR dominance limits of such AdS/QCD models, the conditional entropy is shown to shed some light onto the meson classification schemes, which corroborate with the existence of light-flavor mesons of lower spins in Nature. Our analysis is supported by a correspondence between statistical mechanics and information entropy which establishes the physical grounds to the Shannon information entropy, also in the context of statistical mechanics, and provides some specificities for accurately extending the entropic discussion to continuous modes of physical systems. From entropic informational grounds, the conditional entropy allows one to identify the lower experimental/phenomenological occurrence of higher spin mesons in Nature. Moreover, it introduces a quantitative theoretical apparatus for studying the instability of high spin light-flavor mesons.

  9. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Science.gov (United States)

    Jung, Soo Yeon; Kim, Ha Yeong; Park, Hae Sang; Yin, Xiang Yun; Chung, Sung Min; Kim, Han Su

    2016-01-01

    Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  10. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Directory of Open Access Journals (Sweden)

    Soo Yeon Jung

    Full Text Available Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5 and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5, PTX-NC (n = 10, and PTX-HC (n = 10, respectively. Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  11. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  12. Development of animal models of otitis media.

    Science.gov (United States)

    Park, Moo Kyun; Lee, Byung Don

    2013-04-01

    Otitis media is defined as inflammation of the middle ear, including the auditory ossicles and the Eustachian tube. Otitis media is a major health problem in many societies. The causes of otitis media includes infection and anatomic/physiologic, host, and environmental factors. In general, otitis media is a childhood disease, and anatomic and physiologic changes have great effects on its development. Thus, in vitro or human experimental studies of otitis media are difficult. Several experimental animal models have been introduced to investigate the pathogenesis and treatment of otitis media. However, none are ideal. The aim of this review is to provide a brief overview of the current status of animal models of otitis media with effusion, acute otitis media, and cholesteatoma. This review will assist determination of the most appropriate animal models of otitis media.

  13. Animal models for Gaucher disease research

    Directory of Open Access Journals (Sweden)

    Tamar Farfel-Becker

    2011-11-01

    Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder (LSD, is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

  14. Requirements for Logical Models for Value-Added Tax Legislation

    DEFF Research Database (Denmark)

    Nielsen, Morten Ib; Simonsen, Jakob Grue; Larsen, Ken Friis

    Enterprise resource planning (ERP) systems are ubiquitous in commercial enterprises of all sizes and invariably need to account for the notion of value-added tax (VAT). The legal and technical difficulties in handling VAT are exacerbated by spanning a broad and chaotic spectrum of intricate country...... of the Danish VAT law in Web Ontology Language (OWL) and in Con¿git Product Modeling Language (CPML)....

  15. Animal models of asthma: utility and limitations

    Directory of Open Access Journals (Sweden)

    Aun MV

    2017-11-01

    Full Text Available Marcelo Vivolo Aun,1,2 Rafael Bonamichi-Santos,1,2 Fernanda Magalhães Arantes-Costa,2 Jorge Kalil,1 Pedro Giavina-Bianchi1 1Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil, 2Laboratory of Experimental Therapeutics (LIM20, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil Abstract: Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila, rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes

  16. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET are not eas......The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...... are not easily accessible. Therefore, exploring novel sources of energy generation rather than operating electronics only on limited power supplies such as batteries is a major challenge. Monitoring free-ranging animal behavior is an application in which the entities (animals) within the MANET are not readily...

  17. Thermal experiments in the model of ADS target

    International Nuclear Information System (INIS)

    Alexander, Efanov; Yuri, Orlov; Alexander, Sorokin; Eugeni, Ivanov; Galina, Bogoslovskaia; Ning, Li

    2002-01-01

    The paper presents thermal experiments performed in the SSC RF IPPE on the ADS window target model. Brief description of the model, specific features of structure, measurement system and some methodological approaches are presented. Eutectic lead-bismuth alloy is modeled here by eutectic sodium-potassium alloy. The following characteristics of the target model were measured directly and estimated by processing: coolant flow rate, model power, absolute temperature of the coolant with a distance from the membrane of the target, absolute temperature of the membrane surface, mean square value and pulsating component of coolant temperature, as well as membrane temperature. Measurements have shown a great pulsations of temperature existing at the membrane surface that must be taken into account in analysis of strength of real target system. Experimental temperature fields (present work) and velocity fields measured earlier make up a complete database for verification of 2D and 3D thermohydraulic codes. (author)

  18. Are animal models predictive for humans?

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2009-01-01

    Full Text Available Abstract It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics.

  19. Henipavirus Infections: Lessons from Animal Models

    Directory of Open Access Journals (Sweden)

    Kévin P. Dhondt

    2013-04-01

    Full Text Available The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.

  20. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  1. Animal models of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  2. People & Animals: A Humane Education Curriculum Guide. Levels A-D.

    Science.gov (United States)

    Savesky, Kathleen, Ed.; Malcarne, Vanessa, Ed.

    This curriculum guide provides the framework for integrating humane education into the traditional elementary school curriculum. The activities in this guide are designed to help students think critically and clarify their own feelings about various issues, as well as to provide them with factual information and understandings about animals.…

  3. Consumer Perception of Online Advertising - The Effects of Animation, Ad Characteristics, Repetition and Task Relevancy on Attention and Memory

    OpenAIRE

    Kuisma, Jarmo

    2015-01-01

    Prior advertising research on advertising perception models has mainly focused on effects that occur after consumers have been exposed to advertising stimuli. Little research has examined how consumers are exposed to advertising and the quality of visual attention during advertising exposure. This doctoral dissertation examines how consumers allocate their visual attention to online ads and how consumers memorize ads in different viewing conditions. More precisely, the dissertation focuses on...

  4. Large Mammalian Animal Models of Heart Disease

    Directory of Open Access Journals (Sweden)

    Paula Camacho

    2016-10-01

    Full Text Available Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians.

  5. [Skin defect modeling in experimental animals].

    Science.gov (United States)

    Oleshko, A N; Kornienko, V V; Tkachenko, Yu A; Kurganskaya, V A

    2015-02-01

    To assess the skin regeneration and explore new medical devices for the treatment of skin defects is necessary to conduct long-term experiments using laboratory animals. Currently, there are many methods for skin trauma modeling but most of them have disadvantages that limit their use. The purpose of this work - the development of an experimental model of the formation of skin defect of various etiologies with the specified parameters of depth and area of damage to the absence of systemic effects on the animal's body. We have developed an installation that allows us to form a skin defect of mechanical, thermal and chemical etiology with area from 1.76 cm2 to 2.0 cm2. The experiment was conducted on 18 male laboratory rats to examine the effectiveness of current method and control the depth and area of the defect. As a result of the new methodology, we were able to carry out simulation skin injuries of different etiology on laboratory animals in the short term and reduce the severity of injuries to extend the life span of animals to monitor the repair processes, as well as to standardize the modeling of injuries according to the criteria of area and depth of the defect.

  6. Phenotyping animal models of diabetic neuropathy

    DEFF Research Database (Denmark)

    Biessels, G J; Bril, V; Calcutt, N A

    2014-01-01

    of statistically different values between diabetic and control animals in 2 of 3 assessments (nocifensive behavior, nerve conduction velocities, or nerve structure). The participants propose that this framework would allow different research groups to compare and share data, with an emphasis on data targeted......NIDDK, JDRF, and the Diabetic Neuropathy Study Group of EASD sponsored a meeting to explore the current status of animal models of diabetic peripheral neuropathy. The goal of the workshop was to develop a set of consensus criteria for the phenotyping of rodent models of diabetic neuropathy....... The discussion was divided into five areas: (1) status of commonly used rodent models of diabetes, (2) nerve structure, (3) electrophysiological assessments of nerve function, (4) behavioral assessments of nerve function, and (5) the role of biomarkers in disease phenotyping. Participants discussed the current...

  7. Animal models of anxiety disorders and stress

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2013-01-01

    Full Text Available Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents. The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as “ethological” the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field, whereas models that involve learned/punished responses are referred to as “conditioned operant conflict tests” (such as the Vogel conflict test. We also discussed models that involve mainly classical conditioning tests (fear conditioning. Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress, physical (restraint stress, and chronic unpredictable stress.

  8. Fantastic animals as an experimental model to teach animal adaptation

    Science.gov (United States)

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729

  9. Spatiotemporal epidemic models for rabies among animals

    Directory of Open Access Journals (Sweden)

    Shigui Ruan

    2017-08-01

    Full Text Available Rabies is a serious concern to public health and wildlife management worldwide. Over the last three decades, various mathematical models have been proposed to study the transmission dynamics of rabies. In this paper we provide a mini-review on some reaction-diffusion models describing the spatial spread of rabies among animals. More specifically, we introduce the susceptible-exposed-infectious models for the spatial transmission of rabies among foxes (Murray et al., 1986, the spatiotemporal epidemic model for rabies among raccoons (Neilan and Lenhart, 2011, the diffusive rabies model for skunk and bat interactions (Bonchering et al., 2012, and the reaction-diffusion model for rabies among dogs (Zhang et al., 2012. Numerical simulations on the spatiotemporal dynamics of these models from these papers are presented.

  10. Antidiabetic dietary materials and animal models.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2016-07-01

    The ever-increasing occurrence of diabetes worldwide demands cost-effective anti-diabetic strategies. Food-based materials have great potential as efficient anti-diabetic agents. Focusing on the literatures of the recent 5years, this review summarizes the methods, findings, and limitations of each research involving non-medicinal foods (individual and mixed) and diabetic animal models. Various types of fruits, vegetables, legumes, cereals, spices, beverages, oilseeds, and edible oils showed antidiabetic effects in different animal models. Animal feeding trials rarely had identical designs in food doses, feeding schedules, and routes of administration, as well as biochemical markers for antidiabetic evaluation. Various possible cellular and metabolic targets were speculated for the anti-hyperglycemic effects of the dietary materials, and the molecular mechanisms of action remain to be better explored. Short-term (maximum 16weeks) antidiabetic studies have been established. Limited safety/tolerability data are available for antidiabetic dietary materials. Findings from current animal studies present a generic antidiabetic dietary pattern associated with plant-based whole foods, which agrees well with the findings of epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Animal Models of Human Placentation - A Review

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2007-01-01

    This review examines the strengths and weaknesses of animal models of human placentation and pays particular attention to the mouse and non-human primates. Analogies can be drawn between mouse and human in placental cell types and genes controlling placental development. There are, however...... and delivers poorly developed young. Guinea pig is a good alternative rodent model and among the few species known to develop pregnancy toxaemia. The sheep is well established as a model in fetal physiology but is of limited value for placental research. The ovine placenta is epitheliochorial...

  12. Microparticles and cancer thrombosis in animal models.

    Science.gov (United States)

    Mege, Diane; Mezouar, Soraya; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe

    2016-04-01

    Cancer-associated venous thromboembolism (VTE) constitutes the second cause of death after cancer. Many risk factors for cancer-associated VTE have been identified, among them soluble tissue factor and microparticles (MPs). Few data are available about the implication of MPs in cancer associated-VTE through animal model of cancer. The objective of the present review was to report the state of the current literature about MPs and cancer-associated VTE in animal model of cancer. Fourteen series have reported the role of MPs in cancer-associated VTE, through three main mouse models: ectopic or orthotopic tumor induction, experimental metastasis by intravenous injection of tumor cells into the lateral tail vein of the mouse. Pancreatic cancer is the most used animal model, due to its high rate of cancer-associated VTE. All the series reported that tumor cell-derived MPs can promote thrombus formation in TF-dependent manner. Some authors reported also the implication of phosphatidylserine and PSGL1 in the generation of thrombin. Moreover, MPs seem to be implicated in cancer progression through a coagulation-dependent mechanism secondary to thrombocytosis, or a mechanism implicating the regulation of the immune response. For these reasons, few authors have reported that antiplatelet and anticoagulant treatments may prevent tumor progression and the formation of metastases in addition of coagulopathy. © 2016 Elsevier Ltd. All rights reserved.

  13. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  14. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    James G. McLarnon

    2014-01-01

    Full Text Available Animal models of Alzheimer’s disease (AD which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid-β (Aβ into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.

  15. In silico strain optimization by adding reactions to metabolic models.

    Science.gov (United States)

    Correia, Sara; Rocha, Miguel

    2012-07-24

    Nowadays, the concerns about the environment and the needs to increase the productivity at low costs, demand for the search of new ways to produce compounds with industrial interest. Based on the increasing knowledge of biological processes, through genome sequencing projects, and high-throughput experimental techniques as well as the available computational tools, the use of microorganisms has been considered as an approach to produce desirable compounds. However, this usually requires to manipulate these organisms by genetic engineering and/ or changing the enviromental conditions to make the production of these compounds possible. In many cases, it is necessary to enrich the genetic material of those microbes with hereologous pathways from other species and consequently adding the potential to produce novel compounds. This paper introduces a new plug-in for the OptFlux Metabolic Engineering platform, aimed at finding suitable sets of reactions to add to the genomes of selected microbes (wild type strain), as well as finding complementary sets of deletions, so that the mutant becomes able to overproduce compounds with industrial interest, while preserving their viability. The necessity of adding reactions to the metabolic model arises from existing gaps in the original model or motivated by the productions of new compounds by the organism. The optimization methods used are metaheuristics such as Evolutionary Algorithms and Simulated Annealing. The usefulness of this plug-in is demonstrated by a case study, regarding the production of vanillin by the bacterium E. coli.

  16. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  17. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  18. Animal models of compulsive eating behavior.

    Science.gov (United States)

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-10-22

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.

  19. Animal Models of Compulsive Eating Behavior

    Directory of Open Access Journals (Sweden)

    Matteo Di Segni

    2014-10-01

    Full Text Available Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.

  20. Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low-density SNP genotypes.

    Science.gov (United States)

    Lopes, F B; Wu, X-L; Li, H; Xu, J; Perkins, T; Genho, J; Ferretti, R; Tait, R G; Bauck, S; Rosa, G J M

    2018-02-01

    Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP-LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP-LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de-regressed EBV was slightly small (i.e. 0.87%-18.75%). The present study also compared the performance of five genomic prediction models and two cross-validation methods. The five genomic models predicted EBV and de-regressed EBV of the ten traits similarly well. Of the two cross-validation methods, leave-one-out cross-validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle. © 2018 Blackwell Verlag GmbH.

  1. Animal Models Utilized in HTLV-1 Research

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2013-01-01

    Full Text Available Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1 over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP. Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.

  2. Animal Models of Cancer-Associated Hypercalcemia.

    Science.gov (United States)

    Kohart, Nicole A; Elshafae, Said M; Breitbach, Justin T; Rosol, Thomas J

    2017-04-13

    Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome.

  3. Potential animal models of seasonal affective disorder.

    Science.gov (United States)

    Workman, Joanna L; Nelson, Randy J

    2011-01-01

    Seasonal affective disorder (SAD) is characterized by depressive episodes during winter that are alleviated during summer and by morning bright light treatment. Currently, there is no animal model of SAD. However, it may be possible to use rodents that respond to day length (photoperiod) to understand how photoperiod can shape the brain and behavior in humans. As nights lengthen in the autumn, the duration of the nightly elevation of melatonin increase; seasonally breeding animals use this information to orchestrate seasonal changes in physiology and behavior. SAD may originate from the extended duration of nightly melatonin secretion during fall and winter. These similarities between humans and rodents in melatonin secretion allows for comparisons with rodents that express more depressive-like responses when exposed to short day lengths. For instance, Siberian hamsters, fat sand rats, Nile grass rats, and Wistar rats display a depressive-like phenotype when exposed to short days. Current research in depression and animal models of depression suggests that hippocampal plasticity may underlie the symptoms of depression and depressive-like behaviors, respectively. It is also possible that day length induces structural changes in human brains. Many seasonally breeding rodents undergo changes in whole brain and hippocampal volume in short days. Based on strict validity criteria, there is no animal model of SAD, but rodents that respond to reduced day lengths may be useful to approximate the neurobiological phenomena that occur in people with SAD, leading to greater understanding of the etiology of the disorder as well as novel therapeutic interventions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear omega-model system

    Czech Academy of Sciences Publication Activity Database

    Astorino, M.; Canfora, F.; Giacomini, A.; Ortaggio, Marcello

    2018-01-01

    Roč. 776, 10 January (2018), s. 236-241 ISSN 0370-2693 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : AdS black holes * nonlinear sigma model Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0370269317309437

  5. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear omega-model system

    Czech Academy of Sciences Publication Activity Database

    Astorino, M.; Canfora, F.; Giacomini, A.; Ortaggio, Marcello

    2018-01-01

    Roč. 776, 10 January (2018), s. 236-241 ISSN 0370-2693 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : AdS black holes * nonlinear sigma model Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 http://www.sciencedirect.com/science/article/pii/S0370269317309437

  6. Animal models of Alzheimer disease: historical pitfalls and a path forward.

    Science.gov (United States)

    Cavanaugh, Sarah E; Pippin, John J; Barnard, Neal D

    2014-01-01

    Alzheimer disease (AD) is a medically and financially overwhelming condition, and incidence rates are expected to triple by 2050.Despite decades of research in animal models of AD, the disease remains incompletely understood, with few treatment options. This review summarizes historical and current AD research efforts, with emphasis on the disparity between preclinical animal studies and the reality of human disease and how this has impacted clinical trials. Ultimately, we provide a mechanism for shifting the focus of AD research away from animal models to focus primarily on human biology as a means to improve the applicability of research findings to human disease. Implementation of these alternatives may hasten development of improved strategies to prevent, detect, ameliorate, and possibly cure this devastating disease.

  7. An animal model to study regenerative endodontics.

    Science.gov (United States)

    Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh

    2011-02-01

    A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.

  8. Animal models for HIV/AIDS research

    Science.gov (United States)

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  9. Experimental Oral Candidiasis in Animal Models

    Science.gov (United States)

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  10. Fusion rules and four-point functions in the AdS3 Wess-Zumino-Novikov-Witten model

    International Nuclear Information System (INIS)

    Baron, Walter H.; Nunez, Carmen A.

    2009-01-01

    We study the operator product expansion in the AdS 3 Wess-Zumino-Novikov-Witten (WZNW) model. The operator-product expansion of primary fields and their spectral flow images is computed from the analytic continuation of the expressions in the H 3 + WZNW model, adding spectral flow. We argue that the symmetries of the affine algebra require a truncation which establishes the closure of the fusion rules on the Hilbert space of the theory. Although the physical mechanism determining the decoupling is not completely understood, we present several consistency checks on the results. A preliminary analysis of factorization allows to obtain some properties of four-point functions involving fields in generic sectors of the theory, to verify that they agree with the spectral flow selection rules and to show that the truncation must be realized in physical amplitudes for consistency.

  11. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  12. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases.

    Science.gov (United States)

    Youssef, S A; Capucchio, M T; Rofina, J E; Chambers, J K; Uchida, K; Nakayama, H; Head, E

    2016-03-01

    According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases. © The Author(s) 2016.

  13. Small-Animal Models of Zika Virus.

    Science.gov (United States)

    Julander, Justin G; Siddharthan, Venkatraman

    2017-12-16

    Zika virus (ZIKV) infection can result in serious consequences, including severe congenital manifestations, persistent infection in the testes, and neurologic sequelae. After a pandemic emergence, the virus has spread to much of North and South America and has been introduced to many countries outside of ZIKV-endemic areas as infected travelers return to their home countries. Rodent models have been important in gaining a better understanding of the wide range of disease etiologies associated with ZIKV infection and for the initial phase of developing countermeasures to prevent or treat viral infections. We discuss herein the advantages and disadvantages of small-animal models that have been developed to replicate various aspects of disease associated with ZIKV infection. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Biokinetic models for radionuclides in experimental animals

    International Nuclear Information System (INIS)

    Morcillo, M. A.

    2003-01-01

    The biokinetic models for many radionuclides are, to a large extent, based on data obtained in experimental animals. The methods used in the experimental development of a biokinetic model can be classified in two groups (i) those applied during the experimental work, which include the activity determination of a given radionuclide at different times and in different biological media such as blood, serum, organs/tissues, urine, bile and faeces and (ii) those methods used for the analysis and study of the experimental data, based in mathematical tools. Some of these methods are reviewed,with special emphasis in the whole body macro autoradiography. To conclude, the contribution that this type of studies can have in two fields of radiation protection is discussed, namely optimization of dosimetric evaluations and decorporation of radionuclides. (Author)

  15. Advances in transgenic animal models and techniques.

    Science.gov (United States)

    Ménoret, Séverine; Tesson, Laurent; Remy, Séverine; Usal, Claire; Ouisse, Laure-Hélène; Brusselle, Lucas; Chenouard, Vanessa; Anegon, Ignacio

    2017-10-01

    On May 11th and 12th 2017 was held in Nantes, France, the international meeting "Advances in transgenic animal models and techniques" ( http://www.trm.univ-nantes.fr/ ). This biennial meeting is the fifth one of its kind to be organized by the Transgenic Rats ImmunoPhenomic (TRIP) Nantes facility ( http://www.tgr.nantes.inserm.fr/ ). The meeting was supported by private companies (SONIDEL, Scionics computer innovation, New England Biolabs, MERCK, genOway, Journal Disease Models and Mechanisms) and by public institutions (International Society for Transgenic Technology, University of Nantes, INSERM UMR 1064, SFR François Bonamy, CNRS, Région Pays de la Loire, Biogenouest, TEFOR infrastructure, ITUN, IHU-CESTI and DHU-Oncogeffe and Labex IGO). Around 100 participants, from France but also from different European countries, Japan and USA, attended the meeting.

  16. Learning from Animal Models of Obsessive-Compulsive Disorder

    Science.gov (United States)

    Monteiro, Patricia; Feng, Guoping

    2015-01-01

    Obsessive-Compulsive Disorder (OCD) affects 2–3% of the worldwide population and can cause significant distress and disability to its sufferers. Substantial challenges remain in the field of OCD research and therapeutics. Approved interventions only partially alleviate symptoms, with 30–40% of patients being resistant to treatment. Research evidence points towards the involvement of cortico-striato-thalamocortical circuitry (CSTC) although OCD’s etiology is still unknown. This review will focus on the most recent behavior, genetics and neurophysiological findings from animal models of OCD. Based on evidence from these models and parallels with human studies, we discuss the circuit hyperactivity hypothesis for OCD, a potential circuitry dysfunction of action termination, and the involvement of candidate genes. Adding a more biologically-valid framework to OCD will help us define and test new hypotheses and facilitate the development of targeted therapies based on disease-specific mechanisms. PMID:26037910

  17. Animal Models of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Eva Harris

    2012-01-01

    Full Text Available The development of animal models of dengue virus (DENV infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe dengue in humans. Humanized mouse models can sustain DENV replication and show some signs of disease, but further development is needed to validate the immune response. Classically, immunocompetent mice infected with DENV do not manifest disease or else develop paralysis when inoculated intracranially; however, a new model using high doses of DENV has recently been shown to develop hemorrhagic signs after infection. Overall, each model has its advantages and disadvantages and is differentially suited for studies of dengue pathogenesis and immunopathogenesis and/or pre-clinical testing of antiviral drugs and vaccines.

  18. On the added value of WUDAPT for Urban Climate Modelling

    Science.gov (United States)

    Brousse, Oscar; Martilli, Alberto; Mills, Gerald; Bechtel, Benjamin; Hammerberg, Kris; Demuzere, Matthias; Wouters, Hendrik; Van Lipzig, Nicole; Ren, Chao; Feddema, Johannes J.; Masson, Valéry; Ching, Jason

    2017-04-01

    Over half of the planet's population now live in cities and is expected to grow up to 65% by 2050 (United Nations, 2014), most of whom will actually occupy new emerging cities of the global South. Cities' impact on climate is known to be a key driver of environmental change (IPCC, 2014) and has been studied for decades now (Howard, 1875). Still very little is known about our cities' structure around the world, preventing urban climate simulations to be done and hence guidance to be provided for mitigation. Assessing the need to bridge the urban knowledge gap for urban climate modelling perspectives, the World Urban Database and Access Portal Tool - WUDAPT - project (Ching et al., 2015; Mills et al., 2015) developed an innovative technique to map cities globally rapidly and freely. The framework established by Bechtel and Daneke (2012) derives Local Climate Zones (Stewart and Oke, 2012) city maps out of LANDSAT 8 OLI-TIRS imagery (Bechtel et al., 2015) through a supervised classification by a Random Forest Classification algorithm (Breiman, 2001). The first attempt to implement Local Climate Zones (LCZ) out of the WUDAPT product within a major climate model was carried out by Brousse et al. (2016) over Madrid, Spain. This study proved the applicability of LCZs as an enhanced urban parameterization within the WRF model (Chen et al. 2011) employing the urban canopy model BEP-BEM (Martilli, 2002; Salamanca et al., 2010), using the averaged values of the morphological and physical parameters' ranges proposed by Stewart and Oke (2012). Other studies have now used the Local Climate Zones for urban climate modelling purposes (Alexander et al., 2016; Wouters et al. 2016; Hammerberg et al., 2017; Brousse et al., 2017) and demonstrated the added value of the WUDAPT dataset. As urban data accessibility is one of the major challenge for simulations in emerging countries, this presentation will show results of simulations using LCZs and the capacity of the WUDAPT framework to be

  19. Assessing the TARES as an ethical model for antismoking ads.

    Science.gov (United States)

    Lee, Seow Ting; Cheng, I-Huei

    2010-01-01

    This study examines the ethical dimensions of public health communication, with a focus on antismoking public service announcements (PSAs). The content analysis of 826 television ads from the U.S. Centers for Disease Control and Prevention's (CDC) Media Campaign Resource Center is an empirical testing of Baker and Martinson's (2001) TARES Test that directly examines persuasive messages for truthfulness, authenticity, respect, equity, and social responsibility. In general, the antismoking ads score highly on ethicality. There are significant relationships between ethicality and message attributes (thematic frame, emotion appeal, source, and target audience). Ads that portrayed smoking as damaging to health and socially unacceptable score lower in ethicality than ads that focus on tobacco industry manipulation, addiction, dangers of secondhand smoke, and cessation. Emotion appeals of anger and sadness are associated with higher ethicality than shame and humor appeals. Ads targeting teen/youth audiences score lower on ethicality than ads targeting adult and general audiences. There are significant differences in ethicality based on source; ads produced by the CDC rate higher in ethicality than other sources. Theoretical implications and practical recommendations are discussed.

  20. [Analysis of dalbavancin in animal models].

    Science.gov (United States)

    Murillo, Óscar; El-Haj, Cristina

    2017-01-01

    Multiresistant Gram-positive infections continue to pose a major clinical challenge and the development of new antibiotics is always desirable. Dalbavancin is a lipoglycopeptide with a prolonged half-life that allows long dosing intervals. In experimental models, its activity has been evaluated in distinct models and microorganisms, which limits the conclusions that can be drawn; however, the largest number of studies have been conducted in Staphylococcus aureus infection. Overall, dalbavancin has shown concentration-dependent efficacy and the parameters best explaining its activity are maximal pharmacodynamic concentration/minimal inhibitory concentration and the area under the curve/minimal inhibitory concentration. In these experimental models, dalbavancin has shown good distribution, a prolonged half-life in all animal species and efficacy that is mostly similar to that of previous glycopeptides but with lower doses and with longer dosing intervals. Of note, the efficacy of dalbavancin is not altered by methicillin resistance or the glycopeptide sensitivity of S. aureus. In the case of difficult-to-treat staphylococcal infections (eg, endocarditis, foreign body infections), an adequate dosing interval and high dosage seem to play an important role in the efficacy of the drug. All in all, experimental models can still provide greater knowledge of this new antibiotic to guide clinical research and determine its role in the treatment of distinct infections produced by Gram-positive microorganisms. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  1. Prebiotic effect of Agave fourcroydes fructans: an animal model.

    Science.gov (United States)

    García-Curbelo, Yanelys; Bocourt, Ramón; Savón, Lourdes L; García-Vieyra, Maria Isabel; López, Mercedes G

    2015-09-01

    The use of prebiotics such as fructans has increased in human and animal nutrition because of their productive performance and health benefits. Agave fourcroydes has shown high concentrations of fructans in their stems; however, there is no information on new products derived from this plant that might enhance its added value. Therefore, we evaluated the prebiotic effect of Agave fourcroydes fructans in an animal model. Male mice (C57BL/6J) were fed on parallel form with a standard diet or diets supplemented with 10% of fructans from Cichorium intybus (Raftilose P95) and Agave fourcroydes from Cuba for 35 days. The body weight, food intake, blood glucose, triglycerides and cholesterol, gastrointestinal organ weights, fermentation indicators in cecal and colon contents and mineral content in femurs were determined. The body weight and food intake of mice were not significantly modified by any treatment. However, serum glucose, cholesterol and triglycerides decreased (P Agave fourcroydes in the mice diet induced a prebiotic response, similar to or greater than the commercial product (Raftilose P95) and this constitutes a promising alternative with potential use not only in animal but also in human diets.

  2. Animal models of chronic wound care

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Thomsen, Kim; Calum, Henrik

    2016-01-01

    Chronic wounds are a substantial clinical problem affecting millions of people worldwide. Pathophysiologically, chronic wounds are stuck in the inflammatory state of healing. The role of bacterial biofilms in suppression and perturbation of host response could be an explanation for this observation....... An inhibiting effect of bacterial biofilms on wound healing is gaining significant clinical attention over the last few years. There is still a paucity of suitable animal models to recapitulate human chronic wounds. The etiology of the wound (venous insufficiency, ischemia, diabetes, pressure) has to be taken...... into consideration as underlying pathophysiological mechanisms and comorbidities display tremendous variation in humans. Confounders such as infection, smoking, chronological age, sex, medication, metabolic disturbances, and renal impairment add to the difficulty in gaining systematic and comparable studies...

  3. 2004 Florida Greenway ADS40 Orthoimagery and Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — EarthData International collected ADS-40/ISTAR-derived orthophotos at a 50 centimeter pixel resolution to produce natural color and color infrared ortho photo tiles....

  4. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    Full Text Available

    The narrow host range of infection and lack of suitable tissue culture systems for the propagation of hepatitis B and C viruses are limitations that have prevented a more thorough understanding of persistent infection and the pathogenesis of chronic liver disease.

    Despite decades of intensive research and significant progresses in understanding of viral hepatitis, many basic questions and clinical problems still await to be resolved. For example, the HBV cellular receptor and related mechanisms of viral entry have not yet been identified. Little is also known about the function of certain non-structural viral products, such as the hepatitis B e antigen and the X protein, or about the role of excess hepadnavirus subviral particles circulating in the blood stream during infection. Furthermore, the molecular mechanisms involved in the development of hepatocellular carcinoma and the role of the immune system in determining the fate of infection are not fully understood.

    The reason for these drawbacks is essentially due to the lack of reliable cell-based in vitro infection systems and, most importantly, convenient animal models.

    This lack of knowledge has been partially overcome for hepatitis B virus (HBV, by the discovery and characterization of HBV-like viruses in wild animals while for hepatitis C virus (HCV, related flaviviruses have been used as surrogate systems.

    Other laboratories have developed transgenic mice that express virus gene products and/or support virus replication. Some HBV transgenic mouse models

  5. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    Directory of Open Access Journals (Sweden)

    Mohan Kumar Pasupuleti

    2016-01-01

    Full Text Available Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  6. Animal Model of Acute Deep Vein Thrombosis

    International Nuclear Information System (INIS)

    Roy, Sumit; Laerum, Frode; Brosstad, Frank; Kvernebo, Knut; Sakariassen, Kjell S.

    1998-01-01

    Purpose: To develop an animal model of acute deep vein thrombosis (DVT). Methods: In part I of the study nine juvenile domestic pigs were used. Each external iliac vein was transluminally occluded with a balloon catheter. Thrombin was infused through a microcatheter in one leg according to one of the following protocols: (1) intraarterial (IA): 1250 U at 25 U/min in the common femoral artery (n= 3); (2) intravenous (IV): 5000 U in the popliteal vein at 500 U/min (n= 3), or at 100 U/min (n= 3). Saline was administered in the opposite leg. After the animals were killed, the mass of thrombus in the iliofemoral veins was measured. The pudendoepiploic (PEV), profunda femoris (PF), and popliteal veins (PV) were examined. Thrombosis in the tributaries of the superficial femoral vein (SFVt) was graded according to a three-point scale (0, +, ++). In part II of the study IV administration was further investigated in nine pigs using the following three regimens with 1000 U at 25 U/min serving as the control: (1) 1000 U at 100 U/min, (2) 250 U at 25 U/min, (3) 250 U at 6.25 U/min. Results: All animals survived. In part I median thrombus mass in the test limbs was 1.40 g as compared with 0.25 g in the controls (p= 0.01). PEV, PFV and PV were thrombosed in all limbs infused with thrombin. IV infusion was more effective in inducing thrombosis in both the parent veins (mass 1.32-1.78 g) and SVFt (++ in 4 of 6 legs), as compared with IA infusion (mass 0.0-1.16 g; SFVt ++ in 1 of 3 legs). In part II thrombus mass in axial veins ranged from 1.23 to 2.86 g, and showed no relationship with the dose of thrombin or the rate of infusion. Tributary thrombosis was less extensive with 250 U at 25 U/min than with the other regimens. Conclusion: Slow distal intravenous thrombin infusion in the hind legs of pigs combined with proximal venous occlusion induces thrombosis in the leg veins that closely resembles clinical DVT in distribution

  7. RASopathies: unraveling mechanisms with animal models

    Directory of Open Access Journals (Sweden)

    Granton A. Jindal

    2015-08-01

    Full Text Available RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.

  8. Animal model for endoscopic neurosurgical training: technical note.

    Science.gov (United States)

    Fernandez-Miranda, J C; Barges-Coll, J; Prevedello, D M; Engh, J; Snyderman, C; Carrau, R; Gardner, P A; Kassam, A B

    2010-10-01

    The learning curve for endonasal endoscopic and neuroendoscopic port surgery is long and often associated with an increase in complication rates as surgeons gain experience. We present an animal model for laboratory training aiming to encourage the young generation of neurosurgeons to pursue proficiency in endoscopic neurosurgical techniques. 20 Wistar rats were used as models. The animals were introduced into a physical trainer with multiple ports to carry out fully endoscopic microsurgical procedures. The vertical and horizontal dimensions of the paired ports (simulated nostrils) were: 35×20 mm, 35×15 mm, 25×15 mm, and 25×10 mm. 2 additional single 11.5 mm endoscopic ports were added. Surgical depth varied as desired between 8 and 15 cm. The cervical and abdominal regions were the focus of the endoscopic microsurgical exercises. The different endoscopic neurosurgical techniques were effectively trained at the millimetric dimension. Levels of progressive surgical difficulty depending upon the endoneurosurgical skills set needed for a particular surgical exercise were distinguished. LEVEL 1 is soft-tissue microdissection (exposure of cervical muscular plane and retroperitoneal space); LEVEL 2 is soft-tissue-vascular and vascular-capsule microdissection (aorto-cava exposure, carotid sheath opening, external jugular vein isolation); LEVEL 3 is artery-nerve microdissection (carotid-vagal separation); LEVEL 4 is artery-vein microdissection (aorto-cava separation); LEVEL 5 is vascular repair and microsuturing (aortic rupture), which verified the lack of current proper instrumentation. The animal training model presented here has the potential to shorten the length of the learning curve in endonasal endoscopic and neuroendoscopic port surgery and reduce the incidence of training-related surgical complications. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Cell cultures from animal models of Alzheimer's disease as a tool for faster screening and testing of drug efficacy.

    Science.gov (United States)

    Trinchese, Fabrizio; Liu, Shumin; Ninan, Ipe; Puzzo, Daniela; Jacob, Joel P; Arancio, Ottavio

    2004-01-01

    Approximately 2 million people in the United States suffer from Alzheimer's disease (AD), which is the most common cause of chronic dementia among the aging population. During the last 7 yr, excellent opportunities to screen drugs against AD have been provided by animal models of the disease. Because even in the fastest model, AD pathology does not start before the end of the second month, it has been necessary to wait at least until that age to inject drugs into the animal to assess whether they prevent, reduce, or revert synaptic impairment, plaque formation, and increase of beta-amyloid (Abeta) levels, the main features of the disease. A solution to the problems mentioned above is achieved by the present fast, efficient, and reproducible cultured cell system from animal models of AD or Abeta-associated diseases, for the screening and testing of compounds for the treatment and therapy of AD or Abeta-associated diseases. Copyright 2004 Humana Press Inc.

  10. Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model.

    Science.gov (United States)

    Orta-Salazar, E; Feria-Velasco, A I; Díaz-Cintra, S

    2017-04-19

    In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Modeling aircraft performance parameters with open ADS-B data

    NARCIS (Netherlands)

    Sun, J.; Ellerbroek, J.; Hoekstra, J.M.

    2017-01-01

    Open access to flight data from ADS-B (Automatic Dependent Surveillance Broadcast) has provided researchers more insights for air traffic management than aircraft tracking alone. With large quantities of trajectory data collected from a wide range of different aircraft types, it is possible to

  12. Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer's disease in vivo.

    Directory of Open Access Journals (Sweden)

    Katherine E Davis

    Full Text Available Mouse Alzheimer's disease (AD models develop age- and region-specific pathology throughout the hippocampal formation. One recently established pathological correlate is an increase in hippocampal excitability in vivo. Hippocampal pathology also produces episodic memory decline in human AD and we have shown a similar episodic deficit in 3xTg AD model mice aged 3-6 months. Here, we tested whether hippocampal synaptic dysfunction accompanies this cognitive deficit by probing dorsal CA1 and DG synaptic responses in anaesthetized, 4-6 month-old 3xTgAD mice. As our previous reports highlighted a decline in episodic performance in aged control mice, we included aged cohorts for comparison. CA1 and DG responses to low-frequency perforant path stimulation were comparable between 3xTgAD and controls at both age ranges. As expected, DG recordings in controls showed paired-pulse depression; however, paired-pulse facilitation was observed in DG and CA1 of young and old 3xTgAD mice. During stimulus trains both short-latency (presumably monosynaptic: 'direct' and long-latency (presumably polysynaptic: 're-entrant' responses were observed. Facilitation of direct responses was modest in 3xTgAD animals. However, re-entrant responses in DG and CA1 of young 3xTgAD mice developed earlier in the stimulus train and with larger amplitude when compared to controls. Old mice showed less DG paired-pulse depression and no evidence for re-entrance. In summary, DG and CA1 responses to low-frequency stimulation in all groups were comparable, suggesting no loss of synaptic connectivity in 3xTgAD mice. However, higher-frequency activation revealed complex change in synaptic excitability in DG and CA1 of 3xTgAD mice. In particular, short-term plasticity in DG and CA1 was facilitated in 3xTgAD mice, most evidently in younger animals. In addition, re-entrance was facilitated in young 3xTgAD mice. Overall, these data suggest that the episodic-like memory deficit in 3xTgAD mice

  13. Wound healing in animal models: review article

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2017-10-01

    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  14. Searching for better animal models of BPD: a perspective.

    Science.gov (United States)

    Ambalavanan, Namasivayam; Morty, Rory E

    2016-11-01

    There have been many efforts to develop good animal models of bronchopulmonary dysplasia (BPD) to better understand the pathophysiology and mechanisms underlying development of BPD as well as to test potential strategies for its prevention and treatment. This Perspectives summarizes the features of common animal models of BPD and the strengths and limitations of such models. Potential optimal approaches to development of animal models are indicated, with the underlying concepts that require emphasis. Copyright © 2016 the American Physiological Society.

  15. Modeling individual animal histories with multistate capture–recapture models

    Science.gov (United States)

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  16. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    DEFF Research Database (Denmark)

    Bolker, B.M.; Gardner, B.; Maunder, M.

    2013-01-01

    Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. R is convenient and (relatively) easy...... to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield...

  17. Modeling of the Melting Process in an AdBlue Tank

    OpenAIRE

    Klinga, Emil

    2015-01-01

    This master thesis is covering the modeling of the melting process in a tank filled with AdBlue. Due to AdBlue freezing at temperatures below -11 degree there is a need to add heat to be able to secure dosing in all situations. A rig for simulating freezing conditions is created with the possibility to store AdBlue in temperatures down to -40 degree. Temperatures are measured in and around the tank containing AdBlue and in the equipment used for adding heat. Two models are created from physic...

  18. Digital creature creation: applied 3D modelling and animation for Australian animal visualization

    OpenAIRE

    Ung, Chandara

    2017-01-01

    This exegesis focuses on the investigative and studio research informing the digital construction of a diverse selection of Australian animals. A series of case studies of digital creature construction - the Jackie Dragon, Jabiru, Bandicoot, Eel, Blue Ringed Octopus and Fiddler Crab - will be outlined along with the key creation study of the Groper. Through investigating how visual research can inform the creation of 3D modelled and animated animal subjects and tracing their development proce...

  19. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    Boubekeur, Rania

    1987-01-01

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  20. The complete guide to blender graphics computer modeling and animation

    CERN Document Server

    Blain, John M

    2014-01-01

    Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments

  1. VMQL: A Visual Language for Ad-Hoc Model Querying

    DEFF Research Database (Denmark)

    Störrle, Harald

    2011-01-01

    facilities are inadequate. The Visual Model Query Language (VMQL) is a novel approach that uses the respective modeling language of the source model as the query language, too. The semantics of VMQL is defined formally based on graphs, so that query execution can be defined as graph matching. VMQL has been...... applied to several visual modeling languages, implemented, and validated in small case studies, and several controlled experiments....

  2. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  3. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Jørgensen, Rasmus Nyholm; Blanes-Vidal, Victoria

    2012-01-01

    Animal welfare is an issue of great importance in modern food production systems. Because animal behavior provides reliable information about animal health and welfare, recent research has aimed at designing monitoring systems capable of measuring behavioral parameters and transforming them into ...

  4. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  5. MOCQL: A Declarative Language for Ad-Hoc Model Querying

    DEFF Research Database (Denmark)

    Störrle, Harald

    2013-01-01

    Language (MOCQL), an experimental declarative textual language to express queries (and constraints) on models. We introduce MOCQL by examples and its grammar, evaluate its usability by means of controlled experiments, and find that modelers perform better and experience less cognitive load when working...

  6. A flow level model for wireless multihop ad hoc network throughput

    NARCIS (Netherlands)

    Coenen, Tom Johannes Maria; van den Berg, Hans Leo; Boucherie, Richardus J.

    2005-01-01

    A flow level model for multihop wireless ad hoc networks is presented in this paper. Using a flow level view, we show the main properties and modeling challenges for ad hoc networks. Considering different scenarios, a multihop WLAN and a serial network with a TCP-like flow control protocol, we

  7. The Potential Consequence of Using Value-Added Models to Evaluate Teachers

    Science.gov (United States)

    Shen, Zuchao; Simon, Carlee Escue; Kelcey, Ben

    2016-01-01

    Value-added models try to separate the contribution of individual teachers or schools to students' learning growth measured by standardized test scores. There is a policy trend to use value-added modeling to evaluate teachers because of its face validity and superficial objectiveness. This article investigates the potential long term consequences…

  8. Modeling the impact of interference on wireless ad hoc network performance

    NARCIS (Netherlands)

    Coenen, Tom Johannes Maria

    2017-01-01

    This thesis presents a variety of mathematical models to model the impact of interference on wireless ad hoc network performance. Wireless ad hoc networks are characterized by their decentralized nature, they are self-configuring and dynamic. The wireless nature of these networks poses a number of

  9. Animal Models of Compulsive Eating Behavior

    OpenAIRE

    Matteo Di Segni; Enrico Patrono; Loris Patella; Stefano Puglisi-Allegra; Rossella Ventura

    2014-01-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medica...

  10. The Use of Animal Models in Behavioural Neuroscience Research

    NARCIS (Netherlands)

    Bovenkerk, B.; Kaldewaij, F.

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  11. The Use of Animal Models in Behavioural Neuroscience Research.

    NARCIS (Netherlands)

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  12. Stress and adaptation : Toward ecologically relevant animal models

    NARCIS (Netherlands)

    Koolhaas, Jaap M.; Boer, Sietse F. de; Buwalda, Bauke

    Animal models have contributed considerably to the current understanding of mechanisms underlying the role of stress in health and disease. Despite the progress made already, much more can be made by more carefully exploiting animals' and humans' shared biology, using ecologically relevant models.

  13. Aspects of animal models for major neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Lefter Radu

    2014-01-01

    Full Text Available We will review the main animal models for the major neuropsychiatric disorders, focusing on schizophrenia, Alzheimer’s disease, Parkinson’s disease, depression, anxiety and autism. Although these mental disorders are specifically human pathologies and therefore impossible to perfectly replicate in animals, the use of experimental animals is based on the physiological and anatomical similarities between humans and animals such as the rat, and mouse, and on the fact that 99% of human and murine genomes are shared. Pathological conditions in animals can be assessed by manipulating the metabolism of neurotransmitters, through various behavioral tests, and by determining biochemical parameters that can serve as important markers of disorders.

  14. Formal models in animal-metacognition research: the problem of interpreting animals' behavior.

    Science.gov (United States)

    Smith, J David; Zakrzewski, Alexandria C; Church, Barbara A

    2016-10-01

    Ongoing research explores whether animals have precursors to metacognition-that is, the capacity to monitor mental states or cognitive processes. Comparative psychologists have tested apes, monkeys, rats, pigeons, and a dolphin using perceptual, memory, foraging, and information-seeking paradigms. The consensus is that some species have a functional analog to human metacognition. Recently, though, associative modelers have used formal-mathematical models hoping to describe animals' "metacognitive" performances in associative-behaviorist ways. We evaluate these attempts to reify formal models as proof of particular explanations of animal cognition. These attempts misunderstand the content and proper application of models. They embody mistakes of scientific reasoning. They blur fundamental distinctions in understanding animal cognition. They impede theoretical development. In contrast, an energetic empirical enterprise is achieving strong success in describing the psychology underlying animals' metacognitive performances. We argue that this careful empirical work is the clear path to useful theoretical development. The issues raised here about formal modeling-in the domain of animal metacognition-potentially extend to biobehavioral research more broadly.

  15. Animated pose templates for modeling and detecting human actions.

    Science.gov (United States)

    Yao, Benjamin Z; Nie, Bruce X; Liu, Zicheng; Zhu, Song-Chun

    2014-03-01

    This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways: 1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating) model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled examples. This algorithm belongs to a

  16. ASC-AD penetration modeling FY05 status report.

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, Bruce L.; Ostien, Jakob T.; Chiesa, Michael L.; Bhutani, Nipun; Ohashi, Yuki; Marin, Esteban B.; Korellis, John S.; Settgast, Randy; Antoun, Bonnie R.

    2006-04-01

    Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertainty quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.

  17. Adding Value to Ecological Risk Assessment with Population Modeling

    DEFF Research Database (Denmark)

    Forbes, Valery E.; Calow, Peter; Grimm, Volker

    2011-01-01

    Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate...... population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between...

  18. Animal models for microbicide safety and efficacy testing.

    Science.gov (United States)

    Veazey, Ronald S

    2013-07-01

    Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.

  19. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  20. Mathematical models of behavior of individual animals.

    Science.gov (United States)

    Tsibulsky, Vladimir L; Norman, Andrew B

    2007-01-01

    This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.

  1. Systematic reviews of animal models: methodology versus epistemology.

    Science.gov (United States)

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions.

  2. Animal Models of Hemophilia and Related Bleeding Disorders

    Science.gov (United States)

    Lozier, Jay N.; Nichols, Timothy C.

    2013-01-01

    Animal models of hemophilia and related diseases are important for development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and von Willebrand disease pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform pre-clinical assessments of standard protein replacement therapies as well as novel gene transfer technology. Both the differences between species and differences in underlying causative mutations must be considered in choosing the best animal for a specific scientific study PMID:23956467

  3. Time series sightability modeling of animal populations.

    Directory of Open Access Journals (Sweden)

    Althea A ArchMiller

    Full Text Available Logistic regression models-or "sightability models"-fit to detection/non-detection data from marked individuals are often used to adjust for visibility bias in later detection-only surveys, with population abundance estimated using a modified Horvitz-Thompson (mHT estimator. More recently, a model-based alternative for analyzing combined detection/non-detection and detection-only data was developed. This approach seemed promising, since it resulted in similar estimates as the mHT when applied to data from moose (Alces alces surveys in Minnesota. More importantly, it provided a framework for developing flexible models for analyzing multiyear detection-only survey data in combination with detection/non-detection data. During initial attempts to extend the model-based approach to multiple years of detection-only data, we found that estimates of detection probabilities and population abundance were sensitive to the amount of detection-only data included in the combined (detection/non-detection and detection-only analysis. Subsequently, we developed a robust hierarchical modeling approach where sightability model parameters are informed only by the detection/non-detection data, and we used this approach to fit a fixed-effects model (FE model with year-specific parameters and a temporally-smoothed model (TS model that shares information across years via random effects and a temporal spline. The abundance estimates from the TS model were more precise, with decreased interannual variability relative to the FE model and mHT abundance estimates, illustrating the potential benefits from model-based approaches that allow information to be shared across years.

  4. Reviewing model application to support animal health decision making.

    Science.gov (United States)

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A New Tube Gastrostomy Model in Animal Experiments

    Directory of Open Access Journals (Sweden)

    Atakan Sezer

    2013-01-01

    Full Text Available Aim: The orogastric route is the most preferred application method in the vast majority of the animal experiments in which application can be achieved by adding the material to the water of the experiment animal, through an orogastric tube or with a surgically managed ostomy. Material and Method: This experiment was constructed with twelve male Sprague-Dawley rats which were randomly assigned to one of two groups consist of control group ( group C, n: 6 and tube gastrostomy group ( group TG, n: 6.A novel and simple gastrostomy tube was derivated from a silicone foley catheter. Tube gastrostomy apparatus was constituted with a silicone foley catheter (6 French. In the group TG an incision was performed, and the stomach was visualized. A 1 cm incision was made in the midline and opening of the peritoneum. Anchoring sutures were placed and anterior gastric wall was lifted. The gastric wall is then opened. The apparatus was placed into the stomach and pulled through from a tunnel under the skin and fixed to the lateral abdominal wall with a 2/0 silk suture. Result: The procedure was ended in the 10th day of experiment. No mortality was observed in group C. The rats were monitored daily and no abnormal behavior consists of self harming incision site, resistance to oral intake or attending to displace. There was statistically significant difference in increasing alanine transaminase level (p<0.05 and decrease in the total protein and body weight (p<0.05 at the group TG at the end of experiment. There was significant increase in urea levels in Group C (p<0.05 at the end of experiment. The statistically significant decrease was observed in the same period in group C between aspartate transaminase, albumin, total protein, and body weight (p<0.05.  Glucose (p=0.047 and aspartate transaminase (p=0.050 level decrease changes and weight loose (p=0.034 from preoperative period to the end of the experiment between gastrostomy and laparotomy groups were

  6. Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models

    Directory of Open Access Journals (Sweden)

    Agnese Gugliandolo

    2017-11-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ plaques and neurofibrillary tangles (NFTs, formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.

  7. Probabilistic Models and Process Calculi for Mobile Ad Hoc Networks

    DEFF Research Database (Denmark)

    Song, Lei

    the protocols for MANETs are usually more complicated and error-prone. In this thesis we discuss different models and their underlying theories which will facilitate the verification of protocols for MANETs. Process calculi have been used successfully as a formal method to verify and analyze functional...... equivalences and their logical characterizations have been proposed to combat the infamous states space explosion problem of PAs, but unfortunately it is well known that the behavioral equivalences are strictly stronger than the logical equivalences induced by PCTL or PCTL*. We address this problem...

  8. Time series sightability modeling of animal populations

    Science.gov (United States)

    ArchMiller, Althea A.; Dorazio, Robert; St. Clair, Katherine; Fieberg, John R.

    2018-01-01

    Logistic regression models—or “sightability models”—fit to detection/non-detection data from marked individuals are often used to adjust for visibility bias in later detection-only surveys, with population abundance estimated using a modified Horvitz-Thompson (mHT) estimator. More recently, a model-based alternative for analyzing combined detection/non-detection and detection-only data was developed. This approach seemed promising, since it resulted in similar estimates as the mHT when applied to data from moose (Alces alces) surveys in Minnesota. More importantly, it provided a framework for developing flexible models for analyzing multiyear detection-only survey data in combination with detection/non-detection data. During initial attempts to extend the model-based approach to multiple years of detection-only data, we found that estimates of detection probabilities and population abundance were sensitive to the amount of detection-only data included in the combined (detection/non-detection and detection-only) analysis. Subsequently, we developed a robust hierarchical modeling approach where sightability model parameters are informed only by the detection/non-detection data, and we used this approach to fit a fixed-effects model (FE model) with year-specific parameters and a temporally-smoothed model (TS model) that shares information across years via random effects and a temporal spline. The abundance estimates from the TS model were more precise, with decreased interannual variability relative to the FE model and mHT abundance estimates, illustrating the potential benefits from model-based approaches that allow information to be shared across years.

  9. Animal models for dengue vaccine development and testing.

    Science.gov (United States)

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  10. Animals

    International Nuclear Information System (INIS)

    Skuterud, L.; Strand, P.; Howard, B.J.

    1997-01-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  11. Recent advances in animal model experimentation in autism research.

    Science.gov (United States)

    Tania, Mousumi; Khan, Md Asaduzzaman; Xia, Kun

    2014-10-01

    Autism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism. We have reviewed the publications over the last three decades, which are related to animal model study in autism. Animal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism. In this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.

  12. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    to be the prime model of inherited human disease and share 99% of their ... disturbances (including anxiety and depression) ..... Leibovici M, Safieddine S, Petit C (2008). Mouse models for human hereditary deafness. Curr. Top. Dev. Biol. 84:385-429. Levi YF, Meiner Z, Canello T, Frid K, Kovacs GG, Budka H, Avrahami.

  13. Stability of Teacher Value-Added Rankings across Measurement Model and Scaling Conditions

    Science.gov (United States)

    Hawley, Leslie R.; Bovaird, James A.; Wu, ChaoRong

    2017-01-01

    Value-added assessment methods have been criticized by researchers and policy makers for a number of reasons. One issue includes the sensitivity of model results across different outcome measures. This study examined the utility of incorporating multivariate latent variable approaches within a traditional value-added framework. We evaluated the…

  14. Towards an Integrated Value Adding Management Model for FM and CREM

    NARCIS (Netherlands)

    Jensen, Per Anker; van der Voordt, Theo; Kähkönen, Kalle; Keinänen, Marko

    2016-01-01

    Purpose: To present an integrated process model of adding value by Facilities Management (FM) and Corporate Real Estate Management (CREM) that is a generalisation of existing conceptual frameworks and aims to be a basis for management of added value in practice.
    Background: The growing research

  15. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    Science.gov (United States)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg

  16. Animal Models and Antifungal Agents in Paracoccidioidomycosis: An Overview.

    Science.gov (United States)

    Goldani, Luciano Z; Wirth, Fernanda

    2017-08-01

    Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The morbidity and mortality associated with paracoccidioidomycosis necessitate our understanding of fungal pathogenesis and discovering of new agents to treat this infection. Animal models have contributed much to the knowledge of fungal infections and their corresponding therapeutic treatments. This is true for animal models of the primary fungal pathogens such as P. brasiliensis. This review describes the development, details and utility of animal models of paracoccidioidomycosis for studying and developing the current antifungal agents used for therapy of this fungal disease and novel agents with antifungal properties against P. brasiliensis.

  17. Towards an Integrated Value Adding Management Model for FM and CREM

    DEFF Research Database (Denmark)

    Jensen, Per Anker; van der Voordt, Theo

    2016-01-01

    Purpose : To present an integrated process model of adding value by Facilities Management (FM) and Corporate Real Estate Management (CREM) that is a generalisation of existing conceptual frameworks and aims to be a basis for management of added value in practice. Background : The growing research...... on the added value of FM and CREM over the last decade has resulted in the development of several conceptual frameworks and the collection of much empirical data in practice. However, the practical application of current knowledge has shown to be limited and difficult. The reasons seem to be that the different...... aims at supporting the practical management and measurement of added value. A typology with six types of FM/CREM interventions is developed from earlier research. The concept of Value Adding Management is investigated and the 12 most important added value parameters are identified. Research limitations...

  18. Epidemiological models to support animal disease surveillance activities

    DEFF Research Database (Denmark)

    Willeberg, Preben; Paisley, Larry; Lind, Peter

    2011-01-01

    Epidemiological models have been used extensively as a tool in improving animal disease surveillance activities. A review of published papers identified three main groups of model applications: models for planning surveillance, models for evaluating the performance of surveillance systems...... and models for interpreting surveillance data as part of ongoing control or eradication programmes. Two Danish examples are outlined. The first illustrates how models were used in documenting country freedom from disease (trichinellosis) and the second demonstrates how models were of assistance in predicting...

  19. Animal models for periodontal regeneration and peri-implant responses.

    Science.gov (United States)

    Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E

    2015-06-01

    Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Application of Model Animals in the Study of Drug Toxicology

    Science.gov (United States)

    Song, Yagang; Miao, Mingsan

    2018-01-01

    Drug safety is a key factor in drug research and development, Drug toxicology test is the main method to evaluate the safety of drugs, The body condition of an animal has important implications for the results of the study, Previous toxicological studies of drugs were carried out in normal animals in the past, There is a great deviation from the clinical practice.The purpose of this study is to investigate the necessity of model animals as a substitute for normal animals for toxicological studies, It is expected to provide exact guidance for future drug safety evaluation.

  1. Animal models for testing anti-prion drugs.

    Science.gov (United States)

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  2. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  3. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  4. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    Science.gov (United States)

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  5. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  6. Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer's disease animal model

    Directory of Open Access Journals (Sweden)

    Eun-Jeong Yang

    2017-04-01

    Full Text Available Alzheimer's disease is the most common disease underlying dementia in humans. Two major neuropathological hallmarks of AD are neuritic plaques primarily composed of amyloid beta peptide and neurofibrillary tangles primarily composed of hyperphosphorylated tau. In addition to impaired memory function, AD patients often display neuropsychiatric symptoms and abnormal emotional states such as confusion, delusion, manic/depressive episodes and altered fear status. Brains from AD patients show atrophy of the amygdala which is involved in fear expression and emotional processing as well as hippocampal atrophy. However, which molecular changes are responsible for the altered emotional states observed in AD remains to be elucidated. Here, we observed that the fear response as assessed by evaluating fear memory via a cued fear conditioning test was impaired in 5XFamilial AD (5XFAD mice, an animal model of AD. Compared to wild-type mice, 5XFAD mice showed changes in the phosphorylation of twelve proteins in the amygdala. Thus, our study provides twelve potential protein targets in the amygdala that may be responsible for the impairment in fear memory in AD.

  7. Advances in Animal Models of Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhang Hang

    2015-12-01

    Full Text Available Hepatitis B virus (HBV infection seriously affects human health. Stable and reliable animal models of HBV infection bear significance in studying pathogenesis of this health condition and development of intervention measures. HBV exhibits high specificity for hosts, and chimpanzee is long used as sole animal model of HBV infection. However, use of chimpanzees is strictly constrained because of ethical reasons. Many methods were used to establish small-animal models of HBV infection. Tupaia is the only nonprimate animal that can be infected by HBV. Use of HBV-related duck hepatitis virus and marmot hepatitis virus infection model contributed to evaluation of mechanism of HBV replication and HBV treatment methods. In recent years, development of human–mouse chimeric model provided possibility of using common experimental animals to carry out HBV research. These models feature their own advantages and disadvantages and can be complementary in some ways. This study provides an overview of current and commonly used animal models of HBV infection.

  8. Animal models for evaluation of oral delivery of biopharmaceuticals

    DEFF Research Database (Denmark)

    Harloff-Helleberg, Stine; Nielsen, Line Hagner; Nielsen, Hanne Mørck

    2017-01-01

    of systems for oral delivery of biopharmaceuticals may result in new treatment modalities to increase the patient compliance and reduce product cost. In the preclinical development phase, use of experimental animal models is essential for evaluation of new formulation designs. In general, the limited oral...... bioavailability of biopharmaceuticals, of just a few percent, is expected, and therefore, the animal models and the experimental settings must be chosen with utmost care. More knowledge and focus on this topic is highly needed, despite experience from the numerous studies evaluating animal models for oral drug...... delivery of small molecule drugs. This review highlights and discusses pros and cons of the most currently used animal models and settings. Additionally, it also looks into the influence of anesthetics and sampling methods for evaluation of drug delivery systems for oral delivery of biopharmaceuticals...

  9. Albino mice as an animal model for infantile nystagmus syndrome

    NARCIS (Netherlands)

    D.L. Traber (Daniel); C.-C. Chen (Chien-Cheng); Y.-Y. Huang (Ying-Yu); M. Spoor (Monique); J. Roos (Jeanine); M.A. Frens (Maarten); D. Straumann (Dominik); C. Grimm (Christian)

    2012-01-01

    textabstractPURPOSE. Individuals with oculocutaneous albinism are predisposed to visual system abnormalities affecting the retina and retinofugal projections, which may lead to reduced visual acuity and Infantile Nystagmus Syndrome (INS). Due to absence of an established mammalian animal model,

  10. Instrumental and ethical aspects of experimental research with animal models

    Directory of Open Access Journals (Sweden)

    Mirian Watanabe

    2014-02-01

    Full Text Available Experimental animal models offer possibilities of physiology knowledge, pathogenesis of disease and action of drugs that are directly related to quality nursing care. This integrative review describes the current state of the instrumental and ethical aspects of experimental research with animal models, including the main recommendations of ethics committees that focus on animal welfare and raises questions about the impact of their findings in nursing care. Data show that, in Brazil, the progress in ethics for the use of animals for scientific purposes was consolidated with Law No. 11.794/2008 establishing ethical procedures, attending health, genetic and experimental parameters. The application of ethics in handling of animals for scientific and educational purposes and obtaining consistent and quality data brings unquestionable contributions to the nurse, as they offer subsidies to relate pathophysiological mechanisms and the clinical aspect on the patient.

  11. Voice Communications over 802.11 Ad Hoc Networks: Modeling, Optimization and Call Admission Control

    Science.gov (United States)

    Xu, Changchun; Xu, Yanyi; Liu, Gan; Liu, Kezhong

    Supporting quality-of-service (QoS) of multimedia communications over IEEE 802.11 based ad hoc networks is a challenging task. This paper develops a simple 3-D Markov chain model for queuing analysis of IEEE 802.11 MAC layer. The model is applied for performance analysis of voice communications over IEEE 802.11 single-hop ad hoc networks. By using the model, we finish the performance optimization of IEEE MAC layer and obtain the maximum number of voice calls in IEEE 802.11 ad hoc networks as well as the statistical performance bounds. Furthermore, we design a fully distributed call admission control (CAC) algorithm which can provide strict statistical QoS guarantee for voice communications over IEEE 802.11 ad hoc networks. Extensive simulations indicate the accuracy of the analytical model and the CAC scheme.

  12. Biology of Obesity: Lessons from Animal Models of Obesity

    Directory of Open Access Journals (Sweden)

    Keizo Kanasaki

    2011-01-01

    problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human health conditions and diseases such as diabetes, cancer, and obstructive sleep apnea syndrome.

  13. A model of advertising format competition: on the use of celebrities in ads

    OpenAIRE

    C. Robert Clark; Ignatius J. Horstmann

    2013-01-01

    We develop a model that endogenizes both advertising format ads with or without celebrity endorsements and the endorsement fee. Marketing studies suggest that celebrities enhance brand recall and perception of product value. In our model, ads featuring celebrities occur when the product market is large endorsements are likely for products sold nationally and when products are sufficiently similar that the persuasive character of advertising looms large in demand running shoes, beauty products...

  14. Stop staring facial modeling and animation done right

    CERN Document Server

    Osipa, Jason

    2010-01-01

    The de facto official source on facial animation—now updated!. If you want to do character facial modeling and animation at the high levels achieved in today's films and games, Stop Staring: Facial Modeling and Animation Done Right, Third Edition , is for you. While thoroughly covering the basics such as squash and stretch, lip syncs, and much more, this new edition has been thoroughly updated to capture the very newest professional design techniques, as well as changes in software, including using Python to automate tasks.: Shows you how to create facial animation for movies, games, and more;

  15. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    2007-01-01

    This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree. ...... having Student's t distributions. In conclusion, Winbugs can be used to make inferences in small-sized, quantitative, genetic data sets applying a wide range of animal models that are not yet standard in the animal breeding literature...

  16. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  17. Proteomics in farm animals models of human diseases.

    Science.gov (United States)

    Ceciliani, Fabrizio; Restelli, Laura; Lecchi, Cristina

    2014-10-01

    The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Animal models of pancreatic cancer for drug research.

    Science.gov (United States)

    Kapischke, Matthias; Pries, Alexandra

    2008-10-01

    The operative and conservative results of therapy in pancreatic ductal adenocarcinoma remain appallingly poor. This underlines the demand for further research for effective anticancer drugs. The various animal models remain the essential method for the determination of efficacy of substances during preclinical phase. Unfortunately, most of these tested substances showed a good efficacy in pancreatic carcinoma in the animal model but were not confirmed during the clinical phase. The available literature in PubMed, Medline, Ovid and secondary literature was searched regarding the available animal models for drug testing against pancreatic cancer. The models were analyzed regarding their pros and cons in anticancer drug testing. The different modifications of the orthotopic model (especially in mice) seem at present to be the best model for anticancer testing in pancreatic carcinoma. The value of genetically engineered animal model (GEM) and syngeneic models is on debate. A good selection of the model concerning the questions supposed to be clarified may improve the comparability of the results of animal experiments compared to clinical trials.

  19. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Animal Models Used to Explore Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Lysgaard Poulsen, J; Stubbe, J; Lindholt, J S

    2016-01-01

    OBJECTIVE: Experimental animal models have been used to investigate the formation, development, and progression of abdominal aortic aneurysms (AAAs) for decades. New models are constantly being developed to imitate the mechanisms of human AAAs and to identify treatments that are less risky than...... those used today. However, to the authors' knowledge, there is no model identical to the human AAA. The objective of this systematic review was to assess the different types of animal models used to investigate the development, progression, and treatment of AAA and to highlight their advantages...... and limitations. METHODS: A search protocol was used to perform a systematic literature search of PubMed and Embase. A total of 2,830 records were identified. After selection of the relevant articles, 564 papers on animal AAA models were included. RESULTS: The most common models in rodents, including elastase...

  1. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    Directory of Open Access Journals (Sweden)

    Gillian M. Lavelle

    2016-01-01

    Full Text Available Cystic fibrosis (CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.

  2. Cytomegalovirus Antivirals and Development of Improved Animal Models

    Science.gov (United States)

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  3. Review of Animal Models of Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Jessica K. Simmons

    2014-06-01

    Full Text Available Prostate cancer bone metastases are associated with a poor prognosis and are considered incurable. Insight into the formation and growth of prostate cancer bone metastasis is required for development of new imaging and therapeutic strategies to combat this devastating disease. Animal models are indispensable in investigating cancer pathogenesis and evaluating therapeutics. Multiple animal models of prostate cancer bone metastasis have been developed, but few effectively model prostatic neoplasms and osteoblastic bone metastases as they occur in men. This review discusses the animal models that have been developed to investigate prostate cancer bone metastasis, with a focus on canine models and also includes human xenograft and rodent models. Adult dogs spontaneously develop benign prostatic hyperplasia and prostate cancer with osteoblastic bone metastases. Large animal models, such as dogs, are needed to develop new molecular imaging tools and effective focal intraprostatic therapy. None of the available models fully reflect the metastatic disease seen in men, although the various models have provided important insight into the metastatic process. As additional models are developed and knowledge from the different models is combined, the molecular mechanisms of prostate cancer bone metastasis can be deciphered and targeted for development of novel therapies and molecular diagnostic imaging.

  4. Sex differences in animal models of psychiatric disorders

    Science.gov (United States)

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  5. Animal models for the study of hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Na Guo

    2018-01-01

    Full Text Available Even with an effective vaccine, an estimated 240 million people are chronically infected with hepatitis B virus (HBV worldwide. Current antiviral therapies, including interferon and nucleot(side analogues, rarely cure chronic hepatitis B. Animal models are very crucial for understanding the pathogenesis of chronic hepatitis B and developing new therapeutic drugs or strategies. HBV can only infect humans and chimpanzees, with the use of chimpanzees in HBV research strongly restricted. Thus, most advances in HBV research have been gained using mouse models with HBV replication or infection or models with HBV-related hepadnaviral infection. This review summarizes the animal models currently available for the study of HBV infection.

  6. Animal models of pulmonary emphysema: a stereologist's perspective

    Directory of Open Access Journals (Sweden)

    H. Fehrenbach

    2006-12-01

    Full Text Available A variety of animal models have been suggested as models of pulmonary emphysema; these are critically discussed in the present article from a stereologist's perspective. In addition, a stereological design for the quantification of experimentally induced emphysema is proposed. On the basis of the widely accepted definition of pulmonary emphysema being an "abnormal permanent enlargement of the airspaces distal to the terminal bronchioles, accompanied by destruction of their walls," quantitative morphology is the only method with which to reliably assess the presence of emphysema. Recognising this, careful inspection of animal models that are based on instillation of elastase, genetic alterations, inhalation of cigarette smoke or induction of apoptosis, reveals that both criteria of emphysema definition were demonstrated in surprisingly few of them. Several aspects are suggested to be critical for the understanding of animal models of human emphysema. For example, genetic models that rely on the inhibition of the formation of alveoli during post-natal alveolarisation should clearly be distinguished from models that rely on the loss of mature alveoli after alveolarisation is complete. Furthermore, inhalation models that are characterised by exposed animals exhibiting a severe loss of body weight should carefully examine the relative contribution of intervention and weight loss, respectively. Models that rely on the exposure of juvenile animals for several weeks or even months should take into account the effects of normal lung growth and ageing. Stereology offers appropriate tools with which to quantify the parameters relevant to assess development and the regeneration of emphysema. Stereologists continue to develop tools that will help ascertain the reliability of established and new models. If inappropriate parameters continue to be used for the evaluation of animal models of emphysema, thinking and resources are likely to be misdirected and the

  7. Elementary of animal model for percutaneous and ocular penetration

    Directory of Open Access Journals (Sweden)

    Kalpesh Chhotalal Ashara

    2016-12-01

    Full Text Available Models of animal are the most appropriate method for assessments of human in-vivo percutaneous and ocular penetrations. Monkey and rodents are used for the same. There are several nuts and bolts of each one, so it is necessary to study each one separately. Monkey, porcine and guinea pig penetration are correlated with that of human skin. The skin of rodents, lupus, pigs, etc. has more penetration properties than human skin. Rabbit, goat and sheep eye are mostly used for ocular penetration. The researcher also used hen’s egg chorioallantoic membrane test for ocular irritation study. The other animals’ cornea, cul-de-sac, eyeballs and prepared corneal epithelial models are very less in practice. Web-based alternative non-animal models are also available instead of animal models too. This article describes characteristics of monkeys, pigs, rats, rabbits, guinea pigs and hairless rodents, HuSki model, Cellophane® membrane, egg membrane, gelatin membrane, animal models for ophthalmic delivery, hen’s egg chorioallantoic membrane test, prepared corneal epithelial models and web-based alternative non-animal database.

  8. MODEL PENENTUAN HARGA SAHAM: PENGUJIAN CAPITAL ASSET PRICING MODEL MELALUI PENGUJIAN ECONOMIC VALUE ADDED

    Directory of Open Access Journals (Sweden)

    Suripto Suripto

    2017-03-01

    Full Text Available This research tested the influence of characteristics of the firms and of EVA (Eco-nomic Value Added to stock of returns. This Research sample was company Self-100 ValueCreator of year 2001 until 2006. Result of research indicated that company size measure,profitability, capital structure (characteristics of the firms and EVA by stimulant had aneffect on significant to stock of returns, but by partial only characteristics company. Condi-tion of company fundamentals had an effect on significance to stock of returns. This indica-tion that investor still considered factors of fundamentals was having investment. EVA didnot have an effect on significant to stock of returns. This finding indicated that Model deter-mination of stock of returns (CAPM Irrelevant determined the level of EVA and also indicatedthat CAPM (Capital Assets Pricing Model was not relevant in determining stock of returns inIndonesian Stock Exchange.

  9. Models of 'obesity' in large animals and birds.

    Science.gov (United States)

    Clarke, Iain J

    2008-01-01

    Most laboratory-based research on obesity is carried out in rodents, but there are a number of other interesting models in the animal kingdom that are instructive. This includes domesticated animal species such as pigs and sheep, as well as wild, migrating and hibernating species. Larger animals allow particular experimental manipulations that are not possible in smaller animals and especially useful models have been developed to address issues such as manipulation of fetal development. Although some of the most well-studied models are ruminants, with metabolic control that differs from monogastrics, the general principles of metabolic regulation still pertain. It is possible to obtain much more accurate endocrine profiles in larger animals and this has provided important data in relation to leptin and ghrelin physiology. Genetic models have been created in domesticated animals through selection and these complement those of the laboratory rodent. This short review highlights particular areas of research in domesticated and wild species that expand our knowledge of systems that are important for our understanding of obesity and metabolism.

  10. OBESITY AND CRITICAL ILLNESS: INSIGHTS FROM ANIMAL MODELS.

    Science.gov (United States)

    Mittwede, Peter N; Clemmer, John S; Bergin, Patrick F; Xiang, Lusha

    2016-04-01

    Critical illness is a major cause of morbidity and mortality around the world. While obesity is often detrimental in the context of trauma, it is paradoxically associated with improved outcomes in some septic patients. The reasons for these disparate outcomes are not well understood. A number of animal models have been used to study the obese response to various forms of critical illness. Just as there have been many animal models that have attempted to mimic clinical conditions, there are many clinical scenarios that can occur in the highly heterogeneous critically ill patient population that occupies hospitals and intensive care units. This poses a formidable challenge for clinicians and researchers attempting to understand the mechanisms of disease and develop appropriate therapies and treatment algorithms for specific subsets of patients, including the obese. The development of new, and the modification of existing animal models, is important in order to bring effective treatments to a wide range of patients. Not only do experimental variables need to be matched as closely as possible to clinical scenarios, but animal models with pre-existing comorbid conditions need to be studied. This review briefly summarizes animal models of hemorrhage, blunt trauma, traumatic brain injury, and sepsis. It also discusses what has been learned through the use of obese models to study the pathophysiology of critical illness in light of what has been demonstrated in the clinical literature.

  11. Precise MRI-based stereotaxic surgery in large animal models

    DEFF Research Database (Denmark)

    Glud, A. N.; Bech, J.; Tvilling, L.

    and subcortical anatomical differences. NEW METHOD: We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulphate solution or MRI-visible paste from a commercially available......BACKGROUND: Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical...... cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. RESULTS: Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. COMPARISON...

  12. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model.

    Science.gov (United States)

    Kim, Do-Geun; Krenz, Antje; Toussaint, Leon E; Maurer, Kirk J; Robinson, Sudie-Ann; Yan, Angela; Torres, Luisa; Bynoe, Margaret S

    2016-01-05

    Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease afflicting about one third of the world's population and 30 % of the US population. It is induced by consumption of high-lipid diets and is characterized by liver inflammation and subsequent liver pathology. Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Here, we investigated NAFLD-induced liver inflammation in the pathogenesis of AD. WT and APP-Tg mice were fed with a standard diet (SD) or a high-fat diet (HFD) for 2, 5 months, or 1 year to induce NAFLD. Another set of APP-Tg mice were removed from HFD after 2 months and put back on SD for 3 months. During acute phase NAFLD, WT and APP-Tg mice developed significant liver inflammation and pathology that coincided with increased numbers of activated microglial cells in the brain, increased inflammatory cytokine profile, and increased expression of toll-like receptors. Chronic NAFLD induced advanced pathological signs of AD in both WT and APP-Tg mice, and also induced neuronal apoptosis. We observed decreased brain expression of low-density lipoprotein receptor-related protein-1 (LRP-1) which is involved in β-amyloid clearance, in both WT and APP-Tg mice after ongoing administration of the HFD. LRP-1 expression correlated with advanced signs of AD over the course of chronic NAFLD. Removal of mice from HFD during acute NAFLD reversed liver pathology, decreased signs of activated microglial cells and neuro-inflammation, and decreased β-amyloid plaque load. Our findings indicate that chronic inflammation induced outside the brain is sufficient to induce neurodegeneration in the absence of genetic predisposition.

  13. Analysis for Ad Hoc Network Attack-Defense Based on Stochastic Game Model

    Directory of Open Access Journals (Sweden)

    Yuanjie LI

    2014-06-01

    Full Text Available The attack actions analysis for Ad Hoc networks can provide a reference for the design security mechanisms. This paper presents an analysis method of security of Ad Hoc networks based on Stochastic Game Nets (SGN. This method can establish a SGN model of Ad Hoc networks and calculate to get the Nash equilibrium strategy. After transforming the SGN model into a continuous-time Markov Chain (CTMC, the security of Ad Hoc networks can be evaluated and analyzed quantitatively by calculating the stationary probability of CTMC. Finally, the Matlab simulation results show that the probability of successful attack is related to the attack intensity and expected payoffs, but not attack rate.

  14. Procoagulant snake venoms have differential effects in animal plasmas: Implications for antivenom testing in animal models.

    Science.gov (United States)

    Maduwage, Kalana P; Scorgie, Fiona E; Lincz, Lisa F; O'Leary, Margaret A; Isbister, Geoffrey K

    2016-01-01

    Animal models are used to test toxic effects of snake venoms/toxins and the antivenom required to neutralise them. However, venoms that cause clinically relevant coagulopathy in humans may have differential effects in animals. We aimed to investigate the effect of different procoagulant snake venoms on various animal plasmas. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and D-dimer levels were measured in seven animal plasmas (human, rabbit, cat, guinea pig, pig, cow and rat). In vitro clotting times were then used to calculate the effective concentration (EC50) in each plasma for four snake venoms with different procoagulant toxins: Pseudonaja textilis, Daboia russelli, Echis carinatus and Calloselasma rhodostoma. Compared to human, PT and aPTT were similar for rat, rabbit and pig, but double for cat and cow, while guinea pig had similar aPTT but double PT. Fibrinogen and D-dimer levels were similar for all species. Human and rabbit plasmas had the lowest EC50 for P. textilis (0.1 and 0.4 μg/ml), D. russelli (0.4 and 0.1 μg/ml), E. carinatus (0.6 and 0.1 μg/ml) venoms respectively, while cat plasma had the lowest EC50 for C. rhodostoma (11 μg/ml) venom. Cow, rat, pig and guinea pig plasmas were highly resistant to all four venoms with EC50 10-fold that of human. Different animal plasmas have varying susceptibility to procoagulant venoms, and excepting rabbits, animal models are not appropriate to test procoagulant activity. In vitro assays on human plasma should instead be adopted for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    Science.gov (United States)

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. Research progress in animal models and stem cell therapy for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Han F

    2014-12-01

    Full Text Available Fabin Han,1,2 Wei Wang1, Chao Chen1 1Centre for Stem Cells and Regenerative Medicine, 2Department of Neurology, Liaocheng People’s Hospital/The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People’s Republic of China Abstract: Alzheimer’s disease (AD causes degeneration of brain neurons and leads to memory loss and cognitive impairment. Since current therapeutic strategies cannot cure the disease, stem cell therapy represents a powerful tool for the treatment of AD. We first review the advances in molecular pathogenesis and animal models of AD and then discuss recent clinical studies using small molecules and immunoglobulins to target amyloid-beta plaques for AD therapy. Finally, we discuss stem cell therapy for AD using neural stem cells, olfactory ensheathing cells, embryonic stem cells, and mesenchymal stem cell from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific induced pluripotent stem cells are proposed as a future treatment for AD. Keywords: amyloid-beta plaque, neurofibrillary tangle, neural stem cell, olfactory ensheathing cell, mesenchymal stem cell, induced pluripotent stem cell

  17. Research advances in animal models of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    HUANG Haiyan

    2014-09-01

    Full Text Available In recent years, the incidence of nonalcoholic fatty liver disease (NAFLD has increased gradually along with the rising prevalence of obesity, type 2 diabetes, and hyperlipidemia, and NAFLD has become one of the most common chronic liver diseases in the world and the second major liver disease after chronic viral hepatitis in China. However, its pathogenesis has not yet been clarified. Animal models are playing an important role in researches on NAFLD due to the facts that the development and progression of NAFLD require a long period of time, and ethical limitations exist in conducting drug trials in patients or collecting liver tissues from patients. The animal models with histopathology similar to that of NAFLD patients are reviewed, and their modeling principle, as well as the advantages and disadvantages, are compared. Animal models provide a powerful tool for further studies of NAFLD pathogenesis and drug screening for prevention and treatment of NAFLD.

  18. Animal models for the study of Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Eliza Miszczyk

    2014-05-01

    Full Text Available The Gram-negative bacillus Helicobacter pylori is widely recognized as a major etiologic agent responsible for chronic active gastritis, peptic ulcers, the development of gastric cancer and mucosa-associated lymphoid tissue (MALT lymphoma. Still, little is known about the natural history of H. pylori infection, since patients usually after many years of not suffering from symptoms of the infection are simply asymptomatic. Since the research investigators carried out on human models has many limitations, there is an urgent need for the development of an animal model optimal and suitable for the monitoring of H. pylori infections. This review summarizes the recent findings on the suitability of animal models used in H. pylori research. Several animal models are useful for the assessment of pathological, microbiological and immunological consequences of infection, which makes it possible to monitor the natural

  19. Th17 in Animal Models of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Motomu Hashimoto

    2017-07-01

    Full Text Available IL-17-secreting helper CD4 T cells (Th17 cells constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.

  20. Th17 in Animal Models of Rheumatoid Arthritis.

    Science.gov (United States)

    Hashimoto, Motomu

    2017-07-21

    IL-17-secreting helper CD4 T cells (Th17 cells) constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA) in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.

  1. Animal Models for Tuberculosis in Translational and Precision Medicine

    Directory of Open Access Journals (Sweden)

    Lingjun Zhan

    2017-05-01

    Full Text Available Tuberculosis (TB is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.

  2. ANIMAL MODELS OF POST-TRAUMATIC STRESS DISORDER: FACE VALIDITY

    Directory of Open Access Journals (Sweden)

    SONAL eGOSWAMI

    2013-05-01

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma.

  3. Animal models of post-traumatic stress disorder: face validity

    Science.gov (United States)

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  4. Animal Models for Tuberculosis in Translational and Precision Medicine.

    Science.gov (United States)

    Zhan, Lingjun; Tang, Jun; Sun, Mengmeng; Qin, Chuan

    2017-01-01

    Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.

  5. Animal Models for the Study of Female Sexual Dysfunction

    Science.gov (United States)

    Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula

    2017-01-01

    Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain

  6. Food allergy: What do we learn from animal models?

    NARCIS (Netherlands)

    Knippels, L.M.J.; Wijk, F. van; Penninks, A.H.

    2004-01-01

    Purpose of review This review summarizes selected articles on animal models of food allergy published in 2003. The research areas that are covered include mechanistic studies, the search for new therapies, as well as screening models for hazard identification of potential allergens. Recent findings

  7. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  8. An animal model to train Lichtenstein inguinal hernia repair

    DEFF Research Database (Denmark)

    Rosenberg, J; Presch, I; Pommergaard, H C

    2013-01-01

    pigs, and a total of 55 surgeons have been educated to perform Lichtenstein's hernia repair in these animals. CONCLUSIONS: This new experimental surgical model for training Lichtenstein's hernia repair mimics the human inguinal anatomy enough to make it suitable as a training model. The operation...

  9. Obsessive-compulsive disorder: Insights from animal models.

    Science.gov (United States)

    Szechtman, Henry; Ahmari, Susanne E; Beninger, Richard J; Eilam, David; Harvey, Brian H; Edemann-Callesen, Henriette; Winter, Christine

    2017-05-01

    Research with animal models of obsessive-compulsive disorder (OCD) shows the following: (1) Optogenetic studies in mice provide evidence for a plausible cause-effect relation between increased activity in cortico-basal ganglia-thalamo-cortical (CBGTC) circuits and OCD by demonstrating the induction of compulsive behavior with the experimental manipulation of the CBGTC circuit. (2) Parallel use of several animal models is a fruitful paradigm to examine the mechanisms of treatment effects of deep brain stimulation in distinct OCD endophenotypes. (3) Features of spontaneous behavior in deer mice constitute a rich platform to investigate the neurobiology of OCD, social ramifications of a compulsive phenotype, and test novel drugs. (4) Studies in animal models for psychiatric disorders comorbid with OCD suggest comorbidity may involve shared neural circuits controlling expression of compulsive behavior. (5) Analysis of compulsive behavior into its constitutive components provides evidence from an animal model for a motivational perspective on OCD. (6) Methods of behavioral analysis in an animal model translate to dissection of compulsive rituals in OCD patients, leading to diagnostic tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chest compressions in newborn animal models: A review.

    Science.gov (United States)

    Solevåg, Anne Lee; Cheung, Po-Yin; Lie, Helene; O'Reilly, Megan; Aziz, Khalid; Nakstad, Britt; Schmölzer, Georg Marcus

    2015-11-01

    Much of the knowledge about the optimal way to perform chest compressions (CC) in newborn infants is derived from animal studies. The objective of this review was to identify studies of CC in newborn term animal models and review the evidence. We also provide an overview of the different models. MEDLINE, EMBASE and CINAHL, until September 29th 2014. Study eligibility criteria and interventions: term newborn animal models where CC was performed. Based on 419 retrieved studies from MEDLINE and 502 from EMBASE, 28 studies were included. No additional studies were identified in CINAHL. Most of the studies were performed in pigs after perinatal transition without long-term follow-up. The models differed widely in methodological aspects, which limits the possibility to compare and synthesize findings. Studies uncommonly reported the method for randomization and allocation concealment, and a limited number were blinded. Only the evidence in favour of the two-thumb encircling hands technique for performing CC, a CC to ventilation ratio of 3:1; and that air can be used for ventilation during CC; was supported by more than one study. Animal studies should be performed and reported with the same rigor as in human randomized trials. Good transitional and survival models are needed to further increase the strength of the evidence derived from animal studies of newborn chest compressions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. How animal models inform child and adolescent psychiatry.

    Science.gov (United States)

    Stevens, Hanna E; Vaccarino, Flora M

    2015-05-01

    Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Animal models of GM2 gangliosidosis: utility and limitations

    Directory of Open Access Journals (Sweden)

    Lawson CA

    2016-07-01

    Full Text Available Cheryl A Lawson,1,2 Douglas R Martin2,3 1Department of Pathobiology, 2Scott-Ritchey Research Center, 3Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA Abstract: GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. Keywords: GM2 gangliosidosis, Tay–Sachs disease, Sandhoff disease, lysosomal storage disorder, sphingolipidosis, brain disease

  13. Animal models of GM2 gangliosidosis: utility and limitations.

    Science.gov (United States)

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  14. The use of animal models in behavioural neuroscience research.

    Science.gov (United States)

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are also likely to be considered the ones that are most morally problematic to use, if it seems probable that (and if indeed they are initially selected as models because) they have experiences that are similar to human experiences that we have strong reasons to avoid causing, and indeed aim to alleviate (such as pain, anxiety or sadness). In this paper, against the background of contemporary discussions in animal ethics and the philosophy of animal minds, we discuss the views that it is morally permissible to use animals in these kinds of experiments, and that it is better to use less cognitively complex animals (such as zebrafish) than more complex animals (such as dogs). First, we criticise some justifications for the claim that human beings and more complex animals have higher moral status. We argue that contemporary approaches that attribute equal moral status to all beings that are capable of conscious strivings strivings (e.g. avoiding pain and anxiety; aiming to eat and play) are based on more plausible assumptions. Second, we argue that it is problematic to assume that less cognitively complex animals have a lesser sensory and emotional experience than more complex beings across the board. In specific cases, there might be good reasons to assume that more complex beings would be harmed more by a specific physical or environmental intervention, but it might also be that they sometimes are harmed less because of a better ability to cope. Determining whether a specific experiment is justified is therefore a complex issue. Our aim in this chapter is to stimulate further reflection on these common assumptions behind the use of animal models for psychopathologies. In

  15. Ad hoc modeling in agronomy: What have we learned in the last 15 years?

    NARCIS (Netherlands)

    Affholder, F.; Tittonell, P.A.; Corbeels, M.; Roux, S.; Motisi, N.; Tixier, P.; Wery, J.

    2012-01-01

    The “Use and Abuse of Crop Simulation Models” special issue of Agronomy Journal published in 1996 ended with the myth of the universal crop model. Sinclair and Seligman consequently recommended tailoring models to specific problems. This paper reviews the fate of the idea of such ad hoc approaches

  16. Modelling microbial fuel cells with suspended cells and added electron transfer mediator

    NARCIS (Netherlands)

    Picoreanu, C.; Katuri, K.P.; Van Loosdrecht, M.C.M.; Head, I.M.; Scott, K.

    2009-01-01

    Derivation of a mathematical model for microbial fuel cells (MFC) with suspended biomass and added electron-transfer mediator is described. The model is based on mass balances for several dissolved chemical species such as substrate, oxidized mediator and reduced mediator. Biological, chemical and

  17. Amphibians as animal models for laboratory research in physiology.

    Science.gov (United States)

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  18. Engineering Large Animal Species to Model Human Diseases.

    Science.gov (United States)

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  19. Alternative animal model for studies of total skin thickness burns.

    Science.gov (United States)

    Andrade, Ana Laura Martins de; Parisi, Julia Risso; Brassolatti, Patrícia; Parizotto, Nivaldo Antonio

    2017-10-01

    To present an alternative experimental model of third degree burn of easy reproducibility. Eighteen male Wister rats were randomly divided into three groups, 6 of which were allocated to each group. A soldering iron coupled to an aluminum plate was used to produce burn, at a temperature of 150ºC, with different exposure times per group. Group 5 (G5) animals were burned at 150°C with exposure time of 5 seconds; Group 10 (G10) the animals were burned at 150°C with exposure time of 10 seconds and group 15 (G15) the animals were burned at 150°C with exposure time of 15 seconds. Histopathological analyzes showed that all three groups had similar morphological characteristics, with total thickness involvement. The technique is effective to reproduce a third degree burn and suggests the temperature of 150ºC with 5 seconds of exposure in order to minimize the risks to the animals.

  20. Animal Models of Diabetic Retinopathy: Summary and Comparison

    Science.gov (United States)

    Lo, Amy C. Y.

    2013-01-01

    Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening. PMID:24286086

  1. Animal models of disc degeneration and major genetic strategies.

    Science.gov (United States)

    Sun, Fu; Qu, Ji-Ning; Zhang, Yin-Gang

    2013-01-01

    The establishment of a reliable animal model of lumbar disc degeneration (AMDD) is important for studying pathogenesis and evaluating treatment effectiveness. However, an ideal AMDD for use in laboratory studies has not yet been produced. This retrospective study reviews and compares several common AMDD and discusses their strengths and weaknesses. We also suggest a new method for establishing future AMDD. The identified genes associated with disc degeneration are susceptibility genes, which elevate risk but do not necessarily lead to disease occurrence. We propose to identify families with hereditary disc degeneration, find major casual genes with exome sequencing, and establish transgenic animal models. This approach may help us to build an improved AMDD.

  2. Early Astrocytic Atrophy in the Entorhinal Cortex of a Triple Transgenic Animal Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Chia-Yu Yeh

    2011-11-01

    Full Text Available The EC (entorhinal cortex is fundamental for cognitive and mnesic functions. Thus damage to this area appears as a key element in the progression of AD (Alzheimer's disease, resulting in memory deficits arising from neuronal and synaptic alterations as well as glial malfunction. In this paper, we have performed an in-depth analysis of astroglial morphology in the EC by measuring the surface and volume of the GFAP (glial fibrillary acidic protein profiles in a triple transgenic mouse model of AD [3xTg-AD (triple transgenic mice of AD]. We found significant reduction in both the surface and volume of GFAP-labelled profiles in 3xTg-AD animals from very early ages (1 month when compared with non-Tg (non-transgenic controls (48 and 54%, reduction respectively, which was sustained for up to 12 months (33 and 45% reduction respectively. The appearance of Aβ (amyloid β-peptide depositions at 12 months of age did not trigger astroglial hypertrophy; nor did it result in the close association of astrocytes with senile plaques. Our results suggest that the AD progressive cognitive deterioration can be associated with an early reduction of astrocytic arborization and shrinkage of the astroglial domain, which may affect synaptic connectivity within the EC and between the EC and other brain regions. In addition, the EC seems to be particularly vulnerable to AD pathology because of the absence of evident astrogliosis in response to Aβ accumulation. Thus we can consider that targeting astroglial atrophy may represent a therapeutic strategy which might slow down the progression of AD.

  3. Simple models for studying complex spatiotemporal patterns of animal behavior

    Science.gov (United States)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  4. The enduring importance of animal models in understanding periodontal disease.

    Science.gov (United States)

    Hajishengallis, George; Lamont, Richard J; Graves, Dana T

    2015-01-01

    Whereas no single animal model can reproduce the complexity of periodontitis, different aspects of the disease can be addressed by distinct models. Despite their limitations, animal models are essential for testing the biological significance of in vitro findings and for establishing cause-and-effect relationships relevant to clinical observations, which are typically correlative. We provide evidence that animal-based studies have generated a durable framework for dissecting the mechanistic basis of periodontitis. These studies have solidified the etiologic role of bacteria in initiating the inflammatory response that leads to periodontal bone loss and have identified key mediators (IL-1, TNF, prostaglandins, complement, RANKL) that induce inflammatory breakdown. Moreover, animal studies suggest that dysbiosis, rather than individual bacterial species, are important in initiating periodontal bone loss and have introduced the concept that organisms previously considered commensals can play important roles as accessory pathogens or pathobionts. These studies have also provided insight as to how systemic conditions, such as diabetes or leukocyte adhesion deficiency, contribute to tissue destruction. In addition, animal studies have identified and been useful in testing therapeutic targets.

  5. Cardiovascular Imaging: What Have We Learned From Animal Models?

    Directory of Open Access Journals (Sweden)

    Arnoldo eSantos

    2015-10-01

    Full Text Available Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a nondestructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, i the technical development of different imaging tools, ii to test hypothesis generated from human studies and finally, iii to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

  6. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  7. Animal models for implant biomaterial research in bone: A review

    Directory of Open Access Journals (Sweden)

    A I Pearce

    2007-03-01

    Full Text Available Development of an optimal interface between bone and orthopaedic and dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing of orthopaedic and dental implants prior to clinical use in humans. This review discusses some of the more commonly available and frequently used animal models such as the dog, sheep, goat, pig and rabbit models for the evaluation of bone-implant interactions. Factors for consideration when choosing an animal model and implant design are discussed. Various bone specific features are discussed including the usage of the species, bone macrostructure and microstructure and bone composition and remodelling, with emphasis being placed on the similarity between the animal model and the human clinical situation. While the rabbit was the most commonly used of the species discussed in this review, it is clear that this species showed the least similarities to human bone. There were only minor differences in bone composition between the various species and humans. The pig demonstrated a good likeness with human bone however difficulties may be encountered in relation to their size and ease of handling. In this respect the dog and sheep/goat show more promise as animal models for the testing of bone implant materials. While no species fulfils all of the requirements of an ideal model, an understanding of the differences in bone architecture and remodelling between the species is likely to assist in the selection of a suitable species for a defined research question.

  8. Social defeat models in animal science: What we have learned from rodent models.

    Science.gov (United States)

    Toyoda, Atsushi

    2017-07-01

    Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare. © 2017 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  9. A systematic review of current osteoporotic metaphyseal fracture animal models.

    Science.gov (United States)

    Wong, R M Y; Choy, M H V; Li, M C M; Leung, K-S; K-H Chow, S; Cheung, W-H; Cheng, J C Y

    2018-01-01

    The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19), partial osteotomy (1 of 19), and complete osteotomies (12 of 19). Drill hole models and incomplete osteotomy models are easy to perform and allow the study of therapeutic agents but do not represent the usual clinical setting. Additionally, biomaterials can be filled into drill hole defects for analysis. Complete osteotomy models are most commonly used and are best suited for the investigation of therapeutic drugs or noninvasive interventions. The metaphyseal defect models allow the study of biomaterials, which are associated with complex and comminuted osteoporotic fractures. For a clinically relevant model, we propose that an animal model should satisfy the following criteria to study osteoporotic fracture healing: 1) induction of osteoporosis, 2) complete osteotomy or defect at the metaphysis unilaterally, and 3) internal fixation. Cite this article : R. M. Y. Wong, M. H. V. Choy, M. C. M. Li, K-S. Leung, S. K-H. Chow, W-H. Cheung, J. C. Y. Cheng. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;7:6-11. DOI: 10.1302/2046-3758.71.BJR-2016-0334.R2. © 2018 Wong et al.

  10. Overview on available animal models for application in leukemia research

    International Nuclear Information System (INIS)

    Borkhardt, A.; Sanchez-Garcia, I.; Cobaleda, C.; Hauer, J.

    2015-01-01

    The term ''leukemia'' encompasses a group of diseases with a variable clinical and pathological presentation. Its cellular origin, its biology and the underlying molecular genetic alterations determine the very variable and individual disease phenotype. The focus of this review is to discuss the most important guidelines to be taken into account when we aim at developing an ''ideal'' animal model to study leukemia. The animal model should mimic all the clinical, histological and molecular genetic characteristics of the human phenotype and should be applicable as a clinically predictive model. It should achieve all the requirements to be used as a standardized model adaptive to basic research as well as to pharmaceutical practice. Furthermore it should fulfill all the criteria to investigate environmental risk factors, the role of genomic mutations and be applicable for therapeutic testing. These constraints limit the usefulness of some existing animal models, which are however very valuable for basic research. Hence in this review we will primarily focus on genetically engineered mouse models (GEMMs) to study the most frequent types of childhood leukemia. GEMMs are robust models with relatively low site specific variability and which can, with the help of the latest gene modulating tools be adapted to individual clinical and research questions. Moreover they offer the possibility to restrict oncogene expression to a defined target population and regulate its expression level as well as its timely activity. Until recently it was only possible in individual cases to develop a murin model, which fulfills the above mentioned requirements. Hence the development of new regulatory elements to control targeted oncogene expression should be priority. Tightly controlled and cell specific oncogene expression can then be combined with a knock-in approach and will depict a robust murine model, which enables almost physiologic oncogene

  11. A Group Vehicular Mobility Model for Routing Protocol Analysis in Mobile Ad Hoc Network

    OpenAIRE

    Kulkarni, Shrirang Ambaji; Rao, G Raghavendra

    2010-01-01

    Performance of routing protocols in mobile ad-hoc networks is greatly affected by the dynamic nature of nodes, route failures, wireless channels with variable bandwidth and scalability issues. A mobility model imitates the real world movement of mobile nodes and is central component to simulation based studies. In this paper we consider mobility nodes which mimic the vehicular motion of nodes like Manhattan mobility model and City Section mobility model. We also propose a new Group Vehicular ...

  12. Principles for developing animal models of military PTSD

    Directory of Open Access Journals (Sweden)

    Nikolaos P. Daskalakis

    2014-08-01

    Full Text Available The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies.

  13. Ad-endostatin treatment combined with low-dose irradiation in a murine lung cancer model.

    Science.gov (United States)

    Li, Xiao-Peng; Zhang, Hai-Long; Wang, Hui-Juan; Li, Yong-Xia; Li, Meng; Lu, Lian; Wan, Yang; Zhou, Bai-Ling; Liu, Yan; Pan, Ying; Wu, Xiao-Zhe; Fan, Ying-Zi; Yu, Chao-Heng; Wei, Yu-Quan; Shi, Hua-Shan

    2014-08-01

    Radiation therapy is a conventional strategy for treating advanced lung cancer yet is accompanied by serious side-effects. Its combination with other strategies, such as antiangiogenesis and gene therapy, has shown excellent prospects. As one of the potent endogenous vascular inhibitors, endostatin has been widely used in the antiangiogenic gene therapy of tumors. In the present study, LL/2 cells were infected with a recombinant adenovirus encoding endostatin (Ad-endostatin) to express endostatin. The results showed that LL/2 cells infected with the Ad-endostatin efficiently and longlastingly expressed endostatin. In order to further explore the role of Ad-endostatin combined with irradiation in the treatment of cancer, a murine lung cancer model was established and treated with Ad-endostatin combined with low-dose irradiation. The results showed that the combination treatment markedly inhibited tumor growth and metastasis, and prolonged the survival time of the tumor-bearing mice. Furthermore, this significant antitumor activity was associated with lower levels of microvessel density and anoxia factors in the Ad-Endo combined with irradiation group, and with an increased apoptotic index of tumor cells. In addition, no serious side-effects were noted in the combination group. Based on our findings, Ad-endostatin combined with low-dose irradiation may be a rational alternative treatment for lung cancer and other solid tumors.

  14. A new model integrating short- and long-term aging of copper added to soils.

    Directory of Open Access Journals (Sweden)

    Saiqi Zeng

    Full Text Available Aging refers to the processes by which the bioavailability/toxicity, isotopic exchangeability, and extractability of metals added to soils decline overtime. We studied the characteristics of the aging process in copper (Cu added to soils and the factors that affect this process. Then we developed a semi-mechanistic model to predict the lability of Cu during the aging process with descriptions of the diffusion process using complementary error function. In the previous studies, two semi-mechanistic models to separately predict short-term and long-term aging of Cu added to soils were developed with individual descriptions of the diffusion process. In the short-term model, the diffusion process was linearly related to the square root of incubation time (t1/2, and in the long-term model, the diffusion process was linearly related to the natural logarithm of incubation time (lnt. Both models could predict short-term or long-term aging processes separately, but could not predict the short- and long-term aging processes by one model. By analyzing and combining the two models, we found that the short- and long-term behaviors of the diffusion process could be described adequately using the complementary error function. The effect of temperature on the diffusion process was obtained in this model as well. The model can predict the aging process continuously based on four factors-soil pH, incubation time, soil organic matter content and temperature.

  15. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    Science.gov (United States)

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.

  16. Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer's disease.

    Science.gov (United States)

    Jung, Jun-Sub; Yan, Ji-Jing; Li, Hong-Mei; Sultan, Md Tipu; Yu, Jaehoon; Lee, Hee-Sul; Shin, Kye-Jung; Song, Dong-Keun

    2016-07-05

    Ferulic acid is a compound with potent anti-oxidant and anti-inflammatory activities. We previously reported the protective effects of ferulic acid administration against two animal models of Alzheimer's disease (AD): intracerebroventricular (i.c.v.) injection of Aß1-42 in mice and APP/PS1 mutant transgenic mice. In this study using the same AD animal models, we examined the effect of KMS4001, one of dimeric derivatives of ferulic acid. Intragastric pretreatment of mice with KMS4001 (30mg/kg/day) for 5 days significantly attenuated the Aß1-42 (i.c.v.)-induced memory impairment both in passive avoidance test and in Y-maze test. APP/PS1 mutant transgenic mice at KMS4001 doses of 3 and 30mg/kg/day via drinking water showed the significantly enhanced novel-object recognition memory at both 1.5 and 3 months after the start of KMS4001 treatment. Treatment of APP/PS1 mutant transgenic mice with KMS4001 for 3 months at the doses of 3 and 30mg/kg/day markedly decreased Aβ1-40 and Aβ1-42 levels in the frontal cortex. The KMS4001 dose-response relationships for Aβ decrease and for improvement in novel-object recognition test corresponded to each other. Taken together, these results suggest that KMS4001 could be an effective drug candidate against AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Animal Models of Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2012-01-01

    Full Text Available Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM: models induced by drugs including streptozotocin (STZ, pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.

  18. Animation Augmented Reality Book Model (AAR Book Model) to Enhance Teamwork

    Science.gov (United States)

    Chujitarom, Wannaporn; Piriyasurawong, Pallop

    2017-01-01

    This study aims to synthesize an Animation Augmented Reality Book Model (AAR Book Model) to enhance teamwork and to assess the AAR Book Model to enhance teamwork. Samples are five specialists that consist of one animation specialist, two communication and information technology specialists, and two teaching model design specialists, selected by…

  19. Geospatial forecast model for tsetse-transmitted animal ...

    African Journals Online (AJOL)

    Results indicate that GIS model developed for parasitic diseases based on growing degree day (GDD) concept can be applied to tsetse-transmitted trypanosomosis. GIS for animal trypanosomosis was created using Food and Agriculture Organization – Crop Production System Zones (FAO-CPSZ) database and Normalized ...

  20. Unraveling the genetics of chronic kidney disease using animal models

    NARCIS (Netherlands)

    Korstanje, Ron; DiPetrillo, K.

    2004-01-01

    Identifying genes underlying common forms of kidney disease in humans has proven difficult, expensive, and time consuming. Quantitative trait loci (QTL) for several complex traits are concordant among mice, rats, and humans, suggesting that genetic findings from these animal models are relevant to

  1. In search for animal models of female sexual dysfunction

    NARCIS (Netherlands)

    Snoeren, E.M.S.

    2010-01-01

    Female Sexual Dysfunction (FSD) is a disorder that affects around 40% of the population. Low sexual arousal and low sexual desire are the most common problems. The mechanisms underlying the disorder are still unclear. The aims of this thesis were 1) the search for animal models of FSD, 2) the

  2. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    Science.gov (United States)

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  3. Animal models for plaque rupture: a biomechanical assessment

    NARCIS (Netherlands)

    van der Heiden, Kim; Hoogendoorn, Ayla; Daemen, Mat J.; Gijsen, Frank J. H.

    2016-01-01

    Rupture of atherosclerotic plaques is the main cause of acute cardiovascular events. Animal models of plaque rupture are rare but essential for testing new imaging modalities to enable diagnosis of the patient at risk. Moreover, they enable the design of new treatment strategies to prevent plaque

  4. The miniature pig as an animal model in biomedical research

    Czech Academy of Sciences Publication Activity Database

    Vodička, Petr; Smetana Jr., K.; Dvořánková, B.; Emerick, T.; Xu, Y.; Ourednik, J.; Ourednik, V.; Motlík, Jan

    2005-01-01

    Roč. 1049, - (2005), s. 161-171 ISSN 0077-8923 R&D Projects: GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50450515 Keywords : animal model * stem cell * transgenic pig Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.971, year: 2005

  5. Genetic Evaluation and Ranking of Different Animal Models Using ...

    African Journals Online (AJOL)

    An animal model utilizes all relationships available in a given data set. Estimates for variance components for additive direct, additive maternal, maternal environmental and direct environmental effects, and their covariances between direct and maternal genetic effects for post weaning growth traits have been obtained with ...

  6. Modeling herbivorous animal digestive system as 3- continuous ...

    African Journals Online (AJOL)

    Modeling herbivorous animal digestive system as 3- continuous stirred tank reactor (CSTR) and 1-plug flow reactor (PFR) in series with specific reference to ... This shows the efficiency of each reactor at converting the purely lignocellulosics substrates to useful products like protein, vitamin, fatty acid and the bye-products.

  7. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model

    NARCIS (Netherlands)

    Brouwer, E.; Huitema, M. G.; Klok, P. A.; de Weerd, H.; Tervaert, J. W.; Weening, J. J.; Kallenberg, C. G.

    1993-01-01

    To develop an animal model for antimyeloperoxidase (MPO)-associated necrotizing crescentic glomerulonephritis (NCGN), we immunized Brown Norway rats with MPO and localized a neutrophil lysosomal enzyme extract, primarily consisting of MPO and elastinolytic enzymes, plus H2O2, the substrate of MPO,

  8. ANTIMYELOPEROXIDASE-ASSOCIATED PROLIFERATIVE GLOMERULONEPHRITIS - AN ANIMAL-MODEL

    NARCIS (Netherlands)

    BROUWER, E; HUITEMA, MG; KLOK, PA; DEWEERD, H; TERVAERT, JWC; WEENING, JJ; KALLENBERG, CGM

    1993-01-01

    To develop an animal model for antimyeloperoxidase (MPO)-associated necrotizing crescentic glomerulonephritis (NCGN), we immunized Brown Norway rats with MPO and localized a neutrophil lysosomal enzyme extract, primarily consisting of MPO and elastinolytic enzymes, plus H2O2, the substrate of MPO,

  9. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  10. A review of animal models for portal vein embolization

    NARCIS (Netherlands)

    Huisman, Floor; van Lienden, Krijn P.; Damude, Samantha; Hoekstra, Lisette T.; van Gulik, Thomas M.

    2014-01-01

    Portal vein embolization (PVE) is a preoperative intervention to increase the future remnant liver (FRL) through regeneration of the non-embolized liver lobes. This review assesses all the relevant animal models of PVE available, to guide researchers who intend to study PVE. We performed a

  11. Animal models for arthritis: innovative tools for prevention and treatment

    NARCIS (Netherlands)

    Kollias, G.; Papadaki, P.; Apparailly, F.; Vervoordeldonk, M.J.; Holmdahl, R.; Baumans, V.; Desaintes, C.; Di Santo, J.; Distler, J.; Garside, P.; Hegen, M.; Huizinga, T.W.J.; Jüngel, A.; Klareskog, L.; McInnes, I.; Ragoussis, I.; Schett, G.; Hart, B.t.; Tak, P.P.; Toes, R.; van den Berg, W.; Wurst, W.; Gay, S.

    2011-01-01

    The development of novel treatments for rheumatoid arthritis (RA) requires the interplay between clinical observations and studies in animal models. Given the complex molecular pathogenesis and highly heterogeneous clinical picture of RA, there is an urgent need to dissect its multifactorial nature

  12. 75 FR 54349 - Animal Models-Essential Elements To Address Efficacy Under the Animal Rule; Notice of Public...

    Science.gov (United States)

    2010-09-07

    ... the Animal Rule; Notice of Public Meeting; and Reopening of Comment Period AGENCY: Food and Drug... challenges as addressed in the draft document entitled ``Guidance for ] Industry: Animal Models--Essential Elements to Address Efficacy Under the Animal Rule'' dated January 2009 (Draft Guidance), and as related to...

  13. An Experimental Animal Model for Abdominal Fascia Healing after Surgery

    DEFF Research Database (Denmark)

    Burcharth, J; Pommergaard, H-C; Klein, M

    2013-01-01

    Background: Incisional hernia (IH) is a well-known complication after abdominal surgical procedures. The exact etiology of IH is still unknown even though many risk factors have been suggested. The aim of this study was to create an animal model of a weakly healed abdominal fascia that could...... be used to evaluate the actively healing fascia. Such an animal model may promote future research in the prevention of IH. Methods: 86 male Sprague-Dawley rats were used to establish a model involving six experiments (experiments A-F). Mechanical testing of the breaking strength of the healed fascia...... was performed by testing tissue strips from the healed fascia versus the unincised control fascia 7 and 28 days postoperatively. Results: During the six experiments a healing model was created that produced significantly weaker coherent fascia when compared with the control tissue measured in terms...

  14. Chronic Neuroinflammation in Alzheimer’s Disease: New Perspectives on Animal Models and Promising Candidate Drugs

    Directory of Open Access Journals (Sweden)

    Christopher Millington

    2014-01-01

    Full Text Available Chronic neuroinflammation is now considered one of the major factors in the pathogenesis of Alzheimer’s disease (AD. However, the most widely used transgenic AD models (overexpressing mutated forms of amyloid precursor protein, presenilin, and/or tau do not demonstrate the degree of inflammation, neurodegeneration (particularly of the cholinergic system, and cognitive decline that is comparable with the human disease. Hence a more suitable animal model is needed to more closely mimic the resulting cognitive decline and memory loss in humans in order to investigate the effects of neuroinflammation on neurodegeneration. One of these models is the glial fibrillary acidic protein-interleukin 6 (GFAP-IL6 mouse, in which chronic neuroinflammation triggered constitutive expression of the cytokine interleukin-6 (IL-6 in astrocytes. These transgenic mice show substantial and progressive neurodegeneration as well as a decline in motor skills and cognitive function, starting from 6 months of age. This animal model could serve as an excellent tool for drug discovery and validation in vivo. In this review, we have also selected three potential anti-inflammatory drugs, curcumin, apigenin, and tenilsetam, as candidate drugs, which could be tested in this model.

  15. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    Science.gov (United States)

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. An animal model of spontaneous metabolic syndrome: Nile grass rat

    OpenAIRE

    Noda, Kousuke; Melhorn, Mark I.; Zandi, Souska; Frimmel, Sonja; Tayyari, Faryan; Hisatomi, Toshio; Almulki, Lama; Pronczuk, Andrzej; Hayes, K. C.; Hafezi-Moghadam, Ali

    2010-01-01

    Metabolic syndrome (MetS) is a prevalent and complex disease, characterized by the variable coexistence of obesity, dyslipidemia, hyperinsulinaemia, and hypertension. The alarming rise in the prevalence of metabolic disorders makes it imperative to innovate preventive or therapeutic measures for MetS and its complications. However, the elucidation of the pathogenesis of MetS has been hampered by the lack of realistic models. For example, the existing animal models of MetS, i.e., genetically e...

  17. BLESSED with Opportunistic Beacons: A Lightweight Data Dissemination Model for Smart Mobile Ad-Hoc Networks

    NARCIS (Netherlands)

    Türkes, Okan; Scholten, Johan; Havinga, Paul J.M.

    2015-01-01

    This paper introduces BLESSED, a universal opportunistic ad hoc networking model intended for smart mobile devices. It enables fast and lightweight data dissemination in wireless community networks through the complementary utilization of the IEEE 802.11 and Bluetooth Low Energy standards. As a

  18. Accounting for Co-Teaching: A Guide for Policymakers and Developers of Value-Added Models

    Science.gov (United States)

    Isenberg, Eric; Walsh, Elias

    2015-01-01

    We outline the options available to policymakers for addressing co-teaching in a value-added model. Building on earlier work, we propose an improvement to a method of accounting for co-teaching that treats co-teachers as teams, with each teacher receiving equal credit for co-taught students. Hock and Isenberg (2012) described a method known as the…

  19. Methods for Accounting for Co-Teaching in Value-Added Models. Working Paper

    Science.gov (United States)

    Hock, Heinrich; Isenberg, Eric

    2012-01-01

    Isolating the effect of a given teacher on student achievement (value-added modeling) is complicated when the student is taught the same subject by more than one teacher. We consider three methods, which we call the Partial Credit Method, Teacher Team Method, and Full Roster Method, for estimating teacher effects in the presence of co-teaching.…

  20. The Sensitivity of Value-Added Modeling to the Creation of a Vertical Score Scale

    Science.gov (United States)

    Briggs, Derek C.; Weeks, Jonathan P.

    2009-01-01

    The purpose of this study was to evaluate the sensitivity of growth and value-added modeling to the way an underlying vertical score scale has been created. Longitudinal item-level data were analyzed with both student- and school-level identifiers for the entire state of Colorado between 2003 and 2006. Eight different vertical scales were…

  1. Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25

    Science.gov (United States)

    Kane, Michael T.

    2017-01-01

    By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…

  2. Extracts from two ubiquitous Mediterranean plants ameliorate cellular and animal models of neurodegenerative proteinopathies.

    Science.gov (United States)

    Briffa, Michelle; Ghio, Stephanie; Neuner, Johanna; Gauci, Alison J; Cacciottolo, Rebecca; Marchal, Christelle; Caruana, Mario; Cullin, Christophe; Vassallo, Neville; Cauchi, Ruben J

    2017-01-18

    A signature feature of age-related neurodegenerative proteinopathies is the misfolding and aggregation of proteins, typically amyloid-β (Aβ) in Alzheimer's disease (AD) and α-synuclein (α-syn) in Parkinson's disease (PD), into soluble oligomeric structures that are highly neurotoxic. Cellular and animal models that faithfully replicate the hallmark features of these disorders are being increasing exploited to identify disease-modifying compounds. Natural compounds have been identified as a useful source of bioactive molecules with promising neuroprotective capabilities. In the present report, we investigated whether extracts derived from two ubiquitous Mediterranean plants namely, the prickly pear Opuntia ficus-indica (EOFI) and the brown alga Padina pavonica (EPP) alleviate neurodegenerative phenotypes in yeast (Saccharomyces cerevisiae) and fly (Drosophila melanogaster) models of AD and PD. Pre-treatment with EPP or EOFI in the culture medium significantly improved the viability of yeast expressing the Arctic Aβ42 (E22G) mutant. Supplementing food with EOFI or EPP dramatically ameliorated lifespan and behavioural signs of flies with brain-specific expression of wild-type Aβ42 (model of late-onset AD) or the Arctic Aβ42 variant (model of early-onset AD). Additionally, we show that either extract prolonged the survival of a PD fly model based on transgenic expression of the human α-syn A53T mutant. Taken together, our findings suggest that the plant-derived extracts interfere with shared mechanisms of neurodegeneration in AD and PD. This notion is strengthened by evidence demonstrating that EOFI and to a greater extent EPP, while strongly inhibiting the fibrillogenesis of both Aβ42 and α-syn, accumulate remodelled oligomeric aggregates that are less effective at disrupting lipid membrane integrity. Our work therefore opens new avenues for developing therapeutic applications of these natural plant extracts in the treatment of amyloidogenic

  3. Experimental animal model for late postradiation reaction of the colon

    International Nuclear Information System (INIS)

    Trott, K.R.

    1987-01-01

    Experimental animal model worked out in Muenchen is discussed in which late postradiation reaction in Wistar rats following local irradiation of the colon manifests itself by appearance of colonic stenoses causing death of the animal. Clinical symptoms of this reaction together with results of histopathologic examination of the excised parts of the colon localized in the irradiated area are discussed. The relationships effect-dose obtained in this system for X radiation applying different regimen of dose fractionation and different total times of irradiation are presented. 8 refs., 5 figs., 1 tab. (author)

  4. Alternative animal model for studies of total skin thickness burns

    OpenAIRE

    Andrade, Ana Laura Martins de; Parisi, Julia Risso; Brassolatti, Patrícia; Parizotto, Nivaldo Antonio

    2017-01-01

    Abstract Purpose: To present an alternative experimental model of third degree burn of easy reproducibility. Methods: Eighteen male Wister rats were randomly divided into three groups, 6 of which were allocated to each group. A soldering iron coupled to an aluminum plate was used to produce burn, at a temperature of 150ºC, with different exposure times per group. Group 5 (G5) animals were burned at 150°C with exposure time of 5 seconds; Group 10 (G10) the animals were burned at 150°C with e...

  5. Peripheral biomarkers in animal models of major depressive disorder.

    Science.gov (United States)

    Carboni, Lucia

    2013-01-01

    Investigations of preclinical biomarkers for major depressive disorder (MDD) encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with MDD are frequently measured. In contrast, other investigators evaluate peripheral analytes in preclinical models to translate the results in clinical settings afterwards. Large-scale, hypothesis-free studies are performed in MDD models to identify candidate biomarkers. Other studies wish to propose new targets for drug discovery. Animal models endowed with predictive validity are investigated, and the assessment of peripheral analytes, such as stress hormones or immune molecules, is comprised to increase the confidence in the target. Finally, since the mechanism of action of antidepressants is incompletely understood, studies investigating molecular alterations associated with antidepressant treatment may include peripheral analyte levels. In conclusion, preclinical biomarker studies aid the identification of new candidate analytes to be tested in clinical trials. They also increase our understanding of MDD pathophysiology and help to identify new pharmacological targets.

  6. Malarial birds: modeling infectious human disease in animals.

    Science.gov (United States)

    Slater, Leo B

    2005-01-01

    Through the examination of avian malarias as models of infectious human disease, this paper reveals the kinds of claims that scientists and physicians made on the basis of animal models-biological systems in the laboratory and the field-and what characteristics made for congruence between these models and human malaria. The focus is on the period between 1895 and 1945, and on the genesis and trajectory of certain animal models of malaria within specific locations, such as the Johns Hopkins School of Hygiene and Public Health in Baltimore and Bayer (I. G. Farben) in Elberfeld. These exemplars illustrate a diversity of approaches to malaria-as-disease, and the difficulties of framing aspects of this disease complex within an animal or laboratory system. The diversity and nearness to wild types of the birds, protozoan parasites, and mosquitoes that made up these malaria models contributed a great deal to the complexity of the models. Avian malarias, adopted with enthusiasm, were essential to the success of the U.S. antimalarial program during World War II.

  7. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  8. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  9. Animal models of enterovirus 71 infection: applications and limitations

    Science.gov (United States)

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models. PMID:24742252

  10. Animal models for Ebola and Marburg virus infections

    Science.gov (United States)

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  11. Animal models for Ebola and Marburg virus infections

    Directory of Open Access Journals (Sweden)

    Eri eNakayama

    2013-09-01

    Full Text Available Ebola and Marburg hemorrhagic fevers (EHF and MHF are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus, respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4 pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  12. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    Directory of Open Access Journals (Sweden)

    Roxana Ramírez-Sandoval

    2015-01-01

    Full Text Available Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO32. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis.

  13. Transmission of Helicobacter pyori in an animal model.

    Science.gov (United States)

    Cellini, L; Marzio, L; Ferrero, G; Del Vino, A; Di Campli, E; Grossi, L; Toracchio, S; Artese, L

    2001-01-01

    An experimental murine model was studied to evaluate the orogastrointestinal colonization of Helicobacter pylori and the animal-to-animal transmission. Balb/C mice were infected with H. pylori and housed with uninoculated mice in cages with and without a grate on the floor. Mice were killed after 7, 14, 30, and 45 days, and samples from the esophagus, stomach, small intestine, colon, and rectum were analyzed for H. pylori by PCR and immunohistochemistry and for histological changes. Bacterial colonization was assessed also by culture from stomach samples. H. pylori was cultured by stomach samples of infected mice at 7, 14, and 30 days. Using PCR and immunohistochemistry, H. pylori was detected in inoculated and uninoculated mice in all areas examined, with an high percentage of positive samples in the esophagus and stomach. Moreover transmission was detected, without differences, regardless of whether mice were housed with or without a grate on the floor, supporting an orooral animal transmission.

  14. IR-improved soft-wall AdS/QCD model for baryons

    Directory of Open Access Journals (Sweden)

    Zhen Fang

    2016-03-01

    Full Text Available We construct an infrared-improved soft-wall AdS/QCD model for baryons by considering the infrared-modified 5D conformal mass and Yukawa coupling of the bulk baryon field. The model is also built by taking into account the parity-doublet pattern for the excited baryons. When taking the bulk vacuum structure of the meson field to be the one obtained consistently in the infrared-improved soft-wall AdS/QCD model for mesons, we arrive at a consistent prediction for the baryon mass spectrum in even and odd parity. The prediction shows a remarkable agreement with the experimental data. We also perform a calculation for the ρ(a1 meson–nucleon coupling constant and obtain consistent result in comparison with the experimental data and other effective models.

  15. Animal models of osteogenesis imperfecta: applications in clinical research

    Directory of Open Access Journals (Sweden)

    Enderli TA

    2016-09-01

    Full Text Available Tanya A Enderli, Stephanie R Burtch, Jara N Templet, Alessandra Carriero Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA Abstract: Osteogenesis imperfecta (OI, commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin and mechanical (ie, vibrational loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients. Keywords: OI, brittle bone, clinical research, mouse, dog, zebrafish

  16. Animal models of transcranial direct current stimulation: Methods and mechanisms.

    Science.gov (United States)

    Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom

    2016-11-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the

  17. Model systems to study immunomodulation in domestic food animals.

    Science.gov (United States)

    Roth, J A; Flaming, K P

    1990-01-01

    Development of immunomodulators for use in food producing animals is an active area of research. This research has generally incorporated aspects of immunosuppression in model systems. This methodology is appropriate because most of the research has been aimed at developing immunomodulators for certain economically significant diseases in which immunosuppression is believed to be an important component of their pathogenesis. The primary focus has been on stress-associated diseases (especially bovine respiratory disease), infectious diseases in young animals, and mastitis. The model systems used have limitations, but they have demonstrated that immunomodulators are capable of significantly increasing resistance to these important infectious disease syndromes. As our understanding of molecular immunology increases and as more potential immunomodulators become available, the use of relevant model systems should greatly aid advancement in the field of immunomodulation.

  18. Infantile Spasms: A Critical Review of Emerging Animal Models

    Science.gov (United States)

    Stafstrom, Carl E

    2009-01-01

    Infantile spasms is a developmental epilepsy syndrome with unique clinical and EEG features, a specific pattern of pharmacological responsiveness, and poor outcome in terms of cognition and epilepsy. Despite the devastating nature of infantile spasms, little is known about its pathogenesis. Until recently, there has been no animal model available to investigate the pathophysiology of the syndrome or to generate and test novel therapies. Now, several promising animal models have emerged, spanning the etiological spectrum from genetic causes (e.g., Down syndrome or Aristaless-related homeobox [ARX] mutation) to acquired causes (e.g., endogenous and exogenous toxins or stress hormones with convulsant activity or blockade of neural activity). These new models are discussed in this review, with emphasis on the insights each can provide for understanding, treating, and preventing infantile spasms. PMID:19471616

  19. Reproduction of an animal model of landmine blast injuries

    Directory of Open Access Journals (Sweden)

    Sen ZHANG

    2014-03-01

    Full Text Available Objective To reproduce an animal model of landmine blast injuries for studying its mechanism and characteristics. Methods Fifteen healthy New Zealand white rabbits (body weight 1.9-2.4 kg were prepared as experimental animals. Punctiform burster was used to simulate the landmine, and it was electrically detonated far away to produce landmine blast injuries on unilateral hind limb of rabbits in upright state. The vital signs before and 5min, 15min, 30min, 45min, 1h, 2h, 3h, 6h, 9h and 12h after injuries were recorded. Autopsy of dead animals was performed immediately and the survivors were sacrificed for pathological examination 6h and 12h after the injury. Macroscopic and microscopic changes in the injured limb and distant organs were observed. Fifteen random adult body weights were generated by random number table, and the explosive energy of M14 landmine (about 29g TNT explosive energy was simulated, to compare the ratio of explosive force equivalent to weight calculated between experimental animals and randomly selected adults. Results No significant change in blood pressure was observed at different time points before and after injuries. A broom-like change was found in the injured limb by the general observation. The subareas and pathological changes of injured limb coincided with the typical limb injuries produced by landmine explosion. Damage in different degrees was found in distant organs, and the wound characteristics and injury of major organs were in accordance with the reports of relevant literature. The ratio of explosive equivalent to weight of experimental animals (0.50±0.04g TNT/kg was similar to that of randomly selected adults (0.51±0.05g TNT/kg. Conclusion The present animal model could simulate the landmine explosive injuries, and may be used in research of landmine explosive injuries. DOI: 10.11855/j.issn.0577-7402.2014.01.14

  20. An animal model of spontaneous metabolic syndrome: Nile grass rat.

    Science.gov (United States)

    Noda, Kousuke; Melhorn, Mark I; Zandi, Souska; Frimmel, Sonja; Tayyari, Faryan; Hisatomi, Toshio; Almulki, Lama; Pronczuk, Andrzej; Hayes, K C; Hafezi-Moghadam, Ali

    2010-07-01

    Metabolic syndrome (MetS) is a prevalent and complex disease, characterized by the variable coexistence of obesity, dyslipidemia, hyperinsulinaemia, and hypertension. The alarming rise in the prevalence of metabolic disorders makes it imperative to innovate preventive or therapeutic measures for MetS and its complications. However, the elucidation of the pathogenesis of MetS has been hampered by the lack of realistic models. For example, the existing animal models of MetS, i.e., genetically engineered rodents, imitate certain aspects of the disease, while lacking other important components. Defining the natural course of MetS in a spontaneous animal model of the disease would be desirable. Here, we introduce the Nile grass rat (NGR), Arvicanthis niloticus, as a novel model of MetS. Studies of over 1100 NGRs in captivity, fed normal chow, revealed that most of these animals spontaneously develop dyslipidemia (P<0.01), and hyperglycemia (P<0.01) by 1 yr of age. Further characterization showed that the diabetic rats develop liver steatosis, abdominal fat accumulation, nephropathy, atrophy of pancreatic islets of Langerhans, fatty streaks in the aorta, and hypertension (P<0.01). Diabetic NGRs in the early phase of the disease develop hyperinsulinemia, and show a strong inverse correlation between plasma adiponectin and HbA1c levels (P<0.01). These data indicate that the NGR is a valuable, spontaneous model for exploring the etiology and pathophysiology of MetS as well as its various complications.

  1. Animal Modelling of Interstitial Cystitis/Bladder Pain Syndrome.

    Science.gov (United States)

    Birder, Lori; Andersson, Karl-Erik

    2018-01-01

    The etiology of interstitial cystitis/bladder pain syndrome (IC/BPS) remains elusive and may involve multiple causes. To better understand its pathophysiology, many efforts have been made to create IC/BPS models. Most existing models of IC/BPS strive to recreate bladder-related features by applying noxious intravesical or systemic stimuli to healthy animals. These models are useful to help understand various mechanisms; however, they are limited to demonstrating how the bladder and nervous system respond to noxious stimuli, and are not representative of the complex interactions and pathophysiology of IC/BPS. To study the various factors that may be relevant for IC/BPS, at least 3 different types of animal models are commonly used: (1) bladder-centric models, (2) models with complex mechanisms, and (3) psychological and physical stressors/natural disease models. It is obvious that all aspects of the human disease cannot be mimicked by a single model. It may be the case that several models, each contributing to a piece of the puzzle, are required to recreate a reasonable picture of the pathophysiology and time course of the disease(s) diagnosed as IC/BPS, and thus to identify reasonable targets for treatment.

  2. Sleep and Obesity: A focus on animal models

    Science.gov (United States)

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  3. Imaging of Cerebrovascular Pathology in Animal Models of Alzheimer`s Disease

    Directory of Open Access Journals (Sweden)

    Jan eKlohs

    2014-03-01

    Full Text Available In Alzheimer’s disease (AD, vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.

  4. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to 7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  5. Sex Differences in Animal Models: Focus on Addiction

    Science.gov (United States)

    Becker, Jill B.

    2016-01-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of “craving”) show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794

  6. Neural models on temperature regulation for cold-stressed animals

    Science.gov (United States)

    Horowitz, J. M.

    1975-01-01

    The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.

  7. Large Animal Models for Foamy Virus Vector Gene Therapy

    Directory of Open Access Journals (Sweden)

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  8. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  9. BALANCED SCORE CARD MODEL EVALUATION: THE CASE OF AD BARSKA PLOVIDBA

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2009-06-01

    Full Text Available The paper analyses creation of Balanced Scorecard, which includes environmental protection elements in AD Barska Plovidba. Firstly,the paper presents proposed models that include elements of conventional Balanced scorecard, and then we start with proposed models evaluation. In fact, as implementation and evaluation of the model in AD Barska Plovidba takes longer period of time, its evaluation and final choice is based on ISO 14598 and ISO 9126 with use of AHP method. Usually those standards are used for quality evaluation of software products, computer programs and databases inside organisation. After all, they serve as support for their development and acceptance because they provide quality evaluation during the phase when software is not yet implemented inside organistaion, what we assume as very important.

  10. Modeling and Predicting AD Progression by Regression Analysis of Sequential Clinical Data

    KAUST Repository

    Xie, Qing

    2016-02-23

    Alzheimer\\'s Disease (AD) is currently attracting much attention in elders\\' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD\\'s progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients\\' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer\\'s Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.

  11. Relevance of animal models to human tardive dyskinesia

    Directory of Open Access Journals (Sweden)

    Blanchet Pierre J

    2012-03-01

    Full Text Available Abstract Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.

  12. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    Science.gov (United States)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (pgroup and AD-1 group, but there was no significant difference with AD-2 and AD-3 (p>0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  13. Modelling gait transition in two-legged animals

    Science.gov (United States)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  14. Animal models of social anxiety disorder and their validity criteria.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Quevedo, João

    2014-09-26

    Anxiety disorders pose one of the largest threats to global mental health, and they predominantly emerge early in life. Social anxiety disorder, also known as social phobia, is the most common of all anxiety disorders. Moreover, it has severe consequences and is a disabling disorder that can cause an individual to be unable to perform the tasks of daily life. Social anxiety disorder is associated with the subsequent development of major depression and other mental diseases, as well as increased substance abuse. Although some neurobiological alterations have been found to be associated with social anxiety disorder, little is known about this disorder. Animal models are useful tools for the investigation of this disorder, as well as for finding new pharmacological targets for treatment. Thus, this review will highlight the main animal models of anxiety associated with social phobia. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Gender Differences in Animal Models of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Hagit Cohen

    2011-01-01

    Full Text Available Epidemiological studies report higher prevalence rates of stress-related disorders such as acute stress disorder and post-traumatic stress disorder (PTSD in women than in men following exposure to trauma. It is still not clear whether this greater prevalence in woman reflects a greater vulnerability to stress-related psychopathology. A number of individual and trauma-related characteristics have been hypothesized to contribute to these gender differences in physiological and psychological responses to trauma, differences in appraisal, interpretation or experience of threat, coping style or social support. In this context, the use of an animal model for PTSD to analyze some of these gender-related differences may be of particular utility. Animal models of PTSD offer the opportunity to distinguish between biological and socio-cultural factors, which so often enter the discussion about gender differences in PTSD prevalence.

  16. Altered glial plasticity in animal models for mood disorders.

    Science.gov (United States)

    Czéh, Boldizsár; Fuchs, Eberhard; Flügge, Gabriele

    2013-10-01

    Numerous clinical evidences support the notion that glial changes in fronto-limbic brain areas could contribute to the pathophysiology of mood disorders. Glial alterations have been reported not only in patients, but also in various kinds of animal models for depression. Molecular and cellular data suggest that all the major classes of glial cells are affected in these conditions, including astrocytes, oligodendrocytes, NG2-positive cells and microglia. The aim of this review was to summarize the currently available experimental results demonstrating alterations in glial morphology and functioning in animal models for mood disorders. Better understanding of these glial changes affecting neuronal activity could help us to identify novel targets for the development of antidepressant drugs.

  17. Cardiovascular Changes in Animal Models of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Alexandre M. Lehnen

    2013-01-01

    Full Text Available Metabolic syndrome has been defined as a group of risk factors that directly contribute to the development of cardiovascular disease and/or type 2 diabetes. Insulin resistance seems to have a fundamental role in the genesis of this syndrome. Over the past years to the present day, basic and translational research has used small animal models to explore the pathophysiology of metabolic syndrome and to develop novel therapies that might slow the progression of this prevalent condition. In this paper we discuss the animal models used for the study of metabolic syndrome, with particular focus on cardiovascular changes, since they are the main cause of death associated with the condition in humans.

  18. Animal models of tic disorders: a translational perspective.

    Science.gov (United States)

    Godar, Sean C; Mosher, Laura J; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-12-30

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  20. A novel animal model of dysphagia following stroke.

    Science.gov (United States)

    Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane

    2014-02-01

    Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.

  1. NAFLD, Estrogens, and Physical Exercise: The Animal Model

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lavoie

    2012-01-01

    Full Text Available One segment of the population that is particularly inclined to liver fat accumulation is postmenopausal women. Although nonalcoholic hepatic steatosis is more common in men than in women, after menopause there is a reversal in gender distribution. At the present time, weight loss and exercise are regarded as first line treatments for NAFLD in postmenopausal women, as it is the case for the management of metabolic syndrome. In recent years, there has been substantial evidence coming mostly from the use of the animal model, that indeed estrogens withdrawal is associated with modifications of molecular markers favouring the activity of metabolic pathways ultimately leading to liver fat accumulation. In addition, the use of the animal model has provided physiological and molecular evidence that exercise training provides estrogens-like protective effects on liver fat accumulation and its consequences. The purpose of the present paper is to present information relative to the development of a state of NAFLD resulting from the absence of estrogens and the role of exercise training, emphasizing on the contribution of the animal model on these issues.

  2. Stem cells in animal asthma models: a systematic review.

    Science.gov (United States)

    Srour, Nadim; Thébaud, Bernard

    2014-12-01

    Asthma control frequently falls short of the goals set in international guidelines. Treatment options for patients with poorly controlled asthma despite inhaled corticosteroids and long-acting β-agonists are limited, and new therapeutic options are needed. Stem cell therapy is promising for a variety of disorders but there has been no human clinical trial of stem cell therapy for asthma. We aimed to systematically review the literature regarding the potential benefits of stem cell therapy in animal models of asthma to determine whether a human trial is warranted. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal asthma models. Nineteen studies were selected. They were found to be heterogeneous in their design. Mesenchymal stromal cells were used before sensitization with an allergen, before challenge with the allergen and after challenge, most frequently with ovalbumin, and mainly in BALB/c mice. Stem cell therapy resulted in a reduction of bronchoalveolar lavage fluid inflammation and eosinophilia as well as Th2 cytokines such as interleukin-4 and interleukin-5. Improvement in histopathology such as peribronchial and perivascular inflammation, epithelial thickness, goblet cell hyperplasia and smooth muscle layer thickening was universal. Several studies showed a reduction in airway hyper-responsiveness. Stem cell therapy decreases eosinophilic and Th2 inflammation and is effective in several phases of the allergic response in animal asthma models. Further study is warranted, up to human clinical trials. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Modeling DNA structure and processes through animation and kinesthetic visualizations

    Science.gov (United States)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  4. Vestibular animal models: contributions to understanding physiology and disease.

    Science.gov (United States)

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.

  5. The establishment of animal model of acute massive pulmonary embolism

    International Nuclear Information System (INIS)

    Lu Junliang; Yang Ning; Yang Jianping; Ma Junshan; Zhao Shijun

    2008-01-01

    Objective: To find a way of establishing the model of acute massive pulmonary embolism in dog. Methods: Seven dogs were selected with self-clots made outside the body transferring through a 10 F guiding catheter into the central branch of pulmonary artery via the femoral vein approach on one side and then under pressure monitor of pulmonary artery until the very branch of pulmonary artery was occluded. Blood gas and pulmonary arterial pressure were tested before and after the embolization, Pulmonary artery pressure was continuously monitored together with the examinations of angiography. The bilateral lung specimens were resected for histological examination 12 hours in average after the embolization for comparative study. Results: One animal died of cardiogenic shock after clots injection; the other one presented with tachycardia and premature ventricular beat causing partial recanalization 12 h later. The others were occluded successfully in central branch of pulmonary artery and the pulmonary arterial pressure reached above 50 mmHg after occlusion. Pathologic examination showed the formation of red and mix thrombi within the vascular lumens. Conclusions: This method for making acute massive pulmonary embolism animal model was reliable, feasible and reproducible, and could provide an animal model of acute massive pulmonary embolism for other correlative experiments. (authors)

  6. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.

    2003-12-01

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data represent the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.

  7. Testing flow diversion in animal models: a systematic review.

    Science.gov (United States)

    Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E

    2016-04-01

    Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.

  8. Acute liver failure: a critical appraisal of available animal models.

    Science.gov (United States)

    Bélanger, Mireille; Butterworth, Roger F

    2005-12-01

    The availability of adequate experimental models of acute liver failure (ALF) is of prime importance to provide a better understanding of this condition and allow the development and testing of new therapeutic approaches for patients with ALF. However, the numerous etiologies and complications of ALF contribute to the complexity of this condition and render the development of an ideal experimental model of ALF more difficult than expected. Instead, a number of different models that may be used for the study of specific aspects of ALF have been developed. The most common approaches used to induce ALFin experimental animals are surgical procedures, toxic liver injury,or a combination of both. Despite the high prevalence of viral hepatitis worldwide, very few satisfactory viral models of ALF are available. Established and newly developed models of ALF are reviewed.

  9. Melittin restores proteasome function in an animal model of ALS

    Directory of Open Access Journals (Sweden)

    Lee Sang Min

    2011-06-01

    Full Text Available Abstract Amyotrophic lateral sclerosis (ALS is a paralyzing disorder characterized by the progressive degeneration and death of motor neurons and occurs both as a sporadic and familial disease. Mutant SOD1 (mtSOD1 in motor neurons induces vulnerability to the disease through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport- and growth factor signaling, excitotoxicity, and neuro-inflammation. Melittin is a 26 amino acid protein and is one of the components of bee venom which is used in traditional Chinese medicine to inhibit of cancer cell proliferation and is known to have anti-inflammatory and anti-arthritic effects. The purpose of the present study was to determine if melittin could suppress motor neuron loss and protein misfolding in the hSOD1G93A mouse, which is commonly used as a model for inherited ALS. Meltittin was injected at the 'ZuSanLi' (ST36 acupuncture point in the hSOD1G93A animal model. Melittin-treated animals showed a decrease in the number of microglia and in the expression level of phospho-p38 in the spinal cord and brainstem. Interestingly, melittin treatment in symptomatic ALS animals improved motor function and reduced the level of neuron death in the spinal cord when compared to the control group. Furthermore, we found increased of α-synuclein modifications, such as phosphorylation or nitration, in both the brainstem and spinal cord in hSOD1G93A mice. However, melittin treatment reduced α-synuclein misfolding and restored the proteasomal activity in the brainstem and spinal cord of symptomatic hSOD1G93A transgenic mice. Our research suggests a potential functional link between melittin and the inhibition of neuroinflammation in an ALS animal model.

  10. Impact of Animated Spokes-Characters in Print Direct-to-Consumer Prescription Drug Advertising: An Elaboration Likelihood Model Approach.

    Science.gov (United States)

    Bhutada, Nilesh S; Rollins, Brent L; Perri, Matthew

    2017-04-01

    A randomized, posttest-only online survey study of adult U.S. consumers determined the advertising effectiveness (attitude toward ad, brand, company, spokes-characters, attention paid to the ad, drug inquiry intention, and perceived product risk) of animated spokes-characters in print direct-to-consumer (DTC) advertising of prescription drugs and the moderating effects of consumers' involvement. Consumers' responses (n = 490) were recorded for animated versus nonanimated (human) spokes-characters in a fictitious DTC ad. Guided by the elaboration likelihood model, data were analyzed using a 2 (spokes-character type: animated/human) × 2 (involvement: high/low) factorial multivariate analysis of covariance (MANCOVA). The MANCOVA indicated significant main effects of spokes-character type and involvement on the dependent variables after controlling for covariate effects. Of the several ad effectiveness variables, consumers only differed on their attitude toward the spokes-characters between the two spokes-character types (specifically, more favorable attitudes toward the human spokes-character). Apart from perceived product risk, high-involvement consumers reacted more favorably to the remaining ad effectiveness variables compared to the low-involvement consumers, and exhibited significantly stronger drug inquiry intentions during their next doctor visit. Further, the moderating effect of consumers' involvement was not observed (nonsignificant interaction effect between spokes-character type and involvement).

  11. Modeling radiative transfer with the doubling and adding approach in a climate GCM setting

    Science.gov (United States)

    Lacis, A. A.

    2017-12-01

    The nonlinear dependence of multiply scattered radiation on particle size, optical depth, and solar zenith angle, makes accurate treatment of multiple scattering in the climate GCM setting problematic, due primarily to computational cost issues. In regard to the accurate methods of calculating multiple scattering that are available, their computational cost is far too prohibitive for climate GCM applications. Utilization of two-stream-type radiative transfer approximations may be computationally fast enough, but at the cost of reduced accuracy. We describe here a parameterization of the doubling/adding method that is being used in the GISS climate GCM, which is an adaptation of the doubling/adding formalism configured to operate with a look-up table utilizing a single gauss quadrature point with an extra-angle formulation. It is designed to closely reproduce the accuracy of full-angle doubling and adding for the multiple scattering effects of clouds and aerosols in a realistic atmosphere as a function of particle size, optical depth, and solar zenith angle. With an additional inverse look-up table, this single-gauss-point doubling/adding approach can be adapted to model fractional cloud cover for any GCM grid-box in the independent pixel approximation as a function of the fractional cloud particle sizes, optical depths, and solar zenith angle dependence.

  12. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome

    DEFF Research Database (Denmark)

    Sangild, Per Torp; Ney, Denise M; Sigalet, David L

    2014-01-01

    help but careful evaluation of the cellular mechanisms, safety and translational relevance of new procedures are required. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult...... hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g. PN, milk diets, long/short chain lipids, pre- and probiotics). Conversely......, newborn pigs and weanling rats represent a translational advantage for infant SBS due to their immature intestine. A balance among practical, economical, experimental and ethical constraints determines the choice of SBS model for each clinical or basic research question....

  13. Subcritical set coupled to accelerator (ADS) for transmutation of radioactive wastes: an approach of computational modelling

    International Nuclear Information System (INIS)

    Torres, Mirta B.; Dominguez, Dany S.

    2013-01-01

    Nuclear fission devices coupled to particle accelerators ADS are being widely studied. These devices have several applications, including nuclear waste transmutation and producing hydrogen, both applications with strong social and environmental impact. The essence of this work was to model an ADS geometry composed of small TRISO fuel loaded with a mixture of MOX uranium and thorium target material spallation of uranium, using methods of computational modeling probabilistic, in particular the MCNPX 2.6e program to evaluate the physical characteristics of the device and their ability to transmutation. As a result of the characterization of the spallation target, it can be concluded that production of neutrons per incident proton increases with increasing dimensions of the spallation target (thickness and radius), until it reached the maximum production of neutrons per incident proton or call the region saturation. The results obtained in modeling the ADS device bed kind of balls with respect to isotopic variation in the isotopes of plutonium and minor actinides considered in the analysis revealed that accumulation of mass of the isotopes of plutonium and minor actinides increase for subcritical configuration considered. In the particular case of the isotope 239 Pu, it is observed a reduction of the mass from the time of burning of 99 days. The increase of power in the core, whereas tungsten spallation targets and Lead is among the key future developments of this work

  14. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  15. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  16. Basic mechanisms of catastrophic epilepsy – overview from animal models

    Science.gov (United States)

    Galanopoulou, Aristea S.

    2013-01-01

    Infantile spasms are age-specific seizures of infantile epileptic encephalopathies that are usually associated with poor epilepsy and neurodevelopmental outcomes. The current treatments are not always effective and may be associated with significant side effects. Various mechanisms have been proposed as pathogenic for infantile spasms, including cortical or brainstem dysfunction, disruption of normal cortical-subcortical communications, genetic defects, inflammation, stress, developmental abnormalities. Many of these have been recently tested experimentally, resulting into the emergence of several animal models of infantile spasms. The stress theory of spasms yielded the corticotropin releasing hormone (CRH) induced model, which showed the higher proconvulsant potency of CRH in developing rats, although only limbic seizures were observed. Models of acute induction of infantile spasms in rodents include the N-methyl-D-aspartate (NMDA) model of emprosthotonic seizures, the prenatal betamethasone and prenatal stress variants of the NMDA model, and the γ-butyrolactone induced spasms in a Down’s syndrome mouse model. Chronic rodent models of infantile spasms include the tetrodotoxin model and the multiple-hit models in rats, as well as two genetic mouse models of interneuronopathies with infantile spasms due to loss of function of the aristaless X-linked homeobox related gene (ARX). This review discusses the emerging mechanisms for generation of infantile spasms and their associated chronic epileptic and dyscognitive phenotype as well as the recent progress in identifying pathways to better treat this epileptic encephalopathy. PMID:23312951

  17. Opinion Impact Models and Opinion Consensus Methods in Ad Hoc Tactical Social Networks

    OpenAIRE

    Li, Demin; Zhou, Jie; Zhu, Jingjuan; Wang, Jiacun

    2013-01-01

    Ad hoc social networks are special social networks, such as ad hoc tactical social networks, ad hoc firefighter social networks, and ad hoc vehicular social networks. The social networks possess both the properties of ad hoc network and social network. One of the challenge problems in ad hoc social networks is opinion impact and consensus, and the opinion impact plays a key role for information fusion and decision support in ad hoc social networks. In this paper, consider the impact of physic...

  18. Development of virtual hands using animation software and graphical modelling

    International Nuclear Information System (INIS)

    Oliveira, Erick da S.; Junior, Alberico B. de C.

    2016-01-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  19. Animal models of gene-environment interactions in schizophrenia.

    Science.gov (United States)

    Ayhan, Yavuz; Sawa, Akira; Ross, Christopher A; Pletnikov, Mikhail V

    2009-12-07

    The pathogenesis of schizophrenia and related mental illnesses likely involves multiple interactions between susceptibility genes of small effects and environmental factors. Gene-environment interactions occur across different stages of neurodevelopment to produce heterogeneous clinical and pathological manifestations of the disease. The main obstacle for mechanistic studies of gene-environment interplay has been the paucity of appropriate experimental systems for elucidating the molecular pathways that mediate gene-environment interactions relevant to schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data from animal studies allow us to suggest a new approach to gene-environment interactions in schizophrenia. We propose that animal models based on identified genetic mutations and measurable environment factors will help advance studies of the molecular mechanisms of gene-environment interplay.

  20. Large animal models and new therapies for glycogen storage disease.

    Science.gov (United States)

    Brooks, Elizabeth D; Koeberl, Dwight D

    2015-05-01

    Glycogen storage diseases (GSD), a unique category of inherited metabolic disorders, were first described early in the twentieth century. Since then, the biochemical and genetic bases of these disorders have been determined, and an increasing number of animal models for GSD have become available. At least seven large mammalian models have been developed for laboratory research on GSDs. These models have facilitated the development of new therapies, including gene therapy, which are undergoing clinical translation. For example, gene therapy prolonged survival and prevented hypoglycemia during fasting for greater than one year in dogs with GSD type Ia, and the need for periodic re-administration to maintain efficacy was demonstrated in that dog model. The further development of gene therapy could provide curative therapy for patients with GSD and other inherited metabolic disorders.

  1. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  2. Current understanding of hypospadias: relevance of animal models.

    Science.gov (United States)

    Cunha, Gerald R; Sinclair, Adriane; Risbridger, Gail; Hutson, John; Baskin, Laurence S

    2015-05-01

    Hypospadias is a congenital abnormality of the penile urethra with an incidence of approximately 1:200-1:300 male births, which has doubled over the past three decades. The aetiology of the overwhelming majority of hypospadias remains unknown but appears to be a combination of genetic susceptibility and prenatal exposure to endocrine disruptors. Reliable animal models of hypospadias are required for better understanding of the mechanisms of normal penile urethral formation and hence hypospadias. Mice and/or rats are generally used for experimental modelling of hypospadias, however these do not fully reflect the human condition. To use these models successfully, researchers must understand the similarities and differences between mouse, rat and human penile anatomy as well as the normal morphogenetic mechanisms of penile development in these species. Despite some important differences, numerous features of animal and human hypospadias are shared: the prevalence of distal penile malformations; disruption of the urethral meatus; disruption of urethra-associated erectile bodies; and a common mechanism of impaired epithelial fusion events. Rat and mouse models of hypospadias are crucial to our understanding of hypospadias to ultimately reduce its incidence through better preventive strategies.

  3. Understanding the Pathogenesis of Angelman Syndrome through Animal Models

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Jana

    2012-01-01

    Full Text Available Angelman syndrome (AS is a neurodevelopmental disorder characterized by severe mental retardation, lack of speech, ataxia, susceptibility to seizures, and unique behavioral features such as easily provoked smiling and laughter and autistic features. The disease is primarily caused by deletion or loss-of-function mutations of the maternally inherited UBE3A gene located within chromosome 15q11-q13. The UBE3A gene encodes a 100 kDa protein that functions as ubiquitin ligase and transcriptional coactivator. Emerging evidence now indicates that UBE3A plays a very important role in synaptic function and in regulation of activity-dependent synaptic plasticity. A number of animal models for AS have been generated to understand the disease pathogenesis. The most widely used model is the UBE3A-maternal-deficient mouse that recapitulates most of the essential features of AS including cognitive and motor abnormalities. This paper mainly discusses various animal models of AS and how these models provide fundamental insight into understanding the disease biology for potential therapeutic intervention.

  4. Understanding the Pathogenesis of Angelman Syndrome through Animal Models

    Science.gov (United States)

    Jana, Nihar Ranjan

    2012-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe mental retardation, lack of speech, ataxia, susceptibility to seizures, and unique behavioral features such as easily provoked smiling and laughter and autistic features. The disease is primarily caused by deletion or loss-of-function mutations of the maternally inherited UBE3A gene located within chromosome 15q11-q13. The UBE3A gene encodes a 100 kDa protein that functions as ubiquitin ligase and transcriptional coactivator. Emerging evidence now indicates that UBE3A plays a very important role in synaptic function and in regulation of activity-dependent synaptic plasticity. A number of animal models for AS have been generated to understand the disease pathogenesis. The most widely used model is the UBE3A-maternal-deficient mouse that recapitulates most of the essential features of AS including cognitive and motor abnormalities. This paper mainly discusses various animal models of AS and how these models provide fundamental insight into understanding the disease biology for potential therapeutic intervention. PMID:22830052

  5. The VIS-AD data model: Integrating metadata and polymorphic display with a scientific programming language

    Science.gov (United States)

    Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.

    1994-01-01

    The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic.

  6. A Leasing Model to Deal with Partial Failures in Mobile Ad Hoc Networks

    Science.gov (United States)

    Gonzalez Boix, Elisa; van Cutsem, Tom; Vallejos, Jorge; de Meuter, Wolfgang; D'Hondt, Theo

    In mobile ad hoc networks (MANETs) many partial failures are the result of temporary network partitions due to the intermittent connectivity of mobile devices. Some of these failures will be permanent and require application-level failure handling. However, it is impossible to distinguish a permanent from a transient failure. Leasing provides a solution to this problem based on the temporal restriction of resources. But to date no leasing model has been designed specifically for MANETs. In this paper, we identify three characteristics required for a leasing model to be usable in a MANET, discuss the issues with existing leasing models and then propose the leased object references model, which integrates leasing with remote object references. In addition, we describe an implementation of the model in the programming language AmbientTalk. Leased object references provide an extensible framework that allows programmers to express their own leasing patterns and enables both lease holders (clients) and lease grantors (services) to deal with permanent failures.

  7. A LIDAR-assisted model predictive controller added on a traditional wind turbine controller

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Hansen, Morten Hartvig

    2016-01-01

    LIDAR-assisted collective pitch control shows promising results for load reduction in the full load operating region of horizontal axis wind turbines (WT). Utilizing LIDARs in WT control can be approached in different ways; One method is to design the WT controller from ground up based on the LIDAR...... measurements. Nevertheless, to make the LIDAR-assisted controller easily implementable on existing wind turbines, one can design a controller that is added to the original and existing WT controller. This add-on solution makes it easier to prove the applicability and performance of the LIDAR-assisted WT...... control and opens the market of retrofitting existing wind turbines with the new technology. In this paper, we suggest a model predictive controller (MPC) that is added to the basic gain scheduled PI controller of a WT to enhance the performance of the closed loop system using LIDAR measurements...

  8. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  9. Using Computational and Mechanical Models to Study Animal Locomotion

    Science.gov (United States)

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  10. Using computational and mechanical models to study animal locomotion.

    Science.gov (United States)

    Miller, Laura A; Goldman, Daniel I; Hedrick, Tyson L; Tytell, Eric D; Wang, Z Jane; Yen, Jeannette; Alben, Silas

    2012-11-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms' performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: "Integrating living and physical systems."

  11. Utility of Small Animal Models of Developmental Programming.

    Science.gov (United States)

    Reynolds, Clare M; Vickers, Mark H

    2018-01-01

    Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.

  12. Thymoma related myasthenia gravis in humans and potential animal models.

    Science.gov (United States)

    Marx, Alexander; Porubsky, Stefan; Belharazem, Djeda; Saruhan-Direskeneli, Güher; Schalke, Berthold; Ströbel, Philipp; Weis, Cleo-Aron

    2015-08-01

    Thymoma-associated Myasthenia gravis (TAMG) is one of the anti-acetylcholine receptor MG (AChR-MG) subtypes. The clinico-pathological features of TAMG and its pathogenesis are described here in comparison with pathogenetic models suggested for the more common non-thymoma AChR-MG subtypes, early onset MG and late onset MG. Emphasis is put on the role of abnormal intratumorous T cell selection and activation, lack of intratumorous myoid cells and regulatory T cells as well as deficient expression of the autoimmune regulator (AIRE) by neoplastic thymic epithelial cells. We review spontaneous and genetically engineered thymoma models in a spectrum of animals and the extensive clinical and immunological overlap between canine, feline and human TAMG. Finally, limitations and perspectives of the transplantation of human and murine thymoma tissue into nude mice, as potential models for TAMG, are addressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Validity and Variability of Animal Models Used in Dentistry

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Saghiri

    2015-01-01

    Full Text Available Background: Animal models have contributed to dental literature for several decades. The major aim of this review was to outline tooth development stages in mice, and attempt to addressing potential strain differences. A literature review was performed using electronic and hand-searching methods for the animal models in dentistry with special emphasis on mice and dentistry. Root canal development in both C57BL/6 and BALB/c strains were investigated. There are a number of published reports regarding the morphogenesis and molecular reaction and maturation stages of mice molars. We observed some similarity between the mice and human odontegeneis as primary factor for tooth development. Although mice may present some technical challenges, including the small size of the mouse molars, they have similar stages as humans for molar development, and can be used to monitor the effects of various biomaterials, regeneration, and remodeling. Thus, mice provide an ideal alternative model to study developmental and regenerative processes in dentistry.

  14. Steroid-associated osteonecrosis animal model in rats

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    2018-04-01

    Full Text Available Summary: Objective: Established preclinical disease models are essential for not only studying aetiology and/or pathophysiology of the relevant diseases but more importantly also for testing prevention and/or treatment concept(s. The present study proposed and established a detailed induction and assessment protocol for a unique and cost-effective preclinical steroid-associated osteonecrosis (SAON in rats with pulsed injections of lipopolysaccharide (LPS and methylprednisolone (MPS. Methods: Sixteen 24-week-old male Sprague–Dawley rats were used to induce SAON by one intravenous injection of LPS (0.2 mg/kg and three intraperitoneal injections of MPS (100 mg/kg with a time interval of 24 hour, and then, MPS (40 mg/kg was intraperitoneally injected three times a week from week 2 until sacrifice. Additional 12 rats were used as normal controls. Two and six weeks after induction, animals were scanned by metabolic dual energy X-ray absorptiometry for evaluation of tissue composition; serum was collected for bone turnover markers, Microfil perfusion was performed for angiography, the liver was collected for histopathology and bilateral femora and bilateral tibiae were collected for histological examination. Results: Three rats died after LPS injection, i.e., with 15.8% (3/19 mortality. Histological evaluation showed 100% incidence of SAON at week 2. Dual energy X-ray absorptiometry showed significantly higher fat percent and lower lean mass in SAON group at week 6. Micro-computed tomography (Micro-CT showed significant bone degradation at proximal tibia 6 weeks after SAON induction. Angiography illustrated significantly less blood vessels in the proximal tibia and significantly more leakage particles in the distal tibia 2 weeks after SAON induction. Serum amino-terminal propeptide of type I collagen and osteocalcin were significantly lower at both 2 and 6 weeks after SAON induction, and serum carboxy-terminal telopeptide was significantly

  15. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy

  16. Chronic Anatabine Treatment Reduces Alzheimer's Disease (AD-Like Pathology and Improves Socio-Behavioral Deficits in a Transgenic Mouse Model of AD.

    Directory of Open Access Journals (Sweden)

    Megha Verma

    Full Text Available Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe of Alzheimer's disease (AD which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.

  17. Shigella vaccine development: prospective animal models and current status.

    Science.gov (United States)

    Kim, Yeon-Jeong; Yeo, Sang-Gu; Park, Jae-Hak; Ko, Hyun-Jeong

    2013-01-01

    Shigella was first discovered in 1897 and is a major causative agent of dysenteric diarrhea. The number of affected patients has decreased globally because of improved sanitary conditions; however, Shigella still causes serious problems in many subjects, including young children and the elderly, especially in developing countries. Although antibiotics may be effective, a vaccine would be the most powerful solution to combat shigellosis because of the emergence of drug-resistant strains. However, the development of a vaccine is hampered by several problems. First, there is no suitable animal model that can replace human-based studies for the investigation of the in vivo mechanisms of Shigella vaccines. Mouse, guinea pig, rat, rabbit, and nonhuman primates could be used as models for shigellosis, but they do not represent human shigellosis and each has its own weaknesses. However, a recent murine model based on peritoneal infection with virulent S. flexneri 2a is promising. Moreover, although the inflammatory responses and mechanisms such as pathogenassociated molecular patterns and danger-associated molecular patterns have been studied, the pathology and immunology of Shigella are still not clearly defined. Despite these obstacles, many vaccine candidates have been developed, including live attenuated, killed whole cells, conjugated, and subunit vaccines. The development of Shigella vaccines also demands considerations of the cost, routes of administration, ease of storage (stability), cross-reactivity, safety, and immunogenicity. The main aim of this review is to provide a detailed introduction to the many promising vaccine candidates and animal models currently available, including the newly developed mouse model.

  18. The animal model determines the results of Aeromonas virulence factors

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2016-10-01

    Full Text Available The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of A. hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analysed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1∆vapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild type. Variations between models were evidenced using the AH-1∆rmlB, which lacks the O-antigen lipopolysaccharide (LPS, and the AH-1∆wahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim and the AH-1::motX (non-motile but producing flagella. They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study

  19. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  20. Tissue and Animal Models of Sudden Cardiac Death

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Houser, Steven R.; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell derived Cardiomyocytes (iPSC-CMs) resemble, but are not identical, to adult human cardiomyocytes, and provide a new platform for studying arrhythmic disorders leading to SCD. A variety of platforms exist to phenotype cellular models including conventional and automated patch clamp, multi-electrode array, and computational modeling. iPSC-CMs have been used to study Long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and other hereditary cardiac disorders. Although iPSC-CMs are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of SCD. PMID:26044252

  1. Animal Models of Schizophrenia with a Focus on Models Targeting NMDA Receptors

    Czech Academy of Sciences Publication Activity Database

    Svojanovská, Markéta; Stuchlík, Aleš

    2015-01-01

    Roč. 4, č. 1 (2015), s. 3-18 ISSN 1805-7225 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : schizophrenia * animal models * pharmacological models * genetic models * neurodevelopmental models * preclinical studies Subject RIV: FH - Neurology

  2. Old and new synthetic cannabinoids: lessons from animal models.

    Science.gov (United States)

    Zanda, Mary Tresa; Fattore, Liana

    2018-02-01

    Synthetic cannabinoids have long been studied for their therapeutic potentials. However, during the last decade, new generations of synthetic cannabinoid agonists appeared on the drug market. These new psychoactive substances are currently sold as 'marijuana-like' products as they claim to mimic the effects of the psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC). Yet, their effects are more intense and potent than THC, typically last longer and are often associated to serious psychiatric consequences. Animal models of drug addiction are frequently used in preclinical research to assess the abuse potential of new compounds, evaluate drug positive reinforcing effects and analyze drug-induced behaviors. Some of these protocols have been used recently to study the newly synthesized cannabinoid agonists and have started elucidating their pharmacology and actions in the brain. The aim of this review is to summarize the major findings reported by animal studies that tested synthetic cannabinoids of first, second, and third generation by using self-administration and reinstatement models, drug discrimination and conditioned place preference procedures. Altogether, behavioral studies clearly indicate that synthetic cannabinoids possess abuse liability, are likely to activate the brain reward circuit and induce positive subjective and reinforcing effects.

  3. Cytokine networks in animal models of colitis-associated cancer.

    Science.gov (United States)

    Antoniou, Efstathios; Margonis, Georgios Antonios; Angelou, Anastasios; Zografos, George C; Pikoulis, Emmanouil

    2015-01-01

    It is well-known that inflammatory bowel disease (IBD) poses an increased, yet not definitely estimated, risk of colitis-associated colon cancer (CAC), which is considered a more aggressive and distinct in both genetic and molecular levels clinical entity compared to sporadic colorectal cancer (CRC). The present review discusses the cytokine networks involved in CAC-based translational findings from suitable animal models of the disease. Moreover, we summarize the most prominent data concerning the role of Th1, Th2, Th17 and anti-inflammatory cytokines in the pathogenesis of CAC. Last, we briefly address the controversies between basic science findings in IBD and CAC and suggest further directions regarding research on cytokines. This review should serve as a primer for clinicians and surgeons to understand the rapidly evolving field of cytokines in the context of CAC. The MEDLINE database was thoroughly searched using the keywords: cytokines, colitis-associated cancer, animal models, carcinogenesis. Additional articles were gathered and evaluated. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Experimental animal data and modeling of late somatic effects

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable

  5. Minimally invasive resynchronization pacemaker: a pediatric animal model.

    Science.gov (United States)

    Jordan, Christopher P; Wu, Kyle; Costello, John P; Ishibashi, Nobuyuki; Krieger, Axel; Kane, Timothy D; Kim, Peter; Berul, Charles I

    2013-12-01

    We developed a minimally invasive epicardial pacemaker implantation method for infants and congenital heart disease patients for whom a transvenous approach is contraindicated. The piglet is an ideal model for technical development. In 5 piglets we introduced a needle through subxiphoid approach under thoracoscopic guidance, inserting a wire into the pericardial space. Pacing leads were affixed to the left ventricular free wall and left atrial appendage. After verifying functionality with atrial and ventricular pacing and sensing, animals were euthanized. Pacemaker monitoring occurred daily for 4 days in the fifth animal. Through minimally invasive pericardial access, we directly visualized and fixated pacing leads to the left ventricle and left atrial appendage, successfully pacing atrium and ventricle. Epicardial structures were visualized. One piglet had contralateral pneumothorax, which resolved with needle decompression. No other adverse events occurred. Minimally invasive epicardial pacemaker implantation in an infant model is feasible and effective. This innovation may be of value for pacing and resynchronization in infants and congenital heart disease patients. Survival studies with permanent generator implantation are under way. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Experimental animal data and modeling of late somatic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable.

  7. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Francesca Sciandra

    2015-01-01

    Full Text Available In skeletal muscle, dystroglycan (DG is the central component of the dystrophin-glycoprotein complex (DGC, a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1 have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.

  8. Dissecting OCD Circuits: From Animal Models to Targeted Treatments

    Science.gov (United States)

    Ahmari, Susanne E.; Dougherty, Darin D.

    2015-01-01

    Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989

  9. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  10. Behavior of lyophilized biological valves in a chronic animal model.

    Science.gov (United States)

    Maizato, Marina J S; Taniguchi, Fabio P; Ambar, Rafael F; Pitombo, Ronaldo N M; Leirner, Adolfo A; Cestari, Idágene A; Stolf, Noedir A G

    2013-11-01

    Glutaraldehyde is used in order to improve the mechanical and immunogenic properties of biological tissues, such as bovine pericardium membranes, used to manufacture heart valve bioprostheses. Lyophilization, also known as freeze-drying, preserves biological material without damage by freezing the water content and removing ice by sublimation. Through this process, dehydrated products of high quality may be obtained; also, the material may be easily handled. The lyophilization process reduces aldehyde residues in biological tissue previously treated with glutaraldehyde, thus promoting reduction of cytotoxicity, increasing resistance to inflammation, and possibly decreasing the potential for tissue calcification. The objective of this study was to chronically evaluate the calcification of bovine pericardium heart valve prostheses, previously lyophilized or not, in an animal model. Six-month-old sheep received implants of lyophilized and unlyophilized heart valve prostheses in the pulmonary position with right bypass. The study followed 16 animals for a period of 90 days. Right ventricle-pulmonary artery (RV/PA) transvalvular pressure gradient was evaluated before and immediately after implantation and before explantation, as were tissue calcium, inflammation intensity, and thrombosis and pannus formation. The t-test was used for statistical analysis. Twelve animals survived to the end of the experiment, but one of the animals in the control group had endocarditis and was excluded from the data. Four animals died early. The mean RV/PA gradient on implantation was 2.0 ± 1.6 mm Hg in the control group and 6.2 ± 4.1 mm Hg in the lyophilized group (P = 0.064). This mean gradient increased at explantation to 7.7 ± 3.9 mm Hg and 8.6 ± 5.8 mm Hg, respectively (P = 0.777). The average calcium content in the tissue leaflets after 3 months was 21.6 ± 39.1 mg Ca(2+)/g dry weight in the control group, compared with an average content of 41.2 ± 46.9 mg Ca(2+)/g dry weight

  11. Toxin-Induced and Genetic Animal Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs, but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models.

  12. Nicotine addiction: studies about vulnerability, epigenesis and animal models

    Directory of Open Access Journals (Sweden)

    Bernabeu, Ramon

    2013-07-01

    Full Text Available This article is a summary about the current research of nicotine effects on the nervous system and its relationship to the generation of an addictive behavior. Like other drugs of abuse, nicotine activates the reward pathway, which in turn is involved in certain psychiatric diseases. There are individuals who have a high vulnerability to nicotine addiction. This may be due to genetic and epigenetic factors and/or the environment. In this review, we described some epigenetic factors that may be involved in those phenomena. The two animal models most widely used for studying the reinforcing effects of nicotine are: self-administration and conditioning place preference (CPP. Here, we emphasized the CPP, due to its potential application in humans. In addition, we described the locomotor activity model (as a measure of psychostimulant effects to study vulnerability to drugs of abuse

  13. [Morphological analysis of the hippocampal region associated with an innate behaviour task in the transgenic mouse model (3xTg-AD) for Alzheimer disease].

    Science.gov (United States)

    Orta-Salazar, E; Feria-Velasco, A; Medina-Aguirre, G I; Díaz-Cintra, S

    2013-10-01

    Different animal models for Alzheimer disease (AD) have been designed to support the hypothesis that the neurodegeneration (loss of neurons and synapses with reactive gliosis) associated with Aβ and tau deposition in these models is similar to that in the human brain. These alterations produce functional changes beginning with decreased ability to carry out daily and social life activities, memory loss, and neuropsychiatric disorders in general. Neuronal alteration plays an important role in early stages of the disease, especially in the CA1 area of hippocampus in both human and animal models. Two groups (WT and 3xTg-AD) of 11-month-old female mice were used in a behavioural analysis (nest building) and a morphometric analysis of the CA1 region of the dorsal hippocampus. The 3xTg-AD mice showed a 50% reduction in nest quality associated with a significant increase in damaged neurons in the CA1 hippocampal area (26%±6%, Pde Neurología. Published by Elsevier Espana. All rights reserved.

  14. Large Animal Stroke Models vs. Rodent Stroke Models, Pros and Cons, and Combination?

    Science.gov (United States)

    Cai, Bin; Wang, Ning

    2016-01-01

    Stroke is a leading cause of serious long-term disability worldwide and the second leading cause of death in many countries. Long-time attempts to salvage dying neurons via various neuroprotective agents have failed in stroke translational research, owing in part to the huge gap between animal stroke models and stroke patients, which also suggests that rodent models have limited predictive value and that alternate large animal models are likely to become important in future translational research. The genetic background, physiological characteristics, behavioral characteristics, and brain structure of large animals, especially nonhuman primates, are analogous to humans, and resemble humans in stroke. Moreover, relatively new regional imaging techniques, measurements of regional cerebral blood flow, and sophisticated physiological monitoring can be more easily performed on the same animal at multiple time points. As a result, we can use large animal stroke models to decrease the gap and promote translation of basic science stroke research. At the same time, we should not neglect the disadvantages of the large animal stroke model such as the significant expense and ethical considerations, which can be overcome by rodent models. Rodents should be selected as stroke models for initial testing and primates or cats are desirable as a second species, which was recommended by the Stroke Therapy Academic Industry Roundtable (STAIR) group in 2009.

  15. Gastroprotective activity of Zanthoxylum rhoifolium Lam. in animal models.

    Science.gov (United States)

    Freitas, F F B P; Fernandes, H B; Piauilino, C A; Pereira, S S; Carvalho, K I M; Chaves, M H; Soares, P M G; Miura, L M C V; Leite, J R S A; Oliveira, R C M; Oliveira, F A

    2011-09-01

    The stem barks of Zanthoxylum rhoifolium Lam. (Rutaceae), locally known as "mamica de cadela", are popularly used in dyspepsies, stomachic, tonic, antitumoral, antipyretic and are used in treating flatulence and colic. The objective of this study was to evaluate the gastroprotective effect of the ethanolic extract of Zanthoxylum rhoifolium (EEZR) stem barks in acute gastric lesion models, investigating their possible mechanisms. Mice were used for the evaluation of the acute toxicity, and mice and rats to study the gastroprotective activity. The gastroprotective action of EEZR was analyzed in the absolute ethanol, HCl/ethanol and indomethacin-induced gastric lesion models in mice, hypothermic-restraint stress, and ischemia/reperfusion in rats. In the investigation of the gastroprotective mechanisms of EEZR, the participation of the NO-synthase pathway, ATP-sensitive potassium channels (K(ATP)), the levels of the non-protein sulfhydril groups (NP-SH) and the catalase activity using the ethanol-induced gastric mucosa lesion model and the quantification of the gastric mucus and the antisecretory activity through pylorus ligature model in rats were analyzed. The animals did not present any signs of acute toxicity for the EEZR (up to the 4 g/kg dose, po), and it was not possible to calculate the DL(50). EEZR (125-500 mg/kg) exhibited a significant gastroprotective effect in absolute ethanol, HCl/ethanol, hypothermic-restraint stress, and ischemia/reperfusion-induced gastric lesion models. EEZR (250 and 500 mg/kg) exhibited still a gastroprotective activity in the indomethacin-induced ulcer model. Gastroprotection of EEZR was significantly decreased in pre-treated mice with l-NAME or glibenclamide, the respective nitric oxide synthase and K(ATP) channels inhibitors. Our studies revealed that EEZR (500 mg/kg) prevented the decrease of the non-protein sulfhydril groups (NP-SH) and increased the catalase levels in ethanol-treated animals. Furthermore, the extract (500 mg

  16. AdS wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, A. [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Lue, H. [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Interdisciplinary Center of Theoretical Studies, USTC, Hefei, Anhui 230026 (China); Mei, Jianwei [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Pope, C.N. [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)], E-mail: pope@physics.tamu.edu

    2009-03-21

    We obtain a large class of smooth Lorentzian p-brane wormholes in supergravities in various dimensions. They connect two asymptotically flat spacetimes. In cases where there is no dilaton involved in the solution, the wormhole can connect an AdS{sub n}xS{sup m} in one asymptotic region to a flat spacetime in the other. We obtain explicit examples for (n,m)=(4,7),(7,4),(5,5),(3,3),(3,2). These geometries correspond to field theories with UV conformal fixed points, and they undergo decompactification in the IR region. In the case of AdS{sub 3}, we compute the central charge of the corresponding conformal field theory.

  17. Is it acceptable to use animals to model obese humans?

    DEFF Research Database (Denmark)

    Lund, Thomas Bøker; Sørensen, Thorkild I.A.; Olsson, I. Anna S.

    2014-01-01

    for the view that this form of animal use, unlike some other forms of animal-based medical research, cannot be defended. The first argument leans heavily on the notion that people themselves are responsible for developing obesity and so-called 'lifestyle' diseases; the second involves the claim that animal......Animal use in medical research is widely accepted on the basis that it may help to save human lives and improve their quality of life. Recently, however, objections have been made specifically to the use of animals in scientific investigation of human obesity. This paper discusses two arguments...... of animals in obesity research as especially problematic....

  18. Null-polygonal minimal surfaces in AdS{sub 4} from perturbed W minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ito, Katsushi [Tokyo Institute of Technology (Japan). Dept. of Physics; Satoh, Yuji [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics

    2012-11-15

    We study the null-polygonal minimal surfaces in AdS{sub 4}, which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4){sub 4}/U(1){sup n-5} generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS{sub 3} case.

  19. Animal models for radiation injury, protection and therapy.

    Science.gov (United States)

    Augustine, Alison Deckhut; Gondré-Lewis, Timothy; McBride, William; Miller, Lara; Pellmar, Terry C; Rockwell, Sara

    2005-07-01

    Current events throughout the world underscore the growing threat of different forms of terrorism, including radiological or nuclear attack. Pharmaceutical products and other approaches are needed to protect the civilian population from radiation and to treat those with radiation-induced injuries. In the event of an attack, radiation exposures will be heterogeneous in terms of both dose and quality, depending on the type of device used and each victim's location relative to the radiation source. Therefore, methods are needed to protect against and treat a wide range of early and slowly developing radiation-induced injuries. Equally important is the development of rapid and accurate biodosimetry methods for estimating radiation doses to individuals and guiding clinical treatment decisions. Acute effects of high-dose radiation include hematopoietic cell loss, immune suppression, mucosal damage (gastrointestinal and oral), and potential injury to other sites such as the lung, kidney and central nervous system (CNS). Long-term effects, as a result of both high- and low-dose radiation, include dysfunction or fibrosis in a wide range of organs and tissues and cancer. The availability of appropriate types of animal models, as well as adequate numbers of animals, is likely to be a major bottleneck in the development of new or improved radioprotectors, mitigators and therapeutic agents to prevent or treat radiation injuries and of biodosimetry methods to measure radiation doses to individuals.

  20. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Lewis, Russell E; Verweij, Paul E

    2017-08-15

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Neurorestoratology evidence in an animal model with cervical spondylotic myelopathy

    Directory of Open Access Journals (Sweden)

    Li X

    2017-01-01

    Full Text Available Xiang Li,1,2 Guangsheng Li,1,3 Keith Dip-Kei Luk,1 Yong Hu1–3 1Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, 2Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 3Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Guangdong, People’s Republic of China Background: Cervical spondylotic myelopathy (CSM is a chronic compression injury of the spinal cord, with potentially reversible conditions after surgical decompression, and a unique model of incomplete spinal cord injury. Several animal studies showed pathological changes of demyelination, axon loss and neuron apoptosis in rats with chronic spinal cord compression. However, there is a limited understanding of the neurological change in the spinal cord after surgical decompression. The aim of this study was to validate the neurorestoratology of myelopathic lesions in the spinal cord in a rat model. Materials and methods: A total of 16 adult Sprague-Dawley rats were divided into four groups: sham control (group 1; CSM model with 4-week chronic compression (group 2, 2 weeks (group 3 and 4 weeks (group 4 after surgical decompression of CSM model. The compression and decompression were verified by magnetic resonance imaging (MRI test. Neurological function was evaluated by Basso, Beattie, and Bresnahan (BBB locomotor rating scale, ladder rung walking test and somatosensory-evoked potentials (SEPs. Neuropathological change was evaluated by histological examinations. Results: MRI confirmed the compression of the cervical spinal cord as well as the reshaping of cord morphology after decompression. After decompression, significant changes of neurological function were observed in BBB scores (p < 0.01, F = 10.52, ladder rung walking test (p < 0.05, F = 14.21 and latencies (p < 0.05, F = 5.76 and amplitudes (p < 0.05, F = 3.8 of

  2. Mechanisms and genes in human strial presbycusis from animal models.

    Science.gov (United States)

    Ohlemiller, Kevin K

    2009-06-24

    Schuknecht proposed a discrete form of presbycusis in which hearing loss results principally from degeneration of cochlear stria vascularis and decline of the endocochlear potential (EP). This form was asserted to be genetically linked, and to arise independently from age-related pathology of either the organ of Corti or cochlear neurons. Although extensive strial degeneration in humans coincides with hearing loss, EPs have never been measured in humans, and age-related EP reduction has never been verified. No human genes that promote strial presbycusis have been identified, nor is its pathophysiology well understood. Effective application of animal models to this issue requires models demonstrating EP decline, and preferably, genetically distinct strains that vary in patterns of EP decline and its cellular correlates. Until recently, only two models, Mongolian gerbils and Tyrp1(B-lt) mice, were known to undergo age-associated EP reduction. Detailed studies of seven inbred mouse strains have now revealed three strains (C57BL/6J, B6.CAST-Cdh23(CAST), CBA/J) showing essentially no EP decline with age, and four strains ranging from modest to severe EP reduction (C57BL/6-Tyr(c-2J), BALB/cJ, CBA/CaJ, NOD.NON-H2(nbl)/LtJ). Collectively, animal models support five basic principles regarding a strial form of presbycusis: 1) Progressive EP decline from initially normal levels as a defining characteristic; 2) Non-universality, not all age-associated hearing loss involves EP decline; 3) A clear genetic basis; 4) Modulation by environment or stochastic events; and 5) Independent strial, organ of Corti, and neural pathology. Shared features between human strial presbycusis, gerbils, and BALB/cJ and C57BL/6-Tyr(c-2J) mice further suggest this condition frequently begins with strial marginal cell dysfunction and loss. By contrast, NOD.NON-H2(nbl) mice may model a sequence more closely associated with strial microvascular disease. Additional studies of these and other inbred mouse

  3. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    Science.gov (United States)

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  4. Modelling and Initial Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks

    DEFF Research Database (Denmark)

    Espensen, Kristian Asbjørn Leth; Kjeldsen, Mads Keblov; Kristensen, Lars Michael

    2008-01-01

    A mobile ad-hoc network (MANET) is an infrastructureless network established by a set of mobile devices using wireless communication. The Dynamic MANET On-demand (DYMO) protocol is a routing protocol for multi-hop communication in MANETs currently under development by the Internet Engineering Task...... Force (IETF). This paper presents a Coloured Petri Net (CPN) model of the mandatory parts of the DYMO protocol, and shows how scenario-based state space exploration has been used to validate key properties of the protocol. Our CPN modelling and verification work has spanned two revisions of the DYMO...... protocol specification and have had direct impact on the most recent version of the protocol specification....

  5. Sound preference test in animal models of addicts and phobias.

    Science.gov (United States)

    Soga, Ryo; Shiramatsu, Tomoyo I; Kanzaki, Ryohei; Takahashi, Hirokazu

    2016-08-01

    Biased or too strong preference for a particular object is often problematic, resulting in addiction and phobia. In animal models, alternative forced-choice tasks have been routinely used, but such preference test is far from daily situations that addicts or phobic are facing. In the present study, we developed a behavioral assay to evaluate the preference of sounds in rodents. In the assay, several sounds were presented according to the position of free-moving rats, and quantified the sound preference based on the behavior. A particular tone was paired with microstimulation to the ventral tegmental area (VTA), which plays central roles in reward processing, to increase sound preference. The behaviors of rats were logged during the classical conditioning for six days. Consequently, some behavioral indices suggest that rats search for the conditioned sound. Thus, our data demonstrated that quantitative evaluation of preference in the behavioral assay is feasible.

  6. Practical application of stereological methods in experimental kidney animal models.

    Science.gov (United States)

    Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora

    The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  7. Two new animal models for actinide toxicity studies

    International Nuclear Information System (INIS)

    Taylor, G.N.; Gardner, P.A.; Jones, C.W.; Lloyd, R.D.; Mays, C.W.

    1979-01-01

    Two small rodent species, the grasshopper mouse (Onychomys leucogaster) and the deer mouse (Peromyscus maniculatus) have tenacious retention in the liver and skeleton of plutonium and americium. The retention following intraperitoneal injection of Pu and Am in citrate solution ranged from 20 to 47% (liver) and 19 to 42% (skeleton), relatively independent of post-injection times, varying from 30 to 125 days. Based on observations extended to 125 days post-injection, the biological half-times appeared to be long. Both of these rodents are relatively long-lived (median lifespans of approximately 1400 days), breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium is partitioned between the skeleton and liver in a manner similar to that of man, may be useful animal models for actinide toxicity studies

  8. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  9. Pathogenesis of presbycusis in animal models: a review.

    Science.gov (United States)

    Fetoni, Anna R; Picciotti, Pasqualina M; Paludetti, Gaetano; Troiani, Diana

    2011-06-01

    Presbycusis is the most common cause of hearing loss in aged subjects, reducing individual's communicative skills. Age related hearing loss can be defined as a progressive, bilateral, symmetrical hearing loss due to age related degeneration and it can be considered a multifactorial complex disorder, with both environmental and genetic factors contributing to the aetiology of the disease. The decline in hearing sensitivity caused by ageing is related to the damage at different levels of the auditory system (central and peripheral). Histologically, the aged cochlea shows degeneration of the stria vascularis, the sensorineural epithelium, and neurons of the central auditory pathways. The mechanisms responsible for age-associated hearing loss are still incompletely characterized. This work aims to give a broad overview of the scientific findings related to presbycusis, focusing mainly on experimental studies in animal models. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Tissue mechanics, animal models, and pelvic organ prolapse: a review.

    Science.gov (United States)

    Abramowitch, Steven D; Feola, Andrew; Jallah, Zegbeh; Moalli, Pamela A

    2009-05-01

    Pelvic floor disorders such as pelvic organ prolapse, urinary incontinence, and fecal incontinence affect a large number of women each year. The pelvic floor can be thought of as a biomechanical structure due to the complex interaction between the vagina and its supportive structures that are designed to withstand the downward descent of the pelvic organs in response to increases in abdominal pressure. Although previous work has highlighted the biochemical changes that are associated with specific risk factors (i.e. parity, menopause, and genetics), little work has been done to understand the biomechanical changes that occur within the vagina and its supportive structures to prevent the onset of these pelvic floor disorders. Human studies are often limited due to the challenges of obtaining large tissue samples and ethical concerns. Therefore, it is necessary to investigate the use of animal models and their importance in understanding how different risk factors affect the biomechanical properties of the vagina and its supportive structures. In this review paper, we will discuss the different animal models that have been previously used to characterize the biomechanical properties of the vagina: including non-human primates, rodents, rabbits, and sheep. The anatomy and preliminary biomechanical findings are discussed along with the importance of considering experimental conditions, tissue anisotropy, and viscoelasticity when characterizing the biomechanical properties of vaginal tissue. Although there is not a lot of biomechanics research related to the vagina and pelvic floor, the future is exciting due to the significant potential for scientific findings that will improve our understanding of these conditions and hopefully lead to improvements in the prevention and treatment of pelvic disorders.

  11. Studying the Immunomodulatory Effects of Small Molecule Ras Inhibitors in Animal Models of Rheumatoid Arthritis

    Science.gov (United States)

    2017-10-01

    2) and in animal models of human autoimmune diseases including autoimmune colitis (3), experimental autoimmune encephalomyelitis (4), collagen...studied in multiple pre-clinical animal models of autoimmune. For example, FTS can attenuate disease manifestations in experimental autoimmune... experimental animal model of polyarthritis, which can be induced in inbred Lewis rats by immunization with Complete Freund’s adjuvant containing

  12. The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission

    Science.gov (United States)

    Infants and children with tuberculosis (TB) account for more than 20% of cases in endemic countries. Current animal models study TB during adulthood but animal models for adolescent and infant TB are scarce. Here we propose that minipigs can be used as an animal model to study adult, adolescent and ...

  13. Extending the Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2016-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…

  14. Guinea pigs as an animal model for sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Malik Abu Rafee

    2017-01-01

    Full Text Available The overwhelming use of rat models in nerve regeneration studies is likely to induce skewness in treatment outcomes. To address the problem, this study was conducted in 8 adult guinea pigs of either sex to investigate the suitability of guinea pig as an alternative model for nerve regeneration studies. A crush injury was inflicted to the sciatic nerve of the left limb, which led to significant decrease in the pain perception and neurorecovery up to the 4th weak. Lengthening of foot print and shortening of toe spread were observed in the paw after nerve injury. A 3.49 ± 0.35 fold increase in expression of neuropilin 1 (NRP1 gene and 2.09 ± 0.51 fold increase in neuropilin 2 (NRP2 gene were recorded 1 week after nerve injury as compared to the normal nerve. Ratios of gastrocnemius muscle weight and volume of the experimental limb to control limb showed more than 50% decrease on the 30th day. Histopathologically, vacuolated appearance of the nerve was observed with presence of degenerated myelin debris in digestion chambers. Gastrocnemius muscle also showed degenerative changes. Scanning electron microscopy revealed loose and rough arrangement of connective tissue fibrils and presence of large spherical globules in crushed sciatic nerve. The findings suggest that guinea pigs could be used as an alternative animal model for nerve regeneration studies and might be preferred over rats due to their cooperative nature while recording different parameters.

  15. Common Marmosets: A Potential Translational Animal Model of Juvenile Depression

    Directory of Open Access Journals (Sweden)

    Nicole Leite Galvão-Coelho

    2017-09-01

    Full Text Available Major depression is a psychiatric disorder with high prevalence in the general population, with increasing expression in adolescence, about 14% in young people. Frequently, it presents as a chronic condition, showing no remission even after several pharmacological treatments and persisting in adult life. Therefore, distinct protocols and animal models have been developed to increase the understanding of this disease or search for new therapies. To this end, this study investigated the effects of chronic social isolation and the potential antidepressant action of nortriptyline in juvenile Callithrix jacchus males and females by monitoring fecal cortisol, body weight, and behavioral parameters and searching for biomarkers and a protocol for inducing depression. The purpose was to validate this species and protocol as a translational model of juvenile depression, addressing all domain criteria of validation: etiologic, face, functional, predictive, inter-relational, evolutionary, and population. In both sexes and both protocols (IDS and DPT, we observed a significant reduction in cortisol levels in the last phase of social isolation, concomitant with increases in autogrooming, stereotyped and anxiety behaviors, and the presence of anhedonia. The alterations induced by chronic social isolation are characteristic of the depressive state in non-human primates and/or in humans, and were reversed in large part by treatment with an antidepressant drug (nortriptyline. Therefore, these results indicate C. jacchus as a potential translational model of juvenile depression by addressing all criteria of validation.

  16. An animal model of emotional blunting in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Charmaine Y Pietersen

    Full Text Available Schizophrenia is often associated with emotional blunting--the diminished ability to respond to emotionally salient stimuli--particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning in rats by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine's effects and retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and behavior is postulated and discussed.

  17. Animal Models of Autism: An Epigenetic and Environmental Viewpoint

    Directory of Open Access Journals (Sweden)

    Keiko Iwata

    2010-01-01

    Full Text Available Autism is a neurodevelopmental disorder of social behavior, which is more common in males than in females. The causes of autism are unknown; there is evidence for a substantial genetic component, but it is likely that a combination of genetic, environmental and epigenetic factors contribute to its complex pathogenesis. Rodent models that mimic the behavioral deficits of autism can be useful tools for dissecting both the etiology and molecular mechanisms. This review discusses animal models of autism generated by prenatal or neonatal environmental challenges, including virus infection and exposure to valproic acid (VPA or stress. Studies of viral infection models suggest that interleukin-6 can influence fetal development and programming. Prenatal exposure to the histone deacetylase inhibitor VPA has been linked to autism in children, and male VPA-exposed rats exhibit a spectrum of autistic-like behaviors. The experience of prenatal stress produces male-specific behavioral abnormalities in rats. These effects may be mediated by epigenetic modifications such as DNA methylation and histone acetylation resulting in alterations to the transcriptome.

  18. Value-added strategy models to provide quality services in senior health business.

    Science.gov (United States)

    Yang, Ya-Ting; Lin, Neng-Pai; Su, Shyi; Chen, Ya-Mei; Chang, Yao-Mao; Handa, Yujiro; Khan, Hafsah Arshed Ali; Elsa Hsu, Yi-Hsin

    2017-06-20

    The rapid population aging is now a global issue. The increase in the elderly population will impact the health care industry and health enterprises; various senior needs will promote the growth of the senior health industry. Most senior health studies are focused on the demand side and scarcely on supply. Our study selected quality enterprises focused on aging health and analyzed different strategies to provide excellent quality services to senior health enterprises. We selected 33 quality senior health enterprises in Taiwan and investigated their excellent quality services strategies by face-to-face semi-structured in-depth interviews with CEO and managers of each enterprise in 2013. A total of 33 senior health enterprises in Taiwan. Overall, 65 CEOs and managers of 33 enterprises were interviewed individually. None. Core values and vision, organization structure, quality services provided, strategies for quality services. This study's results indicated four type of value-added strategy models adopted by senior enterprises to offer quality services: (i) residential care and co-residence model, (ii) home care and living in place model, (iii) community e-business experience model and (iv) virtual and physical portable device model. The common part in these four strategy models is that the services provided are elderly centered. These models offer virtual and physical integrations, and also offer total solutions for the elderly and their caregivers. Through investigation of successful strategy models for providing quality services to seniors, we identified opportunities to develop innovative service models and successful characteristics, also policy implications were summarized. The observations from this study will serve as a primary evidenced base for enterprises developing their senior market and, also for promoting the value co-creation possibility through dialogue between customers and those that deliver service. © The Author 2017. Published by Oxford

  19. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model.

    Directory of Open Access Journals (Sweden)

    Vadivel Parthsarathy

    Full Text Available Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers. Moreover, numbers of immature neurons (DCX were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker. A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (Victoza(TM, increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.

  20. SOA-Based Model for Value-Added ITS Services Delivery

    Directory of Open Access Journals (Sweden)

    Luis Felipe Herrera-Quintero

    2014-01-01

    Full Text Available Integration is currently a key factor in intelligent transportation systems (ITS, especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT based on the service-oriented architecture (SOA paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RSUAAS, to the most abstract ITS services that will be offered to ITS users (value-added services. To validate our model, a functionality case study that included all of the components of our model was designed.

  1. SOA-based model for value-added ITS services delivery.

    Science.gov (United States)

    Herrera-Quintero, Luis Felipe; Maciá-Pérez, Francisco; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio

    2014-01-01

    Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RSUAAS), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed.

  2. A parsimonious approach to modeling animal movement data.

    Directory of Open Access Journals (Sweden)

    Yann Tremblay

    Full Text Available Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models, resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (<0.94 degrees, and 90% were less than 199.8 km (<1.80 degrees. Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient, promising extensive utilization in future research.

  3. Modelling bronchopulmonary dysplasia in animals: arguments for the preterm rabbit model.

    Science.gov (United States)

    Salaets, Thomas; Gie, Andre; Tack, Bieke; Deprest, Jan; Toelen, Jaan

    2017-09-26

    Bronchopulmonary dysplasia (BPD) remains a frequent and disabling consequence of preterm birth, despite the recent advances in neonatal intensive care. There is a need to further improve outcomes and many novel therapeutic or preventive strategies are therefore investigated in animal models. We discuss in this review the aspects of human BPD pathophysiology and phenotype, which ideally should be mimicked by an animal model for this disease. Prematurity remains the common denominator in the heterogeneous spectrum of human BPD, and preterm animal models thus have a clear translational advantage. Additional factors, like excessive oxygen, mechanical ventilation and infection, which frequently have been studied in animal models, can contribute to preterm lung injury however are not indispensable to develop BPD. The phenotype of human BPD is characterized by alveolar developmental arrest with extracellular matrix remodeling, signs of obstructive airway disease and pulmonary vascular disease. Many animal models mimic this phenotype and have their place in BPD research, but results should be interpreted bearing in mind the specific advantages and disadvantages of the model. Term mice and rats are well suited for basic explorative research on specific disease mechanisms, essential for the generation of new hypotheses, while the larger ventilated preterm baboons and lambs provide a good platform for the ultimate translation of these strategies towards clinical application. The preterm rabbit model seems a promising model as it the smallest model that includes a factor of prematurity and has a unique position between the small and large animal models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Assessing the effect of adding interactive modeling to the geoscience curriculum

    Science.gov (United States)

    Castillo, A.; Marshall, J.; Cardenas, M.

    2013-12-01

    Technology and computer models enhance the learning experience when appropriately utilized. Moreover, learning is significantly improved when effective visualization is combined with models of processes allowing for inquiry-based problem solving. Still, hands-on experiences in real scenarios result in better contextualization of related problems compared to virtual laboratories. Therefore, the role of scientific visualization, technology, and computer modeling is to enhance, not displace, the learning experience by supplementing real-world problem solving and experiences, although in some circumstances, they can adequately serve to take the place of reality. The key to improving scientific education is to embrace an inquiry-based approach that favorably uses technology. This study will attempt to evaluate the effect of adding interactive modeling to the geological sciences curriculum. An assessment tool, designed to assess student understanding of physical hydrology, was used to evaluate a curriculum intervention based on student learning with a data- and modeling-driven approach using COMSOL Multiphysics software. This intervention was implemented in an upper division and graduate physical hydrology course in fall 2012. Students enrolled in the course in fall 2011 served as the control group. Interactive modeling was added to the curriculum in fall 2012 to replace the analogous mathematical modeling done by hand in fall 2011. Pre- and post-test results were used to assess and report its effectiveness. Student interviews were also used to probe student reactions to both the experimental and control curricula. The pre- and post-tests asked students to describe the significant processes in the hydrological cycle and describe the laws governing these processes. Their ability to apply their knowledge in a real-world problem was also assessed. Since the pre- and post-test data failed to meet the assumption of normality, a non-parametric Kruskal-Wallis test was run to

  5. ANIMAL MODELS FOR THE STUDY OF LEISHMANIASIS IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Elsy Nalleli Loria-Cervera

    2014-01-01

    Full Text Available Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail are being infected, and different numbers (“low” 1×102 and “high” 1×106 of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.

  6. Evaluation of mobile ad hoc network reliability using propagation-based link reliability model

    International Nuclear Information System (INIS)

    Padmavathy, N.; Chaturvedi, Sanjay K.

    2013-01-01

    A wireless mobile ad hoc network (MANET) is a collection of solely independent nodes (that can move randomly around the area of deployment) making the topology highly dynamic; nodes communicate with each other by forming a single hop/multi-hop network and maintain connectivity in decentralized manner. MANET is modelled using geometric random graphs rather than random graphs because the link existence in MANET is a function of the geometric distance between the nodes and the transmission range of the nodes. Among many factors that contribute to the MANET reliability, the reliability of these networks also depends on the robustness of the link between the mobile nodes of the network. Recently, the reliability of such networks has been evaluated for imperfect nodes (transceivers) with binary model of communication links based on the transmission range of the mobile nodes and the distance between them. However, in reality, the probability of successful communication decreases as the signal strength deteriorates due to noise, fading or interference effects even up to the nodes' transmission range. Hence, in this paper, using a propagation-based link reliability model rather than a binary-model with nodes following a known failure distribution to evaluate the network reliability (2TR m , ATR m and AoTR m ) of MANET through Monte Carlo Simulation is proposed. The method is illustrated with an application and some imperative results are also presented

  7. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  8. Neuropathology and Animal Models of Autism: Genetic and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Bharathi S. Gadad

    2013-01-01

    Full Text Available Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.

  9. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models.

    Science.gov (United States)

    Herati, Ramin Sedaghat; Wherry, E John

    2018-04-02

    Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Change of the Extractability of Cadmium Added to Different Soils: Aging Effect and Modeling

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-03-01

    Full Text Available Ethylenediaminetetraacetic acid (EDTA is known to be a chelating agent and has been widely used for estimating the total extractable metals in soil. The effect of aging on EDTA-extractable cadmium (Cd was investigated in five different soils at three Cd concentrations incubated for 180 days. The EDTA-extractable Cd rapidly decreased after incubated during 30–60 days, followed by slow processes, and for 90 days the EDTA-extractable Cd tended to be stable. The decrease in EDTA-extractable Cd may be due to precipitation/nucleation processes, diffusion of Cd into the micropores/mesopores, and occlusion within organic matter in soils. A semi-mechanistic model to predict the extractability of Cd during incubation, based on processes of Cd precipitation/nucleation, diffusion, and occlusion within organic matter, was developed and calibrated. The results showed that the processes of micropore/mesopore diffusion were predominant processes affecting the extractability of Cd added to soils, and were slow. However, the proportions of the processes of precipitation/nucleation and occlusion within organic matter to the non-EDTA-extractable Cd added to soils were only 0.03–21.0% and 0.41–6.95%, respectively. The measured EDTA-extractable Cd from incubated soils were in good agreement with those predicted by the semi-mechanistic model (R2 = 0.829. The results also indicated that soil pH, organic matter, and incubation time were the most important factors affecting Cd aging.

  11. The Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2015-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be targeted for…

  12. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  13. The use of suspension models and comparison with true weightlessness. [Animal Model Workshop on Gravitational Physiology

    Science.gov (United States)

    Musacchia, X. J.; Ellis, S.

    1985-01-01

    A resume is presented of various papers concerning the effect of weightlessness on particular physiological and biochemical phenomena in animal model systems. Findings from weightlessness experiments on earth using suspension models are compared with results of experiments in orbit. The biological phenomena considered include muscle atrophy, changes in the endocrine system, reduction in bone formation, and changes in the cardiovascular system.

  14. The Estimation Modelling of Damaged Areas by Harmful Animals

    Science.gov (United States)

    Jang, R.; Sung, M.; Hwang, J.; Jeon, S. W.

    2017-12-01

    The Republic of Korea has undergone rapid development and urban development without sufficient consideration of the environment. This type of growth is accompanied by a reduction in forest area and wildlife habitat. It is a phenomenon that affects the habitat of large mammals more than small. Especially in Korea, the damage caused by wild boar(Sus scrofa) is harsher than other large mammalian species like water deer(Hydropotes inermis), which also means that the number of these reported cases of this species is higher than ones of other mammals. Wild boar has three to eight cubs per year and it is possible to breed every year, which makes it more populous comparing with the fragmented habitats. It could be regarded as one of the top predators in Korea, which it is inevitable for humans to intervene this creature in population control. In addition, some individuals have been forced to be retreated from other habitats in major habitats, or to invade human activity areas for food activity, thereby destroying crops. Ultimately, this mammal species has been treated as farm pest animals through committing road kills and urban emergences. In this study, we has estimated possible farm pest animal present points from the damage district using 2,505 hazardous wildlife damage areas with four types of geological informations, four kinds of forest information, land cover, and distribution of farmland occurred in Gyeongnam province in Korea. In the estimating model, utilizing MAXENT, information of background point was set to 10,000, 70% of the damaged sites were used to construct the model, 30% was used for verification, and 10 times of crossvalidate were proceeded - verified by AUC of ROC. As a result of analyses, AUC was 0.847, and the percent contribution of the forest information was the distance toward inner-forest areas, 36.1%, the land cover, 16.5%, the distance from the field, 14.9%. Furthermore, the permutation importance was 24.9% of the cover, 12.3% of the height

  15. A Spatio-temporal Model of African Animal Trypanosomosis Risk.

    Directory of Open Access Journals (Sweden)

    Ahmadou H Dicko

    Full Text Available African animal trypanosomosis (AAT is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking.We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign national initiatives. We computed the entomological inoculation rate (EIR or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a "one layer-one model" approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%, showed a positive correlation but less predictive power with serological status (r2 = 22% aggregated at the village level but was not related to the illness status (r2 = 2%.The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate-sensitive vector-borne diseases.

  16. The safety, efficacy and regulatory triangle in drug development: Impact for animal models and the use of animals.

    Science.gov (United States)

    van Meer, Peter J K; Graham, Melanie L; Schuurman, Henk-Jan

    2015-07-15

    Nonclinical studies in animals are conducted to demonstrate proof-of-concept, mechanism of action and safety of new drugs. For a large part, in particular safety assessment, studies are done in compliance with international regulatory guidance. However, animal models supporting the initiation of clinical trials have their limitations, related to uncertainty regarding the predictive value for a clinical condition. The 3Rs principles (refinement, reduction and replacement) are better applied nowadays, with a more comprehensive application with respect to the original definition. This regards also regulatory guidance, so that opportunities exist to revise or reduce regulatory guidance with the perspective that the optimal balance between scientifically relevant data and animal wellbeing or a reduction in animal use can be achieved. In this manuscript we review the connections in the triangle between nonclinical efficacy/safety studies and regulatory aspects, with focus on in vivo testing of drugs. These connections differ for different drugs (chemistry-based low molecular weight compounds, recombinant proteins, cell therapy or gene therapy products). Regarding animal models and their translational value we focus on regulatory aspects and indications where scientific outcomes warrant changes, reduction or replacement, like for, e.g., biosimilar evaluation and safety testing of monoclonal antibodies. On the other hand, we present applications where translational value has been clearly demonstrated, e.g., immunosuppressives in transplantation. Especially for drugs of more recent date like recombinant proteins, cell therapy products and gene therapy products, a regulatory approach that allows the possibility to conduct combined efficacy/safety testing in validated animal models should strengthen scientific outcomes and improve translational value, while reducing the numbers of animals necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Animal models in surgical training: choice and ethics | Hassan ...

    African Journals Online (AJOL)

    The use of animals in scientific research dates back to 500 BC, with research from Greece by Alcmaeon and other temporary scientists. Techniques for dissecting living animals were improved by Galen of Pergamum and his experiments were later valuable in the discovery of blood circulation in the16th century. Until the ...

  18. Development of computational small animal models and their applications in preclinical imaging and therapy research

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal

  19. An overview of animal models of pain: disease models and outcome measures

    Science.gov (United States)

    Gregory, N; Harris, AL; Robinson, CR; Dougherty, PM; Fuchs, PN; Sluka, KA

    2013-01-01

    Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience including reflexive hyperalgesia measures, sensory and affective dimensions of pain and impact of pain on function and quality of life. In this review we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes, as well as the main behavioral tests for assessing pain in each model. PMID:24035349

  20. Towards an Evolutionary Model of Animal-Associated Microbiomes

    Directory of Open Access Journals (Sweden)

    Bryan A. White

    2011-02-01

    Full Text Available Second-generation sequencing technologies have granted us greater access to the diversity and genetics of microbial communities that naturally reside endo- and ecto-symbiotically with animal hosts. Substantial research has emerged describing the diversity and broader trends that exist within and between host species and their associated microbial ecosystems, yet the application of these data to our evolutionary understanding of microbiomes appears fragmented. For the most part biological perspectives are based on limited observations of oversimplified communities, while mathematical and/or computational modeling of these concepts often lack biological precedence. In recognition of this disconnect, both fields have attempted to incorporate ecological theories, although their applicability is currently a subject of debate because most ecological theories were developed based on observations of macro-organisms and their ecosystems. For the purposes of this review, we attempt to transcend the biological, ecological and computational realms, drawing on extensive literature, to forge a useful framework that can, at a minimum be built upon, but ideally will shape the hypotheses of each field as they move forward. In evaluating the top-down selection pressures that are exerted on a microbiome we find cause to warrant reconsideration of the much-maligned theory of multi-level selection and reason that complexity must be underscored by modularity.

  1. Environmental enrichment facilitates cocaine abstinence in an animal conflict model.

    Science.gov (United States)

    Ewing, Scott; Ranaldi, Robert

    2018-03-01

    In this study, we sought to discover if housing in an enriched environment (EE) is an efficacious intervention for encouraging abstinence from cocaine seeking in an animal "conflict" model of abstinence. Sixteen Long-Evans rats were trained in 3-h daily sessions to self-administer a cocaine solution (1 mg/kg/infusion) until each demonstrated a stable pattern of drug-seeking. Afterward, half were placed in EE cages equipped with toys, obstacles, and a running wheel, while the other half were given clean, standard laboratory housing. All rats then completed daily 30-min sessions during which the 2/3 of flooring closest to the self-administration levers was electrified, causing discomfort should they approach the levers; current strength (mA) was increased after every day of drug seeking until the rat ceased activity on the active lever for 3 consecutive sessions (abstinence). Rats housed in EE abstained after fewer days and at lower current strengths than rats in standard housing. These results support the idea that EE administered after the development of a cocaine-taking habit may be an effective strategy to facilitate abstinence. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Cytokines and VEGF Induction in Orthodontic Movement in Animal Models

    Directory of Open Access Journals (Sweden)

    M. Di Domenico

    2012-01-01

    Full Text Available Orthodontics is a branch of dentistry that aims at the resolution of dental malocclusions. The specialist carries out the treatment using intraoral or extraoral orthodontic appliances that require forces of a given load level to obtain a tooth movement in a certain direction in dental arches. Orthodontic tooth movement is dependent on efficient remodeling of periodontal ligament and alveolar bone, correlated with several biological and mechanical responses of the tissues surrounding the teeth. A periodontal ligament placed under pressure will result in bone resorption whereas a periodontal ligament under tension results in bone formation. In the primary stage of the application of orthodontic forces, an acute inflammation occurs in periodontium. Several proinflammatory cytokines are produced by immune-competent cells migrating by means of dilated capillaries. In this paper we summarize, also through the utilization of animal models, the role of some of these molecules, namely, interleukin-1β and vascular endothelial growth factor, that are some proliferation markers of osteoclasts and osteoblasts, and the macrophage colony stimulating factor.

  3. Food Addiction and Binge Eating: Lessons Learned from Animal Models

    Science.gov (United States)

    Diéguez, Carlos

    2018-01-01

    The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered “addictive” under normal circumstances, people can become “addicted” to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of “eating addiction” are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of “food addiction”. This review aims to summarize the most relevant animal models of “eating addictive behaviour”, emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies. PMID:29324652

  4. Food Addiction and Binge Eating: Lessons Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Marta G. Novelle

    2018-01-01

    Full Text Available The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered “addictive” under normal circumstances, people can become “addicted” to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of “eating addiction” are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of “food addiction”. This review aims to summarize the most relevant animal models of “eating addictive behaviour”, emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.

  5. MeCP2-Related Diseases and Animal Models

    Directory of Open Access Journals (Sweden)

    Chinelo D. Ezeonwuka

    2014-01-01

    Full Text Available The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2. MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.

  6. Microsurgical tunica albuginea transplantation in an animal model

    Directory of Open Access Journals (Sweden)

    Salvatore Sansalone

    2017-01-01

    Full Text Available Several andrological diseases require surgical repair or reconstruction of tunica albuginea, which envelops the corpora cavernosa penis. Despite intense research efforts involving a variety of biological materials, such as skin, muscle aponeurosis, human dura mater, tunica vaginalis, and pericardium, engineered tunica albuginea suitable for graft use is yet to be obtained. The study investigates microsurgical tunica albuginea allotransplantation in an animal model with the purpose of creation of an organ-specific tissue bank to store penile tissue, from cadaveric donors and male-to-female trans-sexual surgery, for allogeneic transplantation. Materials were tunica albuginea tissue explanted from 15 donor rats, cryopreserved at −80°C, gamma-irradiated, and implanted in 15 recipient rats, of which three rats were used as controls. Penile grafts were explanted at different time intervals; after macroscopic evaluation of the organ, the grafts were processed to morphological, histochemical, and immunohistochemical examinations by light microscopy. Detection of pro-inflammatory cytokines was also performed. Examination of the tunica albuginea allografts collected 1, 3, or 6 months after surgery and of control tunica albuginea fragments showed that tunica albuginea implants achieved biointegration with adjacent tissue at all-time points. The integration of cryopreserved rat tunica albuginea allografts, documented by our study, encourages the exploration of tunica albuginea allotransplantation in humans. In conclusion, the effectiveness and reliability of the tunica albuginea conditioning protocol described here suggest the feasibility of setting up a tunica albuginea bank as a further tissue bank.

  7. Microsurgical tunica albuginea transplantation in an animal model

    Science.gov (United States)

    Sansalone, Salvatore; Loreto, Carla; Leonardi, Rosario; Vespasiani, Giuseppe; Musumeci, Giuseppe; Lombardo, Claudia; Castorina, Sergio; Cardile, Venera; Caltabiano, Rosario

    2017-01-01

    Several andrological diseases require surgical repair or reconstruction of tunica albuginea, which envelops the corpora cavernosa penis. Despite intense research efforts involving a variety of biological materials, such as skin, muscle aponeurosis, human dura mater, tunica vaginalis, and pericardium, engineered tunica albuginea suitable for graft use is yet to be obtained. The study investigates microsurgical tunica albuginea allotransplantation in an animal model with the purpose of creation of an organ-specific tissue bank to store penile tissue, from cadaveric donors and male-to-female trans-sexual surgery, for allogeneic transplantation. Materials were tunica albuginea tissue explanted from 15 donor rats, cryopreserved at −80°C, gamma-irradiated, and implanted in 15 recipient rats, of which three rats were used as controls. Penile grafts were explanted at different time intervals; after macroscopic evaluation of the organ, the grafts were processed to morphological, histochemical, and immunohistochemical examinations by light microscopy. Detection of pro-inflammatory cytokines was also performed. Examination of the tunica albuginea allografts collected 1, 3, or 6 months after surgery and of control tunica albuginea fragments showed that tunica albuginea implants achieved biointegration with adjacent tissue at all-time points. The integration of cryopreserved rat tunica albuginea allografts, documented by our study, encourages the exploration of tunica albuginea allotransplantation in humans. In conclusion, the effectiveness and reliability of the tunica albuginea conditioning protocol described here suggest the feasibility of setting up a tunica albuginea bank as a further tissue bank. PMID:28139472

  8. Sex differences in animal models of decision making.

    Science.gov (United States)

    Orsini, Caitlin A; Setlow, Barry

    2017-01-02

    The ability to weigh the costs and benefits of various options to make an adaptive decision is critical to an organism's survival and wellbeing. Many psychiatric diseases are characterized by maladaptive decision making, indicating a need for better understanding of the mechanisms underlying this process and the ways in which it is altered under pathological conditions. Great strides have been made in uncovering these mechanisms, but the majority of what is known comes from studies conducted solely in male subjects. In recent years, decision-making research has begun to include female subjects to determine whether sex differences exist and to identify the mechanisms that contribute to such differences. This Mini-Review begins by describing studies that have examined sex differences in animal (largely rodent) models of decision making. Possible explanations, both theoretical and biological, for such differences in decision making are then considered. The Mini-Review concludes with a discussion of the implications of sex differences in decision making for understanding psychiatric conditions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Sex Differences in Animal Models of Decision-Making

    Science.gov (United States)

    Orsini, Caitlin A.; Setlow, Barry

    2016-01-01

    The ability to weigh the costs and benefits of various options in order to make an adaptive decision is critical to an organism’s survival and well-being. Many psychiatric diseases are characterized by maladaptive decision-making, indicating the need to better understand the mechanisms underlying this process and the ways in which it is altered in pathological conditions. Great strides have been made in uncovering these mechanisms, but the majority of what is known comes from studies conducted solely in male subjects. In recent years, decision-making research has begun to include females to determine whether sex differences exist and to identify the mechanisms that contribute to such differences. This review will begin by describing studies that have examined sex differences in animal (largely rodent) models of decision-making. Possible explanations, both theoretical and biological, for such differences in decision- making will then be considered. The review will conclude with a discussion of the implications of sex differences in decision-making for understanding psychiatric conditions. PMID:27870448

  10. Animal model for schizophrenia that reflects gene-environment interactions.

    Science.gov (United States)

    Nagai, Taku; Ibi, Daisuke; Yamada, Kiyofumi

    2011-01-01

    Schizophrenia is a devastating psychiatric disorder that impairs mental and social functioning and affects approximately 1% of the population worldwide. Genetic susceptibility factors for schizophrenia have recently been reported, some of which are known to play a role in neurodevelopment; these include neuregulin-1, dysbindin, and disrupted-in-schizophrenia 1 (DISC1). Moreover, epidemiologic studies suggest that environmental insults, such as prenatal infection and perinatal complication, are involved in the development of schizophrenia. The possible interaction between environment and genetic susceptibility factors, especially during neurodevelopment, is proposed as a promising disease etiology of schizophrenia. Polyriboinosinic-polyribocytidilic acid (polyI : C) is a synthetic analogue of double-stranded RNA that leads to the pronounced but time-limited production of pro-inflammatory cytokines. Maternal immune activation by polyI : C exposure in rodents is known to precipitate a wide spectrum of behavioral, cognitive, and pharmacological abnormalities in adult offspring. Recently, we have reported that neonatal injection of polyI : C in mice results in schizophrenia-like behavioral alterations in adulthood. In this review, we show how gene-environment interactions during neurodevelopment result in phenotypic changes in adulthood by injecting polyI : C into transgenic mice that express a dominant-negative form of human DISC1 (DN-DISC1). Our findings suggest that polyI : C-treated DN-DISC1 mice are a well-validated animal model for schizophrenia that reflects gene-environment interactions.

  11. Dysbaric osteonecrosis in divers and caisson workers. An animal model.

    Science.gov (United States)

    Lehner, C E; Adams, W M; Dubielzig, R R; Palta, M; Lanphier, E H

    1997-11-01

    Dysbaric osteonecrosis was induced successfully in adult sheep after 12 to 13, 24-hour exposures to compressed air (2.6-2.9 atmospheres absolute) during a 2-month period. All exposed sheep had decompression sickness and extensive bone and marrow necrosis in their long bones. Radiographic analysis of these progressive lesions showed mottled to distinct medullary opacities and endosteal thickening characteristic of dysbaric osteonecrosis. Six months after the last hyperbaric exposure, neovascularization of once ischemic fatty marrow was centripetal from the diaphyseal cortex. Proliferating endosteal new bone, fatty marrow calcification, and appositional new bone formation were widespread. Juxtaarticular osteonecrosis involved marrow fibrosis and loss of osteocytes in subchondral cortical bone. Tidemark reduplication in juxtaarticular bone and cartilage thinning suggested possible early osteoarthritis induction by recurrent episodes of transient ischemia after multiple hyperbaric exposures. Dysbaric osteonecrosis appears to involve a bone compartment syndrome of elevated intramedullary pressure initiated by decompression induced N2 bubble formation in the fatty marrow of the long bones. An animal model that can be used to investigate the pathogenesis, diagnosis, and treatment of dysbaric osteonecrosis is discussed.

  12. Defective membrane remodeling in neuromuscular diseases: insights from animal models.

    Directory of Open Access Journals (Sweden)

    Belinda S Cowling

    Full Text Available Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1, and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1 a common molecular pathway underlying these different neuromuscular diseases, and (2 tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches.

  13. The impact of the postnatal gut microbiota on animal models

    DEFF Research Database (Denmark)

    Hansen, Axel Jacob Kornerup; Ejsing-Duun, Maria; Aasted, Bent

    2007-01-01

    Quality control of laboratory animals has been mostly concentrated on eliminating and securing the absence of specific infections, but event barrier bred laboratory animals harbour a huge number of gut bacteria. There is scientific evidence that the nature of the gut microbiota especially in early...... correlated to factors related to early exposure to microorganisms, e.g. the so-called hygiene hypothesis claims that the increasing human incidence of allergy. T1D, RA and IBD may be due to the lack of such exposure. It is possible today by various molecular techniques to profile the gut microbiota...... of a laboratory animal, and such techniques should be applied to document uniform animals from laboratory animal vendors to secure standardization and thereby lower variation and smaller group sizes....

  14. ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [North Carolina State Univ., Raleigh, NC (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model output and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP

  15. Effect of Saraswatarishta in animal models of behavior despair

    Directory of Open Access Journals (Sweden)

    Reshma R Parekar

    2014-01-01

    Full Text Available Background: Saraswatarishta (SA is a herbo-mineral formulation consisting of 18 plants some of which are Medhyarasayanas. It has been claimed to be useful in treating central nervous system disorders. Objective: To evaluate antidepressant effect of ′Saraswatarishta′(SA alone and in combination with imipramine and fluoxetine in animal models of depression. Materials and Methods: After obtaining IAEC permission, 144 rats (n = 36/part were randomized into 6 groups- Group 1: Distilled water (1 mL, Group 2: Imipramine (30 mg/kg, Group 3: Fluoxetine (10 mg/kg, Group 4: SA (1.8 mL/kg, Group 5: Imipramine + SA, Group 6: Fluoxetine + SA. Effects of study drugs were evaluated in forced swim test (FST with single exposure to FST (Part 1 and repeated exposure for 14 days (Part 2. In Part 3, reserpine was used with FST and effects of study drugs were evaluated against single exposure to FST. Same model was used with repeated exposures to FST (Part 4. In each part, rats were subjected to open field test (OFT for 5 min prior to final FST. The variables measured: Immobility time in FST; line crossing, rearing and defecation in the OFT. Results: In all four parts, individual drugs and combinations thereof produced significant decrease in immobility time as compared to control, and extent of decrease was comparable amongst these groups. However, values for combination of fluoxetine with SA group were found to be lesser than that for individual agents in Parts 2 and 3. Combination of SA with imipramine did not enhance its anti-depressant effect in any of the parts. OFT findings did not vary significantly amongst the study groups. Conclusion: Decreased immobility in FST and absence of generalized stimulation or depression of motor activity in OFT point towards potential antidepressant effect of Saraswatarishta. Its co-administration with fluoxetine showed more promising effects.

  16. Instrumental learning: an animal model for sleep dependent memory enhancement.

    Science.gov (United States)

    Leenaars, Cathalijn H C; Girardi, Carlos E N; Joosten, Ruud N J M A; Lako, Irene M; Ruimschotel, Emma; Hanegraaf, Maaike A J; Dematteis, Maurice; Feenstra, Matthijs G P; Van Someren, Eus J W

    2013-07-15

    The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  18. Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer's disease.

    Science.gov (United States)

    Vandal, Milene; White, Philip J; Tournissac, Marine; Tremblay, Cyntia; St-Amour, Isabelle; Drouin-Ouellet, Janelle; Bousquet, Melanie; Traversy, Marie-Thérèse; Planel, Emmanuel; Marette, Andre; Calon, Frederic

    2016-07-01

    The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evolution of animal models in cancer vaccine development.

    Science.gov (United States)

    Wei, Wei-Zen; Jones, Richard F; Juhasz, Csaba; Gibson, Heather; Veenstra, Jesse

    2015-12-16

    Advances in cancer vaccine development are facilitated by animal models reflecting key features of human cancer and its interface with host immunity. Several series of transplantable preneoplastic and neoplastic mouse mammary lesions have been used to delineate mechanisms of anti-tumor immunity. Mimicking immune tolerance to tumor-associated antigens (TAA) such as HER2/neu, transgenic mice developing spontaneous mammary tumors are strong model systems for pre-clinical vaccine testing. In these models, HER2 DNA vaccines are easily administered, well-tolerated, and induce both humoral and cellular immunity. Although engineered mouse strains have advanced cancer immunotherapy, basic shortcomings remain. For example, multiple mouse strains have to be tested to recapitulate genetic regulation of immune tolerance in humans. Outbred domestic felines more closely parallel humans in the natural development of HER2 positive breast cancer and their varying genetic background. Electrovaccination with heterologous HER2 DNA induces robust adaptive immune responses in cats. Importantly, homologous feline HER2 DNA with a single amino acid substitution elicits unique antibodies to feline mammary tumor cells, unlocking a new vaccine principle. As an alternative approach to targeted vaccination, non-surgical tumor ablation such as cryoablation induces anti-tumor immunity via in situ immunization, particularly when combined with toll-like receptor (TLR) agonist. As strategies for vaccination advance, non-invasive monitoring of host response becomes imperative. As an example, magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning following administration of tryptophan metabolism tracer [11C]-alpha-methyl-tryptophan (AMT) provides non-invasive imaging of both tumor growth and metabolic activities. Because AMT is a substrate of indoleamine-pyrrole 2,3-dioxygenase (IDO), an enzyme that produces the immune regulatory molecule kynurenine, AMT imaging can provide

  20. An animal model of differential genetic risk for methamphetamine intake

    Directory of Open Access Journals (Sweden)

    Tamara ePhillips

    2015-09-01

    Full Text Available The question of whether genetic factors contribute to risk for methamphetamine (MA use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1 agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the

  1. The rabbit as an animal model for experimental surgery O coelho como modelo animal para cirurgia experimental

    Directory of Open Access Journals (Sweden)

    Mônica Diuana Calasans-Maia

    2009-08-01

    Full Text Available The white New Zealand rabbit (Oryctolagus cuniculus is frequently used as a model for in vivo studies. However, information on precautions when using this animal as an experimental model is limited. This review of the literature covers the gamut from the selection of the animal model all the way to its death, and describes procedures for transporting, raising, breeding, housing, administering anesthesia and handling so as to rationalize the utilization of this species while exploiting its unique characteristics. Based upon the literature and our own experience with white New Zealand rabbits, we conclude that the rabbit is an adequate model for experimental surgery.O coelho branco da Nova Zelândia (Oryctolagus cuniculus é freqüentemente utilizado como modelo em estudos in vivo. Contudo, as informações referentes aos cuidados no emprego deste animal como modelo experimental são limitadas. Esta revisão da literatura pretende rever a literatura desde a seleção do modelo animal até a sua morte, enfatizando, os procedimentos para transporte, criação, reprodução, comportamento, acomodação, anestesia e manejo dos animais, de forma a racionalizar a utilização desses animais reconhecendo as características próprias dessa espécie. Conclui-se que o coelho constitui um modelo adequado e viável para cirurgia experimental.

  2. Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSCFGF1) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model.

    Science.gov (United States)

    Ghazavi, Hamed; Hoseini, Seyed Javad; Ebrahimzadeh-Bideskan, Alireza; Mashkani, Baratali; Mehri, Soghra; Ghorbani, Ahmad; Sadri, Kayvan; Mahdipour, Elahe; Ghasemi, Faezeh; Forouzanfar, Fatemeh; Hoseini, Azar; Pasdar, Ali Reza; Sadeghnia, Hamid Reza; Ghayour-Mobarhan, Majid

    2017-10-01

    Stroke, as the second most common cause of death, imposes a great financial burden on both the individual and society. Mesenchymal stem cells from rodents have demonstrated efficacy in experimental animal models of stroke due to enhanced neurological recovery. Since FGF1 (fibroblast growth factor 1) displays neuroprotective properties, for the first time, we investigated the effect of acute intravenous administration of FGF1 gene transfected adipose-derived mesenchymal stem cell (AD-MSC FGF1 ) on transient experimental ischemic stroke in rats. Stroke induction was made by transient middle cerebral artery occlusion (tMCAO). 2 × 10 6  AD-MSC FGF1 was administrated intravenously 30 min after carotid reperfusion. The ability of technetium 99m -hexamethyl propylene amine oxime ( 99m Tc-HMPAO)-labeled AD-MSC FGF1 to enter into ischemic brain was evaluated 2 h post injection. 24 h post operation, the neurological recovery (rotarod and Roger's tests), the infarct volume (2, 3, 5-triphenyltetrazolium chloride, TTC assay), apoptosis rate (TUNEL assay), and the expression of FGF1 protein (western blotting) in the ischemic hemisphere were assessed. The 99m Tc-HMPAO-labeled AD-MSC FGF1 could enter into the ischemic brain. Ischemic hemisphere activity was significantly higher than that observed in the contralateral hemisphere (p = 0.002). The administration of AD-MSC FGF1 resulted in significant improvement of neurological function tests and increased density of FGF1 protein in the peri-infarct area, while the infarct volume and the apoptotic index were significantly decreased, in comparison to the other treated groups. In conclusion, acute intravenous administration of AD-MSC FGF1 can be a novel and promising candidate approach for the treatment of ischemic stroke.

  3. A fault-tolerant small world topology control model in ad hoc networks for search and rescue

    Science.gov (United States)

    Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing

    2018-02-01

    Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.

  4. Bioadhesive agents in addition to oral contrast media - evaluation in an animal model

    International Nuclear Information System (INIS)

    Conrad, R.; Schneider, G.; Textor, J.; Schild, H.H.; Fimmers, R.

    1998-01-01

    Purpose: To evaluate the additional effect of bioadhesives in combination with iotrolan and barium as oral contrast media in an animal model. Method: The bioadhesives Noveon, CMC, Tylose and Carbopol 934 were added to iotrolan and barium. The solutions were administered to rabbits by a feeding tube. The animals were investigated by computed tomography (CT) and radiography after 0,5, 4, 12, 24 and in part after 48 hours. Mucosal coating and contrast filling of the bowel were evaluated. Results: Addition of bioadhesives to oral contrast media effected long-term contrast in the small intestine and colon, but no improvement in continuous filling and coating of the gastrointestinal tract was detected. Mucosal coating was seen only in short regions of the caecum and small intestine. In CT the best results for coating were observed with tylose and CMC, in radiography additionally with carbopol and noveon. All contrast medium solutions were well tolerated. Conclusion: The evaluated contrast medium solutions with bioadhesives have shown long-term contrast but no improvement in coating in comparison to conventional oral contrast media. (orig.) [de

  5. Shexiang Baoxin Pills for Coronary Heart Disease in Animal Models: Preclinical Evidence and Promoting Angiogenesis Mechanism

    Directory of Open Access Journals (Sweden)

    Ke-Jian Zhang

    2017-06-01

    Full Text Available Shexiang Baoxin Pill (SBP originated from a classical TCM Fufang Suhexiang Pill for chest pain with dyspnea in the Southern Song Dynasty (1107–110 AD. Here, we aimed to evaluate preclinical evidence and possible mechanism of SBP for experimental coronary heart disease (CHD. Studies of SBP in animal models with CHD were identified from 6 databases until April 2016. Study quality for each included article was evaluated according to the CAMARADES 10-item checklist. Outcome measures were myocardial infarction area, vascular endothelial growth factor (VEGF and microvessel count (MVC. All the data were analyzed by using RevMan 5.1 software. As a consequence, 25 studies with 439 animals were identified. The quality score of studies ranged from 2 to 5, with the median of 3.6. Meta-analysis of seven studies showed more significant effects of SBP on the reduction of the myocardial infarction area than the control (P < 0.01. Meta-analysis of eight studies showed significant effects of SBP for increasing VEGF expression compared with the control (P < 0.01. Meta-analysis of 10 studies indicated that SBP significantly improved MVC compared with the control (P < 0.01. In conclusion, these findings preliminarily demonstrated that SBP can reduce myocardial infarction area, exerting cardioprotective function largely through promoting angiogenesis.

  6. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use

    Science.gov (United States)

    Auer, Jorg A; Goodship, Allen; Arnoczky, Steven; Pearce, Simon; Price, Jill; Claes, Lutz; von Rechenberg, Brigitte; Hofmann-Amtenbrinck, Margarethe; Schneider, Erich; Müller-Terpitz, R; Thiele, F; Rippe, Klaus-Peter; Grainger, David W

    2007-01-01

    Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria

  7. Animal models to study the impact of nutrition on the immune system of the transition cow.

    Science.gov (United States)

    Dänicke, Sven; Meyer, Ulrich; Kersten, Susanne; Frahm, Jana

    2018-02-01

    The immune system is particularly challenged in transition cows as marked physiological changes occur in this period which are driven by late gestation, partus and onset of lactation. As a consequence, the metabolic and nutritional state of the cow also changes significantly with possible implications for the plasticity and flexibility of the immune system. In order to understand how the balance between metabolism, nutritional status and the immune system is maintained under challenging conditions, such as an infection, various animal models can be used which specifically manipulate the nutritional status through various feeding and management strategies. Such models aim at exploring the immunological response to a challenge under largely varying nutritional and metabolic states. As energy balance (EB) is strongly associated both with the metabolic state and with the immunoreactivity of the cows the manipulation of the EB by either influencing energy intake or energy excretion with milk, or by both, offers model opportunities for studying EB effects on the immune system. For example, assigning cows with a higher body condition score (BCS) at least 6 weeks prior to calving to an energy-dense diet exceeding the energy requirement in combination with a decelerated increase in the concentrate feed proportion post partum was shown to be effective in inducing a ketotic metabolic state under ad libitum feeding conditions. Compared to an adequately managed control group this model allows studying immune responses in the transit period and in dependence on dietary interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Successful therapies for Alzheimer’s disease: Why so many in animal models and none in humans?

    Directory of Open Access Journals (Sweden)

    Rafael eFranco

    2014-06-01

    Full Text Available Peering into the field of Alzheimer's disease (AD the outsider realizes that many of the therapeutic strategies tested (in animal models have been successful. One also may notice that there is a deficit in translational research, i.e. to take a successful drug in mice and translate it to the patient. Efforts are still focused on novel projects to expand the therapeutic arsenal to cure mice. Scientific reasons behind so many successful strategies are not obvious. This article aims to review the current approaches to combat AD, and to open a debate on common mechanisms of cognitive enhancement and neuroprotection. In short, either the rodent models are not good and should be discontinued, or we should extract only the most useful information from those models. An example of a question that may be debated for the advancement in AD therapy is: In addition to reducing amyloid and tau pathologies, would it be necessary to boost synaptic strength and cognition? The debate would provide helpful information that could turn around the current negative output in generating effective drugs for patients. Furthermore, discovery of biomarkers in human body fluids, and a clear distinction between cognitive enhancers and disease modifying strategies, should be instrumental for advancing in anti-AD drug discovery.

  9. From Pests to Pets: Social and Cultural Perceptions of Animals in Post-medieval Urban Centres in England (AD1500 – 1900

    Directory of Open Access Journals (Sweden)

    Rebecca Gordon

    2017-03-01

    Full Text Available In the past, animals and their products were prominent features of urban life. How people utilised these animals as well as their relationships has continually changed. For example, cats, dogs, pigs and other animals lived in close proximity to people in post-medieval urban centres and were viewed in terms of their functional affordances. Cats were kept to deter rodents and exploited for their fur, dogs were protectors of the home and pigs were not only food, but helped to reduce the amount of rubbish where they were kept. However, perceptions and treatment of urban animals were far from static. The emergent animal welfare movement and legislation heralded a change in the species and numbers of animals present in the urban environment and altered human-animal relationships. Now people are detached from ‘livestock’ (e.g. pigs, but have developed closer bonds with companion animals (e.g. cats, dogs, etc.. In this article I will draw upon zooarchaeological and historical evidence in an attempt to show the timing of this transition and highlight some key factors in the accompanying shift in human-animal relationships, while focusing more specifically on pet-keeping in a city context.

  10. Discounting Testimony with the Argument Ad Hominem and a Bayesian Congruent Prior Model

    Science.gov (United States)

    Bhatia, Jaydeep-Singh; Oaksford, Mike

    2015-01-01

    When directed to ignore evidence of a witness's previous bad character because of a violation of the rules of evidence, are jurors' beliefs still affected? The intuition is that they will be because in everyday argumentation, fallacies, like the ad hominem, are effective argumentative strategies. An ad hominem argument (against the person)…

  11. Chiral phase transition in the soft-wall model of AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Chelabi, Kaddour [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China); Laboratory of Particle Physics and Statistical Physics, Ecole Normale Superieure-Kouba,B.P. 92,16050, Vieux-Kouba, Algiers (Algeria); Fang, Zhen [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China); Li, Danning [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Wu, Yue-Liang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China)

    2016-04-06

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  12. Disc volume reduction with percutaneous nucleoplasty in an animal model.

    Directory of Open Access Journals (Sweden)

    Richard Kasch

    Full Text Available STUDY DESIGN: We assessed volume following nucleoplasty disc decompression in lower lumbar spines from cadaveric pigs using 7.1Tesla magnetic resonance imaging (MRI. PURPOSE: To investigate coblation-induced volume reductions as a possible mechanism underlying nucleoplasty. METHODS: We assessed volume following nucleoplastic disc decompression in pig spines using 7.1-Tesla MRI. Volumetry was performed in lumbar discs of 21 postmortem pigs. A preoperative image data set was obtained, volume was determined, and either disc decompression or placebo therapy was performed in a randomized manner. Group 1 (nucleoplasty group was treated according to the usual nucleoplasty protocol with coblation current applied to 6 channels for 10 seconds each in an application field of 360°; in group 2 (placebo group the same procedure was performed but without coblation current. After the procedure, a second data set was generated and volumes calculated and matched with the preoperative measurements in a blinded manner. To analyze the effectiveness of nucleoplasty, volumes between treatment and placebo groups were compared. RESULTS: The average preoperative nucleus volume was 0.994 ml (SD: 0.298 ml. In the nucleoplasty group (n = 21 volume was reduced by an average of 0.087 ml (SD: 0.110 ml or 7.14%. In the placebo group (n = 21 volume was increased by an average of 0.075 ml (SD: 0.075 ml or 8.94%. The average nucleoplasty-induced volume reduction was 0.162 ml (SD: 0.124 ml or 16.08%. Volume reduction in lumbar discs was significant in favor of the nucleoplasty group (p<0.0001. CONCLUSIONS: Our study demonstrates that nucleoplasty has a volume-reducing effect on the lumbar nucleus pulposus in an animal model. Furthermore, we show the volume reduction to be a coblation effect of nucleoplasty in porcine discs.

  13. The Nuremberg Code subverts human health and safety by requiring animal modeling

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-07-01

    Full Text Available Abstract Background The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented.

  14. The Nuremberg Code subverts human health and safety by requiring animal modeling.

    Science.gov (United States)

    Greek, Ray; Pippus, Annalea; Hansen, Lawrence A

    2012-07-08

    The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented.

  15. A new and reliable animal model for optic nerve injury.

    Science.gov (United States)

    Yan, Hua; Li, Fengling; Zhang, Linlin

    2012-10-01

    To create an animal (rat) model of force percussion injury (FPI) to the optic nerve for clinical and experimental research. Seventy-one healthy female Wister rats, with no ocular disorders, were used in this study. Sixty-six rats were subjected to bilateral blunt trauma to the eyes via FPI; five rats were not subjected to trauma. According to the degree of optic nerve injury, injured eyes were divided into two groups: severe optic nerve injury group, with beat pressures of 699.14 ± 60.79 kPa and mild optic nerve injury group, with beat pressures of 243.18 ± 20.26 kPa. Eight rats were examined using flash visual-evoked potential (F-VEP) monitoring and magnetic resonance imaging (MRI) before, 1 and 3 days, and 1, 2, 4, 6, and 8 weeks after optic nerve injury. Fifty-six rats were examined by histopathology and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay for apoptosis at 1 and 3 days, and 1, 2, 4, 6, and 8 weeks after optic nerve injury. Two rats were examined by transmission electron microscopy (TEM) 4 and 8 weeks after optic nerve injury. The presence or absence of optic nerve injury was evaluated in all trauma eyes. Latency was prolonged in the severe injury group compared with controls 1 day after optic nerve injury (p nerve injury (p .05). Latency was prolonged in the mild optic nerve injury group compared with controls 1 day after optic nerve injury (p injury and then stabilized (p > .05). As measured by MRI, an abnormally high signal was seen 1 day after injury and remained significantly high 8 weeks after injury. A ruptured capillary was detected in the ganglion cell layer (GCL) 1 day after injury. Acellular regions in the ganglion cell layer were observed 4 weeks after optic nerve injury. TUNEL-positive cells were present in each layer of the retina 3 days after injury. The number of TUNEL-positive cells began to increase 1-2 weeks after injury, and then gradually decreased 4 weeks after injury (p nerve injury using

  16. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Directory of Open Access Journals (Sweden)

    Aya Nakae

    2011-01-01

    Full Text Available Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models.

  17. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Science.gov (United States)

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  18. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    Science.gov (United States)

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. © The Author(s) 2015.

  19. The use of stocking rate/animal performance models in research ...

    African Journals Online (AJOL)

    Stocking rate has a profound influence on the animal production from pastures, the profitability of the enterprise and often the longevity of the pasture. The stocking rate/animal performance model of Jones & Sandland (1974) is a valuable tool in the characterization of pastures in terms of animal production and in achieving ...

  20. Development of an Animal Model of Thoracolumbar Burst Fracture-Induced Acute Spinal Cord Injury

    Science.gov (United States)

    2016-07-01

    spinal cord impactor and sustained balloon compression. 2. Keywords Spinal cord injury, spine trauma , burst fracture, large animal model 3...AWARD NUMBER: W81XWH-14-2-0013 TITLE: DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY 5b. GRANT

  1. Ecosustainable animal manure treatment in countries with intensive breeding; Trattamento ecocompatibile delle deiezioni zootecniche in territori ad alta intensita' produttiva

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M. [ENEA, Divisione Biotecnologie e Agricoltura, Centro Ricerche Casaccia, Rome (Italy); Bozzini, A. [Food Agricultural Organization, Rome (Italy); Montani, R. [INTEAM Srl., Verona (Italy)

    2001-07-01

    In the Italian Veneto Region, a highly industrialized territory, the present intensive livestock farming (cattle, swine, chicken and rabbit) causes a series of serious problems to agricultural and industrial activities. In fact, if the raw (not digested) manure is directly spread on the soil, it leads to soil acidification and contamination, to possible water table contamination, to the diffusion of livestock and human infections and consequent damages to all production and commercialization chain and finally to all society. The organic amount coming from the livestock farms located in each of the 22 sanitary districts of the Veneto region (ASL) is calculated and the suitable manure treatment processes to obtain an organic fertilizer following the Italian and E.U. environmental regulations, is reported. The solid-liquid separation step, performed with traditional technologies (centrifuge, mechanical separation) can lead to a rational solution of the problem: the solid part is digested in special bioreactors and the liquid one is purified with membrane technologies. The paper suggests a strategic pathway for a sustainable manure management, based on a package of the following devices: the improvement of the hygiene in the buildings; the improvement with innovative and flexible technologies. In this way, the production of a precious and necessary organic manure for soil and agriculture development, coupled with an improvement of human and animal health, could be assured. [Italian] Nella regione Veneto, l'intensa attivita' zootecnica dovuta ad allevamenti di bovini, suini, avicoli e cunicoli, in un territorio particolarmente industrializzato crea complessi problemi di gestione delle deiezioni con preoccupanti ricadute sull'ambiente, sull'agricoltura e sulla salute dei cittadini. Lo spargimento fuori controllo delle deiezioni causa l'acidificazione e la sterilizzazione dei suoli, la contaminazione delle falde acquifere e la diffusione di

  2. Inverse modeling and animation of growing single-stemmed trees at interactive rates

    Science.gov (United States)

    S. Rudnick; L. Linsen; E.G. McPherson

    2007-01-01

    For city planning purposes, animations of growing trees of several species can be used to deduce which species may best fit a particular environment. The models used for the animation must conform to real measured data. We present an approach for inverse modeling to fit global growth parameters. The model comprises local production rules, which are iteratively and...

  3. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  4. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges

    Science.gov (United States)

    Ney, Denise M.; Sigalet, David L.; Vegge, Andreas; Burrin, Douglas

    2014-01-01

    Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the

  5. The impact of the postnatal gut microbiota on animal models

    DEFF Research Database (Denmark)

    Hansen, Axel Jacob Kornerup; Ejsing-Duun, Maria; Aasted, Bent

    2007-01-01

    Quality control of laboratory animals has been mostly concentrated on eliminating and securing the absence of specific infections, but event barrier bred laboratory animals harbour a huge number of gut bacteria. There is scientific evidence that the nature of the gut microbiota especially in early...... correlated to factors related to early exposure to microorganisms, e.g. the so-called hygiene hypothesis claims that the increasing human incidence of allergy. T1D, RA and IBD may be due to the lack of such exposure. It is possible today by various molecular techniques to profile the gut microbiota...

  6. Development and characterization of an overtraining animal model.

    Science.gov (United States)

    Hohl, Rodrigo; Ferraresso, Rodrigo Luíz Perroni; De Oliveira, Renato Buscariolli; Lucco, Rejane; Brenzikofer, René; De Macedo, Denise Vaz

    2009-05-01

    Development of an endurance training-overtraining protocol for Wistar rats that includes increased workload and is characterized by analyses of performance and biomarkers. The running protocol lasted 11 wk: 8 wk of daily exercise sessions followed by 3 wk of increasing training frequency (two, three, and four times), with decreasing recovery time between sessions (4, 3, and 2 h) to cause an imbalance between overload and recovery. The performance tests were made before training (T1) and after the 4th (T2), 8th (T3), 9th (T4), 10th (T5), and 11th (T6) training weeks. All rats showed significantly increased performance at T4, at which time eight rats, termed the trained group (Tr), were sacrificed for blood and muscle assays. After T6, two groups were distinguishable by differences in the slope (alpha) of a line fitted to the individual performances at T4, T5, and T6: nonfunctional overreaching (NFOR; alpha or= -15.05 kg x m). Data were presented as mean +/- SD. FOR maintained the performance at T6 similar to Tr at T4 (530.6 +/- 85.3 and 487.5 +/- 61.4 kg x m, respectively). The FOR and the Tr groups showed higher muscle citrate synthase activity (approximately 40%) and plasma glutamine/glutamate ratio (Gm/Ga; 4.5 +/- 1.7 and 4.5 +/- 0.9, respectively) than the sedentary control (CO) group (2.8 +/- 0.5). The NFOR group lost the performance acquired at T4 (407.3 +/- 88.2 kg x m) after T6 (280.5 +/- 93.1 kg x m) and exhibited sustained leukocytosis. NFOR's Gm/Ga (3.1 +/- 0.2) and muscle citrate synthase activity were similar to CO values. The decline in performance in the NFOR group could be related to the decrease in muscle oxidative capacity. We observed a trend in the Gm/Ga and leukocytosis that is similar to what has been sometimes observed in overtrained humans. This controlled training-overtraining animal model may be useful for seeking causative mechanisms of performance decline.

  7. Phenol-croton oil peel: establishing an animal model for scientific investigation.

    Science.gov (United States)

    Larson, David L; Karmo, Firas; Hetter, Greg P

    2009-01-01

    Phenol-croton oil formulas for facial peeling contain a mixture of phenol, croton oil, hexachlorophene foam (Septisol; Steris Corp., Mentor, OH), and water. For years, it was felt that the active ingredient of the solution was phenol, with the view that croton oil was little more than an irritant. Hetter reported, based on clinical experience, that the addition of tiny amounts of croton oil to any concentration of phenol caused a deeper peel. He also noted that the number of applications of a phenol-croton oil solution also enhanced the peel effects. To date, there have been no animal studies that confirm these clinical observations. The purpose of this study was to develop an animal model to further evaluate and refine the hypotheses of Hetter regarding the croton oil solution. At the Medical College of Wisconsin, Milwaukee, WI, using a porcine animal model, 40 different solutions of phenol, water, croton oil, hexachlorophene foam, and ethyl alcohol, in 8 groupings, were applied to the flank according to grids. On days 1, 8, and 22, clinical observations were made and punch biopsies were obtained from all grids, including controls. All tissue samples were examined by a blinded dermatopathologist. The results were analyzed by both clinical and histologic observation. Solutions with any amount of croton oil added had a brisker inflammatory response than solutions without croton oil. The histologic examination of skin biopsies from the phenol-treated cells (with or without croton oil) demonstrated formation of sharply demarcated dermis with parallel collagen fiber bundles arranged horizontally when compared with the elastotic dermis of the control specimens. The depth of peel and time needed for healing were greater with 45 strokes than with 20 or 5 strokes. Replacing water with ethyl alcohol produced a less clinically significant peel. Phenol peels more deeply with increasing concentrations. Peel depth increases with increasing concentration of croton oil. Multiple

  8. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer's disease.

    Science.gov (United States)

    Haskins, Morgan; Jones, Terry E; Lu, Qun; Bareiss, Sonja K

    2016-01-01

    Exercise has been shown to protect against cognitive decline and Alzheimer's disease (AD) progression, however the dose of exercise required to protect against AD is unknown. Recent studies show that the pathological processes leading to AD cause characteristic alterations in blood and brain inflammatory proteins that are associated with the progression of AD, suggesting that these markers could be used to diagnosis and monitor disease progression. The purpose of this study was to determine the impact of exercise frequency on AD blood chemokine profiles, and correlate these findings with chemokine brain expression changes in the triple transgenic AD (3xTg-AD) mouse model. Three month old 3xTg-AD mice were subjected to 12 weeks of moderate intensity wheel running at a frequency of either 1×/week or 3×/week. Blood and cortical tissue were analyzed for expression of monocyte chemotactic protein-1 (MCP-1) and regulated and normal T cell expressed and secreted (RANTES). Alterations in blood RANTES and MCP-1 expression were evident at 3 and 6 month old animals compared to WT animals. Three times per week exercise but not 1×/week exercise was effective at reversing serum and brain RANTES and MCP-1 expression to the levels of WT controls, revealing a dose dependent response to exercise. Analysis of these chemokines showed a strong negative correlation between blood and brain expression of RANTES. The results indicate that alterations in serum and brain inflammatory chemokines are evident as early signs of Alzheimer's disease pathology and that higher frequency exercise was necessary to restore blood and brain inflammatory expression levels in this AD mouse model. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare.

    Science.gov (United States)

    Egermann, M; Goldhahn, J; Holz, R; Schneider, E; Lill, C A

    2008-10-01

    Animal models are necessary to evaluate new options for the treatment of fractures in osteoporotic bone. They permit both the biological response of a living system and the influence of the pathological processes to be taken into account. A sheep model for osteoporosis was established by combining oestrogen deficiency, calcium and vitamin D-deficient diet with steroid medication. Bone mineral density (BMD) was reduced by >30% after 12 weeks of combined treatment. Osteoporosis similar to the human situation with corresponding changes in the micro-architecture and mechanical properties of bone was observed. This publication focuses on the impressive results obtained with the model and contrasts them with considerations of animal welfare. Considerable side-effects associated with steroid medication became manifest. Animals in the treatment groups showed signs of infection of various degrees due to the immunosuppressive effect of the medication. The infections were mostly caused by Corynebacterium pseudotuberculosis. Antibody testing revealed a 100% prevalence of infection in this breed of sheep. A modification of the steroid treatment, i.e. less-frequent injections, reduced the incidence of side-effects. This sheep model shows a significant and reproducible reduction in cancellous BMD of >30%, including relevant changes in biomechanical properties and increased fracture risk. However, the severity of the side-effects cannot be overlooked. The model must be improved if it is to be used in the future. Options to reduce the side-effects are discussed.

  10. Combining Q2MM Modeling and Kinetic Studies for Refinement of the Osmium-catalyzed Asymmetric Dihydroxylation (AD) Mnemonic

    DEFF Research Database (Denmark)

    Fristrup, Peter; Jensen, Gitte Holm; Andersen, Marie Louise Nygaard

    2006-01-01

    The interactions between the substrate and the ligand in the Sharpless AD reaction have been examined in detail, using a combination of substrate competition experiments and molecular modeling of transition states. There is a good agreement between computational and experimental results, in parti......The interactions between the substrate and the ligand in the Sharpless AD reaction have been examined in detail, using a combination of substrate competition experiments and molecular modeling of transition states. There is a good agreement between computational and experimental results...

  11. Zebrafish: A Versatile Animal Model for Fertility Research

    Directory of Open Access Journals (Sweden)

    Jing Ying Hoo

    2016-01-01

    Full Text Available The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  12. Animal models : Implications for human aggression and violence

    NARCIS (Netherlands)

    de Boer, Sietse; Bushman, Brad

    2017-01-01

    A large body of animal neurobehavioral research convincingly demonstrates that abnormal expressions of aggressive behavior principally find their origin in a dys- regulation of the deeply rooted neuronal circuits and/or neurochemical pathways in the brain that mediate normal social

  13. Modeling herbivorous animal digestive system as 3- continuous ...

    African Journals Online (AJOL)

    Administrator

    2010-12-27

    Dec 27, 2010 ... Herbivores contain microflora in their guts which digest lignocellulosics in their stomachs and intestines by secreting the essential enzymes that perform the function so efficiently that the guts of these animals have been described as the best fermentation tanks known. Hippopotamus amphibious,.

  14. The Effect of Macroeconomic Variables on Value-Added Agriculture: Approach of Vector Autoregresive Bayesian Model (BVAR

    Directory of Open Access Journals (Sweden)

    E. Pishbahar

    2015-05-01

    Full Text Available There are different ideas and opinions about the effects of macroeconomic variables on real and nominal variables. To answer the question of whether changes in macroeconomic variables as a political tool is useful over a business cycle, understanding the effect of macroeconomic variables on economic growth is important. In the present study, the Bayesian Vector autoregresive model and seasonality data for the years between 1991 and 2013 was used to determine the impact of monetary policy on value-added agriculture. Predicts of Vector autoregresive model are usually divertaed due to a lot of parameters in the model. Bayesian vector autoregresive model estimates more reliable predictions due to reducing the number of included parametrs and considering the former models. Compared to the Vector Autoregressive model, the coefficients are estimated more accurately. Based on the results of RMSE in this study, previous function Nrmal-Vyshart was identified as a suitable previous disteribution. According to the results of the impulse response function, the sudden effects of shocks in macroeconomic variables on the value added in agriculture and domestic venture capital are stable. The effects on the exchange rates, tax revenues and monetary will bemoderated after 7, 5 and 4periods. Monetary policy shocks ,in the first half of the year, increased the value added of agriculture, while in the second half of the year had a depressing effect on the value added.

  15. Simple Decision-Analytic Functions of the AUC for Ruling Out a Risk Prediction Model and an Added Predictor.

    Science.gov (United States)

    Baker, Stuart G

    2018-02-01

    When using risk prediction models, an important consideration is weighing performance against the cost (monetary and harms) of ascertaining predictors. The minimum test tradeoff (MTT) for ruling out a model is the minimum number of all-predictor ascertainments per correct prediction to yield a positive overall expected utility. The MTT for ruling out an added predictor is the minimum number of added-predictor ascertainments per correct prediction to yield a positive overall expected utility. An approximation to the MTT for ruling out a model is 1/[P (H(AUC model )], where H(AUC) = AUC - {½ (1-AUC)} ½ , AUC is the area under the receiver operating characteristic (ROC) curve, and P is the probability of the predicted event in the target population. An approximation to the MTT for ruling out an added predictor is 1 /[P {(H(AUC Model:2 ) - H(AUC Model:1 )], where Model 2 includes an added predictor relative to Model 1. The latter approximation requires the Tangent Condition that the true positive rate at the point on the ROC curve with a slope of 1 is larger for Model 2 than Model 1. These approximations are suitable for back-of-the-envelope calculations. For example, in a study predicting the risk of invasive breast cancer, Model 2 adds to the predictors in Model 1 a set of 7 single nucleotide polymorphisms (SNPs). Based on the AUCs and the Tangent Condition, an MTT of 7200 was computed, which indicates that 7200 sets of SNPs are needed for every correct prediction of breast cancer to yield a positive overall expected utility. If ascertaining the SNPs costs $500, this MTT suggests that SNP ascertainment is not likely worthwhile for this risk prediction.

  16. [RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].

    Science.gov (United States)

    Yu, Kaifu; Tan, Hongbo; Xu, Yongqing

    2015-12-01

    To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.

  17. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis

    Science.gov (United States)

    2017-10-01

    pre-clinical animal models of autoimmune. For example, FTS can attenuate disease manifestations in experimental autoimmune encephalo- myelitis (34...the clinical score of the disease; however, the biology behind the effect of FTS was not comprehensively elucidated. AIA is an experimental animal ...AWARD NUMBER: W81XWH-14-1-0609 TITLE: Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid

  18. Orbital Trajectory Simulation on Twin Stars System in Ifs Fractal Model Based on Hybrid Animation Method

    OpenAIRE

    Darmanto, Tedjo; Suwardi, Iping Supriana; Munir, Rinaldi

    2015-01-01

    IFS (Iterated Function Systems) is a method to model fractal object based on affine transformation functions. The star-like object rotation effect in the IFS fractal model could be exhibited by using metamorphical method, as a replacement to the affine rotation method on a non metamorphic animation. The advantage of a metamorphic animation method over the metamorphic animation method is that the object's relative position to the fixed point as an absolute centroid is absolute. Therefore, the ...

  19. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis

    Science.gov (United States)

    2015-10-01

    objectives are to further test this hypothesis in the AIA model as well as in another established animal model of RA, the collagen type-II induced...onset) and day +16 (disease peak) sera tested regardless of the animal treatment protocol (data not shown). Responsible PI: Yoel Kloog, Tel Aviv...studies are associated with substantial distress to the animals , and given our duty to balance the needs of the study with that of the welfare of

  20. Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War Illness

    Science.gov (United States)

    2016-10-01

    epidemiological and animal experimental data that indicate the risk of developing complex diseases is influenced by persistent epigenetic adaptations...1 AWARD NUMBER: W81XWH-14-1-0550 TITLE: Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War Illness...Sept 2015-29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War