WorldWideScience

Sample records for acylation

  1. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    Oral administration of therapeutic peptides could benefit millions of chronically ill people worldwide, through easier and less stigmatized therapy, and likely improve the long-term effects of currently widespread disease mismanagement. However, oral peptide delivery is a formidable task due......, but it is not widely studied in an oral context. As acylation furthermore increases interactions with the lipid membranes of mammalian cells, it offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation...... to the harsh and selective gastrointestinal system, and development has lacked far behind injection therapy. Peptide acylation is a powerful tool to alter the pharmacokinetics, biophysical properties and chemical stability of injectable peptide drugs, primarily used to prolong blood circulation...

  2. Ghrelin: The differences between acyl- and des-acyl ghrelin

    NARCIS (Netherlands)

    P.J.D. Delhanty (Patric); S.J.C.M.M. Neggers (Bas); A-J. van der Lely (Aart-Jan)

    2012-01-01

    textabstractDes-acyl ghrelin (DAG) is one of the three preproghrelin gene-encoded peptides. Compared with ghrelin and obestatin, it has not received the attention it deserves. DAG has long been considered an inert degradation product of acyl ghrelin (AG). Recent evidence, however, indicates that DAG

  3. Acylation of Ferrocene: A Greener Approach

    Science.gov (United States)

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  4. Evolution of acyl-substrate recognition by a family of acyl-homoserine lactone synthases.

    Directory of Open Access Journals (Sweden)

    Quin H Christensen

    Full Text Available Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family.

  5. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue...... expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...

  6. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein a...

  7. Acylation of Glucagon-like peptide-2

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2014-01-01

    These results show that membrane interactions play a prominent role during intestinal translocation of an acylated peptide. Acylation benefits permeation for shorter and medium chains due to increased membrane interactions, however, for longer chains insertion in the membrane becomes dominant and...

  8. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated fr...

  9. Alkylation and acylation of cyclotriphosphazenes.

    Science.gov (United States)

    Benson, Mark A; Zacchini, Stefano; Boomishankar, Ramamoorthy; Chan, Yuri; Steiner, Alexander

    2007-08-20

    Phosphazenes (RNH)6P3N3 (R = n-propyl, isobutyl, isopropyl, cyclohexyl, tert-butyl, benzyl) are readily alkylated at ring N sites by alkyl halides forming N-alkyl phosphazenium cations. Alkylation of two ring N sites occurred after prolonged heating in the presence of methyl iodide or immediately at room temperature with methyl triflate yielding N,N'-dimethyl phosphazenium dications. Geminal dichloro derivatives Cl2(RNH)4P3N3 are methylated by methyl iodide at the ring N site adjacent to both P centers carrying four RNH groups. X-ray crystal structures showed that the alkylation of ring N sites leads to substantial elongation of the associated P-N bonds. Both N-alkyl and N,N'-dialkyl phosphazenium salts form complex supramolecular networks in the solid state via NH...X interactions. Systems carrying less-bulky RNH groups show additional NH...N bonds between N-alkyl phosphazenium ions. N-Alkyl phosphazenium halides form complexes with silver ions upon treatment with silver nitrate. Depending on the steric demand of RNH substituents, either one or both of the vacant ring N sites engage in coordination to silver ions. Treatment of (RNH)6P3N3 (R = isopropyl) with acetyl chloride and benzoyl chloride, respectively, yielded N-acyl phosphazenium ions. X-ray crystal structures revealed that elongation of P-N bonds adjacent to the acylated ring N site is more pronounced than it is in the case of N-alkylated species. Salts containing N-alkyl phosphazenium ions are stable toward water and other mild nucleophiles, while N,N'-dialkyl and N-acyl phosphazenium salts are readily hydrolyzed. The reaction of (RNH)6P3N3 with bromoacetic acid led to N-alkylation at one ring N site in addition to formation of an amide via condensation of an adjacent RNH substituent with the carboxylic acid group. The resulting bromide salt contains mono cations of composition (RNH)5P3N3CH2CONR in which a CH2-C(O) unit is embedded between a ring N and an exocyclic N site of the phosphazene.

  10. Friedel-Crafts Acylation with Amides

    Science.gov (United States)

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  11. Acyl-coenzyme A organizes laterally in membranes and is recognized specifically by acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Cohen Simonsen, A; Bernchou Jensen, U; Færgeman, Nils J.

    2003-01-01

    Long chain acyl-coenzyme A (acyl-CoA) is a biochemically important amphiphilic molecule that is known to partition strongly into membranes by insertion of the acyl chain. At present, microscopically resolved evidence is lacking on how acyl-CoA influences and organizes laterally in membranes. By a...

  12. Antifibrotic Activity of Acylated and Unacylated Ghrelin

    Directory of Open Access Journals (Sweden)

    Elia Angelino

    2015-01-01

    Full Text Available Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.

  13. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  14. Microbial tailoring of acyl peptidic siderophores.

    Science.gov (United States)

    Gauglitz, Julia M; Iinishi, Akira; Ito, Yusai; Butler, Alison

    2014-04-29

    Marine bacteria produce an abundance of suites of acylated siderophores characterized by a unique, species-dependent headgroup that binds iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with fatty acids ranging from saturated and unsaturated C12-C18 fatty acids. In the present study, we report that in the late log phase of growth, the fatty acids are hydrolyzed by an amide hydrolase producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the same sample of open ocean water as Marinobacter sp. DS40M6, produces the acyl aquachelins, also as a suite composed of a peptidic headgroup distinct from that of the marinobactins. In contrast to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins is not detected, even when H. aquamarina str. DS40M3 is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin C, as well as octanoyl homoserine lactone used in quorum sensing). Further, when H. aquamarina str. DS40M3 is cultured together with Marinobacter sp. DS40M6, the fatty acids of both suites of siderophores are hydrolyzed, and the aquachelin headgroup is also produced. The present study demonstrates that coculturing bacteria leads to metabolically tailored metabolites compared to growth in a single pure culture, which is interesting given the importance of siderophore-mediated iron acquisition for bacterial growth and that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater.

  15. In silico prediction of acyl glucuronide reactivity

    Science.gov (United States)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  16. Acyl-coenzyme A:cholesterol acyltransferases

    OpenAIRE

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as...

  17. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    Science.gov (United States)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  18. Expanding the Reader Landscape of Histone Acylation.

    Science.gov (United States)

    Khan, Abid; Bridgers, Joseph B; Strahl, Brian D

    2017-04-04

    In this issue of Structure,Klein et al. (2017) expand our understanding of what reader domains bind to by showing that MORF, a double PHD domain containing lysine acetyltransferase, is a preferential reader of histone lysine acylation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Acylated Flavonoid from Vaccinium Corymbosum (Ericaceae ...

    African Journals Online (AJOL)

    ... and the genus of Vaccinium. This is the first report on characterization of these phenolic compounds and the possible utilization of blueberry flowers for nutraceutical and functional food applications. Keywords: Vaccinium corymbosum, Blueberry, Acylated flavonoid, Yeast α-Glucosidase, Inhibitory activity, Nutraceuticals ...

  20. Acylation of the Type 3 Secretion System Translocon Using a Dedicated Acyl Carrier Protein.

    Directory of Open Access Journals (Sweden)

    Julie P Viala

    2017-01-01

    Full Text Available Bacterial pathogens often deliver effectors into host cells using type 3 secretion systems (T3SS, the extremity of which forms a translocon that perforates the host plasma membrane. The T3SS encoded by Salmonella pathogenicity island 1 (SPI-1 is genetically associated with an acyl carrier protein, IacP, whose role has remained enigmatic. In this study, using tandem affinity purification, we identify a direct protein-protein interaction between IacP and the translocon protein SipB. We show, by mass spectrometry and radiolabelling, that SipB is acylated, which provides evidence for a modification of the translocon that has not been described before. A unique and conserved cysteine residue of SipB is identified as crucial for this modification. Although acylation of SipB was not essential to virulence, we show that this posttranslational modification promoted SipB insertion into host-cell membranes and pore-forming activity linked to the SPI-1 T3SS. Cooccurrence of acyl carrier and translocon proteins in several γ- and β-proteobacteria suggests that acylation of the translocon is conserved in these other pathogenic bacteria. These results also indicate that acyl carrier proteins, known for their involvement in metabolic pathways, have also evolved as cofactors of new bacterial protein lipidation pathways.

  1. Acyl-ACP substrate recognition in Burkholderia mallei BmaI1 acyl-homoserine lactone synthase.

    Science.gov (United States)

    Montebello, Aubrey N; Brecht, Ryan M; Turner, Remington D; Ghali, Miranda; Pu, Xinzhu; Nagarajan, Rajesh

    2014-10-07

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme.

  2. A study of synthetic approaches to 2-acyl DHA lysophosphatidic acid.

    Science.gov (United States)

    Yamamoto, Yoshinori; Itoh, Toshimasa; Yamamoto, Keiko

    2017-10-04

    Lysophosphatidic acid (LPA) is a chemical mediator with a very simple glycerophospholipid structure. 1-Acyl LPA and 2-acyl LPA are biosynthesized in vivo. Unlike 1-acyl LPA, the biological function of 2-acyl LPA has been hardly elucidated and even organic synthesis of 2-acyl LPA had not been established. We suppressed acyl migration by formation of a salt with a phosphate group in order to synthesize 2-acyl LPA condensed with docosahexaenoic acid.

  3. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and ......) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6]....... and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  4. Mass-Tag Labeling Using Acyl-PEG Exchange for the Determination of Endogenous Protein S-Fatty Acylation.

    Science.gov (United States)

    Percher, Avital; Thinon, Emmanuelle; Hang, Howard

    2017-08-01

    The covalent coupling of fatty acids to proteins provides an important mechanism of regulation in cells. In eukaryotes, cysteine fatty acylation (S-fatty acylation) has been shown to be critical for protein function in a variety of cellular pathways as well as microbial pathogenesis. While methods developed over the past decade have improved the detection and profiling of S-fatty acylation, these are hampered in their ability to characterize endogenous protein S-fatty acylation levels under physiological conditions. Furthermore, understanding the contribution of specific sites and levels of S-fatty acylation remains a major challenge. To evaluate S-fatty acylation of endogenous proteins as well as to determine the number of S-fatty acylation events, we developed the acyl-PEG exchange (APE) that utilizes cysteine-specific chemistry to exchange S-fatty acylation sites with mass-tags of defined size, which can be readily observed by western blotting. APE provides a readily accessible approach to investigate endogenous S-fatty acylation from any sample source, with high sensitivity and broad applicability that complements the current toolbox of methods for thioester-based post-translational modifications. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Ferreira, Natalia Santos; Engelsby, Hanne; Neess, Ditte

    2017-01-01

    and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very...... of ACBP(-/-) mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial...

  6. Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. II. Activities of 2-acyl-sn-glycerol-3-phosphorylcholine and 2-acyl-sn-glycerol-3- phosphorylethanolamine acyltransferases involving the reacylation.

    Science.gov (United States)

    Yoshioka, S; Kameyama, Y; Nozawa, Y

    1984-03-27

    The deacylation-reacylation process is very important for the alteration of phospholipid fatty acyl composition on lowering of growth temperature in Tetrahymena pyriformis (Kameyama, Y., Yoshioka, S. and Nozawa, Y., (1984) Biochim. Biophys. Acta 793, 28-33). Microsomes isolated from Tetrahymena cells have reacylation activities not only for 1-acyl-sn-glycerol-3-phosphorylcholine (1-acyl-GPC) and 1-acyl-sn-glycerol-3-phosphorylethanolamine (1-acyl-GPE) but also for 2-acyl-GPC and 2-acyl-GPE. Unsaturated fatty acyl-CoAs were in general much better substrates than saturated fatty acyl-CoAs for acylations of 1-acyl-GPC and 1-acyl-GPE. The acylation rates for 1-acyl-GPE were almost the same in palmitoleoyl-CoA, oleoyl-CoA, linoleoyl-CoA and gamma-linoleoyl-CoA. However, the acylation activity for 1-acyl-GPC was more than 2-fold higher with palmitoleoyl-CoA than with any other unsaturated fatty acyl-CoAs. In contrast, both 2-acyl-GPC and 2-acyl-GPE acyltransferases did not show a distinct preference for various acyl-CoAs, although palmitoyl-CoA was incorporated into both 2-acylphospholipids at higher rates than into 1-acylphospholipids. These specificities for various acyl-CoAs of 1-acyl- and 2-acyl-GPC and 1-acyl- and 2-acyl-GPE acyltransferases were not changed in the microsomes isolated from cells grown isothermally at 39 degrees C and 15 degrees C and cells shifted from 39 degrees C to 15 degrees C. However, the acylating ratio of linoleoyl-CoA to palmitoyl-CoA, which were chosen as typical unsaturated and saturated fatty acyl-CoAs, in the microsomes from cells grown at 15 degrees C was 1.5-3.0-times higher than in the microsomes from 39 degrees C-grown cells in four acyltransferase activities. These results suggest that the changes of acyl-CoA specificities in reacylation enzyme activities during temperature down-shift would make little contribution to the increase in unsaturated fatty acids in phospholipids, although reacylating enzymes from isothermally grown

  7. And then there were acyl coenzyme A:cholesterol acyl transferase inhibitors

    NARCIS (Netherlands)

    Meuwese, Marijn C.; Franssen, Remco; Stroes, Erik S. G.; Kastelein, John J. P.

    2006-01-01

    PURPOSE OF REVIEW: The reputation of acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitors has changed profoundly from promising new drugs for cardiovascular prevention to drugs without clinical benefits or possibly even with adverse effects. RECENT FINDINGS: ACAT inhibitors decrease the

  8. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...... instead. Spicosides appeared to be common in subgenus Pseudolysimachium (detected in five out of eight species), but we did not find them in subgenus Pentasepalae. Previously, acetylated 8-hydroxyflavone glycosides have been isolated from or detected in eight species of V. subgenus Pentasepalae (in 13...

  9. Selective acylation of primary amines in peptides and proteins

    NARCIS (Netherlands)

    Abello, N.; Kerstjens, H.A.M.; Postma, D.S; Bischoff, Rainer

    2007-01-01

    N-hydroxysuccinimide (NHS) esters are derivatizing agents that target primary amine groups. However, even a small molar excess of NHS may lead to acylation of hydroxyl-containing amino acids as a side reaction. We report a straightforward method for the selective removal of ester-linked acyl groups

  10. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  11. Deciphering the acylation pattern of Yersinia enterocolitica lipid A

    National Research Council Canada - National Science Library

    Reinés, Mar; Llobet, Enrique; Dahlström, Käthe M; Pérez-Gutiérrez, Camino; Llompart, Catalina M; Torrecabota, Nuria; Salminen, Tiina A; Bengoechea, José A

    2012-01-01

    ...°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule...

  12. Molecular cloning and characterization of an acyl-ACP thioesterase ...

    African Journals Online (AJOL)

    Acyl-acyl carrier protein (ACP) thioesterase is a nuclear encoded plastid localized enzyme which plays an essential role in chain termination during de novo fatty acid synthesis in plant. FatB genes coding for this enzyme from a variety of plant species have been isolated and characterized. However, there are few reports on ...

  13. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  14. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin

    OpenAIRE

    Asakawa, A; Inui, A; Fujimiya, M; Sakamaki, R; Shinfuku, N; Ueta, Y; Meguid, M M; Kasuga, M

    2005-01-01

    Background/Aims: The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.

  15. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  16. Enzymatic preparation of arbutin derivatives: lipase-catalyzed direct acylation without the need of vinyl ester as an acyl donor.

    Science.gov (United States)

    Ishihara, Kohji; Katsube, Yasuko; Kumazawa, Nozomi; Kuratani, Mari; Masuoka, Noriyoshi; Nakajima, Nobuyoshi

    2010-06-01

    Direct and regioselective acylation of arbutin with aromatic or aliphatic acid using a lipase obtained from Candida antarctica in an organic solvent was investigated. We achieved the enzymatic synthesis of feruloyl arbutin and lipoyl arbutin without the need of vinyl ferulate and vinyl lipoate as acyl donors, respectively. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Friedel-Craft Acylation of ar-Himachalene: Synthesis of Acyl-ar-Himachalene and a New Acyl-Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Abdallah Karim

    2011-07-01

    Full Text Available Friedel-Craft acylation at 100 °C of 2,5,9,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocycloheptene [ar-himachalene (1], a sesquiterpenic hydrocarbon obtained by catalytic dehydrogenation of α-, β- and γ-himachalenes, produces a mixture of two compounds: (3,5,5,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl-ethanone (2, in 69% yield, with a conserved reactant backbone, and 3, with a different skeleton, in 21% yield. The crystal structure of 3 reveals it to be 1-(8-ethyl-8-hydroperoxy-3,5,5-trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl-ethanone. In this compound O-H…O bonds form dimers. These hydrogen-bonds, in conjunction with weaker C-H…O interactions, form a more extended supramolecular arrangement in the crystal.

  18. Acylated pelargonidin 3-sambubioside-5-glucosides in Matthiola incana.

    Science.gov (United States)

    Saito, N; Tatsuzawa, F; Hongo, A; Win, K W; Yokoi, M; Shigihara, A; Honda, T

    1996-04-01

    Ten acylated pelargonidin 3-sambubioside-5-glucosides were isolated from the red-purple flowers of Matthiola incana, and also pelargonidin 3-glucoside was isolated from the brownish-red flowers of this plant. FAB mass measurements of 10 acylated anthocyanins gave their molecular ions [M]+ at 903-1195 m/z, which were based on acylated pelargonidin 3-sambubioside-5-glucosides with malonic acid, sinapic acid, p-coumaric acid, caffeic acid and/or ferulic acid. This was confirmed by the analysis of NMR spectra and the experiments of acid and alkaline hydrolysis. By spectral and chemical methods, seven of the 10 pigments were determined to be pelargonidin 3-O-[2-O-(2-O-(acyl-I)-beta-D-xylopyranosyl)- 6-O-(acyl-II)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-beta-D- glucopyranoside], in which acyl moieties varied between sinapic, ferulic, caffeic and p-coumaric acids. The occurrence of these pigments was examined in 10 red-purple, 10 salmon-pink, three apricot and three copper colour cultivars of M. incana by HPLC. The acylated pelargonidin 3-sambubioside-5-glucosides were present as the dominant pigments in the red-purple, salmon-pink and apricot colour cultivars. On the other hand, pelargonidin 3-glucoside was present as a dominant anthocyanin in the copper colour cultivars and also pelargonidin 3-sambubioside-5-glucoside was confirmed by HPLC as a minor pigment in the copper colour flowers.

  19. Acylated flavonol glycoside from Platanus orientalis.

    Science.gov (United States)

    Tantry, Mudasir A; Akbar, Seema; Dar, Javid A; Irtiza, Syed; Galal, Ahmed; Khuroo, Mohammad A; Ghazanfar, Khalid

    2012-03-01

    The ethylacetate and n-butanol fractions of ethanolic extract of Platanus orientalis leaves led to the isolation of new acylated flavonol glycoside as 3',5,7-trihydroxy-4'-methoxyflavonol 3-[O-2-O-(2,4-Dihydroxy)-E-cinnamoyl-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl (1→2)]-β-D-glucopyranoside, along with seven known compounds. All the compounds were characterized by NMR including 2D NMR techniques. The isolates were evaluated for NF-κB, nitric oxide (NO), aromatase and QR2 chemoprevention activities and some of them appeared to be modestly active. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Grafting of chitosan with fatty acyl derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Chiandotti, Roberto S.; Rodrigues, Paula C.; Akcelrud, Leni, E-mail: leni@leniak.ne [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept de Quimica

    2010-07-01

    The internal plasticization of chitosan with covalently linked long aliphatic branches, typically 12C, was accomplished through the condensation of the amino groups of chitosan with acidic derivatives of lauric acid, as lauroyl anhydride or lauroyl chloride, that are more reactive than the fatty acid itself. The chemical pathway led to selective N-acylation. The degree of substitution was quantitatively determined by FTIR and {sup 1}H NMR and varied between 3 and 35%. The FTIR quantitative analysis was based in a calibration method with good accuracy. The modified chitosan products were soluble in neutral water and/or DMF according to the degree of substitution. The modified chitosan films were more flexible than the pristine, non-modified ones. (author)

  1. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  2. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids

    DEFF Research Database (Denmark)

    Wadum, M.C.; Villadsen, J.K.; Feddersen, S.

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and b-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable...... methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl...

  3. N-(acyl)-N'-(ferrocenylidene) hydrazines and their nickel (II ...

    Indian Academy of Sciences (India)

    2), where acyl = acetyl in 1 and benzoyl in 2 and H represents the dissociable amide proton) were synthesized in high yields (74 and 81%) by condensation reactions of equimolar amounts of ferrocene-carboxaldehyde and the corresponding ...

  4. Acylated cyanidin 3-sambubioside-5-glucosides in Matthiola incana.

    Science.gov (United States)

    Saito, N; Tatsuzawa, F; Nishiyama, A; Yokoi, M; Shigihara, A; Honda, T

    1995-03-01

    Four acylated cyanidin 3-sambubioside-5-glucosides were isolated from purple-violet flowers of Matthiola incana and their structures were determined by chemical and spectroscopic methods. Three acylated anthocyanins were cyanidin 3-O-(6-O-acyl-2-O-(2-O-sinapyl-beta-D-xylopyranosyl)-beta-D- glucopyranosides)-5-O-(6-O-malonyl-beta-D-glucopyranosides), in which the acyl group is p-coumaryl, caffeyl or ferulyl, respectively. The remaining pigment is free from malonic acid and was identified as cyanidin 3-O-(6-O-trans-ferulyl-2-O-(2- O-trans-sinapyl-beta-D-xylopyranosyl)-beta-D-glucopyranoside)-5-O- (beta-D-glucopyranoside). Analysis of the anthocyanin constituents in 16 purple-violet cultivars revealed that they contained the above triacylated anthocyanins in variable amounts as main pigments. An aromatic pair of pigments containing sinapic and ferulic acids are considered to produce an important intramolecular effect, making bluish colours in these flowers.

  5. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H...

  6. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size

    DEFF Research Database (Denmark)

    Knudsen, J; Faergeman, N J; Skøtt, H

    1994-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitut...

  7. Acylated flavonol glycosides from the forage legume, Onobrychis viciifolia (sainfoin).

    Science.gov (United States)

    Veitch, Nigel C; Regos, Ionela; Kite, Geoffrey C; Treutter, Dieter

    2011-04-01

    Ten acylated flavonol glycosides were isolated from aqueous acetone extracts of the aerial parts of the forage legume, Onobrychis viciifolia, and their structures determined using spectroscopic methods. Among these were eight previously unreported examples which comprised either feruloylated or sinapoylated derivatives of 3-O-di- and 3-O-triglycosides of kaempferol (3,5,7,4'-tetrahydroxyflavone) or quercetin (3,5,7,3',4'-pentahydroxyflavone). The diglycosides were acylated at the primary Glc residue of O-α-Rhap(1→6)-β-Glcp (rutinose), whereas the triglycosides were acylated at the terminal Rha residues of the branched trisaccharides, O-α-Rhap(1→2)[α-Rhap(1→6)]-β-Galp or O-α-Rhap(1→2)[α-Rhap(1→6)]-β-Glcp. Identification of the primary 3-O-linked hexose residues as either Gal or Glc was carried out by negative ion electrospray and serial MS, and cryoprobe NMR spectroscopy. Analysis of UV and MS spectra of the acylated flavonol glycosides provided additional diagnostic features relevant to direct characterisation of these compounds in hyphenated analyses. Quantitative analysis of the acylated flavonol glycosides present in different aerial parts of sainfoin revealed that the highest concentrations were in mature leaflets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Ghrelin O-Acyl Transferase: Bridging Ghrelin and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Andrew Shlimun

    2011-01-01

    Full Text Available Ghrelin O-acyl transferase (GOAT is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin, a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the regulation of energy balance.

  9. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  10. Caveolar Fatty Acids and Acylation of Caveolin-1

    Science.gov (United States)

    Cai, Qian; Guo, Ling; Gao, Haiqing; Li, Xiang-An

    2013-01-01

    Purpose Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. Methods Caveolae were isolated from Chinese hamster ovary (CHO) cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS). The caveolin-1bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. Results In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5×107 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. Conclusion Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae. PMID:23593340

  11. Visualization and Identification of Fatty Acylated Proteins Using Chemical Reporters

    Science.gov (United States)

    Yount, Jacob S.; Zhang, Mingzi M.; Hang, Howard C.

    2011-01-01

    Protein fatty-acylation is the covalent addition of a lipid chain at specific amino acids. This modification changes the inherent hydrophobicity of a protein, often targeting it to cellular membrane compartments. Acylation may also regulate protein activity, stability, and protein-protein interactions. Its study is therefore critical to understanding the biology of the hundreds of proteins described to be lipid-modified, as well as those that are continually being discovered. Fatty-acylation can be analyzed using chemical reporters that mimic natural lipids and contain bioorthogonal chemical handles allowing them to be reacted with detection tags such as fluorophores or affinity tags. Our laboratory has successfully utilized alkynyl-chemical reporters of protein myristoylation, S-palmitoylation, prenylation and acetylation. Protocol 1 describes metabolic incorporation of these chemical reporters onto proteins in living cells. Protocol 2 describes the global visualization of reporter-labeled proteins by selectively reacting alkyne-containing chemical reporter-labeled proteins in cell lysates with azido-rhodamine via the click chemistry and fluorescence gel scanning. Protocol 3 describes analysis of protein acylation on individual candidate proteins using immunoprecipitation, click chemistry and fluorescence gel scanning. Finally, Protocol 4 allows identification of novel fatty acylated proteins by reacting chemical reporter-labeled proteins with azido-biotin via click chemistry and selective retrieval using streptavidin beads. This may be particularly valuable for the examination of S-palmitoylomes in different cell types or activation states, as these modifications do not occur on readily predicted consensus amino acid motifs. Overall, these techniques provide robust, non-radioactive methods for examining the acylation states of full cellular proteomes and individual proteins of interest. PMID:23061028

  12. Metabolic alkene labeling and in vitro detection of histone acylation via the aqueous oxidative Heck reaction

    NARCIS (Netherlands)

    Ourailidou, Maria E; Dockerty, Paul; Witte, Martin; Poelarends, Gerrit J; Dekker, Frank J

    2015-01-01

    The detection of protein lysine acylations remains a challenge due to lack of specific antibodies for acylations with various chain lengths. This problem can be addressed by metabolic labeling techniques using carboxylates with reactive functionalities. Subsequent chemoselective reactions with a

  13. Putative neuroprotective actions of N-acyl-ethanolamines

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Moesgaard, B.; Petersen, G.

    2002-01-01

    N-Acyl-ethanolamines (NAEs) and their precursors, N-acyl-ethanolamine phospholipids (NAPEs), are present in the mammalian brain at levels of a few hundred picomoles/gram tissue and a few nanomoles/gram tissue, respectively. NAE-containing arachidonic acid is called anandamide, and it has attracted...... and monounsaturated fatty acids. Formation of NAPE and NAE is catalyzed by an N-acyltransferase and an NAPE-hydrolyzing phospholipase D, respectively, two enzymes that have been characterized only preliminary. Interestingly, NAPEs and NAEs accumulate in the brain in response to neurodegenerative insults at a time...

  14. Quantum chemical study of penicillin: Reactions after acylation

    Science.gov (United States)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  15. Acyl-lupeol esters from Parahancornia amapa (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Carvalho Mário G. de

    2001-01-01

    Full Text Available From the roots of Parahancornia amapa, family Apocynaceae, the following compounds were isolated and identified nine new and ten known 3beta-O-acyl lupeol esters, beta-sitosterol, stigmasterol, beta-sitosterone, the triterpenoids beta-amyrin, alpha-amyrin, lupeol and their acetyl derivatives. The structures of these compounds were established by spectroscopic data, mainly ¹H and 13C (HBBD and DEPT NMR spectra. The methyl esters obtained by hydrolysis of acyl lupeol esters and methylation of the corresponding acids were characterized by MS-GC analysis.

  16. Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis.

    Science.gov (United States)

    Tjellström, Henrik; Strawsine, Merissa; Silva, Jillian; Cahoon, Edgar B; Ohlrogge, John B

    2013-04-02

    Engineering transgenic plants that accumulate high levels of medium-chain fatty acids (MCFA) has been least successful for shorter chain lengths (e.g., C8). We demonstrate that one limitation is the activity of acyl-ACP synthetase (AAE) that re-activates fatty acids released by acyl-ACP thioesterases. Seed expression of Cuphea pulcherrima FATB acyl-ACP thioesterase in a double mutant lacking AAE15/16 increased 8:0 accumulation almost 2-fold compared to expression in wild type. These results also provide an in planta demonstration that AAE enzymes participate not only in activation of exogenously added MCFA but also in activation of MCFA synthesized in plastids. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. A Cerulenin Insensitive Short Chain 3-Ketoacyl-Acyl Carrier Protein Synthase in Spinacia oleracea Leaves

    Science.gov (United States)

    Jaworski, Jan G.; Clough, Richard C.; Barnum, Susan R.

    1989-01-01

    A cerulenin insensitive 3-ketoacyl-acyl carrier protein synthase has been assayed in extracts of spinach (Spinacia oleracea) leaf. The enzyme was active in the 40 to 80% ammonium sulfate precipitate of whole leaf homogenates and catalyzed the synthesis of acetoacetyl-acyl carrier protein. This condensation reaction was five-fold faster than acetyl-CoA:acyl carrier protein transacylase, and the initial rates of acyl-acyl carrier protein synthesis were independent of the presence of cerulenin. In the presence of fatty acid synthase cofactors and 100 micromolar cerulenin, the principal fatty acid product of de novo synthesis was butyric and hexanoic acids. Using conformationally sensitive native polyacrylamide gel electrophoresis for separation, malonyl-, acetyl-, butyryl-, hexanoyl, and long chain acyl-acyl carrier proteins could be detected by immunoblotting and autoradiography. In the presence of 100 micromolar cerulenin, the accumulation of butyryl- and hexanoyl-acyl carrier protein was observed, with no detectable long chain acyl-acyl carrier proteins or fatty acids being produced. In the absence of cerulenin, the long chain acyl-acyl carrier proteins also accumulated. Images Figure 2 Figure 3 PMID:16666765

  18. Long-chain acyl-CoA esters in metabolism and signaling

    DEFF Research Database (Denmark)

    Neess, Ditte; Sørensen, Signe Bek; Engelsby, Hanne

    2015-01-01

    Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing...

  19. Fatty acyl chain-dependent but charge-independent association of ...

    Indian Academy of Sciences (India)

    2012-12-30

    Dec 30, 2012 ... phobic core. Both Pmlck and Pmpplck are anchored to the bilayer via their acyl chains. In Pmlck, the peptide chain is associated with the bilayer. In the triply acylated peptide. Pmpplck, the peptide chain is oriented away from the bilay- er. Differential acylation thus governs the orientation of the. Figure 3.

  20. The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii*

    Science.gov (United States)

    Serebryakova, Marina V.; Demina, Irina A.; Galyamina, Maria A.; Kondratov, Ilya G.; Ladygina, Valentina G.; Govorun, Vadim M.

    2011-01-01

    Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In Gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in Gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of Gram-negative bacteria are also present in other mollicutes and Gram-positive bacteria. PMID:21540185

  1. Antileishmanial Activity of Aldonamides and N-Acyl-Diamine Derivatives

    Directory of Open Access Journals (Sweden)

    Elaine S. Coimbra

    2008-01-01

    Full Text Available A number of lipophilic N-acyl-diamines and aldonamides have been synthesized and tested for their in vitro antiproliferative activity against Leishmania amazonensis and L. chagasi. Ribonamides, having one amino group, displayed good to moderate inhibition of parasite growth. The best result was obtained for compounds 10 and 15 with IC50 against L. chagasi below 5 μM.

  2. Experimental and theoretical rearrangement of N-acyl-2, 2 ...

    Indian Academy of Sciences (India)

    The acid isomerization of N-acyl-2,2-dimethylaziridines 1 in concentrated sulfuric acid at room temperature leads to oxazolines 2 but the neutral hydrolysis of 1 in pure water at room temperature leads to amidoalcohols 3. However, the use of aqueous solutions of H2SO4 at different concentrations at room temperature leads ...

  3. A new acylated isoflavone glucoside from Pterocarpus santalinus.

    Science.gov (United States)

    Krishnaveni, K S; Srinivasa Rao, J V

    2000-09-01

    Phytochemical investigation on the constituents of heartwood of Pterocarpus santalinus resulted in the isolation of a new acylated isoflavone glucoside. The structure of the new compound was elucidated on the basis of spectral studies as 4',5-dihydroxy-7-O-methyl isoflavone 3'-O-D-(3''-E-cinnamoyl)glucoside.

  4. Genetics Home Reference: peroxisomal acyl-CoA oxidase deficiency

    Science.gov (United States)

    ... recurrent seizures (epilepsy), and loss of vision and hearing. Most children with peroxisomal acyl-CoA oxidase deficiency do not survive past early childhood. Related Information What does it mean if a disorder seems to run in my family? What is ...

  5. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  6. Tannin Acyl Hydrolase Production by Citrobacter sp. isolated from ...

    African Journals Online (AJOL)

    MICHAEL

    Environ. Manage. December, 2009. Vol. 13(4) 95 - 97. Full-text Available Online at www.bioline.org.br/ja. Tannin Acyl Hydrolase Production by Citrobacter sp. isolated from Tannin rich. Environment, using Tamarindus indica seed powder. 1WILSON PETER A.; 2ROJAN P. JOHN;1PRAVEEN KUMAR; 1*SABU THOMAS.

  7. Molecular cloning and characterization of an acyl-ACP thioesterase ...

    African Journals Online (AJOL)

    ajl11

    , 280(5):3621-3627. Moreno-Pérez AJ, Sánchez-García A, Salas JJ, Garcés R, Martínez-. Force E (2011). Acyl-ACP thioesterases from macadamia. (Macadamia tetraphylla) nuts: Cloning, characterization and their impact on oil composition.

  8. Influence of acylation on the adsorption of GLP-2 to hydrophobic surfaces

    DEFF Research Database (Denmark)

    Pinholt, Charlotte; Kapp, Sebastian J; Bukrinsky, Jens T

    2013-01-01

    of this work was to study the effect of acylation on the adsorption of GLP-2 from aqueous solution to a hydrophobic surface by comparing the adsorption of the 3766 Da GLP-2 with that of a GLP-2 variant acylated with a 16-carbon fatty acid chain through a ß-alanine linker. Adsorption of GLP-2 and acylated GLP-2......-2. Acylation increased the amount of GLP-2 adsorbing per unit surface area and decreased the initial adsorption rate of GLP-2. Finally, acylation increased the strength of the adsorption, as judged by the lower fraction desorbing upon rinsing with buffer....

  9. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  10. Ethanol metabolism modifies hepatic protein acylation in mice.

    Directory of Open Access Journals (Sweden)

    Kristofer S Fritz

    Full Text Available Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated

  11. The impact of sugar and fatty acid on the bioactivity of N-fatty acyl-L ...

    Indian Academy of Sciences (India)

    SRIKANTH VUDHGIRI

    biological activities to examine the impact of sugar and fatty acid on the bioactivity of N-fatty acyl-L-tyrosine derivatives. 2. Experimental. 2.1 Materials and methods. All the chemicals used in these schemes were of analyti- cal grade and they were obtained from different commercial sources and were used without any further ...

  12. The impact of sugar and fatty acid on the bioactivity of N-fatty acyl-L ...

    Indian Academy of Sciences (India)

    The glycosylation of aglycone moiety with different carbohydrates was performed using the Lewis acid, BF3.Et2O. All the synthesized compounds were tested against a panel of four cancer cell lines. The glycosylated N-fatty acyl-L-tyrosines showed moderate activity against all the cell lines and the IC50 values were in the ...

  13. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we...... hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...... is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain...

  14. Disruption of the Acyl-CoA binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Marcher, Ann-Britt; Bloksgaard, Maria

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an evolutionary conserved intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity. ACBP is thought to act as an acyl-CoA transporter, and in vitro analyses have indicated that ACBP can transport acyl...

  15. Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: New insights into acyl chain remodeling of cardiolipin

    NARCIS (Netherlands)

    Rijken, P.J.; Houtkooper, R.H.; Akbari, H.; Brouwers, J.F.H.M.; Koorengevel, M.C.; de Kruijff, B.; Frentzen, M.; Vaz, F.M.; de Kroon, A.I.P.M.

    2009-01-01

    The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p

  16. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Science.gov (United States)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  17. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false N-acyl sarcosines and sodium N-acyl... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR... (surfactants) at levels not to exceed 10% in pesticide formulations containing glyphosate: Name CAS Reg. No. N...

  18. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectivel...... on a nitrocellulose membrane, and to donate them to beta-oxidation or glycerolipid synthesis in mitochondria or microsomes, respectively....

  19. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  20. Purification and characterization of acylation stimulating protein from porcine serum.

    Science.gov (United States)

    Zhang, Hong; Jacobi, Sheila K; Toombs, Candice F; Cianflone, Katherine H; Nersesian, Natalya; Sarath, Gautam; Miner, Jess L

    2002-07-01

    A method for purifying acylation stimulating protein (ASP) from porcine serum is described. The mRNA encoding ASP was cloned by reverse transcriptase-polymerase chain reaction which predicted a 76 residue peptide. Based on this sequence, we generated antisera to a C-terminal peptide (ASP(1-20)) which aided ASP purification. Identity of the purified protein was verified by N-terminal sequencing. The molecular mass of porcine ASP is 8926. Porcine ASP stimulated esterification of fatty acid into triacylglycerol in cultured human cells with potency similar to that of human ASP (twofold at 5 microM). Based on this evidence that ASP exists in porcine blood, and that it has acylation stimulating activity, we propose that ASP may play a role in regulation of energy storage in adipose tissue in the pig.

  1. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    Science.gov (United States)

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-08

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  2. Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins*

    Science.gov (United States)

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K.; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T.; Goss, Rebecca J. M.; Field, Robert A.; Osbourn, Anne

    2013-01-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. PMID:23258535

  3. Acylated flavonoids in callus cultures of Citrus aurantifolia.

    Science.gov (United States)

    Berhow, M A; Bennett, R D; Poling, S M; Vannier, S; Hidaka, T; Omura, M

    1994-07-01

    Two new acylated flavonol glycosides were isolated along with kaempferol 3-O-beta-rutinoside from 10-year-old callus cultures of Mexican lime. The structures of these new compounds are kaempferol 3-O-beta-D-glucopyranoside-6"-(3-hydroxy-3-methyl glutarate) and kaempferol 3-O-beta-D-glucopyranoside-6"-(3-hydroxy-3-methyl glutarate)-7-O-beta-D-glucopyranoside.

  4. Synthesis and biological activities of turkesterone 11?-acyl derivatives

    Directory of Open Access Journals (Sweden)

    Laurence Dinan

    2003-02-01

    Full Text Available Turkesterone is a phytoecdysteroid possessing an 11alpha-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand-binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11alpha-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry. Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially expressed D. melanogaster EcR/USP receptor proteins. The 11alpha-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4, it then increases (C6 to C10, before decreasing again (C14 and C20. The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed.

  5. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    Science.gov (United States)

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Suvendu; Saha, Prosenjit [Materials Science Centre, IIT Kharagpur, WB 721302 (India); Roy, Debasis, E-mail: debasis@civil.iitkgp.ernet.in [Department of Civil Engineering, IIT Kharagpur, WB 721302 (India); Sen, Ramkrishna [Department of Biotechnology, IIT Kharagpur, WB 721302 (India); Adhikari, Basudam [Materials Science Centre, IIT Kharagpur, WB 721302 (India)

    2015-11-30

    Graphical abstract: - Highlights: • Acyl chain grafted jute has been shown to accumulate fluoride ions. • Covalent and hydrogen bonding and protonation were the contributing factors. • The process is relatively inexpensive and maintenance-free. • Acyl chain grafted jute showed higher fluoride ions accumulation than alternatives. - Abstract: Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C−F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  7. Acylation of proteins by myristic acid in isolated mitochondria.

    Science.gov (United States)

    Stucki, J W; Lehmann, L H; Siegel, E

    1989-04-15

    Isolated and highly purified mitochondria from rat liver were incubated with [1-14C]myristate, solubilized in boiling sodium dodecyl sulfate, and analyzed by polyacrylamide gel electrophoresis and autoradiography. Six to eight protein bands were found to be radioactively labeled. If the mitochondria were heated for 5 min at 95 degrees C prior to incubation with this fatty acid, no labeling was observed. By preexposing the mitochondria to unlabeled fatty acids of varying chain lengths, the extent of labeling by [1-14C]myristate was reduced in a chain length-dependent manner, exhibiting maximal inhibition at lauric acid. Reversibility of the labeling was demonstrated by chasing the incorporated radioactivity with unlabeled fatty acids of varying chain length, resulting in a maximal displacement of the tracer again by lauric acid. Fractionation of the labeled mitochondria into mitochondrial matrix and inner mitochondrial membrane components before or after labeling showed that the modified proteins are located inside the inner mitochondrial membrane. In both cases, the pattern of labeling was different from the one observed with intact mitochondria. The labeled bands in the gel were sensitive to alkaline methanol or hydroxylamine treatment. The radioactivity recovered after this treatment co-migrated with myristic acid on thin layer chromatography plates. The chain length specificity and the rapid reversibility of the observed acylation argue for a new type of reaction, different from the acylation observed in whole cells. The possible involvement of the acylated proteins in the regulation of oxidative phosphorylation is discussed.

  8. N-Acyl amino acids and N-acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets

    OpenAIRE

    Connor, Mark; Vaughan, Chris W; Vandenberg, Robert J.

    2010-01-01

    The myriad functions of lipids as signalling molecules is one of the most interesting fields in contemporary pharmacology, with a host of compounds recognized as mediators of communication within and between cells. The N-acyl conjugates of amino acids and neurotransmitters (NAANs) have recently come to prominence because of their potential roles in the nervous system, vasculature and the immune system. NAAN are compounds such as glycine, GABA or dopamine conjugated with long chain fatty acids...

  9. Organocatalytic enantioselective acyl transfer onto racemic as well as meso alcohols, amines, and thiols.

    Science.gov (United States)

    Müller, Christian E; Schreiner, Peter R

    2011-06-27

    Acyl transfer is at the heart of functional-group transfers utilized both in nature and in the chemical laboratory. Acylations are part of the natural assembly machinery for the generation of complex molecules and for energy transport in biological systems. The recognition of covalent acyl-enzyme intermediates led to both mechanistic studies as well as the development of biomimetic approaches. Consequently, chemists first used the tools of nature in the form of enzymes and naturally occurring alkaloids as catalysts, before eventually developing a large variety of synthetic small molecules for selective acyl transfer. In contrast to nature, chemists utilize acylation reactions as a practical way for stereoselection and functional-group protection. Indeed, the number of studies concerning acyl transfer has significantly increased over the last 15 years. This Review examines and highlights these recent developments with the focus as given in the title. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    Science.gov (United States)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  11. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Conghu [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China); College of Life Sciences, Anqing Normal University, Anqing 246011 (China); Tian, Zhenhua; Liu, Wentao [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China); Li, Guoying, E-mail: liguoyings@163.com [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm{sup −1} for acylated collagen disappeared at higher temperature.

  12. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    -2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful...... to the required products. In this paper, the reasons of acyl migration and factors affecting the acyl migration were reviewed and discussed. The possible solutions were also evaluated....

  13. A rapid and specific derivatization procedure to identify acyl-glucuronides by mass spectrometry.

    Science.gov (United States)

    Vaz, Alfin D N; Wang, Wei Wei; Bessire, Andrew J; Sharma, Raman; Hagen, Anne E

    2010-07-30

    A simple procedure is described to identify acyl-glucuronides by coupled liquid chromatography/mass spectrometry after derivatization to a hydroxamic acid with hydroxylamine. The reaction specificity obviates the need for isolation of the acyl-glucuronide from an extract. Glucuronides derived from carbamic acids, and alkyl- and aromatic amines, are inert to the derivatization reaction conditions, making the hydroxamic acid derivative a fingerprint for acyl-glucuronides. Copyright 2010 John Wiley & Sons, Ltd.

  14. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    OpenAIRE

    Brett L. Mellbye; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhi...

  15. Acyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae.

    Science.gov (United States)

    Jerga, Agoston; Rock, Charles O

    2009-06-05

    Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids.

  16. Acyl-Acyl Carrier Protein Regulates Transcription of Fatty Acid Biosynthetic Genes via the FabT Repressor in Streptococcus pneumoniae*

    Science.gov (United States)

    Jerga, Agoston; Rock, Charles O.

    2009-01-01

    Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids. PMID:19376778

  17. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; van Gennip, Maria; Jakobsen, Tim Holm

    2011-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...... intratracheally with alginate beads containing both a P. aeruginosa strain together with the E. coli monitor strain can be investigated at different time points postinfection. Epifluorescent or confocal scanning laser microscopy (CSLM) is used to detect the GFP-expressing E. coli monitor strain in the lung...

  18. Acylated flavonol glycosides from the flower of Inula britannica.

    Science.gov (United States)

    Park, E J; Kim, Y; Kim, J

    2000-01-01

    Three new acylated flavonol glycosides, patuletin 7-O-(6' '-isobutyryl)glucoside (1), patuletin 7-O-[6' '-(2-methylbutyryl)]glucoside (2), and patuletin 7-O-(6' '-isovaleryl)glucoside (3), were isolated from the n-BuOH extract of Inula britannica flowers by bioassay-guided fractionation, together with other known flavonoids. The structures were elucidated by 1D and 2D NMR, FABMS, and other spectral analyses. The eight flavonoids, including new compounds (1-3), patulitrin (7), nepitrin (8), axillarin (10), patuletin (11), and luteolin (12), showed profound antioxidant activity in DPPH assay and cytochrome-c reduction assay using HL-60 cell culture system.

  19. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J

    2005-01-01

    -CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified...... duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage...

  20. Acyl-CoA Synthetase Is Located in the Outer Membrane and Acyl-CoA Thioesterase in the Inner Membrane of Pea Chloroplast Envelopes.

    Science.gov (United States)

    Andrews, J; Keegstra, K

    1983-07-01

    Both acyl-CoA synthetase and acyl-CoA thioesterase activities are present in chloroplast envelope membranes. The functions of these enzymes in lipid metabolism remains unresolved, although the synthetase has been proposed to be involved in either plastid galactolipid synthesis or the export of plastid-synthesized fatty acids to the cytoplasm. We have examined the locations of both enzymes within the two envelope membranes of pea (Pisum sativum var Laxton's Progress No. 9) chloroplasts. Inner and outer envelope membranes were purified from unfractionated envelope preparations by linear density sucrose gradient centrifugation. Acyl-CoA synthetase was located in the outer envelope membrane while acyl-CoA thioesterase was located in the inner envelope membrane. Thus, it seems unlikely that the synthetase is directly involved in galactolipid assembly. Instead, its localization supports the hypothesis that it functions in the transport of plastid-synthesized fatty acids to the endoplasmic reticulum.

  1. An ordered reaction mechanism for bacterial toxin acylation by the specialized acyltransferase HlyC: formation of a ternary complex with acylACP and protoxin substrates

    National Research Council Canada - National Science Library

    Stanley, Peter; Hyland, Caroline; Koronakis, Vassilis; Hughes, Colin

    1999-01-01

    .... Using an in vitro maturation reaction containing purified protoxin peptides and acylACP, we show unambiguously that HlyC possesses an apparently unique acyltransferase activity fully described by Michaelis–Menten analysis...

  2. Thermodynamics of micellization of nonionic saccharide-based N-acyl-N-alkylaldosylamine and N-acyl-N-alkylamino-1-deoxyalditol surfactants

    NARCIS (Netherlands)

    Pestman, J.M.; Kevelam, J.; Blandamer, M.J.; Doren, H.A. van; Kellogg, R.M.; Engberts, J.B.F.N.

    1999-01-01

    Eight homologous series of nonionic carbohydrate-derived surfactants in which the alkyl chains are linked through N-acylated amine bonds were synthesized, and their critical micelle concentrations (cmc's) and standard enthalpies of micellization were determined using titration microcalorimetry.

  3. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    Science.gov (United States)

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  4. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    Directory of Open Access Journals (Sweden)

    Xiang Ma

    Full Text Available This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05 reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  5. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    Science.gov (United States)

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  6. ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT.

    Science.gov (United States)

    Chao, Hsu; Zhou, Minglong; McIntosh, Avery; Schroeder, Friedhelm; Kier, Ann B

    2003-01-01

    Microsomal acyl CoA:cholesterol acyltransferase (ACAT) is stimulated in vitro and/or in intact cells by proteins that bind and transfer both substrates, cholesterol, and fatty acyl CoA. To resolve the role of fatty acyl CoA binding independent of cholesterol binding/transfer, a protein that exclusively binds fatty acyl CoA (acyl CoA binding protein, ACBP) was compared. ACBP contains an endoplasmic reticulum retention motif and significantly colocalized with acyl-CoA cholesteryl acyltransferase 2 (ACAT2) and endoplasmic reticulum markers in L-cell fibroblasts and hepatoma cells, respectively. In the presence of exogenous cholesterol, ACAT was stimulated in the order: ACBP > sterol carrier protein-2 (SCP-2) > liver fatty acid binding protein (L-FABP). Stimulation was in the same order as the relative affinities of the proteins for fatty acyl CoA. In contrast, in the absence of exogenous cholesterol, these proteins inhibited microsomal ACAT, but in the same order: ACBP > SCP-2 > L-FABP. The extracellular protein BSA stimulated microsomal ACAT regardless of the presence or absence of exogenous cholesterol. Thus, ACBP was the most potent intracellular fatty acyl CoA binding protein in differentially modulating the activity of microsomal ACAT to form cholesteryl esters independent of cholesterol binding/transfer ability.

  7. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous...

  8. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    Science.gov (United States)

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Influence of Lipid A Acylation Pattern on Membrane Permeability and Innate Immune Stimulation

    Directory of Open Access Journals (Sweden)

    Robert K. Ernst

    2013-08-01

    Full Text Available Lipid A, the hydrophobic anchor of lipopolysaccharide (LPS, is an essential component in the outer membrane of Gram-negative bacteria. It can stimulate the innate immune system via Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2, leading to the release of inflammatory cytokines. In this study, six Escherichia coli strains which can produce lipid A with different acylation patterns were constructed; the influence of lipid A acylation pattern on the membrane permeability and innate immune stimulation has been systematically investigated. The lipid A species were isolated and identified by matrix assisted laser ionization desorption-time of flight/tandem mass spectrometry. N-Phenyl naphthylamine uptake assay and antibiotic susceptibility test showed that membrane permeability of these strains were different. The lower the number of acyl chains in lipid A, the stronger the membrane permeability. LPS purified from these strains were used to stimulate human or mouse macrophage cells, and different levels of cytokines were induced. Compared with wild type hexa-acylated LPS, penta-acylated, tetra-acylated and tri-acylated LPS induced lower levels of cytokines. These results suggest that the lipid A acylation pattern influences both the bacterial membrane permeability and innate immune stimulation. The results would be useful for redesigning the bacterial membrane structure and for developing lipid A vaccine adjuvant.

  10. Acylation of aromatic alcohols and phenols over InCl 3 ...

    Indian Academy of Sciences (India)

    Montmorillonite K-10 clay supported InCl3 is a highly active catalyst for the acylation of aromatic alcohols and phenols with different acyl chlorides. This catalyst can be reused in reactions a number of times without very significant loss of catalytic activity.

  11. Fatty acyl chain-dependent but charge-independent association of ...

    Indian Academy of Sciences (India)

    While myristoylation at the N-terminus is sufficient for providing membrane anchorage, multiple acylation determines orientation of the peptide chain with respect to the lipid bilayer. Hence, fatty acylation serves more than just a lipid anchor. It has an important role in regulating the spatial orientation of the peptide domain ...

  12. Membrane Permeability of Fatty Acyl Compounds Studied via Molecular Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Josh V. [Biosciences; Beckham, Gregg T. [National; Crowley, Michael F. [Biosciences

    2017-11-01

    Interest in fatty acid-derived products as fuel and chemical precursors has grown substantially. Microbes can be genetically engineered to produce fatty acid-derived products that are able to cross host membranes and can be extracted into an applied organic overlay. This process is thought to be passive, with a rate dependent on the chemistry of the crossing compound. The relationship between the chemical composition and the energetics and kinetics of product accumulation within the overlay is not well understood. Through biased and unbiased molecular simulation, we compute the membrane permeability coefficients from production to extraction for different fatty acyl products, including fatty acids, fatty alcohols, fatty aldehydes, alkanes, and alkenes. These simulations identify specific interactions that accelerate the transit of aldehydes across the membrane bilayer relative to other oxidized products, specifically the lack of hydrogen bonds to the surrounding membrane environment. However, since extraction from the outer membrane leaflet into the organic phase is found to be rate limiting for the entire process, we find that fatty alcohols and fatty aldehydes would both manifest similar fluxes into a dodecane overlay under equivalent conditions, outpacing the accumulation of acids or alkanes into the organic phase. Since aldehydes are known to be highly reactive as well as toxic in high quantities, the findings suggest that indeed fatty alcohols are the optimal long-tail fatty acyl product for extraction.

  13. Acyl coenzyme A carboxylase of Propionibacterium shermanii: detection and properties.

    Science.gov (United States)

    Stirling, L A; Ahmad, P M; Ahmad, F

    1981-01-01

    An acyl coenzyme A (CoA) carboxylase, which catalyzes the adenosine triphosphate-dependent fixation of CO2 into acetyl-, propionyl-, and butyryl-CoA, was detected in fractionated cell extracts of Propionibacterium shermanii. Catalytic activity was inhibited by avidin but was unaffected by avidin pretreated with excess biotin. The carboxylase levels detected were relatively small and were related to cellular growth. Maximal carboxylase activity was detected in cells grown for about 96 h. Thereafter, the activity declined rapidly. Optimal CO2 fixation occurred at pH 7.5. Other parameters of the assay system were optimized, and the apparent Km values for substrates were determined. The end product of the reaction (with acetyl-CoA as the substrate) was identified as malonyl-CoA. The stoichiometry of the reaction was such that, for every mole of acetyl-CoA and adenosine triphosphate consumed, 1 mol each of malonyl-CoA, adenosine diphosphate, and orthophosphate was formed. These data provide the first evidence for the presence of another biotin-containing enzyme, an acyl-CoA carboxylase, in these bacteria in addition to the well-characterized methylmalonyl-CoA carboxyltransferase. PMID:6796564

  14. P53 Mutations Change Phosphatidylinositol Acyl Chain Composition

    Directory of Open Access Journals (Sweden)

    Adam Naguib

    2015-01-01

    Full Text Available Phosphatidylinositol phosphate (PIP second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head-group phosphorylation, changes in phosphatidylinositol (PI lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass-spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach, we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-kinase activity but is instead linked to p53.

  15. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.

    2005-01-01

    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  16. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Science.gov (United States)

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  17. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Science.gov (United States)

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  18. Relationships between acylated ghrelin with growth hormone, insulin resistance, lipid profile, and cardio respiratory function in lean and obese men

    Directory of Open Access Journals (Sweden)

    Hasan Matin Homaee

    2011-01-01

    Conclusions: Obese and lean inactive young men had different levels of acylated ghrelin, GH, insulin, insulin resistance index, cardiorespiratory function and body fat percent. Body fat percent, insulin, and GH levels appear to be best determinant factors of acylated ghrelin levels. Also, in both obese and lean young men, higher levels of cardiovascular function were associated with higher levels of acylated ghrelin.

  19. A simple method for isolation and construction of markerless cyanobacterial mutants defective in acyl-acyl carrier protein synthetase.

    Science.gov (United States)

    Kojima, Kouji; Keta, Sumie; Uesaka, Kazuma; Kato, Akihiro; Takatani, Nobuyuki; Ihara, Kunio; Omata, Tatsuo; Aichi, Makiko

    2016-12-01

    Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) secrete free fatty acids (FFAs) into the external medium and hence have been used for the studies aimed at photosynthetic production of biofuels. While the wild-type strain of Synechocystis sp. PCC 6803 is highly sensitive to exogenously added linolenic acid, mutants defective in the aas gene are known to be resistant to the externally provided fatty acid. In this study, the wild-type Synechocystis cells were shown to be sensitive to lauric, oleic, and linoleic acids as well, and the resistance to these fatty acids was shown to be enhanced by inactivation of the aas gene. On the basis of these observations, we developed an efficient method to isolate aas-deficient mutants from cultures of Synechocystis cells by counter selection using linoleic acid or linolenic acid as the selective agent. A variety of aas mutations were found in about 70 % of the FFA-resistant mutants thus selected. Various aas mutants were isolated also from Synechococcus sp. PCC 7002, using lauric acid as a selective agent. Selection using FFAs was useful also for construction of markerless aas knockout mutants from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. Thus, genetic engineering of FFA-producing cyanobacterial strains would be greatly facilitated by the use of the FFAs for counter selection.

  20. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman

    2004-01-01

    . Screening of antibodies from a hybridoma library led to the identification of an acyl-CoA synthetase 5-specific monoclonal antibody. Protein synthesis, mRNA expression, and the enzyme activity of acyl-CoA synthetase 5 were studied by several methods in human small intestinal tissues with Crohn's disease...... or coeliac disease, respectively. Acyl-CoA synthetase 5 mRNA and protein levels were substantially reduced in injured small intestinal mucosa. Moreover, impaired synthesis of the acyl-CoA synthetase 5 protein was reflected by a decrease in intramucosal enzyme activity. Subtle changes of the acyl...

  1. Reversible acylation of factor Xa as a potential therapy for hemophilia.

    Science.gov (United States)

    Lin, P H; Laibelman, A M; Sinha, U

    1997-11-15

    Current therapies for treatment of hemophilia A involve infusion of factor VIII, but are ineffective for patients who develop inhibitory antibodies. We have previously proposed that bypassing the intrinsic pathway (VIIIa/IXa) with reversibly acylated factor Xa offers an improvement on existing therapies as it provides a time-dependent release of procoagulant activity without the addition of factors VIII or IX. The present study was designed to determine the effect of substituted 4-amidinophenyl benzoates on the acylation of factor Xa, as well as the subsequent deacylation rates of the resulting acyl Xa. A subset of this series of acyl Xa's were incorporated into the prothrombinase complex and recovery of catalytic activity was measured by activation of prothrombin to thrombin. Similarly, some acyl Xa's were also evaluated for their capacity to enhance clotting times of human plasma. Our study indicates that by choosing the appropriate acyl Xa, the time course of factor Xa regeneration can be modulated extensively. Animal studies will be required to show that the use of acyl Xa as a procoagulant agent is feasible in an in vivo system.

  2. Accessing Stable Magnesium Acyl Compounds: Reductive Cleavage of Esters by Magnesium(I) Dimers.

    Science.gov (United States)

    Boutland, Aaron J; Lamsfus, Carlos A; Maitland, Brant; Maron, Laurent; Stasch, Andreas; Jones, Cameron

    2017-10-09

    The first examples of magnesium acyls, [(Nacnac)Mg{μ-C(Ph)O}(μ-OR)Mg(Nacnac)] (R=Me, tBu or Ph; Nacnac=[HC(MeCNAr)2 ](-) ; Ar=C6 H2 Me3 -2,4,6 ((Mes) Nacnac), C6 H3 Et2 -2,6 ((Dep) Nacnac), C6 H3 iPr2 -2,6 ((Dip) Nacnac)), have been prepared by reductive cleavage of a series of esters using dimeric magnesium(I) reducing agents, [{(Nacnac)Mg}2 ]. Crystallographic studies reveal the complexes to be dimeric, being bridged by both phenyl-acyl and alkoxide/aryloxide fragments. The crystal structures, combined with results of spectroscopic and computational studies suggest that the nature of the acyl ligands within these complexes should be viewed as lying somewhere between anionic umpolung acyl and oxo-carbene. However, reactions of the acyl complexes with a variety of organic electrophiles did not provide evidence of umpolung acyl reactivity. A number of attempts to prepare alkoxide free magnesium acyls were carried out, and while these were unsuccessful, they did lead to unusual products, the crystallographic and spectroscopic details of which are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks.

    Science.gov (United States)

    Kite, Geoffrey C; Larsson, Sonny; Veitch, Nigel C; Porter, Elaine A; Ding, Ning; Simmonds, Monique S J

    2013-04-10

    LC-UV-MS analyses of inflorescence extracts of Sambucus nigra L. (elder, Adoxaceae) revealed the presence of numerous acyl spermidines, with isomers of N,N-diferuloylspermidine and N-acetyl-N,N-diferuloylspermidine being most abundant. Pollen was the main source of the acyl spermidines in the inflorescence. Three of the major acyl spermidines were isolated and their structures determined by NMR spectroscopy as N⁵,N¹⁰-di-(E,E)-feruloylspermidine and the new compounds N¹-acetyl-N⁵,N¹⁰-di-(Z,E)-feruloylspermidine and N¹-acetyl-N⁵,N¹⁰-di-(E,E)-feruloylspermidine. An isomer of N,N,N-triferuloylspermidine was also obtained and identified as N¹,N⁵,N¹⁰-tri-(E,E,E)-feruloylspermidine. In addition to stereoisomers of the isolated acyl spermidines, other acyl spermidines detected by the positive ion LC-UV-MS were isomers of N-caffeoyl-N,N-diferuloylspermidine, N-coumaroyl-N,N-diferuloylspermidine, N-caffeoyl-N-feruloylspermidine, N-coumaroyl-N-feruloylspermidine, N-acetyl-N-caffeoyl-N-feruloylspermidine, and N-acetyl-N-coumaroyl-N-feruloylspermidine. Analysis of commercial elderflower drinks showed that acyl spermidines were persistent in these processed elderflower products. Examination of inflorescence extracts from Sambucus canadensis L. (American elder) revealed the presence of acyl spermidines that were different from those of S. nigra.

  4. Three decades of the class A beta-lactamase acyl-enzyme.

    Science.gov (United States)

    Fisher, Jed F; Mobashery, Shahriar

    2009-10-01

    The discovery that the mechanism of beta-lactam hydrolysis catalyzed by the class A (active site serine-dependent) beta-lactamases proceeds via an acyl-enzyme intermediate was made thirty years ago. Since this discovery, the active site circumstance that enables acylation of the active site serine and further enables hydrolytic deacylation of the acyl-serine intermediate, has received extraordinary scrutiny. The justification for this scrutiny is the direct relevance of the beta-lactamases to the manifestation of bacterial resistance to the beta-lactam antibiotics, and the subsequent (to the discovery of the beta-lactamase acyl-enzyme) recognition of the direct evolutionary relationship between the serine beta-lactamase acyl-enzyme, and the penicillin binding protein acyl-enzyme that is key to beta-lactam antibiotic activity. This short review describes the early events leading to the recognition that serine beta-lactamase catalysis proceeds via an acyl-enzyme intermediate, and summarizes several of the key mechanistic studies--including infrared spectroscopy, cryoenzymology, beta-lactam design, and x-ray crystallography--that have been exploited to understand this pivotal catalytic intermediate.

  5. A New Acylated Flavonol Glycoside from Chenopodium foliosum

    Directory of Open Access Journals (Sweden)

    Zlatina Kokanova-Nedialkova, , , , , and

    2014-07-01

    Full Text Available A new acylated flavonol glycoside, namely gomphrenol-3-O-( 5 '''-O-E-feruloyl-β-D-apiofuranosyl-(1→2[β-D-glucopyranosyl-(1→6]-β-D-glucopyranoside (1 was isolated from the aerial parts of Chenopodium foliosum Asch. The structure of 1 was determined by means of spectroscopic methods (1D and 2D NMR, UV, IR, and HRESIMS. Radical scavenging and antioxidant activities of 1 were established using DPPH and ABTS radicals, FRAP assay and inhibition of lipid peroxidation (LP in linoleic acid system by the ferric thiocyanate method. Compound 1 showed low activity (DPPH and ABTS or lack of activity (FRAP and LP. In combination with CCl 4, 1 reduced the damage caused by the hepatotoxic agent and preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. Effects were concentration dependent, most visible at the highest concentration (100 µg/m L , and similar to those of silymarin .

  6. Synthesis of acyl derivatives of salicin, salirepin, and arbutin.

    Science.gov (United States)

    Stepanova, Elena V; Belyanin, Maxim L; Filimonov, Victor D

    2014-03-31

    The total synthesis of two natural phenolglycosides of the family Salicaceae, namely: populoside and 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) cinnamoate and nine not found yet in plants acyl derivatives of phenoglycosides: 2-(β-d-glucopyranosyloxy)-benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3,4-dihydroxy) cinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-benzoyloxy benzylbenzoate and 4-(β-d-glucopyranosyloxy)-phenylbenzoate, starting from readily available phenols and glucose was developed for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; Krumm, Christoph; Ren, Limin; Damen, Jonathan N.; Shete, Meera H.; Lee, Han Seung; Zuo, Xiaobing; Lee, Byeongdu; Fan, Wei; Vlachos, Dionisios G.; Lobo, Raul F.; Tsapatsis, Michael; Dauenhauer, Paul J.

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.

  8. Heterocyclic inhibitors of AChE acylation and peripheral sites.

    Science.gov (United States)

    Bolognesi, Maria Laura; Andrisano, Vincenza; Bartolini, Manuela; Cavalli, Andrea; Minarini, Anna; Recanatini, Maurizio; Rosini, Michela; Tumiatti, Vincenzo; Melchiorre, Carlo

    2005-01-01

    Notwithstanding the criticism to the so called " cholinergic hypothesis", the therapeutic strategies for the treatment of Alzheimer's disease (AD) have been mainly centered on the restoration of cholinergic functionality and, until the last year, the only drugs licensed for the management of AD were the acetycholinesterase (AChE) inhibitors. Target enzyme AChE consists of a narrow gorge with two separate ligand binding sites: an acylation site at the bottom of the gorge containing the catalytic triad and a peripheral site located at the gorge rim, which encompasses binding sites for allosteric ligands. The aim of this short review is to update the knowledge on heterocyclic AChE inhibitors able to interact with the two sites of enzymes, structurally related to the well known inhibitors physostigmine, rivastigmine and propidium. The therapeutic potential of the dual site inhibithors in inhibiting amyloid-beta aggregatrion and deposition is also briefly summarised.

  9. A New Rapid In Vitro Assay for Assessing Reactivity of Acyl Glucuronides.

    Science.gov (United States)

    Zhong, Sheng; Jones, Russell; Lu, Wenzhe; Schadt, Simone; Ottaviani, Giorgio

    2015-11-01

    Idiosyncratic drug toxicity is a major challenge for the pharmaceutical industry since complex and multifactorial steps are involved, the dose-dependency is unclear, and its occurrence is not reliably predictable. Whereas the exact mechanisms leading to idiosyncratic toxicity remain elusive in many cases, there are often hints at the involvement of reactive metabolites, such as acyl glucuronides formed by conjugation of carboxylic acids with glucuronic acid. Because the patient-related susceptibilities leading to idiosyncratic toxicity are not sufficiently understood, the best option for the pharmaceutical industry is to minimize drug-related risk factors such as potential acyl glucuronide formation. Here, we describe a rapid in vitro assay for the assessment of the reactivity of acyl glucuronides, on the basis of acyl glucuronide migration, that can support the selection of low-risk drug candidates in the drug discovery phase. Twenty marketed compounds with a wide range of half-lives were tested, their acyl glucuronide migration rates were determined and compared with the half-lives of the respective acyl glucuronides. Ranking of acyl glucuronide stability using this method compared well with the results from existing methodologies. With this method, migration rates >20% would indicate higher risk of reactivity. This simpler approach using the acyl glucuronide migration rate is not dependent on authentic standards, therefore eliminating the requirement for either lengthy chemical synthesis or in vitro biosynthesis and purification of the 1-O-β-glucuronide. This methodology provides a rapid in vitro assay to assess acyl glucuronide stability and reactivity that is well suited for use early in the drug discovery phase. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Moesgaard, B.; Hansen, H.H.

    1999-01-01

    of NAPE are mainly 16:0 and 18:1, corresponding to the fatty acids in the sn-1 acyl group of the donor phospholipids. The NAPE-hydrolyzing phospholipase D also seems not to be acyl-group specific. In mouse neocortical neurons in primary culture, formation of NAPE and NAE is stimulated by glutamate via......N-acyl-phosphatidylethanolamine (NAPE) is present in very small amounts in mammalian tissues (less than 0.1% of total phospholipids). However, NAPE as well as its degradation production, N-acylethanolamine (NAE), can be formed in certain neuronal tissues in response to increased [Ca ](i). A high...... [Ca ](i) will activate the NAPE-forming N-acyl-transferase using the sn-1 acyl group of a donor phospholipid as substrate in the transfer reaction. This membrane-bound enzyme seems to have no substrate specificity with respect to transfer of acyl groups; thus the fatty acids in the N-acyl group...

  11. Affinity of 3-acyl substituted 4-quinolones at the benzodiazepine site of GABAA receptors

    DEFF Research Database (Denmark)

    Lager, Erik; Nilsson, Jakob; Nielsen, Elsebet Østergaard

    2008-01-01

    The finding that alkyl 1,4-dihydro-4-oxoquinoline-3-carboxylate and N-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxamide derivatives may be high-affinity ligands at the benzodiazepine binding site of the GABA(A) receptor, prompted a study of 3-acyl-1,4-dihydro-4-oxoquinoline (3-acyl-4-quinolones......). In general, the affinity of the 3-acyl derivatives was found to be comparable with the 3-carboxylate and the 3-carboxamide derivatives, and certain substituents (e.g., benzyl) in position 6 were again shown to be important. As it is believed that the benzodiazepine binding site is situated between an alpha...

  12. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle

    2011-01-01

    to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other......, more potent antimicrobial peptides in future studies.......The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable...

  13. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    Science.gov (United States)

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain, in a human living skin equivalent model.

    Science.gov (United States)

    Tai, Akihiro; Goto, Satomi; Ishiguro, Yutaka; Suzuki, Kazuko; Nitoda, Teruhiko; Yamamoto, Itaru

    2004-02-09

    A series of novel lipophilic vitamin C derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids possessing a branched-acyl chain of varying length from C(8) to C(16) (6-bAcyl-AA-2G), were evaluated as topical prodrugs of ascorbic acid (AA) with transdermal activity in a human living skin equivalent model. The permeability of 6-bAcyl-AA-2G was compared with those of the derivatives having a straight-acyl chain (6-sAcyl-AA-2G). Out of 10 derivatives of 6-sAcyl-AA-2G and 6-bAcyl-AA-2G, 6-sDode-AA-2G and 6-bDode-AA-2G exhibited most excellent permeability in this model. Measurement of the metabolites permeated from the skin model suggested that 6-bDode-AA-2G was mainly hydrolyzed via 6-O-acyl AA to AA by tissue enzymes, while 6-sDode-AA-2G was hydrolyzed via 2-O-alpha-D-glucopyranosyl-L-ascorbic acid to AA. The former metabolic pathway seems to be advantageous for a readily available source of AA, because 6-O-acyl AA, as well as AA, is able to show vitamin C activity.

  15. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Acylcarnitine (PDF) Formal Treatment/Management Guidelines (2 links) British Inherited Metabolic Disease Group: MCADD Dietary Management Guidelines ( ... Orphanet: Medium chain acyl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health ( ...

  16. A New Acyl-homoserine Lactone Molecule Generated by Nitrobacter winogradskyi

    National Research Council Canada - National Science Library

    Shen, Qiuxuan; Gao, Jie; Liu, Jun; Liu, Shuangjiang; Liu, Zijun; Wang, Yinghuan; Guo, Baoyuan; Zhuang, Xuliang; Zhuang, Guoqiang

    2016-01-01

    .... In this study, the nwiI gene of Nitrobacter winogradskyi was confirmed to be a homoserine lactone synthase by heterologous expression in Escherichia coli that synthesized several acyl-homoserine...

  17. Metabolic regulation of histone acetyltransferases by endogenous Acyl-CoA cofactors | Center for Cancer Research

    Science.gov (United States)

    Unraveling the metabolic regulation of lysine acetyltransferases (KATs). Montgomery et al. detail the application of a competitive chemoproteomic strategy to quantitatively characterize the interactions of acyl-CoA metabolites with cellular KAT enzymes.

  18. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Living with Inherited Metabolic Disease (CLIMB) Children's Mitochondrial Disease Network (UK) FOD (Fatty Oxidation Disorders) Family Support Group National Organization for Rare Disorders (NORD) United Mitochondrial Disease Foundation GeneReviews (1 link) Short-Chain Acyl-CoA ...

  19. The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin

    Directory of Open Access Journals (Sweden)

    James A. King

    2011-01-01

    Full Text Available Swimming may stimulate appetite and food intake but empirical data are lacking. This study examined appetite, food intake, and plasma acylated ghrelin responses to swimming. Fourteen healthy males completed a swimming trial and a control trial in a random order. Sixty min after breakfast participants swam for 60 min and then rested for six hours. Participants rested throughout the control trial. During trials appetite was measured at 30 min intervals and acylated ghrelin was assessed periodically (0, 1, 2, 3, 4, 6, and 7.5 h. =10. Appetite was suppressed during exercise before increasing in the hours after. Acylated ghrelin was suppressed during exercise. Swimming did not alter energy or macronutrient intake assessed at buffet meals (total trial energy intake: control 9161 kJ, swimming 9749 kJ. These findings suggest that swimming stimulates appetite but indicate that acylated ghrelin and food intake are resistant to change in the hours afterwards.

  20. [Design, synthesis and activity of N-acyl-thiochromenothiazol-2-amine as acetylcholinesterase inhibitors].

    Science.gov (United States)

    Ma, Zheng-Yue; Zhang, Yuan-Gong; Yang, Qi; Li, Jun-Jie; Yang, Geng-Liang

    2014-09-01

    A series of novel N-acyl-thiochromenothiazol-2-amine derivatives were designed and synthesized, furthermore, their inhibition effect on acetylcholinesterase was investigated. N-Acyl-thiochromenothiazol-2-amines were prepared from thiophenol by Hantzsch reaction, acylation reaction and substitution reaction. Moreover, their bioactivities as AChE inhibitors in vitro were measured with Ellman spectrophotometry. The results showed that most of them had a certain inhibition activity on AChE, and the compound 10a was the best in them. The IC50 of 10a to AChE is 7.92 μmol x L(-1), and the value is better than that of rivastigmine. N-Acyl-thiochromenothiazol-2-amine derivatives showed a certain bioactivity in vitro, which were worth further investigation.

  1. Heterogeneous N-terminal acylation of retinal proteins results from the retina's unusual lipid metabolism.

    Science.gov (United States)

    Bereta, Grzegorz; Palczewski, Krzysztof

    2011-05-10

    Protein N-myristoylation occurs by a covalent attachment of a C14:0 fatty acid to the N-terminal Gly residue. This reaction is catalyzed by a N-myristoyltransferase that uses myristoyl-coenzyme A as substrate. But proteins in the retina also undergo heterogeneous N-acylation with C14:2, C14:1, and C12:0 fatty acids. The basis and the role of this retina-specific phenomenon are poorly understood. We studied guanylate cyclase-activating protein 1 (GCAP1) as an example of retina-specific heterogeneously N-acylated protein. The types and the abundance of fatty acids bound to bovine retinal GCAP1 were C14:2, 37.0%; C14:0, 32.4%; C14:1, 22.3%; and C12:0, 8.3% as quantified by liquid chromatography coupled mass spectrometry. We also devised a method for N-acylating proteins in vitro and used it to modify GCAP1 with acyl moieties of different lengths. Analysis of these GCAPs both confirmed that N-terminal acylation of GCAP1 is critical for its high activity and proper Ca(2+)-dependent response and revealed comparable functionality for GCAP1 with acyl moieties of various lengths. We also tested the hypothesis that retinal heterogeneous N-acylation results from retinal enrichment of unusual N-myristoyltransferase substrates. Thus, acyl-coenzyme A esters were purified from both bovine retina and brain and analyzed by liquid chromatography coupled mass spectrometry. Substantial differences in acyl-coenzyme A profiles between the retina and brain were detected. Importantly, the ratios of uncommon N-acylation substrates--C14:2- and C14:1-coenyzme A to C14:0-coenzyme A--were higher in the retina than in the brain. Thus, our results suggest that heterogeneous N-acylation, responsible for expansion of retinal proteome, reflects the unique character of retinal lipid metabolism. Additionally, we propose a new hypothesis explaining the physiological relevance of elevated retinal ratios of C14:2- and C14:1-coenzyme A to C14:0-coenzyme A.

  2. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2016-08-01

    The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.

  3. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  4. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids

    Directory of Open Access Journals (Sweden)

    Rioux Vincent

    2016-05-01

    Full Text Available Fatty acid acylation of proteins corresponds to the co- or post-translational covalent linkage of an acyl-CoA, derived from a fatty acid, to an amino-acid residue of the substrate protein. The cellular fatty acids which are involved in protein acylation are mainly saturated fatty acids. Palmitoylation (S-acylation corresponds to the reversible attachment of palmitic acid (C16:0 via a thioester bond to the side chain of a cysteine residue. N-terminal myristoylation refers to the covalent attachment of myristic acid (C14:0 by an amide bond to the N-terminal glycine of many eukaryotic and viral proteins. Octanoylation (O-acylation typically concerns the formation of an ester bond between octanoic acid (caprylic acid, C8:0 and the side chain of a serine residue of the stomach peptide ghrelin. An increasing number of proteins (enzymes, hormones, receptors, oncogenes, tumor suppressors, proteins involved in signal transduction, eukaryotic and viral structural proteins have been shown to undergo fatty acid acylation. The addition of the acyl moiety is required for the protein function and usually mediates protein subcellular localization, protein-protein interaction or protein-membrane interaction. Therefore, through the covalent modification of proteins, these saturated fatty acids exhibit emerging specific and important roles in modulating protein functions. This review provides an overview of the recent findings on the various classes of protein acylation leading to the biological ability of saturated fatty acids to regulate many pathways. Finally, the nutritional links between these elucidated biochemical mechanisms and the physiological roles of dietary saturated fatty acids are discussed.

  5. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C-14-peptides

    DEFF Research Database (Denmark)

    Pedersen, T.B.; Kaasgaard, Thomas; Jensen, M.O.

    2005-01-01

    The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated...... gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C-14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10...

  6. A New Acyl-homoserine Lactone Molecule Generated by Nitrobacter winogradskyi

    OpenAIRE

    Qiuxuan Shen; Jie Gao; Jun Liu; Shuangjiang Liu; Zijun Liu; Yinghuan Wang; Baoyuan Guo; Xuliang Zhuang; Guoqiang Zhuang

    2016-01-01

    It is crucial to reveal the regulatory mechanism of nitrification to understand nitrogen conversion in agricultural systems and wastewater treatment. In this study, the nwiI gene of Nitrobacter winogradskyi was confirmed to be a homoserine lactone synthase by heterologous expression in Escherichia coli that synthesized several acyl-homoserine lactone signals with 7 to 11 carbon acyl groups. A novel signal, 7, 8-trans-N-(decanoyl) homoserine lactone (C10:1-HSL), was identified in both N. winog...

  7. Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia

    DEFF Research Database (Denmark)

    Moesgaard, B.; Hansen, Harald S.; Jaroszewski, J.W.

    1999-01-01

    in the NMR spectra at 0.18 and 0.22 ppm (relative to the chemical shift of 1,2-diacyl-sn-glycero-3-phosphocholine (PCD(DIACYL)) at -0.84 ppm). These signals were identified as originating from 1,2-diacyl- sn-glycero-3-phospho-(N-acyl)-ethanolamine (NAPED(DIACYL)) and 1-(1'- alkenyl)-2-acyl-sn-glycero-3...

  8. Mild and Highly Efficient Copper(I Inspired Acylation of Alcohols and Polyols

    Directory of Open Access Journals (Sweden)

    Enoch A. Mensah

    2017-01-01

    Full Text Available A new and highly efficient method mediated by tetrakis(acetonitrilecopper(I triflate for activating both simple and highly hindered anhydrides in the acylation of alcohols and polyols is described. This new acylation method is mild and mostly proceeds at room temperature with low catalyst loading. The method is versatile and has been extended to a wide variety of different alcohol substrates to afford the corresponding ester products in good to excellent yields.

  9. Facile formation of N-acyl-oxazolidinone derivatives using acid fluorides.

    Science.gov (United States)

    Schindler, Corinna S; Forster, Patrik M; Carreira, Erick M

    2010-09-17

    A mild method is presented for the formation of N-acylated oxazolidinones that employs acid fluorides and mild bases, such as (i)Pr(2)NEt and NEt(3). Optimized reaction conditions for two types of substrates have been developed utilizing either the oxazolidinone itself or the corresponding in situ generated O-silyloxazolidinones resulting in the formation of the desired N-acylated products in high yields of up to 98%.

  10. Preparation of Translationally Competent tRNA by Direct Chemical Acylation

    OpenAIRE

    Duffy, Noah H.; Dougherty, Dennis A.

    2010-01-01

    Nonsense codon suppression for unnatural amino acid incorporation requires the preparation of a suppressor aminoacyl-tRNA. Chemical acylation strategies are general but inefficient and arduous. A recent report (J. Am. Chem. Soc. 2007, 129, 15848) showed acylation of RNA mediated by lanthanum(III) using amino acid phosphate esters. The successful implementation of this methodology to full-length suppressor tRNA is described, and it is shown that the derived aminoacyl-tRNA is translationally co...

  11. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast

    DEFF Research Database (Denmark)

    Mandrup, S; Jepsen, R; Skøtt, H

    1993-01-01

    We have expressed a bovine synthetic acyl-CoA-binding protein (ACBP) gene in yeast (Saccharomyces cerevisiae) under the control of the GAL1 promoter. The heterologously expressed bovine ACBP constituted up to 6.4% of total cellular protein and the processing was identical with that of native bovine...... ACBP, i.e. the initiating methionine was removed and the following serine residue was N-acetylated. The expression of this protein did not affect the growth rate of the cells. Determination of the yeast acyl-CoA pool size showed a close positive correlation between the ACBP content of the cells...

  12. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex

    DEFF Research Database (Denmark)

    Zou, Zhiying; Tong, Fumin; Færgeman, Nils J.

    2003-01-01

    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions...... the growth defect in the faa1Delta fat1Delta strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Delta faa1Delta and faa1Delta faa4Delta strains, respectively, indicating Faa1p...

  13. Carboxylate Anions Accelerate Pyrrolidinopyridine (PPy)-Catalyzed Acylation: Catalytic Site-Selective Acylation of a Carbohydrate by in Situ Counteranion Exchange.

    Science.gov (United States)

    Yanagi, Masanori; Imayoshi, Ayumi; Ueda, Yoshihiro; Furuta, Takumi; Kawabata, Takeo

    2017-06-16

    Acylpyridinium ions have been known as catalytically active species in acylation reactions catalyzed by 4-dimethylaminopyridine and its analogues. Acylpyridinium carboxylates were found to be 800-1300 times more reactive than the corresponding acylpyridinium chlorides. A catalytic cycle was developed, in which acylpyridinium carboxylates were generated by in situ counteranion exchange from the acylpyridinium chlorides. A catalyst loading as low as 0.01 mol % and catalyst turnover number of up to 6700 were achieved for site-selective acylation of a carbohydrate.

  14. Acylation stimulating protein is associated with pregnancy weight gain.

    Science.gov (United States)

    Sodowski, K; Zwirska-Korczala, K; Kuka, D; Kukla, M; Budziszewska, P; Zebaty, A; Wender-Ozegowska, E; Baumert, M; Wloch, A

    2008-09-01

    Among the proteins secreted by adipocytes, acylation stimulating protein (ASP), which plays a crucial role in energetic balance regulation, merits particular attention. ASP is a protein of the C3 complement system, responsible for glucose and lipids metabolism in an insulin-independent mechanism. ASP's role during pregnancy and its interactions with pregnancy hormones remains unknown. The lipogenic character of ASP may impose a question as to what extent this hormone participates in pregnant women lipogenesis, and what is the basal and postprandial ASP secretion during the second trimester of pregnancy. The results of the examinations of 26 pregnant women during the second trimester of their first pregnancy were analyzed. Due to the limited data available in the literature, a control group was examined. The group consisted of 8 healthy non-pregnant patients within similar age ranges. Blood samples were collected in order to determine ASP, total cholesterol, HDL, LDL and triglyceride levels. Basal ASP levels present in obese pregnant women (group OBP; 30.20 +/- 2.13 ng/mL) were significantly higher than those in the healthy control group (group LnP; 20.49 +/- 1.97 ng/mL), P<0.05. Mann-Whitney U test- analysis of these group differences indicated that OBP patients had significantly higher ASP levels than controls at 30 (P<0.01), 60 (P<0.01), and 120 (P<0.01) min after a meal. After a meal, the incremental ASP area under the curve in group OBW patients was significantly higher from that observed in control group LnP (718,9 +/- 263,9 ng/mL x 2h vs. 35,1 +/- 14,6 ng/mL x 2h, P<0.05). Basal concentration of triglycerides, total cholesterol and LDL cholesterol were significantly higher in all pregnant women compared to the group of non-obese non-pregnant women. It was found that lipid parameters were highly dependent upon body mass gain during pregnancy. Group OBP demonstrated significantly higher basal concentrations of all parameters of lipid metabolism in comparison

  15. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Directory of Open Access Journals (Sweden)

    Mar Reinés

    Full Text Available Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the

  16. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Science.gov (United States)

    Reinés, Mar; Llobet, Enrique; Dahlström, Käthe M; Pérez-Gutiérrez, Camino; Llompart, Catalina M; Torrecabota, Nuria; Salminen, Tiina A; Bengoechea, José A

    2012-01-01

    Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of

  17. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems.

    Science.gov (United States)

    Tamura, Tomonori; Song, Zhining; Amaike, Kazuma; Lee, Shin; Yin, Sifei; Kiyonaka, Shigeki; Hamachi, Itaru

    2017-10-11

    Catalyst-mediated protein modification is a powerful approach for the imaging and engineering of natural proteins. We have previously developed affinity-guided 4-dimethylaminopyridine (AGD) chemistry as an efficient protein modification method using a catalytic acyl transfer reaction. However, because of the high electrophilicity of the thioester acyl donor molecule, AGD chemistry suffers from nonspecific reactions to proteins other than the target protein in crude biological environments, such as cell lysates, live cells, and tissue samples. To overcome this shortcoming, we here report a new acyl donor/organocatalyst system that allows more specific and efficient protein modification. In this method, a highly nucleophilic pyridinium oxime (PyOx) catalyst is conjugated to a ligand specific to the target protein. The ligand-tethered PyOx selectively binds to the target protein and facilitates the acyl transfer reaction of a mild electrophilic N-acyl-N-alkylsulfonamide acyl donor on the protein surface. We demonstrated that the new catalytic system, called AGOX (affinity-guided oxime) chemistry, can modify target proteins, both in test tubes and cell lysates, more selectively and efficiently than AGD chemistry. Low-background fluorescence labeling of the endogenous cell-membrane proteins, carbonic anhydrase XII and the folate receptor, in live cells allowed for the precise quantification of diffusion coefficients in the protein's native environment. Furthermore, the excellent biocompatibility and bioorthogonality of AGOX chemistry were demonstrated by the selective labeling of an endogenous neurotransmitter receptor in mouse brain slices, which are highly complicated tissue samples.

  18. Rheological behavior of acylated pepsin-solubilized collagen solutions: Effects of concentration

    Science.gov (United States)

    Li, Conghu; Duan, Lian; Tian, Zhenhua; Liu, Wentao; Li, Guoying; Huang, Xiaoping

    2015-11-01

    Effects of concentration on the rheological behavior of acylated pepsin-solubilized collagen solutions were investigated by steady shear tests, dynamic frequency sweep, creep tests and thixotropic loop measurements in this paper. The results showed that both acylated collagen and native collagen solutions exhibited the typical pseudoplastic behavior and displayed shear thinned behavior with the increase of shear rate. With the increase of acylated collagen concentrations from 5 to 10 mg/mL, shear viscosity, elasticity modulus ( G'), viscous modulus ( G″), complex viscosity ( η*), and the ability to resist deformation increased due to the physical entanglement, whilst loss tangent (tan δ) decreased. Additionally, with the increase of acylated collagen concentrations, the area of thixotropic loop increased from 6.94 to 44.40 watts/m3, indicating that the thixotropy of acylated collagen increased. Compared with native collagen solution, acylated collagen solution had stronger shear viscosity, η*, thixotropy, and ability to resist deformation. Furthermore, Power law model, Carreau model, Cross model, Leonov model and Burger model, were suitable for the fitting of the experimental data.

  19. Retrobiosynthetic Approach Delineates the Biosynthetic Pathway and the Structure of the Acyl Chain of Mycobacterial Glycopeptidolipids*

    Science.gov (United States)

    Vats, Archana; Singh, Anil Kumar; Mukherjee, Raju; Chopra, Tarun; Ravindran, Madhu Sudhan; Mohanty, Debasisa; Chatterji, Dipankar; Reyrat, Jean-Marc; Gokhale, Rajesh S.

    2012-01-01

    Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C26-C34 fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs. PMID:22798073

  20. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    Directory of Open Access Journals (Sweden)

    Anna Martirosyan

    Full Text Available Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+ T and CD8(+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  1. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    Science.gov (United States)

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Acyl peptide hydrolase degrades monomeric and oligomeric amyloid-beta peptide

    Directory of Open Access Journals (Sweden)

    O'Connor Peter B

    2009-07-01

    Full Text Available Abstract Background The abnormal accumulation of amyloid-beta peptide is believed to cause malfunctioning of neurons in the Alzheimer's disease brain. Amyloid-beta exists in different assembly forms in the aging mammalian brain including monomers, oligomers, and aggregates, and in senile plaques, fibrils. Recent findings suggest that soluble amyloid-beta oligomers may represent the primary pathological species in Alzheimer's disease and the most toxic form that impairs synaptic and thus neuronal function. We previously reported the isolation of a novel amyloid-beta-degrading enzyme, acyl peptide hydrolase, a serine protease that degrades amyloid-beta, and is different in structure and activity from other amyloid-beta-degrading enzymes. Results Here we report the further characterization of acyl peptide hydrolase activity using mass spectrometry. Acyl peptide hydrolase cleaves the amyloid-beta peptide at amino acids 13, 14 and 19. In addition, by real-time PCR we found elevated acyl peptide hydrolase expression in brain areas rich in amyloid plaques suggesting that this enzyme's levels are responsive to increases in amyloid-beta levels. Lastly, tissue culture experiments using transfected CHO cells expressing APP751 bearing the V717F mutation indicate that acyl peptide hydrolase preferentially degrades dimeric and trimeric forms of amyloid-beta. Conclusion These data suggest that acyl peptide hydrolase is involved in the degradation of oligomeric amyloid-beta, an activity that, if induced, might present a new tool for therapy aimed at reducing neurodegeneration in the Alzheimer's brain.

  3. Production of a Brassica napus Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds1[C][W][OPEN

    Science.gov (United States)

    Yurchenko, Olga; Singer, Stacy D.; Nykiforuk, Cory L.; Gidda, Satinder; Mullen, Robert T.; Moloney, Maurice M.; Weselake, Randall J.

    2014-01-01

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1cisΔ11) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2cisΔ9,12; 17.9%–44.4% and 7%–13.2%, respectively) and decreases in 20:1cisΔ11 (38.7%–60.7% and 13.8%–16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3cisΔ9,12,15) in both the acyl-CoA pool and seed oil of the former (48.4%–48.9% and 5.3%–10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil. PMID:24740000

  4. Cellular Pregnenolone Esterification by Acyl-CoA:Cholesterol Acyltransferase*

    Science.gov (United States)

    Rogers, Maximillian A.; Liu, Jay; Kushnir, Mark M.; Bryleva, Elena; Rockwood, Alan L.; Meikle, A. Wayne; Shapiro, David; Vaisman, Boris L.; Remaley, Alan T.; Chang, Catherine C. Y.; Chang, Ta-Yuan

    2012-01-01

    Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the Vmax for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30–50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues. PMID:22474282

  5. Total and acylated ghrelin levels in children with poor growth.

    Science.gov (United States)

    Pinsker, Jordan E; Ondrasik, Deborah; Chan, Debora; Fredericks, Gregory J; Tabisola-Nuesca, Eludrizza; Fernandez-Aponte, Minela; Focht, Dean R; Poth, Merrily

    2011-06-01

    Ghrelin, an enteric hormone with potent appetite stimulating effects, also stimulates growth hormone release. We hypothesized that altered levels of total ghrelin (TG) or acylated ghrelin (AG) could affect growth by altering growth hormone secretion, subsequently affecting insulin-like growth factor-1 (IGF-1) generation or by altering appetite and food intake. After institutional review board approval, 52 children presenting for evaluation of chronic gastrointestinal symptoms (group 1), poor weight gain (group 2), or poor linear growth (group 3) were evaluated for fasting TG and AG levels in addition to their regular evaluation. Serum ghrelin, IGF-1, and prealbumin were compared between groups. No difference was observed for mean fasting TG between groups. However, mean fasting AG was highest in patients in group 2 (465 ± 128 pg/mL) versus group 1 (176 ± 37 pg/mL) and group 3 (190 ± 34 pg/mL). IGF-1 was lowest in patients in group 2 despite similar prealbumin levels among the three groups. We conclude that serum AG levels are highest in children with isolated poor weight gain compared with children with short stature or chronic gastrointestinal symptoms, suggesting the possibility of resistance to AG in underweight children. Additional studies are needed to further clarify ghrelin's role in growth and appetite.

  6. Oxidative conversion of daminozide of methylating and acylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Casida, J.E. (Univ. of California, Berkeley (USA))

    Oxidation of the plant growth regulator daminozide (Alar; succinic acid, mono(2,2-dimethylhydrazide)) with m-chloroperoxybenzoic acid (MCPBA), sodium hypochlorite, or hydrogen peroxide forms not only a methylating species (probably a diazo hydroxide) that converts carboxylic acids to methyl esters but also the acylating agent succinic anhydride. Additional products are dimethylnitrosamine and methanol on MCPBA or hydrogen peroxide oxidation and 0.6 equiv of nitrogen on treatment of daminozide with 2 eqiv of MCPBA or hypochlorite. Reactive intermediates formed on oxidation of 1,1-dimethylhydrazine with 2 equiv of MCPBA also evolve nitrogen and methylate 3-chlorobenzoic acid. Metabolites of ({sup 14}C) daminozide bind to hemoglobin, liver protein, and a liver DNA fraction of treated mice and to human hemoglobin iv vitro via hydrogen peroxide oxidation, in each case with equal labeling form the ({sub 14}C) methyl and ({sub 14}C)succinyl moieties. Reactions of daminozide in these chemical oxidation models may be relevant to those in biological systems.

  7. Obesity-inducing diet promotes acylation stimulating protein resistance.

    Science.gov (United States)

    Fisette, Alexandre; Lapointe, Marc; Cianflone, Katherine

    2013-08-02

    Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system that is involved in energy homeostasis and inflammation. ASP acts on and correlates positively with postprandial fat clearance in healthy subjects. However, in obesity, ASP levels are elevated and correlate inversely with fat clearance, indicative of a potential resistance to ASP. Using a mouse model, we hypothesized that, over time, diet-induced obesity (DIO) would result in development of ASP insensitivity, as compared to chow-fed animals as controls. Injection of recombinant ASP in DIO mice failed to accelerate fat clearance to the same extent as in chow-fed mice. DIO mice exhibited higher basal levels of plasma ASP and, after 30weeks of diet, showed lower ASP receptor (C5L2) expression in adipose tissue compared to chow-fed mice. Additionally, ex vivo ASP stimulation failed to induce normal Ser(473)AKT phosphorylation in adipose tissue from DIO mice VS chow-fed controls. These results demonstrate for the first time a state of diet-induced ASP resistance. Changes in the ASP-C5L2 pathway dynamics in obesity could alter the development of obesity and co-morbidities such as atherosclerosis and type 2 diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Science.gov (United States)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  9. Cu(II)-catalyzed acylation by thiol esters under neutral conditions: tandem acylation-wittig reaction leading to a one-pot synthesis of butenolides.

    Science.gov (United States)

    Matsuo, Kazumasa; Shindo, Mitsuru

    2010-11-19

    The first catalytic acylation of alcohols with a thiol ester present in Wittig reagents under neutral conditions catalyzed by the Cu(II) salt through a push-pull mechanism is reported. Furthermore, a new methodology for the one-pot lactonization of acyloins by a copper catalyst is developed. The synthetic utility of this method for the synthesis of natural products is shown.

  10. N-acyl amino acids and N-acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets.

    Science.gov (United States)

    Connor, Mark; Vaughan, Chris W; Vandenberg, Robert J

    2010-08-01

    The myriad functions of lipids as signalling molecules is one of the most interesting fields in contemporary pharmacology, with a host of compounds recognized as mediators of communication within and between cells. The N-acyl conjugates of amino acids and neurotransmitters (NAANs) have recently come to prominence because of their potential roles in the nervous system, vasculature and the immune system. NAAN are compounds such as glycine, GABA or dopamine conjugated with long chain fatty acids. More than 70 endogenous NAAN have been reported although their physiological role remains uncertain, with various NAAN interacting with a low affinity at G protein coupled receptors (GPCR) and ion channels. Regardless of their potential physiological function, NAAN are of great interest to pharmacologists because of their potential as flexible tools to probe new sites on GPCRs, transporters and ion channels. NAANs are amphipathic molecules, with a wide variety of potential fatty acid and headgroup moieties, a combination which provides a rich source of potential ligands engaging novel binding sites and mechanisms for modulation of membrane proteins such as GPCRs, ion channels and transporters. The unique actions of subsets of NAAN on voltage-gated calcium channels and glycine transporters indicate that the wide variety of NAAN may provide a readily exploitable resource for defining new pharmacological targets. Investigation of the physiological roles and pharmacological potential of these simple lipid conjugates is in its infancy, and we believe that there is much to be learnt from their careful study.

  11. Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men.

    Science.gov (United States)

    Broom, David R; Miyashita, Masashi; Wasse, Lucy K; Pulsford, Richard; King, James A; Thackray, Alice E; Stensel, David J

    2017-03-01

    Acute exercise transiently suppresses the orexigenic gut hormone acylated ghrelin, but the extent to which exercise intensity and duration determine this response is not fully understood. The effects of manipulating exercise intensity and duration on acylated ghrelin concentrations and hunger were examined in two experiments. In experiment one, nine healthy males completed three, 4-h conditions (control, moderate-intensity running (MOD) and vigorous-intensity running (VIG)), with an energy expenditure of ~2.5 MJ induced in both MOD (55-min running at 52% peak oxygen uptake (V.O2peak)) and VIG (36-min running at 75% V.O2peak). In experiment two, nine healthy males completed three, 9-h conditions (control, 45-min running (EX45) and 90-min running (EX90)). Exercise was performed at 70% V.O2peak In both experiments, participants consumed standardised meals, and acylated ghrelin concentrations and hunger were quantified at predetermined intervals. In experiment one, delta acylated ghrelin concentrations were lower than control in MOD (ES = 0.44, P = 0.01) and VIG (ES = 0.98, P Hunger ratings were similar across the conditions (P = 0.35). In experiment two, delta acylated ghrelin concentrations were lower than control in EX45 (ES = 0.77, P Hunger ratings were lower than control in EX45 (ES = 0.20, P = 0.01) and EX90 (ES = 0.27, P = 0.001); EX45 and EX90 were similar (ES = 0.07, P = 0.34). Hunger and delta acylated ghrelin concentrations remained suppressed at 1.5 h in EX90 but not EX45. In conclusion, exercise intensity, and to a lesser extent duration, are determinants of the acylated ghrelin response to acute exercise. © 2017 Society for Endocrinology.

  12. Human apolipoprotein A-I. Post-translational modification by fatty acid acylation.

    Science.gov (United States)

    Hoeg, J M; Meng, M S; Ronan, R; Fairwell, T; Brewer, H B

    1986-03-25

    The human apolipoproteins are secretory proteins some of which have been shown to undergo proteolytic processing and post-translational addition of carbohydrate. Apolipoprotein A-I (apo-A-I), the predominant protein associated with high density lipoproteins, undergoes co-translational proteolytic processing as well as post-translational conversion of proapo-A-I to mature apo-A-I following cellular secretion. Utilizing the human hepatoma cell line HEP-G2, we have established that, in addition to proteolytic processing, secreted nascent apo-A-I is acylated with palmitate. Uniformly labeled [14C]palmitate and [1-14C]palmitate were each incorporated into apo-A-I when analyzed by sodium dodecyl sulfate gel electrophoresis and autoradiography. The acylation of apo-A-I with palmitate was confirmed by immunoprecipitation and gas chromatography/mass spectrometry. Hydroxylamine treatment resulted in the deacylation of apo-A-I. Although three of the apo-A-I isoforms analyzed by two-dimensional gel electrophoresis were shown to contain radio-labeled palmitate, 80% of acylated apo-A-I was in the proapolipoprotein A-I isoform. [14C]Oleate was not incorporated in secreted apo-A-I, indicating the specificity of the acylation of apo-A-I. Incubation of [14C] palmitate-acylated apo-A-I in serum and plasma under conditions in which proapo-A-I is proteolytically cleaved to mature apo-A-I did not result in deacylation. These data establish that fatty acid acylation occurs in human secretory proteins in addition to the previously reported acylation of cellular membrane proteins. These results suggest that the covalent linkage of lipids to apolipoproteins may play a critical role in apolipoprotein and lipoprotein metabolism.

  13. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    Science.gov (United States)

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  14. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine.

    Science.gov (United States)

    Koeppe, R E; Vogt, T C; Greathouse, D V; Killian, J A; de Kruijff, B

    1996-03-19

    Gramicidin A(gA) can be palmitoylated by means of an ester linkage to the OH group of the terminal ethanolamine that sits at the membrane-water interface in the functional gA channel. We have investigated palmitoyl-gA as a model transmembrane acylprotein. Ethanolamine-d(4) (NH(2)CD(2)CD(2)OH) was incorporated into gA by total synthesis, and a portion of the labeled gA was palmitoylated. Solid-state (2)H-NMR spectra of acyl- and nonacyl-gA in hydrated dimyristoylphosphatidylcholine (DMPC) bilayers were compared. The spectra for both oriented and nonoriented samples at 4 and at 40 degrees C indicate that the ethanolamine of gA is highly mobile prior to acylation, but essentially immobile after palmitoylation. The (2)H quadrupolar splittings allow the conformation of the ethanolamine group in acyl-gA to be determined. By combining our data with the previously determined quadrupolar splittings for deuterium labels on the palmitoyl chain [Vogt, T.C.B., Killian, J.A., & de Kruijff, B. (1994) Biochemistry 33, 2063-2070], we also propose a model for the acyl chain. The ethanolamine group rotates over Leu(10) and toward the outside of the gA channel's cylinder upon acylation, so that the attached acyl chain passes between the side chains of Trp(9) and Leu(10). To accommodate the acyl chain, the six-membered portion of the indole ring of Trp(9) is displaced by about 0.9 angstroms, by means of 1-2 degree rotations in chi(1) and chi(2).

  15. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  16. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.

    Science.gov (United States)

    Panda, Siva S; Hall, C Dennis; Oliferenko, Alexander A; Katritzky, Alan R

    2014-04-15

    Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins. The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This "fragment condensation" has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides. This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50 °C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pKa of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7%) in natural peptides and is rarely

  17. Targeted lipidomics in Drosophila melanogaster identifies novel 2-monoacylglycerols and N-acyl amides.

    Directory of Open Access Journals (Sweden)

    Giuseppe Tortoriello

    Full Text Available Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling.

  18. Computational Prediction of acyl-coA Binding Proteins Structure in Brassica napus.

    Science.gov (United States)

    Raboanatahiry, Nadia Haingotiana; Lu, Guangyuan; Li, Maoteng

    2015-01-01

    Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.

  19. Enhancing the Acylation Activity of Acetic Acid by Formation of an Intermediate Aromatic Ester.

    Science.gov (United States)

    Duong, Nhung N; Wang, Bin; Sooknoi, Tawan; Crossley, Steven P; Resasco, Daniel E

    2017-07-10

    Acylation is an effective C-C bond-forming reaction to condense acetic acid and lignin-derived aromatic compounds into acetophenones, valuable precursors to fuels and chemicals. However, acetic acid is intrinsically an ineffective acylating agent. Here, we report that its acylation activity can be greatly enhanced by forming intermediate aromatic esters directly derived from acetic acid and phenolic compounds. Additionally, the acylation reaction was studied in the liquid phase over acid zeolites and was found to happen in two steps: 1) formation of an acylium ion and 2) C-C bond formation between the acylium ion and the aromatic substrate. Each of these steps may be rate-limiting, depending on the type of acylating agent and the aromatic substrate. Oxygen-containing substituents, such as -OH and -OCH3 , can activate aromatic substrates for step 2, with -OH> -OCH3 , whereas alkyl substituent -R cannot. At the same time, aromatic esters can rearrange to acetophenones by both an intramolecular pathway and, preferentially, an intermolecular one. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective inactivation of various acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA.

    Science.gov (United States)

    Ikeda, Y; Tanaka, K

    1990-04-19

    Inactivation of five distinct acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA (MCPA-CoA), the toxic metabolite of hypoglycin from unripe ackee fruit, was investigated using purified enzyme preparations. Short-chain acyl-CoA (SCADH), medium-chain acyl-CoA (MCADH) and isovaleryl-CoA (IVDH) dehydrogenases were severely and irreversibly inactivated by MCPA-CoA, while 2-methyl-branched chain acyl-CoA dehydrogenase (2-meBCADH) was only slowly and mildly inactivated. Long-chain acyl-CoA dehydrogenase (LCADH) was not significantly inactivated, even after prolonged incubation with MCPA-CoA. Inactivation of SCADH, MCADH and IVDH was effectively prevented by the addition of substrate. This mode of inactivation by MCPA-CoA explains the urinary metabolite profile in hypoglycin treated-rats, which includes large amounts of metabolites from fatty acids and leucine, and relatively small amounts of those from valine and isoleucine. Spectrophotometric titration of SCADH and MCADH with MCPA-CoA, together with the protective effects of substrate, indicates that MCPA-CoA is acted upon by, and exerts in turn irreversible inactivation of, SCADH and MCADH, confirming that MCPA-CoA is a suicide inhibitor (Wenz et al. (1981) J. Biol. Chem. 256, 9809-9812). Spectrophotometric titration data of LCADH and MCPA-CoA is typical of non-reacting CoA ester.

  1. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    Science.gov (United States)

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  2. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    Science.gov (United States)

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  3. Toward Green Acylation of (Heteroarenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero­arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene as well as of natural products (eugenol and safrole. Furthermore, synthetic applications to drug molecules are showcased.

  4. Fatty Acid Elongation Is Independent of Acyl-Coenzyme A Synthetase Activities in Leek and Brassica napus1

    Science.gov (United States)

    Hlousek-Radojcic, Alenka; Evenson, Kimberly J.; Jaworski, Jan G.; Post-Beittenmiller, Dusty

    1998-01-01

    In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

  5. Proghrelin peptides: Desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Salehi, Albert; Rehfeld, Jens F

    2010-01-01

    Proghrelin, produced by the ghrelin (A-like) cells of the gastric mucosa, gives rise to cleavage products, including desacyl ghrelin, acyl ghrelin and obestatin. The products are thought to be secreted concomitantly. In an earlier study we found acyl ghrelin and obestatin, but not desacyl ghrelin...

  6. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically.

    Science.gov (United States)

    de Araújo, Maria Elisa Melo Branco; Franco, Yollanda Edwirges Moreira; Alberto, Thiago Grando; Messias, Marcia Cristina Fernandes; Leme, Camila Wielewski; Sawaya, Alexandra Christine Helena Frankland; Carvalho, Patricia de Oliveira

    2017-12-01

    Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p flavonoids before and after acylation regarding Km values, whereas the values for Vmax were the same, implying the competitive nature of XO inhibition.

  7. Exploring the Leishmania Hydrophilic Acylated Surface Protein B (HASPB) Export Pathway by Live Cell Imaging Methods.

    Science.gov (United States)

    MacLean, Lorna; Price, Helen; O'Toole, Peter

    2016-01-01

    Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy.

  8. [Design, synthesis and evaluation of N-acyl-4-phenylthiazole-2-amines as acetylcholinesterase inhibitors].

    Science.gov (United States)

    Ma, Zheng-Yue; Yang, Qi; Zhang, Yuan-Gong; Li, Jun-Jie; Yang, Geng-Liang

    2014-06-01

    N-Acyl-4-phenylthiazole-2-amines were designed and synthesized, moreover their effects on acetylcholinesterase activities were tested. N-Acyl-4-phenylthiazole-2-amines were prepared from substituted 2-bromo-1-acetophenones by three steps reaction, and their AChE inhibitory activities were measured by Ellman method in vitro. The results showed that the target compounds had a certain inhibitory activity on AChE in vitro. Among them, 8c was the best, and IC50 of 8c was 0.51 micromol x L(-1), better than that of rivastigmine and Huperzine-A. The inhibitory activities of N-acyl-4-phenylthiazole-2-amines on acetylcholinesterase are worth while to be further studied.

  9. Synthesis of 1-isopropyl-3-acyl-5-methyl-benzimidazolone Derivatives and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Shaopeng Wei

    2013-03-01

    Full Text Available A series of N-acylated analogues of 1-isopropyl-3-acyl-5-methyl-benzimidazolone were synthesized. Bioassay results indicated that analogues 5-07 and 5-19 exhibited the most potency against Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Analogues 5-02, 5-07, 5-12, 5-15, 5-19, 5-20 and 5-25 could effectively inhibit the spore germination of Botrytis cinerea. The relationship between structure and their antimicrobial activity (SAR has also been discussed according to aliphatic acids and aromatic acids derivatives, respectively. This implied that the N-acylated derivatives of 5-methyl-benzimidazolone might be potential antimicrobial agents.

  10. Role of Acyl Chain Composition of Phosphatidylcholine in Tafazzin-Mediated Remodeling of Cardiolipin in Liposomes.

    Science.gov (United States)

    Abe, Masato; Sawada, Yoshiki; Uno, Shinpei; Chigasaki, Shuhei; Oku, Masahide; Sakai, Yasuyoshi; Miyoshi, Hideto

    2017-11-28

    Remodeling of the acyl chain compositions of cardiolipin (CL) species by the transacylase tafazzin is an important process for maintaining optimal mitochondrial functions. The results of mechanistic studies on the tafazzin-mediated transacylation from phosphatidylcholine (PC) to monolyso-CL (MLCL) in artificial lipid membranes are controversial. The present study investigated the role of the acyl chain composition of PC in the Saccharomyces cerevisiae tafazzin-mediated remodeling of CL by examining the structural factors responsible for the superior acyl donor ability of dipalmitoleoyl (16:1) PC over dipalmitoyl (16:0) PC. To this end, we synthesized systematic derivatives of dipalmitoleoyl PC; for example, the location of the cis double bond was migrated from the Δ9-position toward either end of the acyl chains (the Δ5- or Δ13-position), the cis double bond in the sn-1 or sn-2 position or both, was changed to a trans form, and palmitoleoyl and palmitoyl groups were exchanged in the sn-1 and sn-2 positions, maintaining similar PC fluidities. Analyses of the tafazzin-mediated transacylation from these PCs to sn-2'-MLCL(18:1-18:1/18:1-OH) in the liposomal membrane revealed that tafazzin strictly discriminates the molecular configuration of the acyl chains of PCs, including their glycerol positions (sn-1 or sn-2); however, the effects of PC fluidity on the reaction may not be neglected. On the basis of the findings described herein, we discuss the relevance of the so-called thermodynamic remodeling hypothesis that presumes no acyl selectivity of tafazzin.

  11. How prenylation and S-acylation regulate subcellular targeting and function of ROP GTPases.

    Science.gov (United States)

    Sorek, Nadav; Henis, Yoav I; Yalovsky, Shaul

    2011-07-01

    Rho of Plants (ROP) small G proteins function at discrete domains of the plasma and possibly endo membranes. ROPs are synthesized as soluble proteins and their attachment to membranes and partitioning in membrane microdomains are facilitated by the posttranslational lipid modifications prenylation and/or S-acylation. Based on their amino acid sequences, ROPs can be classified into two major subgroups: type-I ROPs terminate with a canonical CaaX box motif and are prenylated primarily by geranylgeranyltransferase-I (GGT-I) and to a lesser extent by farnesyltransferase (FT). Type-II ROPs terminate with a plant specific GC-CG box domain and are attached to the plasma membrane by stable S-acylation. In addition, type-I and possibly also type-II ROPs undergo activation dependent transient S-acylation in the G-domain and consequent partitioning into lipid rafts. Surprisingly, although geranylgeranylation is required for the membrane attachment of type-I ROPs and the γ subunits of heterotrimeric G proteins, Arabidopsis mutants lacking GGT-I function have a mild phenotype compared to wild type plants. The mild phenotype of the ggt-I mutants suggested that farnesylation by FT may compensate for the loss of GGT-I function and that possibly the prenylated type-I and S-acylated type-II ROPS have some overlapping functions. In a paper recently published in Plant Physiology we examined the role of the prenyl group type in type-I ROP function and membrane interaction dynamics and the functional redundancy between type-I and type-II ROPs. This study complements a second paper in which we examined the role of G-domain transient S-acylation in the membrane interaction dynamics and signaling by type-I ROPs. Together these two studies provide a framework for realizing the role of prenylation and S-acylation in subcellular targeting, membrane interaction dynamics and signaling by ROP GTPases.

  12. The ppm operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum.

    Directory of Open Access Journals (Sweden)

    Niloofar Mohiman

    Full Text Available BACKGROUND: Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt, cleaved off their signal peptides by lipoprotein signal peptidase (Lsp and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt. The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2 involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown. RESULTS: In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed. CONCLUSION: Together, these results show for the first time that Cg-Ppm1 (Ppm synthase and Cg-Ppm2 (Lnt operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.

  13. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes.

    Science.gov (United States)

    Pennington, Edward Ross; Fix, Amy; Sullivan, E Madison; Brown, David A; Kennedy, Anthony; Shaikh, Saame Raza

    2017-02-01

    Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2)4] CL content decreased the excess area/molecule. Replacement of (18:2)4CL acyl chains with tetraoleoyl [(18:1)4] CL or tetradocosahexaenoyl [(22:6)4] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2)4CL acyl chains with tetramyristoyl [(14:0)4] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2)4CL with (18:1)4CL or (22:6)4CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0)4CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2)4CL content and substitution of (18:2)4CL with (14:0)4CL or (22:6)4CL. Conversely, exchanging (18:2)4CL with (18:1)4CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inhibition of 3T3-L1 adipocyte differentiation by expression of acyl-CoA-binding protein antisense RNA

    DEFF Research Database (Denmark)

    Mandrup, S; Sorensen, R V; Helledie, T

    1998-01-01

    Several lines of evidence have recently underscored the significance of fatty acids or fatty acid-derived metabolites as signaling molecules in adipocyte differentiation. The acyl-CoA-binding protein (ACBP), which functions as an intracellular acyl-CoA pool former and transporter, is induced duri...

  15. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  16. Determination of medium chain acyl-CoA dehydrogenase activity in cultured skin fibroblasts using mass spectrometry

    NARCIS (Netherlands)

    Niezen-Koning, K E; Chapman, T E; Mulder, I E; Smit, G P; Reijngoud, D J; Berger, R

    1991-01-01

    Medium chain acyl-CoA dehydrogenase deficiency, a defect of mitochondrial beta-oxidation, is one of the most frequently occurring among inborn errors of metabolism. We describe a rapid and sensitive gas chromatographic/mass spectrometric method allowing reliable assessment of medium chain acyl-CoA

  17. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Knudsen, J

    1997-01-01

    (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations......The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines...... or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis...

  18. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO...... must be struck that maximized flavonoid solubility with minimum negative impact on lipase activity. The process also benefitted from an increased reaction temperature which may have helped to reduced mass transfer limitations. Keywords: Room temperature ionic liquids (RTILs); Biosynthesis; Acylation......; Flavonoids; Lipase; Long chain fatty acids...

  19. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren

    2007-01-01

    Besides serving as essential substrates for beta-oxidation and synthesis of triacylglycerols and more complex lipids like sphingolipids and sterol esters, long-chain fatty acyl-CoA esters are increasingly being recognized as important regulators of enzyme activities and gene transcription. Acyl...... and accumulation of vesicles of variable sizes. In contrast to synthesis and turn-over of glycerolipids, the levels of very-long-chain fatty acids, long-chain bases and ceramide are severely affected by Acb1p depletion, suggesting that Acb1p, rather than playing a general role, serves specific roles in cellular...

  20. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology

    Science.gov (United States)

    Burke, Helen M.; McSweeney, Lauren; Scanlan, Eoin M.

    2017-05-01

    S-to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S-to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology.

  1. Purification of specific structured lipids by distillation: Effects on acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, A.; Adler-Nissen, Jens

    2001-01-01

    contained a large amount of free fatty acids and a small amount of partial acylglycerols besides triacylglycerols. Therefore, the effect of steam, free fatty acids, diacylglycerols, and monoacylglycerols on acyl migration was studied in a palm oil midfraction model. The results showed that all these factors......The cause and effects of acyl migration during the purification of specific structured lipids by distillation were studied in a conventional batch deodorizer with stripping steam. The mixture of specific structured lipids produced by lipase-catalyzed acidolysis between rapeseed oil and capric acid...

  2. Localization of the acyl groups in proazulene guaianolides from Thapsia transtagana and Thapsia garganica

    DEFF Research Database (Denmark)

    Avato, P.; Cornett, Claus; Andersen, A.

    1993-01-01

    A new esterified oxygenated guaianolide 3 possessing the terpenoid skeleton of the proazulene 2 previously isolated from Thapsia garganica was isolated from Thapsia transtagana. The locations of the acyl groups in 2 and 3 were established by partial hydrolysis and by spectroscopic means.......A new esterified oxygenated guaianolide 3 possessing the terpenoid skeleton of the proazulene 2 previously isolated from Thapsia garganica was isolated from Thapsia transtagana. The locations of the acyl groups in 2 and 3 were established by partial hydrolysis and by spectroscopic means....

  3. Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases

    OpenAIRE

    Shimakata, Takashi; Stumpf, Paul K.

    1982-01-01

    Crude spinach leaf extract readily forms the stearoyl derivative of acyl-carrier-protein (ACP) when acetyl-ACP and malonyl-ACP are incubated together. Palmitoyl-ACP is also elongated by malonyl-ACP to stearoyl-ACP. When β-ketoacyl-ACP synthase {3-oxoacyl-[ACP] synthase; acyl-[ACP]:malonyl-[ACP] C-acyltransferase (decarboxylating), EC 2.3.1.41} is purified with decanoyl-ACP as the assay substrate, palmitoyl-ACP elongation activity is lost. When palmitoyl-ACP is the assay substrate, another pro...

  4. Preparation of translationally competent tRNA by direct chemical acylation.

    Science.gov (United States)

    Duffy, Noah H; Dougherty, Dennis A

    2010-09-03

    Nonsense codon suppression for unnatural amino acid incorporation requires the preparation of a suppressor aminoacyl-tRNA. Chemical acylation strategies are general but inefficient and arduous. A recent report (J. Am. Chem. Soc. 2007, 129, 15848) showed acylation of RNA mediated by lanthanum(III) using amino acid phosphate esters. The successful implementation of this methodology to full-length suppressor tRNA is described, and it is shown that the derived aminoacyl-tRNA is translationally competent in Xenopus oocytes.

  5. Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages.

    Science.gov (United States)

    Espinosa-Cueto, Patricia; Escalera-Zamudio, Marina; Magallanes-Puebla, Alejandro; López-Marín, Luz María; Segura-Salinas, Erika; Mancilla, Raúl

    2015-06-23

    Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.

  6. Peripheral tissue levels and molecular species compositions of N-acyl-phosphatidylethanolamine and its metabolites in mice lacking N-acyl-phosphatidylethanolamine-specific phospholipase D.

    Science.gov (United States)

    Inoue, Manami; Tsuboi, Kazuhito; Okamoto, Yoko; Hidaka, Mayumi; Uyama, Toru; Tsutsumi, Toshihiko; Tanaka, Tamotsu; Ueda, Natsuo; Tokumura, Akira

    2017-12-01

    N-acylethanolamines (NAEs), a class of lipid mediators, are produced from N-acyl-phosphatidylethanolamine (NAPE) by several pathways, including the direct release by NAPE-specific phospholipase D (NAPE-PLD) or the multistep pathway via sn-glycero-3-phospho-N-acylethanolamine (Gp-NAE). Using liquid chromatography-tandem mass spectrometry, we compared peripheral tissue levels of NAPE, Gp-NAE and NAE in NAPE-PLD-deficient (NAPE-PLD-/-) and wild type (WT) mice. NAPE-PLD was suggested to play a major role in the NAPE degradation in heart, kidney, and liver, but not in jejunum, because the NAPE levels except jejunum were significantly higher in NAPE-PLD-/- mice than in WT mice. The deletion of NAPE-PLD failed to alter the NAE levels of these tissues, suggesting its limited role in the NAE production. The enzyme assays with tissue homogenates confirmed the presence of NAPE-PLD-independent pathways in these peripheral tissues. Gp-NAE species having an acyl moiety with 22 carbons and 6 double bonds was enriched in these peripheral tissues. As for sn-2 acyl species of NAPE, 18:2-acyl-containing NAPE species were predominant over 18:1-containing species in heart, liver, and jejunum. Our results show that both molecular species composition of NAPE, NAE and Gp-NAE and their dependencies on Napepld are different among the peripheral tissues, suggesting that each tissue has distinct metabolic pathways and these NAE-containing lipids play tissue-specific roles. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. X-Ray Crystallographic Studies on Butyryl-ACP Reveal Flexibility of the Structure around a Putative Acyl Chain Binding Site

    NARCIS (Netherlands)

    Roujeinikova, A.; Baldock, C.; Simon, W.J.; Gilroy, J.; Baker, P.J.; Stuitje, A.R.; Rice, D.W.; Slabas, A.R.; Rafferty, J.B.

    2002-01-01

    Acyl carrier protein (ACP) is an essential cofactor in biosynthesis of fatty acids and many other reactions that require acyl transfer steps. We have determined the first crystal structures of an acylated form of ACP from E. coli, that of butyryl-ACP. Our analysis of the molecular surface of ACP

  8. Des-Acyl Ghrelin and Ghrelin O-Acyltransferase Regulate Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Response to Acute Stress

    NARCIS (Netherlands)

    Stark, R.; Santos, V.V.; Geenen, B.; Cabral, A.; Dinan, T.; Bayliss, J.A.; Lockie, S.H.; Reichenbach, A.; Lemus, M.B.; Perello, M.; Spencer, S.J.; Kozicz, L.T.; Andrews, Z.B.

    2016-01-01

    Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation

  9. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK channels

    Directory of Open Access Journals (Sweden)

    Michael J Shipston

    2014-08-01

    Full Text Available Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK channels are important determinants of their (pathophysiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs and acyl thioesterases. (APTs. S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signalling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.

  10. [Research for the improvement of acylation conditions in antistaphylococcal penicillin synthesis].

    Science.gov (United States)

    Stan, Cătălina Daniela; Stefanache, Alina; Drăgan, Maria; Poiată, Antonia; Diaconu, D E; Profire, Lenuţa

    2011-01-01

    The 6-aminopenicillanic acid acylation with certain acyl chlorides was performed in order to obtain antistaphylococcal penicillins with bigger crystals, easy to filtrate (shorter filtration time), much pure, and an increased output. Oxacillin sodium salt was synthesized by acylating an aqueous solution of 6-aminopenicillanic acid sodium salt (NaHCO3 not in excess) with an ethylacetate solution of 5-phenyl-3-methyl-isoxazolyl-4-carboxilic acid chloride. The crystallization was performed with a 40.5% sodium 2-ethyl hexanoate izopropanolic solution. All tests (IR spectrum, iodometric titration, and microbiological dosage) were performed according to the Xth Romanian Pharmacopoeia standards. The amount of synthesized oxacillin was higher and the output of 88,21%. Oxacillin had a high chemical purity (98,72%), and a very good microbiological activity (95% of the standard activity). Oxacillin crystals were bigger, the filtration speed was increased, and process efficacy improved. The output of the process was also improved being higher than with classical acylation.

  11. Acyl-chain methyl distributions of liquid-ordered and -disordered membranes.

    Science.gov (United States)

    Mihailescu, Mihaela; Vaswani, Rishi G; Jardón-Valadez, Eduardo; Castro-Román, Francisco; Freites, J Alfredo; Worcester, David L; Chamberlin, A Richard; Tobias, Douglas J; White, Stephen H

    2011-03-16

    A central feature of the lipid raft concept is the formation of cholesterol-rich lipid domains. The introduction of relatively rigid cholesterol molecules into fluid liquid-disordered (L(d)) phospholipid bilayers can produce liquid-ordered (L(o)) mixtures in which the rigidity of cholesterol causes partial ordering of the flexible hydrocarbon acyl chains of the phospholipids. Several lines of evidence support this concept, but direct structural information about L(o) membranes is lacking. Here we present the structure of L(o) membranes formed from cholesterol and dioleoylphosphatidylcholine (DOPC). Specific deuteration of the DOPC acyl-chain methyl groups and neutron diffraction measurements reveal an extraordinary disorder of the acyl chains of neat L(d) DOPC bilayers. The disorder is so great that >20% of the methyl groups are in intimate contact with water in the bilayer interface. The ordering of the DOPC acyl chains by cholesterol leads to retraction of the methyl groups away from the interface. Molecular dynamics simulations based on experimental systems reveal asymmetric transbilayer distributions of the methyl groups associated with each bilayer leaflet. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone

    NARCIS (Netherlands)

    Jafra, S.; Przysowa, R.; Czajkowski, A.; Michta, A.; Garbeva, P.; Wolf, van der J.M.

    2006-01-01

    Quorum sensing plays a role in the regulation of soft rot diseases caused by the plant pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. The signal molecules involved in quorum sensing in P. carotovorum subsp. carotovorum belong to the group of N-acyl homoserine lactones (AHLs). In

  13. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  14. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show that de...

  15. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency

    DEFF Research Database (Denmark)

    ØRngreen, Mette C; Nørgaard, Mette; Sacchetti, Massimo

    2004-01-01

    Fuel utilization in two adult patients with the myopathic form of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and five healthy subjects was investigated with stable isotopes during exercise at 50% of VO2max. The findings indicate that residual VLCAD activity in the patients...

  16. Intrinsic enoyl-CoA isomerase activity of rat acyl-CoA oxidase I.

    Science.gov (United States)

    Zeng, Jia; Deng, Guisheng; Li, Ding

    2006-01-01

    Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. It was found that rat acyl-CoA oxidase I has intrinsic enoyl-CoA isomerase activity, which was confirmed using incubation followed with HPLC analysis in this study. Various 3-enoyl-CoA substrates with cis or trans configuration were synthesized and used in the study of enzyme substrate specificity. The isomerase activity of the enzyme was characterized through studies of kinetics, pH dependence, and enzyme inhibition. Most k(cat)/K(M) values of rat peroxisomal acyl-CoA oxidase I for isomerization reaction are comparable with those of authentic rat liver peroxisomal Delta(3)-Delta(2)-enoyl-CoA isomerase and rat liver peroxisomal multifunctional enzyme 1 when hexenoyl-CoA and octenoyl-CoA with cis- or trans-configuration were used as substrate. Glu421 was found to be the catalytic residue for both oxidase and isomerase activities of the enzyme. The isomerase activity of rat peroxisomal acyl-CoA oxidase I is probably due to a spontaneous process driven by thermodynamic equilibrium with formation of a conjugated structure after deprotonation of substrate alpha-proton. The energy level of transition state may be lowered by a stable dienolate intermediate, which gain further stabilization via charge transfer with electron-deficient FAD cofactor of the enzyme.

  17. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features

    Directory of Open Access Journals (Sweden)

    Charles R. Sweet

    2014-07-01

    Full Text Available Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide, a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2- units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments.

  18. Endotoxin structures in the psychrophiles Psychromonas marina and Psychrobacter cryohalolentis contain distinctive acyl features.

    Science.gov (United States)

    Sweet, Charles R; Alpuche, Giancarlo M; Landis, Corinne A; Sandman, Benjamin C

    2014-07-09

    Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide), a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME) GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2-) units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments.

  19. Equine biochemical multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of rhabdomyolysis

    NARCIS (Netherlands)

    Westermann, C. M.; de Sain-van der Velden, M. G. M.; van der Kolk, J. H.; Berger, R.; Wijnberg, I. D.; Koeman, J. P.; Wanders, R. J. A.; Lenstra, J. A.; Testerink, N.; Vaandrager, A. B.; Vianey-Saban, C.; Acquaviva-Bourdain, C.; Dorland, L.

    2007-01-01

    Two horses (a 7-year-old Groninger warmblood gelding and a six-month-old Trakehner mare) with pathologically confirmed rhabdomyolysis were diagnosed as suffering from multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder has not been recognised in animals before. Clinical signs of both

  20. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence.

  1. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    van Maldegem, Bianca T.; Wanders, Ronald J. A.; Wijburg, Frits A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing

  2. Evidence for the Intercalation of Lipid Acyl Chains into Polypropylene Fiber Matrices.

    Science.gov (United States)

    Schadock-Hewitt, Abby J; Bruce, Terri F; Marcus, R Kenneth

    2015-09-29

    Headgroup-functionalized lipids are being developed as ligand tethers for high selectivity separations on polypropylene capillary-channeled polymer fiber stationary phases. Surface modification is affected under ambient conditions from aqueous solution. This basic methodology has promise in many areas where robust modifications are desired on hydrophobic surfaces. In order to understand the mode of adsorption of the lipid tail to the polypropylene surface, lipids labeled with the environmentally sensitive 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) fluorophore were used, with NBD covalently attached to the headgroup (NBD-PE) or the acyl chain (acyl NBD-PE) of the lipid. When modified with the acyl NBD-PE, fluorescence imaging of the fiber at excitation wavelengths increasing from 470 to 510 nm caused a 32 nm shift in emission toward the red edge of the absorption band, indicating that the NBD molecule (and thus the lipid tail) is motionally restricted. Fluorescence imaging on fibers modified with NBD-PE or the free NBD-Cl dye molecule yields no change in the emission response. The results of these imaging studies provide evidence that the acyl chain portions of the lipids intercalate into free volume of the polypropylene fiber structure, yielding a robust means of surface modification and the potential for high ligand densities.

  3. The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy)

    NARCIS (Netherlands)

    El Hajj, H. I.; Vluggens, A.; Andreoletti, P.; Ragot, K.; Mandard, S.; Kersten, S.; Waterham, H. R.; Lizard, G.; Wanders, R. J. A.; Reddy, J. K.; Cherkaoui-Malki, Mustapha

    2012-01-01

    Among several peroxisomal neurodegenerative disorders, the pseudoneonatal adrenoleukodystrophy (P-NALD) is characterized by the acyl-coenzyme A oxidase 1 (ACOX1) deficiency, which leads to the accumulation of very-long-chain fatty acids ( VLCFA) and inflammatory demyelination. However, the

  4. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl ...

    Indian Academy of Sciences (India)

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. -acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa ...

  5. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide

    DEFF Research Database (Denmark)

    Vad, Brian Stougaard; Thomsen, Line Aagot Hede; Bertelsen, Kresten

    2010-01-01

    Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show that there is no d......Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show...... that there is no direct link between folding of the antimicrobial peptide Novicidin (Nc) and its membrane permeabilization. N-terminal acylation with C8-C16 alkyl chains and the inclusion of anionic lipids both increase Nc's ability to form alpha-helical structure in the presence of vesicles. Nevertheless, both acylation...... and anionic lipids reduce the extent of permeabilization of these vesicles and lead to slower permeabilization kinetics. Furthermore, acylation significantly decreases antimicrobial activity. Although acyl chains of increasing length also increase the tendency of the peptides to aggregate in solution...

  6. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...

  7. Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice

    NARCIS (Netherlands)

    Spiekerkoetter, Ute; Tokunaga, Chonan; Wendel, Udo; Mayatepek, Ertan; Ijlst, Lodewijk; Vaz, Frederic M.; van Vlies, Naomi; Overmars, Henk; Duran, Marinus; Wijburg, Frits A.; Wanders, Ronald J.; Strauss, Arnold W.

    2005-01-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is the most common long-chain fatty acid oxidation defect and presents with heterogeneous clinical manifestations. Accumulation of long-chain acylcarnitines and deficiency of free carnitine have often been proposed to play an important

  8. Medium chain acyl-CoA dehydrogenase deficiency and fatal valproate toxicity

    NARCIS (Netherlands)

    Njolstad, PR; Skjeldal, OH; Agsteribbe, E; Huckriede, A; Wannag, E; Sovik, O; Waaler, PE

    A boy with delayed psychomotor development, attention deficit disorder, and therapy-resistant epilepsy was treated with valproate. The patient died of liver failure after 4 months of valproate treatment. Postmortem investigation of cultured fibroblasts suggested medium chain acyl-CoA dehydrogenase

  9. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1

    NARCIS (Netherlands)

    Sio, CF; Otten, LG; Cool, RH; Diggle, SP; Braun, PG; Daykin, M; Camara, M; Williams, P; Quax, WJ; Bos, R

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase

  10. Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration.

    Science.gov (United States)

    Chien, Chih-Ying; Enomoto-Rogers, Yukiko; Takemura, Akio; Iwata, Tadahisa

    2017-01-02

    Regioselectively substituted curdlan esters were synthesized by protecting the C6 primary hydroxyl group with a triphenylmethyl group followed by the acylation of the secondary hydroxyl groups at C2 and C4. The subsequent detritylation of C6 trityl group under acidic conditions revealed an unexpected acyl migration from C4 to C6. This unique acyl migration in curdlan was first observed, which haven't been reported in other polysaccharides such as cellulose. The rate of this migration was found to be dependent on the length of the acyl group, leading to the proposal of a new mechanism for this transformation. Based on these results, we synthesized 2,6-di-O-acetyl-4-O-propionyl-curdlan, which was fully characterized by (1)H NMR, (13)C NMR, COSY, HSQC and HMBC analyses. Thermogravimetric analysis and differential scanning calorimetry measurements revealed that the regioselective esterification to curdlan promoted its crystallization compared with randomly mixed ester derivatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An Efficient and Green Procedure for the Preparation of Acylals from ...

    African Journals Online (AJOL)

    NJD

    Alum [KAl(SO4)2.12H2O] is an inexpensive, efficient, non-toxic and mild catalyst for the preparation of acylals from aromatic and heteroaryl aldehydes ... green synthetic solution by avoiding toxic catalysts and hazardous solvents. KEYWORDS .... In order to demonstrate the high selectivity of the procedure, we investigated ...

  12. TFFH as an excellent reagent for acylation of alcohols, thiols and dithiocarbamates

    DEFF Research Database (Denmark)

    Pittelkow, M.; Kamounah, F. S.; Boas, Ulrik

    2004-01-01

    A convenient and easy procedure to synthesize esters and thioesters from the corresponding carboxylic acid using TFFH as the coupling reagent is described. The preparation of N-acyl-dithiocarbamates from carboxylic acids and 1,3-thiazolidine-2-thione with TFFH as the coupling reagent is also...

  13. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein.

    OpenAIRE

    Cianflone, K M; Maslowska, M H; Sniderman, A D

    1990-01-01

    Acylation-stimulating protein (ASP) is a small, basic, human plasma protein that markedly stimulates triglyceride synthesis in human adipocytes and cultured human skin fibroblasts. The present studies examine the response to ASP of cultured skin fibroblasts from normal subjects patients with hyperapobetalipoproteinemia, patients with familial hypercholesterolemia, and patients with hypertriglyceridemia without hyperapobetalipoproteinemia. Triglyceride synthesis induced by ASP did not differ s...

  14. Purification of peroxisomal acyl-CoA: dihydroxyacetonephosphate acyltransferase from human placenta

    NARCIS (Netherlands)

    Ofman, R.; Wanders, R. J.

    1994-01-01

    The peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase (DHAPAT) was extracted from human placental membranes using CHAPS as a detergent in the presence of 1 M KCl. Prior to assay dipalmitoylphosphatidylcholine was added to the sample as eluted from the various columns in order to

  15. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    Science.gov (United States)

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Experimental and theoretical rearrangement of N-acyl-2,2 ...

    Indian Academy of Sciences (India)

    Abstract. The acid isomerization of N-acyl-2,2-dimethylaziridines 1 in concentrated sulfuric acid at room temperature leads to oxazolines 2 but the neutral hydrolysis of 1 in pure water at room temperature leads to amidoalcohols 3. However, the use of aqueous solutions of H2SO4 at different concentrations at room tempera-.

  17. Relevance of expanded neonatal screening of medium-chain acyl co-a dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Couce, M L; Castiñeiras, D E; Moure, J D

    2011-01-01

    Neonatal screening of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is of major importance due to the significant morbidity and mortality in undiagnosed patients. MCADD screening has been performed routinely in Galicia since July 2000, and until now 199,943 newborns have been screened. We...

  18. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers.

    Science.gov (United States)

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou

    2017-02-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. An orphan esterase ABHD10 modulates probenecid acyl glucuronidation in human liver.

    Science.gov (United States)

    Ito, Yusuke; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki

    2014-12-01

    Probenecid, a widely used uricosuric agent, is mainly metabolized to probenecid acyl glucuronide (PRAG), which is considered a causal substance of severe allergic or anaphylactoid reactions. PRAG can be hydrolyzed (deglucuronidated) to probenecid. The purpose of this study was to identify enzymes responsible for probenecid acyl glucuronidation and PRAG deglucuronidation in human livers and to examine the effect of deglucuronidation in PRAG formation. In human liver homogenates (HLHs), the intrinsic clearance (CLint) of PRAG deglucuronidation was much greater (497-fold) than that of probenecid acyl glucuronidation. Evaluation of PRAG formation by recombinant UDP-glucuronosyltransferase (UGT) isoforms and an inhibition study using HLHs as an enzyme source demonstrated that multiple UGT isoforms, including UGT1A1, UGT1A9, and UGT2B7, catalyzed probenecid acyl glucuronidation. We found that recombinant α/β hydrolase domain containing 10 (ABHD10) substantially catalyzed PRAG deglucuronidation activity, whereas carboxylesterases did not. Similar inhibitory patterns by chemicals between HLHs and recombinant ABHD10 supported the major contribution of ABHD10 to PRAG deglucuronidation in human liver. Interestingly, it was demonstrated that the CLint value of probenecid acyl glucuronidation in HLHs was increased by 1.7-fold in the presence of phenylmethylsulfonyl fluoride, which potently inhibited ABHD10 activity. In conclusion, we found that PRAG deglucuronidation catalyzed by ABHD10 suppressively regulates PRAG formation via multiple UGT enzymes in human liver. The balance of activities by these enzymes is important for the formation of PRAG, which may be associated with the adverse reactions observed after probenecid administration. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Interaction Of GCAP1 With Retinal Guanylyl Cyclase And Calcium: Sensitivity to Fatty Acylation

    Directory of Open Access Journals (Sweden)

    Igor V. Peshenko

    2012-02-01

    Full Text Available Guanylyl cyclase activating proteins (GCAP1 are calcium/magnesium binding proteins within neuronal calcium sensor proteins group (NCS of the EF-hand proteins superfamily. GCAPs activate retinal guanylyl cyclase (RetGC in vertebrate photoreceptors in response to light-dependent fall of the intracellular free Ca2+ concentrations. GCAPs consist of four EF-hand domains and contain N-terminal fatty acylated glycine, which in GCAP1 is required for the normal activation of RetGC. We analyzed the effects of a substitution prohibiting N-myristoylation (Gly2 → Ala on the ability of the recombinant GCAP1 to co-localize with its target enzyme when heterologously expressed in HEK293 cells. We also compared Ca2+ binding and RetGC-activating properties of the purified non-acylated G2A mutant and C14:0 acylated GCAP1 in vitro. The G2A GCAP1 expressed with a C-terminal GFP tag was able to co-localize with the cyclase, albeit less efficiently than the wild type, but much less effectively stimulated cyclase activity in vitro. Ca2+ binding isotherm of the G2A GCAP1 was slightly shifted toward higher free Ca2+ concentrations and so was Ca2+ sensitivity of RetGC reconstituted with the non-acylated mutant. At the same time, myristoylation had little effect on the high-affinity Ca2+-binding in the EF-hand that is proximal to the myristoyl residue in the three-dimensional GCAP1 structure. These data indicate that the N-terminal fatty acyl group may alter the activity of EF-hands in the distal portion of the GCAP1 molecule via presently unknown intramolecular mechanism.

  1. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  2. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    Science.gov (United States)

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  4. Selection of processing tomato genotypes with high acyl sugar content that are resistant to the tomato pinworm.

    Science.gov (United States)

    Dias, D M; Resende, J T V; Faria, M V; Camargo, L K P; Chagas, R R; Lima, I P

    2013-02-08

    Acyl sugars are allelochemicals present at high concentrations in leaves of accessions of the wild tomato Solanum pennellii; they confer resistance to a large number of arthropod pests, including the tomato pinworm, Tuta absoluta (Lepidoptera, Gelechiidae). Accession 'LA716', with high contents of acyl sugars in the leaves, was used as a source of resistance to start a genetic breeding program of processing cultivated tomato, S. lycopersicum. We selected plants of the F₂ generation of an interspecific cross (S. lycopersicum cv. 'Redenção' x S. pennellii 'LA716') for extremes of concentrations (high and low) of acyl sugars in the leaves and evaluated the resistance of selected genotypes to the tomato pinworm, compared with plants of the parental and F₁ generations. The concentrations of acyl sugars present in the genotypes selected for high contents were close to those of S. pennellii 'LA 716', while the genotypes with low concentrations of acyl sugars were close to cultivar 'Redenção'. The F₁ hybrid ('Redenção' x 'LA716') had intermediate concentrations of acyl sugars, but was closer to Redenção, indicating that the inheritance of this type of character is due to a recessive major gene, along with minor genes with additive effects. There was a direct association between high contents of acyl sugars and non-preference for oviposition and suppression of larval development, indicating that the allelochemical acts through mechanisms of non-preference for oviposition and through antibiosis. Genotypes with high contents of acyl sugars were more effective in reducing the damage caused by the tomato pinworm. Genotypes RVTA-2010pl#94 and RVTA-2010pl#31, selected for high contents of acyl sugars, showed a good level of resistance to T. absoluta, similar to the wild genotype LA716. These genotypes are promising for use in a breeding program for developing commercial processing tomatoes.

  5. Synthesis of acyl arbutin by an immobilized lipase and its suppressive ability against lipid oxidation in a bulk system and O/W emulsion.

    Science.gov (United States)

    Nagai, Mizuka; Watanabe, Yoshiyuki; Nomura, Masato

    2009-11-01

    Acyl arbutin was synthesized through the condensation of arbutin with a saturated fatty acid (C6-18) by the immobilized lipase in a batch reaction. The conversion at 10 and 20 g/l-solvent of immobilized lipase reached 45% over 2 d, but the initial reaction rate per amount of immobilized lipase decreased at 20 g/l-solvent. The radical scavenging activity of acyl arbutin in an ethanol solution was independent of the acyl chain length, although the rate constant, k, estimated for the oxidation of methyl linoleate in a bulk system with acyl arbutin by using the Weibull equation, decreased as the acyl chain length increased. This indicates the antioxidative ability of acyl arbutin with a long acyl chain to be due to its lipophilicity. Furthermore, it is suggested that dodecanoyl arbutin mainly acted on the interface between the oil and water phases in an O/W emulsion, and effectively suppressed the oxidation induced at the interface.

  6. S-naproxen-ss-1-O-acyl glucuronide degradation kinetic studies by stopped-flow high-performance liquid chromatography-H-1 NMR and high-performance liquid chromatography-UV

    DEFF Research Database (Denmark)

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus

    2001-01-01

    Acyl-migrated isomers of drug beta -1-O-acyl glucuronides have been implicated in drug toxicity because they can bind to proteins. The acyl migration and hydrolysis of S-naproxen-beta -1-O-acyl glucuronide (S-nap-g) was followed by dynamic stopped-flow HPLC-H-1 NMR and HPLC methods. Nine first or...

  7. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  8. Effects of riboflavin deficiency and clofibrate treatment on the five acyl-CoA dehydrogenases in rat liver mitochondria.

    OpenAIRE

    Veitch, K; Draye, J P; Van Hoof, F; Sherratt, H S

    1988-01-01

    Rats were maintained on a riboflavin-deficient diet or on a diet containing clofibrate (0.5%, w/w). The activities of the mitochondrial FAD-dependent straight-chain acyl-CoA dehydrogenases (butyryl-CoA, octanoyl-CoA and palmitoyl-CoA) and the branched-chain acyl-CoA dehydrogenases (isovaleryl-CoA and isobutyryl-CoA) involved in the degradation of branched-chain acyl-CoA esters derived from branched-chain amino acids were assayed in liver mitochondrial extracts prepared in the absence and pres...

  9. Cholesterol oxides inhibit cholesterol esterification by lecithin: cholesterol acyl transferase

    Directory of Open Access Journals (Sweden)

    Eder de Carvalho Pincinato

    2009-09-01

    Full Text Available Cholesterol oxides are atherogenic and can affect the activity of diverse important enzymes for the lipidic metabolism. The effect of 7β-hydroxycholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholestan-3β,5α,6β-triol,5,6β-epoxycholesterol, 5,6α-epoxycholesterol and 7α-hydroxycholesterol on esterification of cholesterol by lecithin:cholesterol acyl transferase (LCAT, EC 2.3.1.43 and the transfer of esters of cholesterol oxides from high density lipoprotein (HDL to low density lipoproteins (LDL and very low density lipoproteins (VLDL by cholesteryl ester transfer protein (CETP was investigated. HDL enriched with increasing concentrations of cholesterol oxides was incubated with fresh plasma as source of LCAT. Cholesterol and cholesterol oxides esterification was followed by measuring the consumption of respective free sterol and oxysterols. Measurements of cholesterol and cholesterol oxides were done by gas-chromatography. 14C-cholesterol oxides were incorporated into HDL2 and HDL3 subfractions and then incubated with fresh plasma containing LCAT and CETP. The transfer of cholesterol oxide esters was followed by measuring the 14C-cholesterol oxide-derived esters transferred to LDL and VLDL. All the cholesterol oxides studied were esterified by LCAT after incorporation into HDL particles, competing with cholesterol by LCAT. Cholesterol esterification by LCAT was inversely related to the cholesterol oxide concentration. The esterification of 14C-cholesterol oxides was higher in HDL3 and the transfer of the derived esters was greater from HDL2 to LDL and VLDL. The results suggest that cholesterol esterification by LCAT is inhibited in cholesterol oxide-enriched HDL particles. Moreover, the cholesterol oxides-derived esters are efficiently transferred to LDL and VLDL. Therefore, we suggest that cholesterol oxides may exert part of their atherogenic effect by inhibiting cholesterol esterification on the HDL surface and thereby disturbing

  10. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia

    Science.gov (United States)

    Sapere, Nadia; La Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Corbi, Graziamaria; Scapagnini, Giovanni; Intrieri, Mariano; Russo, Claudio

    2016-01-01

    This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer’s disease. Twenty-nine patients with probable Alzheimer’s disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L) to subjective memory complaint (4.3±0.9 μmol/L), mild cognitive impairment (4.0±0.53 μmol/L), up to Alzheimer’s disease (3.5±0.6 μmol/L) group (p<0.001). The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer’s disease group; and subjective memory complaint vs. Alzheimer’s disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer’s disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer’s disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer’s disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal

  11. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia.

    Directory of Open Access Journals (Sweden)

    Adriana Cristofano

    Full Text Available This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer's disease. Twenty-nine patients with probable Alzheimer's disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L to subjective memory complaint (4.3±0.9 μmol/L, mild cognitive impairment (4.0±0.53 μmol/L, up to Alzheimer's disease (3.5±0.6 μmol/L group (p<0.001. The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer's disease group; and subjective memory complaint vs. Alzheimer's disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer's disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer's disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer's disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal

  12. Heterogeneous N-terminal Acylation of Retinal Proteins Results from the Retina’s Unusual Lipid Metabolism†,§

    Science.gov (United States)

    Bereta, Grzegorz; Palczewski, Krzysztof

    2011-01-01

    Protein N-myristoylation occurs by a covalent attachment of a C14:0 fatty acid to the N-terminal Gly residue. This reaction is catalyzed by a N-myristoyltransferase that uses myristoyl-coenzyme A as substrate. But proteins in the retina also undergo heterogeneous N-acylation with C14:2, C14:1 and C12:0 fatty acids. The basis and the role of this retina-specific phenomenon are poorly understood. We studied guanylate cyclase-activating protein 1 (GCAP1) as an example of retina-specific heterogeneously N-acylated protein. The types and the abundance of fatty acids bound to bovine retinal GCAP1 were: C14:2, 37.0%; C14:0, 32.4%; C14:1, 22.3%; and C12:0, 8.3% as quantified by liquid chromatography coupled mass spectrometry. We also devised a method for N-acylating proteins in vitro and used it to modify GCAP1 with acyl moieties of different lengths. Analysis of these GCAPs both confirmed that N-terminal acylation of GCAP1 is critical for its high activity and proper Ca2+-dependent response and revealed comparable functionality for GCAP1 with acyl moieties of various lengths. We also tested the hypothesis that retinal heterogeneous N-acylation results from retinal enrichment of unusual N-myristoyltransferase substrates. Thus, acyl-coenzyme A esters were purified from both bovine retina and brain and analyzed by liquid chromatography coupled mass spectrometry. Substantial differences in acyl-coenzyme A profiles between the retina and brain were detected. Importantly, the ratios of uncommon N-acylation substrates; C14:2- and C14:1-coenyzme A to C14:0-coenzyme A were higher in the retina than in the brain. Thus, our results suggest that heterogeneous N-acylation, responsible for expansion of retinal proteome, reflects the unique character of retinal lipid metabolism. Additionally, we propose a new hypothesis explaining the physiological relevance of elevated retinal ratios of C14:2- and C14:1-coenzyme A to C14:0-coenzyme A. PMID:21449552

  13. Serum acylated ghrelin concentrations in response to short-term overfeeding in normal weight, overweight, and obese men.

    Directory of Open Access Journals (Sweden)

    Danny Wadden

    Full Text Available Ghrelin, an orexigenic gut hormone secreted primarily from the stomach, is involved in energy homeostasis. However, little data is available regarding its response to energy surplus and the development of human obesity.The present study investigated the response of circulating acylated ghrelin to a 7-day positive energy challenge.A total of 68 healthy young men were overfed 70% more calories than required, for 1-week. Subjects were classified based on percent body fat (measured by dual-energy X-ray absorptiometry as normal weight, overweight, and obese. Serum acylated ghrelin concentration was measured before and after the positive energy challenge. Additionally, the relationship between acylated ghrelin and obesity-related phenotypes including weight, body mass index, percent body fat, cholesterol, HDL-c, LDL-c, glucose, insulin and homeostasis model assessment of insulin resistance and β-cell function at baseline and change due to overfeeding, were assessed.Contrary to our expectations, serum acylated ghrelin was significantly increased in response to overfeeding and the increase was independent of obesity status. There was no significant difference in fasting acylated ghrelin between normal weight, overweight, and obese men at baseline. Acylated ghrelin was negatively correlated with weight and BMI for normal weight and with BMI in overweight men. Also ghrelin was correlated with change in weight and BMI in overweight (negative relationship and obese (positive relationship groups.Our results showed that circulating acylated ghrelin was increased after a 7-day positive energy challenge regardless of adiposity status. However, acylated ghrelin was correlated with change in weight and BMI in opposing directions, in overweight and obese subjects respectively, thus dependent on obesity status.

  14. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori, E-mail: aaohta@isc.chubu.ac.jp

    2014-03-07

    Highlights: • Dioctanoyl-PC (diC8PC) supported growth of a yeast mutant defective in PC synthesis. • diC8PC was converted to PC species containing longer acyl residues in the mutant. • Both acyl residues of diC8PC were replaced by longer fatty acids in vitro. • This system will contribute to the elucidation of the acyl chain remodeling of PC. - Abstract: A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of {sup 13}C-labeled diC8PC ((methyl-{sup 13}C){sub 3}-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-{sup 13}C){sub 3}-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.

  15. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  16. Structure of armadillo ACBP: a new member of the acyl-CoA-binding protein family

    Energy Technology Data Exchange (ETDEWEB)

    Costabel, Marcelo D., E-mail: costabel@criba.edu.ar [Grupo de Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina); Ermácora, Mario R. [Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal (Argentina); Santomé, José A. [Instituto de Química y Fisicoquímica Biológicas (IQUIFYB), Facultad de Farmacia y Bioquímica (UBA-CONICET), Buenos Aires (Argentina); Alzari, Pedro M. [Unité de Biochimie Structurale, Institut Pasteur, Paris (France); Guérin, Diego M. A. [Unidad de Biofisica (CSIC-UPV/EHU), PO Box 644, E-48080 Bilbao (Spain); Grupo de Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina)

    2006-10-01

    The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long-chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened α-helical bundle (up–down–down–up) motif reported for animal, yeast and insect ACBPs. Conformational differences are located in loops and turns, although these structural differences do not suffice to account for features that could be related to the unusual biochemistry and lipid metabolism of the Harderian gland.

  17. A New Acyl-homoserine Lactone Molecule Generated by Nitrobacter winogradskyi.

    Science.gov (United States)

    Shen, Qiuxuan; Gao, Jie; Liu, Jun; Liu, Shuangjiang; Liu, Zijun; Wang, Yinghuan; Guo, Baoyuan; Zhuang, Xuliang; Zhuang, Guoqiang

    2016-03-11

    It is crucial to reveal the regulatory mechanism of nitrification to understand nitrogen conversion in agricultural systems and wastewater treatment. In this study, the nwiI gene of Nitrobacter winogradskyi was confirmed to be a homoserine lactone synthase by heterologous expression in Escherichia coli that synthesized several acyl-homoserine lactone signals with 7 to 11 carbon acyl groups. A novel signal, 7, 8-trans-N-(decanoyl) homoserine lactone (C10:1-HSL), was identified in both N. winogradskyi and the recombined E. coli. Furthermore, this novel signal also triggered variances in the nitrification rate and the level of transcripts for the genes involved in the nitrification process. These results indicate that quorum sensing may have a potential role in regulating nitrogen metabolism.

  18. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excreti....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C...

  19. Selective inhibition of acyl-CoA dehydrogenases by a metabolite of hypoglycin.

    Science.gov (United States)

    Kean, E A

    1976-01-23

    Extracts of liver mitochondria from donor rats given hypoglycin, the toxic amino acid from the ackee plant (Blighia sapida) showed drastically reduced levels of acyl-CoA dehydrogenase activity with butyryl-CoA as substrate. Activity with octanoyl- and palmitoyl-CoA was unaffected. Evidence that the active agent is methylenecyclopropylacetyl-CoA, a hypoglycin metabolite, was obtained by observing effects of the compound on a partially purified enzyme mixture prepared from rabbit liver. At 13 muM concentration, it strongly inhibited butyryl-CoA dehydrogenase (EC 1.3.99.2) with butyryl-CoA as substrate; it was far less effective with palmitoyl-CoA as substrate for the other similar enzymes present in the preparation. Unlike normal substrates of the acyl-CoA dehydrogenases, the compound itself, and not a reaction product, is inhibitory. The observed effect is consistent with quite general inhibition of fatty acid beta-oxidation by hypoglycin.

  20. A Simple, Effective, Green Method for the Regioselective 3-Acylation of Unprotected Indoles

    Directory of Open Access Journals (Sweden)

    Phuong Hoang Tran

    2015-10-01

    Full Text Available A fast and green method is developed for regioselective acylation of indoles in the 3-position without the need for protection of the NH position. The method is based on Friedel-Crafts acylation using acid anhydrides. The method has been optimized, and Y(OTf3 in catalytic amounts is found to be the best catalyst together with the commercially available ionic liquid [BMI]BF4 (1-butyl-3-methylimidazolium tetrafluoro-borate as solvent. The reaction is completed in a very short time using monomode microwave irradiation. The catalyst can be reused up to four times without significant loss of activity. A range of substituted indoles are investigated as substrates, and thirteen new compounds have been synthesized.

  1. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Directory of Open Access Journals (Sweden)

    Christopher N LaRock

    Full Text Available The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  2. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoyl- phosphatidylcholine lipid membranes

    DEFF Research Database (Denmark)

    Pedersen, T. B.; Sabra, Mads Christian; Frokjaer, Sven

    2001-01-01

    The interaction of three acylated and cationic decapeptides with lipid membranes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS) has been studied by means of fluorescence spectroscopy and differential scanning calorimetry (DSC). The synthetic model...... to estimate the peptide-membrane dissociation constants. The results clearly show that all three peptides have a higher affinity to liposomes containing DPPS lipids due to non-specific electrostatic interactions between the cationic peptides and the anionic DPPS lipids. Furthermore, it is found that the acyl...... chain length of the peptides plays a crucial role for the binding. A preference for fluid phase membranes as compared to gel phase membranes is generally observed for all three peptides. DSC is used to characterise the influence of the three peptides on the thermodynamic phase behaviour of the binary...

  3. Chemoselective acylation of fully deprotected hydrazino acetyl peptides. Application to the synthesis of lipopetides.

    Science.gov (United States)

    Bonnet, D; Ollivier, N; Gras-Masse, H; Melnyk, O

    2001-01-26

    Fully deprotected N-terminal alpha-hydrazino acetyl peptides were synthesized and chemoselectively acylated on the hydrazine moiety with various fatty acid succinimidyl esters or N-(cholesterylcarbonyloxy) succinimide to give lipopeptides of high purity. The buffer and pH were adjusted in order to minimize the oxidation of the hydrazine moiety and to achieve the best conversion and selectivity. The acylation was performed in a citrate-phosphate buffer/2-methylpropan-2-ol mixture of pH 5.1. The pKa of the alpha-hydrazino acetyl group on our model peptide was found to be 6.45, i.e., about 2 units lower than the pKa of a glycyl residue. The reaction was subsequently applied to the synthesis of a 38AA peptide derivatized by a palmitoyl group.

  4. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives.

    Science.gov (United States)

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2017-04-15

    Colorants derived from nature are increasingly popular due to consumer demand. Anthocyanins are a class of naturally occurring pigments that produce red-purple-blue hues in nature, especially when interacting with metal ions and co-pigments. The role of various acylations of cyanidin (Cy) derivatives on color expression and stability of Al(3+) and Fe(3+) chelates in pH 6-7 were evaluated by spectrophotometry (380-700nm) and colorimetry (CIE-L(∗)a(∗)b(∗)) during dark, ambient storage (48h). Increased substitution generally increased λmax of Cy chelates: malonic acid monoacylationimproved with increasing proportions of metal ions and acylation. Stability followed that diacylated cyanidin (p-coumaric-sinapic>ferulic-sinapic>sinapic-sinapic)>monoacylated (malonic≈sinapic>ferulic>p-coumaric). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates.

    Science.gov (United States)

    Xia, Yan; Li, Ming; Charubin, Kamil; Liu, Ying; Heberle, Frederick A; Katsaras, John; Jing, Benxin; Zhu, Yingxi; Nieh, Mu-Ping

    2015-12-01

    We report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10(-3) h(-1)). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. The present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.

  6. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Directory of Open Access Journals (Sweden)

    Siham eRaboune

    2014-08-01

    Full Text Available A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide, and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: 1 Additional N-acyl amides will have activity at TRPV1-4, 2 Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and 3 N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation.

  7. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Science.gov (United States)

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  8. Steady state kinetic evidence for an acyl-enzyme intermediate in reactions catalyzed by bovine spleen cathepsin B.

    Science.gov (United States)

    Bajkowski, A S; Frankfater, A

    1983-02-10

    Cathepsin B from bovine spleen was shown to catalyze transacylation reactions between esters of N-substituted amino acids and nucleophiles. These reactions appeared to proceed through an intermediate between cathepsin B and the acyl portion of the substrate. Of the various nucleophiles tested, dipeptides were found to be the most effective acyl group acceptors. A method was devised for calculating the acylation and deacylation rate constants from increases in the maximum velocity of disappearance of the substrate with increasing concentrations of the nucleophile. The values for the second order rate constants for the reaction of the acyl-enzyme with the nucleophile, k4, were found to depend on the identity of the dipeptide, while the first order rate constants for formation and hydrolysis of the acyl-enzyme, k2 and k3, were dipeptide-independent. With N alpha-benzyloxycarbonyl-L-lysine p-nitrophenyl ester at pH 6.5, k2 and k3 were found to be 360 s-1 and 6.6 s-1, respectively, indicating that the deacylation step was rate-determining for the hydrolysis of this substrate. In contrast, dipeptide nucleophiles did not significantly accelerate the cathepsin B-catalyzed cleavage of either the p-nitroanilide or the 2-naphthylamide of N alpha-benzoylarginine, suggesting that the hydrolysis of these amide substrates was acylation rate-limiting. These findings support the suggestion that cathepsin B is mechanistically similar to the cysteine proteinase papain.

  9. Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in apoE-deficient mice by inhibiting acyl-CoA:cholesterol acyl-transferase (ACAT).

    Science.gov (United States)

    Fujiwara, Yukio; Kiyota, Naoko; Tsurushima, Keiichiro; Yoshitomi, Makiko; Horlad, Hasita; Ikeda, Tsuyoshi; Nohara, Toshihiro; Takeya, Motohiro; Nagai, Ryoji

    2012-03-14

    It was previously revealed that esculeoside A, a new glycoalkaloid, and esculeogenin A, a new aglycon of esculeoside A, contained in ripe tomato ameliorate atherosclerosis in apoE-deficent mice. This study examined whether tomatidine, the aglycone of tomatine, which is a major tomato glycoalkaloid, also shows similar inhibitory effects on cholesterol ester (CE) accumulation in human monocyte-derived macrophages (HMDM) and atherogenesis in apoE-deficient mice. Tomatidine significantly inhibited the CE accumulation induced by acetylated LDL in HMDM in a dose-dependent manner. Tomatidine also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-CoA:cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that tomatidine suppresses both ACAT-1 and ACAT-2 activities. Furthermore, the oral administration of tomatidine to apoE-deficient mice significantly reduced levels of serum cholesterol, LDL-cholesterol, and areas of atherosclerotic lesions. The study provides the first evidence that tomatidine significantly suppresses the activity of ACAT and leads to reduction of atherogenesis.

  10. Ruthenium(III Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mingzhong Cai

    2009-09-01

    Full Text Available Ruthenium(III chloride-catalyzed acylation of a variety of alcohols, phenols, and thiols was achieved in high yields under mild conditions (room temperature in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]. The ionic liquid and ruthenium catalyst can be recycled at least 10 times. Our system not only solves the basic problem of ruthenium catalyst reuse, but also avoids the use of volatile acetonitrile as solvent.

  11. Rimonabant is a dual inhibitor of acyl CoA:cholesterol acyltransferases 1 and 2

    OpenAIRE

    Netherland, Courtney; Thewke, Douglas P.

    2010-01-01

    Acyl-coenzymeA:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannab...

  12. Two new acylated flavonol glycosides from Mimosa pigra L. leaves sub-family Mimosoideae

    Directory of Open Access Journals (Sweden)

    Chinedu J. Okonkwo

    2016-12-01

    Conclusion: Myricetin, quercetin and their glycoside derivatives are strong antioxidants; and elicit cytotoxic effect on human cancer cell lines among other pharmacological activities. The isolation of acylated flavonoids in M. pigra provided an important insight on the evolutionary trend of the medicinal plant. While the dominance of flavonols, may account for the various ethnomedicinal uses of the herb and the mechanism and mode of its confirmed pharmacological actions.

  13. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Science.gov (United States)

    Hu, Zhaohui; Wu, Qian; Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O; Sederoff, Heike W; Qu, Rongda

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  14. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  15. Production and Transport of Gaseous18F-Synthons:18F-Acyl Fluorides.

    Science.gov (United States)

    Jiang, Huailei; DiMagno, Stephen G; DeGrado, Timothy R

    2015-12-01

    Fluorine-18 ( 18 F, T 1/2 =109.7 min) is a positron-emitting isotope that has found extensive application as a radiolabel for positron emission tomography (PET). Although gaseous 11 C-CO 2 and 11 C-CH 4 are practically transported from cyclotron to radiochemistry processes, 18 F-fluoride is routinely transported in aqueous solution because it is commonly produced by proton irradiation of 18 O-enriched water. In most cases, subsequent dry-down steps are necessary to prepare reactive 18 F-fluoride for radiofluorination. In this work, a simple module was designed to generate gaseous 18 F-acyl fluorides from aqueous 18 F-fluoride solution by solid phase 18 F-radiofluorination of acyl anhydride. The gaseous 18 F-acyl fluorides were purified through a column containing Porapak Q/Na 2 SO 4 , resulting in high yields (>86%), purities (>99%) and specific activities (>1200 GBq/μmol). Prototypic 18 F-acetyl fluoride ( 18 F-AcF) was readily transported through 15 m of 0.8 mm ID polypropylene tubing with low (0.64 ± 0.12 %) adsorption to the tubing. Following dissolution of 18 F-AcF in solvent containing base, highly reactive 18 F-flouride was generated immediately and used directly for 18 F-labeling reactions. These data indicate that 18 F-acyl fluorides represent a new paradigm for preparation and transport of anhydrous, reactive 18 F-fluoride for radiofluorinations.

  16. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1

    OpenAIRE

    Chen, Hubert C.; Smith, Steven J.; Ladha, Zuleika; Jensen, Dalan R.; Ferreira, Luis D.; Pulawa, Leslie K.; McGuire, James G.; Pitas, Robert E.; Robert H Eckel; Farese, Robert V.

    2002-01-01

    Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin and to leptin. Importantly, DGAT1 deficiency protects against insulin resistance and obesity in agouti...

  17. A Scalable Method for Regioselective 3-Acylation of 2-Substituted Indoles under Basic Conditions

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Urruticoechea, Andoni; Larsen, Inna

    2015-01-01

    Privileged structures such as 2-arylindoles are recurrent molecular scaffolds in bioactive molecules. We here present an operationally simple, high yielding and scalable method for regioselective 3-acylation of 2-substituted indoles under basic conditions using functionalized acid chlorides. The ....... The method shows good tolerance to both electron-withdrawing and donating substituents on the indole scaffold and gives ready access to a variety of functionalized 3-acylindole building blocks suited for further derivatization....

  18. Evaluation of the amount of acyl-CoA elongases in leek (Allium porrum L) leaves.

    Science.gov (United States)

    Bessoule, J J; Creach, A; Lessire, R; Cassagne, C

    1992-07-21

    Polyclonal antibodies have been raised against the acyl-CoA elongase purified from leek epidermal cells. The antibodies recognize the fractions containing the elongating activity after DEAE or Ultrogel chromatography and their response with the other fractions is very low. The immune complex is immunoprecipitable with Protein A-Sepharose. 1% of the solubilized proteins from leek epidermis microsomes are immunoprecipitated. The immunoprecipitate contains an elongating activity which is 86 +/- 20-times that of the unbound fraction.

  19. Substitution Effects on Reactivity of N-Acyl-2-amino-2-desoxyglucopyranoses. Quantum Chemical Study

    Directory of Open Access Journals (Sweden)

    Gytis Vektaris

    2000-12-01

    Full Text Available Quantum mechanical calculations were carried out to study the molecular geometry and electronic structure of 2-amino-2-desoxyglucopyranose (AG and the Nacetyl-, N-ethanoyl-, series of N-phthalimidoalkanoyl-AG. The total charge density, electrostatic potential, spatial distribution and positions of HOMO and LUMO of N-acyl-AGs with respect to their substitutes yield information on the reactivity of the molecules.

  20. New anthrarobin acyl derivatives as butyrylcholinesterase inhibitors: synthesis, in vitro and in silico studies

    Directory of Open Access Journals (Sweden)

    Mehreen Lateef

    2017-07-01

    Full Text Available To treat Alzheimer's disease (AD, the available candidates are effective only against mild AD or have side effects. So, a study was planned to synthesis new candidates that may have good potential to treat AD. A series of new anthrarobin acyl derivatives (2–8 were synthesized by the reaction of anthrarobin (1 and acetic anhydride/acyl chlorides. The product were characterized by 1H NMR and EI-MS, and evaluated for butyrylcholinesterase (BuChE inhibition activity. Compounds 5 and 4 showed notable BuChE inhibitory potential with IC50 5.3 ± 1.23 and 17.2 ± 0.47 μM, respectively when compared with the standard eserine (IC50 7.8 ± 0.27 μM, compound 5 showed potent BuChE inhibition potential than the standard eserine. The active compounds 5 and 4 have acyl groups at 2-OH and 10-OH positions which may be responsible for inhibitory potential as this orientation is absent in other products. In silico studies of 5 and 4 products revealed the high inhibitory potential due to stable binding of ligand with the BuChE active sites with docking energy score −18.8779 kcal/mol and −23.1159 kcal/mol, respectively. Subsequently, compound 5 that have potent BuChE inhibitory activity could be the potential candidate for drug development for Alzheimer’s disease.

  1. Trans-unsaturated lipid dynamics: modulation of dielaidoylphosphatidylcholine acyl chain motion by ethanol.

    Science.gov (United States)

    Dalton, L A; Miller, K W

    1993-01-01

    Acyl chain dynamics of the trans-unsaturated lipid, dielaidoylphosphatidylcholine (DEPC), were studied by conventional and saturation transfer electron paramagnetic resonance spectroscopy of aqueous dispersions of DEPC spin labeled with lecithins having doxyl groups at positions 5, 10, and 14 on the sn-2 chain. The gel to liquid crystalline transition is concerted with simultaneous increases in rotational motion about the long axis of the acyl chain (libration) and in gauche-trans conformational interconversions (wobble). Relative to saturated lecithins at similar reduced temperatures the double bond (a) slowed libration by an order of magnitude in both phases, while wobble motions were several times slower, and (b)-produced a pronounced stiffness of the acyl chain near the double bond. Ethanol (0-1.6 M), in addition to its well-known colligative effect on the phase transition, was found to decrease the bilayer order in a concentration-dependent manner. This effect was smaller in the gel than in the liquid crystalline phase, most pronounced next to the double bond, and weakest deep in the bilayer. Ethanol affected slow motions little in the gel phase but wobble and libration correlation times were markedly decreased in the liquid crystalline phase. PMID:8274650

  2. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  3. Stress-related alterations of acyl and desacyl ghrelin circulating levels: mechanisms and functional implications

    Science.gov (United States)

    Stengel, Andreas; Wang, Lixin; Taché, Yvette

    2011-01-01

    Ghrelin is the only known peripherally produced and centrally acting peptide hormone that stimulates food intake and digestive functions. Ghrelin circulates as acylated and desacylated forms and recently the acylating enzyme, ghrelin-O-acyltransferase (GOAT) and the de-acylating enzyme, thioesterase 1/lysophospholipase 1 have been identified adding new layers of complexity to the regulation of ghrelin. Stress is known to alter gastrointestinal motility and food intake and was recently shown to modify circulating ghrelin and GOAT levels with differential responses related to the type of stressors including a reduction induced by physical stressors (abdominal surgery and immunological/endotoxin injection, exercise) and elevation by metabolic (cold exposure, fasting and caloric restriction) and psychological stressors. However, the pathways underlying the alterations of ghrelin under these various stress conditions are still largely to be defined and may relate to stress-associated autonomic changes. There is evidence that alterations of circulating ghrelin may contribute to the neuroendocrine and behavioral responses along with sustaining the energetic requirement needed upon repeated exposure to stressors. A better understanding of these mechanisms will allow targeting components of ghrelin signaling that may improve food intake and gastric motility alterations induced by stress. PMID:21782868

  4. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  5. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Science.gov (United States)

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  6. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate.

    Science.gov (United States)

    Mackelprang, Rebecca; Okrent, Rachel A; Wildermuth, Mary C

    2017-11-01

    The GH3 family of adenylating enzymes conjugate acyl substrates such as the growth hormone indole-3-acetic acid (IAA) to amino acids via a two-step reaction of acyl substrate adenylation followed by amino acid conjugation. Arabidopsis thaliana GH3.5 was previously shown to be unusual in that it could adenylate both IAA and the defense hormone salicylic acid (SA, 2-hydroxybenzoate). Our detailed studies of the kinetics of GH3.5 on a variety of auxin and benzoate substrates provides insight into the acyl preference and reaction mechanism of GH3.5. For example, we found GH3.5 activity on substituted benzoates is not defined by the substitution position as it is for GH3.12/PBS3. Most importantly, we show that GH3.5 strongly prefers Asp as the amino acid conjugate and that the concentration of Asp dictates the functional activity of GH3.5 on IAA vs. SA. Not only is Asp used in amino acid biosynthesis, but it also plays an important role in nitrogen mobilization and in the production of downstream metabolites, including pipecolic acid which propagates defense systemically. During active growth, [IAA] and [Asp] are high and the catalytic efficiency (k cat /K m ) of GH3.5 for IAA is 360-fold higher than with SA. GH3.5 is expressed under these conditions and conversion of IAA to inactive IAA-Asp would provide fine spatial and temporal control over local auxin developmental responses. By contrast, [SA] is dramatically elevated in response to (hemi)-biotrophic pathogens which also induce GH3.5 expression. Under these conditions, [Asp] is low and GH3.5 has equal affinity (K m ) for SA and IAA with similar catalytic efficiencies. However, the concentration of IAA tends to be very low, well below the K m for IAA. Therefore, GH3.5 catalyzed formation of SA-Asp would occur, fine-tuning localized defensive responses through conversion of active free SA to SA-Asp. Taken together, we show how GH3.5, with dual activity on IAA and SA, can integrate cellular metabolic status via Asp to

  7. Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati.

    Science.gov (United States)

    Rodríguez, Manuel Fernando Rodríguez; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2015-04-15

    Acyl-acyl carrier protein (ACP) desaturases (EC 1.14.19.2) are soluble enzymes that catalyse the insertion of a double bond into saturated fatty acid bound in saturated acyl chains bound to ACP in higher plants, producing cis-monounsaturated fatty acids. Three types of soluble acyl-ACP desaturases have been described: Δ(9)-acyl-ACP, Δ(6)-acyl-ACP and Δ(4)-acyl-ACP desaturases, which differ in the substrate specificity and the position in which the double bond is introduced. In the present work, Camelina sativa (CsSAD), Macadamia tetraphylla (MtSAD) and Dolichandra unguis-cati (DuSAD) desaturases were cloned, sequenced and characterized. Single copies of CsSAD, MtSAD and DuSAD with three, one and two different alleles, respectively, were found. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization in protein extracts. The recombinant CsSAD enzyme showed 300-fold higher specificity towards 18:0-ACP than 16:0-ACP. Similar profile exhibited MtSAD although the differences in the specificity were lower, around 170-fold higher for 18:0-ACP than 16:0-ACP. Furthermore, DuSAD presented a profile showing preference towards 16:0-ACP against 18:0-ACP, around twice more, being so a Δ(9) palmitoyl-ACP desaturase. Also, we reported the expression profile of CsSAD, which showed the highest levels of expression in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm. Moreover, the possibility to express a new desaturase in C. sativa (oilseed crop that store high levels of oil and is easy to transform) to create a new line rich in short monounsaturated fatty acid is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Metabolism of propionic acid to a novel acyl-coenzyme A thioester by mammalian cell lines and platelets.

    Science.gov (United States)

    Snyder, Nathaniel W; Basu, Sankha S; Worth, Andrew J; Mesaros, Clementina; Blair, Ian A

    2015-01-01

    Metabolism of propionate involves the activated acyl-thioester propionyl-CoA intermediate. We employed LC-MS/MS, LC-selected reaction monitoring/MS, and LC-high-resolution MS to investigate metabolism of propionate to acyl-CoA intermediates. We discovered that propionyl-CoA can serve as a precursor to the direct formation of a new six-carbon mono-unsaturated acyl-CoA. Time course and dose-response studies in human hepatocellular carcinoma HepG2 cells demonstrated that the six-carbon mono-unsaturated acyl-CoA was propionate-dependent and underwent further metabolism over time. Studies utilizing [(13)C1]propionate and [(13)C3]propionate suggested a mechanism of fatty acid synthesis, which maintained all six-carbon atoms from two propionate molecules. Metabolism of 2,2-[(2)H2]propionate to the new six-carbon mono-unsaturated acyl-CoA resulted in the complete loss of two deuterium atoms, indicating modification at C2 of the propionyl moiety. Coelution experiments and isotopic tracer studies confirmed that the new acyl-CoA was trans-2-methyl-2-pentenoyl-CoA. Acyl-CoA profiles following treatment of HepG2 cells with mono-unsaturated six-carbon fatty acids also supported this conclusion. Similar results were obtained with human platelets, mouse hepatocellular carcinoma Hepa1c1c7 cells, human bronchoalveolar carcinoma H358 cells, and human colon adenocarcinoma LoVo cells. Interestingly, trans-2-methyl-2-pentenoyl-CoA corresponds to a previously described acylcarnitine tentatively described in patients with propionic and methylmalonic acidemia. We have proposed a mechanism for this metabolic route consistent with all of the above findings. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Metabolism of propionic acid to a novel acyl-coenzyme A thioester by mammalian cell lines and platelets[S

    Science.gov (United States)

    Snyder, Nathaniel W.; Basu, Sankha S.; Worth, Andrew J.; Mesaros, Clementina; Blair, Ian A.

    2015-01-01

    Metabolism of propionate involves the activated acyl-thioester propionyl-CoA intermediate. We employed LC-MS/MS, LC-selected reaction monitoring/MS, and LC-high-resolution MS to investigate metabolism of propionate to acyl-CoA intermediates. We discovered that propionyl-CoA can serve as a precursor to the direct formation of a new six-carbon mono-unsaturated acyl-CoA. Time course and dose-response studies in human hepatocellular carcinoma HepG2 cells demonstrated that the six-carbon mono-unsaturated acyl-CoA was propionate-dependent and underwent further metabolism over time. Studies utilizing [13C1]propionate and [13C3]propionate suggested a mechanism of fatty acid synthesis, which maintained all six-carbon atoms from two propionate molecules. Metabolism of 2,2-[2H2]propionate to the new six-carbon mono-unsaturated acyl-CoA resulted in the complete loss of two deuterium atoms, indicating modification at C2 of the propionyl moiety. Coelution experiments and isotopic tracer studies confirmed that the new acyl-CoA was trans-2-methyl-2-pentenoyl-CoA. Acyl-CoA profiles following treatment of HepG2 cells with mono-unsaturated six-carbon fatty acids also supported this conclusion. Similar results were obtained with human platelets, mouse hepatocellular carcinoma Hepa1c1c7 cells, human bronchoalveolar carcinoma H358 cells, and human colon adenocarcinoma LoVo cells. Interestingly, trans-2-methyl-2-pentenoyl-CoA corresponds to a previously described acylcarnitine tentatively described in patients with propionic and methylmalonic acidemia. We have proposed a mechanism for this metabolic route consistent with all of the above findings. PMID:25424005

  10. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates.

    Science.gov (United States)

    Foster-Schubert, Karen E; Overduin, Joost; Prudom, Catherine E; Liu, Jianhua; Callahan, Holly S; Gaylinn, Bruce D; Thorner, Michael O; Cummings, David E

    2008-05-01

    Ghrelin is an orexigenic hormone that can increase body weight. Its circulating levels increase before meals and are suppressed after food ingestion. Understanding the effects of specific types of ingested macronutrients on ghrelin regulation could facilitate the design of weight-reducing diets. We sought to understand how ingestion of carbohydrates, proteins, or lipids affect acyl (bioactive) and total ghrelin levels among human subjects, hypothesizing that lipids might suppress ghrelin levels less effectively than do either carbohydrates or proteins. This was a randomized, within-subjects cross-over study. The study was conducted at a University Clinical Research Center. There were 16 healthy human subjects included in the study. Isocaloric, isovolemic beverages composed primarily of carbohydrates, proteins, or lipids were provided. The magnitude of postprandial suppression of total and acyl ghrelin levels (measured with a novel acyl-selective, two-site ELISA) was determined. All beverages suppressed plasma acyl and total ghrelin levels. A significant effect of macronutrient class on decremental area under the curve for both acyl and total ghrelin was observed; the rank order for magnitude of suppression was protein more than carbohydrate more than lipid. Total ghrelin nadir levels were significantly lower after both carbohydrate and protein, compared with lipid beverages. In the first 3 postprandial hours, the rank order for acyl and total ghrelin suppression was carbohydrate more than protein more than lipid. In the subsequent 3 h, there was a marked rebound above preprandial values of acyl and total ghrelin after carbohydrate ingestion alone. These findings suggest possible mechanisms contributing to the effects of high-protein/low-carbohydrate diets to promote weight loss, and high-fat diets to promote weight gain.

  11. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  12. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase.

    Science.gov (United States)

    Warui, Douglas M; Pandelia, Maria-Eirini; Rajakovich, Lauren J; Krebs, Carsten; Bollinger, J Martin; Booker, Squire J

    2015-02-03

    A two-step pathway consisting of an acyl-acyl carrier protein (ACP) reductase (AAR) and an aldehyde-deformylating oxygenase (ADO) allows various cyanobacteria to convert long-chain fatty acids into hydrocarbons. AAR catalyzes the two-electron, NADPH-dependent reduction of a fatty acid attached to ACP via a thioester linkage to the corresponding fatty aldehyde, while ADO transforms the fatty aldehyde to a Cn-1 hydrocarbon and C1-derived formate. Considering that heptadec(a/e)ne is the most prevalent hydrocarbon produced by cyanobacterial ADOs, the insolubility of its precursor, octadec(a/e)nal, poses a conundrum with respect to its acquisition by ADO. Herein, we report that AAR from the cyanobacterium Nostoc punctiforme is activated almost 20-fold by potassium and other monovalent cations of similar ionic radius, and that AAR and ADO form a tight isolable complex with a Kd of 3 ± 0.3 μM. In addition, we show that when the aldehyde substrate is supplied to ADO by AAR, efficient in vitro turnover is observed in the absence of solubilizing agents. Similarly to studies by Lin et al. with AAR from Synechococcus elongatus [Lin et al. (2013) FEBS J. 280, 4773-4781], we show that catalysis by AAR proceeds via formation of a covalent intermediate involving a cysteine residue that we have identified as Cys294. Moreover, AAR specifically transfers the pro-R hydride of NADPH to the Cys294-thioester intermediate to afford its aldehyde product. Our results suggest that the interaction between AAR and ADO facilitates either direct transfer of the aldehyde product of AAR to ADO or formation of the aldehyde product in a microenvironment allowing for its efficient uptake by ADO.

  13. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells.

    Science.gov (United States)

    Au, CheukMan C; Docanto, Maria M; Zahid, Heba; Raffaelli, Francesca-Maria; Ferrero, Richard L; Furness, John B; Brown, Kristy A

    2017-06-01

    Des-acyl ghrelin is the unacylated form of the well-characterized appetite-stimulating hormone ghrelin. It affects a number of physiological processes, including increasing adipose lipid accumulation and inhibiting adipose tissue inflammation. Breast adipose tissue inflammation in obesity is associated with an increase in the expression of the estrogen biosynthetic enzyme, aromatase, and is hypothesized to create a hormonal milieu conducive to tumor growth. We previously reported that des-acyl ghrelin inhibits the expression and activity of aromatase in isolated human adipose stromal cells (ASCs), the main site of aromatase expression in the adipose tissue. The current study aimed to examine the effect of des-acyl ghrelin on the capacity of mouse macrophages (RAW264.7 cells) and human adipose tissue macrophages (ATMs) to stimulate aromatase expression in primary human breast ASCs. RAW264.7 cells were treated with 0, 10 and 100pM des-acyl ghrelin following activation with phorbol 12-myristate 13-acetate, and cells and conditioned media were collected after 6 and 24h. The effect of des-acyl ghrelin on macrophage polarization was examined by assessing mRNA expression of pro-inflammatory M1-specific marker Cd11c and anti-inflammatory M2-specific marker Cd206, as well as expression of Tnf and Ptgs2, known mediators of the macrophage-dependent stimulation of aromatase. TNF protein in conditioned media was assessed by ELISA. The effect of RAW264.7 and ATM-conditioned media on aromatase expression in ASCs was assessed after 6h. Results demonstrate des-acyl ghrelin significantly increases the expression of Cd206 and suppresses the expression of Cd11c, Tnf and Ptgs2 in activated RAW264.7 cells. Treatment of RAW264.7 and ATMs with des-acyl ghrelin also significantly reduces the capacity of these cells to stimulate aromatase transcript expression in human breast ASCs. Overall, these findings suggest that in addition to direct effects on aromatase in ASCs, des-acyl ghrelin also

  14. A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids.

    Science.gov (United States)

    Ping, Liyan; Büchler, Rita; Mithöfer, Axel; Svatos, Ales; Spiteller, Dieter; Dettner, Konrad; Gmeiner, Sophie; Piel, Jörn; Schlott, Bernhard; Boland, Wilhelm

    2007-06-01

    A novel type of a microbial N-acyl amino acid hydrolase (AAH) from insect gut bacteria was purified, cloned and functionally characterized. The enzyme was obtained from Microbacterium arborescens SE14 isolated from the foregut of larvae of the generalist herbivore Spodoptera exigua. The substrates of AAH are N-acyl-glutamines previously reported to elicit plant defence reactions after introduction into the leaf during feeding. The isolated AAH catalyses the hydrolysis of the amide bond (K(m) = 36 micromol l(-1)) and, less efficient, the formation (K(m) = 3 mmol l(-1)) of the elicitor active N-acyl amino acids. The AAH from M. arborescens SE14 shows no homology to known fatty acyl amidases (EC 3.5.1.4) but belongs to the family of Dps proteins (DNA-binding protein from starved cell). In line with other DPS proteins AAH is a homododecamer (monomer 17 181 Da) and contains iron atoms (c. 1-16 iron atoms per subunit). Unlike genuine DPS proteins the enzyme does not significantly bind DNA. Amino acid hydrolase is the first member of the DPS family that catalyses the cleavage or formation of amide bonds. The participation of a microbial enzyme in the homeostasis of N-acyl-glutamines in the insect gut adds further complexity to the interaction between plants and their herbivores.

  15. Synthesis and characterization of O-acylated-ω-hydroxy fatty acids as skin-protecting barrier lipids.

    Science.gov (United States)

    Pérez, B; Dahlgaard, S E; Bulsara, P; Rawlings, A V; Jensen, M M; Dong, M; Glasius, M; Clarke, M J; Guo, Z

    2017-03-15

    A series of O-acylated-ω-hydroxy fatty acids (Acyl acids) of up to 34 carbons were synthesized and characterized through DSC, FTIR and Langmuir isotherm measurements to identify potential replacements to petrolatum, a highly used occlusive technology that if unrefined, it can potentially be classified as carcinogenic. Fourier transform infrared spectroscopy studies demonstrated that long acyl acids engender orthorhombic packing; packing behavior that is predominant in the lipid matrix of healthy stratum corneum, the outmost layer of the skin. In addition, Differential Scanning Calorimetry (DSC) and Langmuir isotherm studies suggested that the length of the hydrocarbon chain and the position of the ester bond influence the molecular organization of the acyl acids. For instance, 16-(tetradecanoyloxy)hexadecanoic acid (30 carbons) displayed a higher melting point (mp=68°C) than 10-(stearoyloxy)decanoic acid (28 carbons; mp=63°C) and 10-(tetradecanoyloxy)decanoic acid (24 carbons; mp=55°C) according to DSC. Moreover, Langmuir isotherm studies showed that mixtures of acyl acid with distearoylphosphatidylcholine improved packing behavior. Finally, Water Vapor Transmission Rate (WVTR) measurements showed that the compounds in fact decrease WVTR compared to untreated control (P<0.001) which demonstrates the potential of these ingredients as occlusive technologies to combat skin barrier diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation.

    Science.gov (United States)

    Kwon, Hayeong; Lee, Jaewoong; Jeong, Kyuho; Jang, Donghwan; Pak, Yunbae

    2015-05-01

    Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis.

    Science.gov (United States)

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2014-03-07

    A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of (13)C-labeled diC8PC ((methyl-(13)C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-(13)C)3-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Characterization of the structure and immunostimulatory activity of a vaccine adjuvant, de-O-acylated lipooligosaccharide.

    Directory of Open Access Journals (Sweden)

    Ji Eun Han

    Full Text Available Lipopolysaccharide (LPS is a major component of the outer membrane of Gram-negative bacteria. LPS elicits strong immunopathological responses during bacterial infection, and the lipid A moiety of LPS is responsible for this immunostimulatory activity. Lipid A exerts its biological activity by sending signals via TLR4 present on immune cells, and TLR4 agonists have been a target for vaccine adjuvant. Previously, we demonstrated an adjuvant activity of deacylated lipooligosaccharide (dLOS to viral and bacterial antigens. In this study, we characterized the chemical structure of dLOS and evaluated its immunostimulatory activity on mouse and human immune cells in comparison with monophosphoryl lipid A (MPL. dLOS consists of the R3-type core, a glucosamine disaccharide with two phosphate groups, and two N-linked acyl groups [corrected], and two N-linked acyl groups. dLOS was similar to MPL in induction of cytokine production in mouse peritoneal macrophages, but was a more potent activator in human monocytes and dendritic cells (DCs. Results of an analysis of allogeneic T cell responses revealed that dLOS induces Th1, Th2, and Th17-type immune responses in a dose-dependent manner. The immunostimulatory activities of dLOS were completely abrogated in TLR4(-/- mice, which confirms its TLR4-dependency. These results suggest that in the presence of the core oligosaccharide, O-linked acyl groups of LPS are dispensable for activating the TLR4 signaling pathway. dLOS did not cause any pathological effects or death at 0.25, 0.5, or 1 mg per kg body weight in mice in the acute toxicity tests. This result suggests that dLOS has a low toxicity. dLOS should be considered for further development as a safe and effective adjuvant for human vaccines.

  19. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate

    Directory of Open Access Journals (Sweden)

    Yoshimi eMatsumoto

    2012-02-01

    Full Text Available (--Epigallocatechin-3-O-gallate (EGCG has useful antiviral, antimicrobial, antitoxin, and antitumor properties. Previously, Mori, S. et al. (Bioorg Med Chem Lett 18:4249-4252, 2008 found that addition of long acyl chains (C16–18 to EGCG enhanced its anti-influenza virus activity up to 44-fold. The chemical stability of EGCG against oxidative degradation was also enhanced by acylation. We further evaluated the in vitro activity spectrum of the EGCG derivatives against a wide range of bacteria and fungi. A series of EGCG O-acyl derivatives were synthesized by lipase-catalyzed transesterification. These derivatives exhibited several-fold higher activities than EGCG, particularly against Gram-positive organisms. Antifungal activities of the derivatives were also 2 to 4-fold superior to those of EGCG. The activities of the EGCG derivatives against Gram-negative bacteria were not distinguishable from those of EGCG. Among the derivatives evaluated, MICs of dioctanoate, palmitate (C16, palmitoleate, and linolenate for 17 Staphylococcus aureus strains were 4–32 μg/ml, although MIC of EGCG for these 17 strains was >128 μg/ml. C16 demonstrated rapid bactericidal activity against MRSA at 25 μg/ml. The enhanced activity of C16 against S. aureus was supported by its increased membrane permeabilizing activity determined by increased SYTOX Green uptake. The EGCG derivatives were exported by the efflux pump AcrAB-TolC of Escherichia coli. The tolC deletion mutant exhibited higher sensitivity to C16 than to EGCG. Addition of long alkyl chains to EGCG significantly enhanced its activities against various bacteria and fungi, particularly against S. aureus including MRSA. C16 would be an alternative to antibiotics and disinfectants.

  20. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis).

    Science.gov (United States)

    Chen, Chu; Xu, Xue-Min; Chen, Yang; Yu, Meng-Yao; Wen, Fei-Yan; Zhang, Hao

    2013-12-01

    A novel acylated flavonol glycoside: isorhamnetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (1), together with two known acylated flavonol glycosides: quercetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (2) and kaempferol (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (3) were isolated from the n-butanol fraction of sea buckthorn (Hippophae rhamnoides ssp. sinensis) berries for the first time by chromatographic methods, and their structures were elucidated using UV, MS, (1)H and (13)C NMR, and 2D NMR. Compounds 1-3 showed good scavenging activities, with respective IC50 values of 8.91, 4.26 and 30.90 μM toward the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical; respective Trolox equivalent antioxidant capacities of 2.89, 4.04 and 2.44 μM μM(-1) toward 2,2'-azino-bis-3-ethyl-benzothiazoline-6-sulphonate (ABTS) radical. The quantitative analysis of the isolated acylated flavonol glycosides was performed by HPLC-DAD method. The contents of compounds 1-3 were in the range of 12.2-31.4, 4.0-25.3, 7.5-59.7 mg/100 g dried berries and 9.1-34.5, 75.1-182.1, 29.2-113.4 mg/100 g dried leaves, respectively. Copyright © 2013. Published by Elsevier Ltd.

  1. Neisseria gonorrhoeae Penicillin-Binding Protein 3 Demonstrates a Pronounced Preference for Nε-Acylated Substrates†

    Science.gov (United States)

    Peddi, Sridhar; Nicholas, Robert A.; Gutheil, William G.

    2009-01-01

    Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are the lethal targets of β-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala, were synthesized to test specificity for three features of PBP substrates: 1) the presence or absence of an Nε-acyl group, 2) the presence of D-IsoGln in place of γ-D-Glu, and 3) the presence or absence of the N-terminal L-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 × 105 M−1sec−1) with the best of these substrates, with a pronounced preference (50-fold) for Nε-acylated substrates over Nε-nonacylated substrates. This observation suggests that NG PBP3 is specific for the ∼D-Ala-D-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity. NG PBP3 demonstrated low selectivity for γ-D-Glu vs D-IsoGln, and for the presence or absence of the terminal L-Ala residue. The implications of this substrate specificity of NG PBP3 with respect to its possible role in cell wall biosynthesis, and for understanding the substrate specificity of the LMM PBPs in general, are discussed. PMID:19413336

  2. Equine biochemical multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of rhabdomyolysis.

    Science.gov (United States)

    Westermann, C M; de Sain-van der Velden, M G M; van der Kolk, J H; Berger, R; Wijnberg, I D; Koeman, J P; Wanders, R J A; Lenstra, J A; Testerink, N; Vaandrager, A B; Vianey-Saban, C; Acquaviva-Bourdain, C; Dorland, L

    2007-08-01

    Two horses (a 7-year-old Groninger warmblood gelding and a six-month-old Trakehner mare) with pathologically confirmed rhabdomyolysis were diagnosed as suffering from multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder has not been recognised in animals before. Clinical signs of both horses were a stiff, insecure gait, myoglobinuria, and finally recumbency. Urine, plasma, and muscle tissues were investigated. Analysis of plasma showed hyperglycemia, lactic acidemia, increased activity of muscle enzymes (ASAT, LDH, CK), and impaired kidney function (increased urea and creatinine). The most remarkable findings of organic acids in urine of both horses were increased lactic acid, ethylmalonic acid (EMA), 2-methylsuccinic acid, butyrylglycine (iso)valerylglycine, and hexanoylglycine. EMA was also increased in plasma of both animals. Furthermore, the profile of acylcarnitines in plasma from both animals showed a substantial elevation of C4-, C5-, C6-, C8-, and C5-DC-carnitine. Concentrations of acylcarnitines in urine of both animals revealed increased excretions of C2-, C3-, C4-, C5-, C6-, C5-OH-, C8-, C10:1-, C10-, and C5-DC-carnitine. In addition, concentrations of free carnitine were also increased. Quantitative biochemical measurement of enzyme activities in muscle tissue showed deficiencies of short-chain acyl-CoA dehydrogenase (SCAD), medium-chain acyl-CoA dehydrogenase (MCAD), and isovaleryl-CoA dehydrogenase (IVD) also indicating MADD. Histology revealed extensive rhabdomyolysis with microvesicular lipidosis predominantly in type 1 muscle fibers and mitochondrial damage. However, the ETF and ETF-QO activities were within normal limits indicating the metabolic disorder to be acquired rather than inherited. To our knowledge, these are the first cases of biochemical MADD reported in equine medicine.

  3. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus.

    Science.gov (United States)

    Murtuza, Mohammad I; Isokawa, Masako

    2018-01-01

    Ghrelin is an appetite-stimulating peptide. Serine 3 on ghrelin must be acylated by octanoate via the enzyme ghrelin-O-acyltransferase (GOAT) for the peptide to bind and activate the cognate receptor, growth hormone secretagogue receptor type 1a (GHSR1a). Interest in GHSR1a increased dramatically when GHSR1a mRNA was demonstrated to be widespread in the brain, including the cortex and hippocampus, indicating that it has multifaceted functions beyond the regulation of metabolism. However, the source of octanoylated ghrelin for GHSR1a in the brain, outside of the hypothalamus, is not well understood. Here, we report the presence of GOAT and its ability to acylate non-octanoylated ghrelin in the hippocampus. GOAT immunoreactivity is aggregated at the base of the dentate granule cell layer in the rat and wild-type mouse. This immunoreactivity was not affected by the pharmacological inhibition of GHSR1a or the metabolic state-dependent fluctuation of systemic ghrelin levels. However, it was absent in the GHSR1a knockout mouse hippocampus, pointing the possibility that the expression of GHSR1a may be a prerequisite for the production of GOAT. Application of fluorescein isothiocyanate (FITC)-conjugated non-octanoylated ghrelin in live hippocampal slice culture (but not in fixed culture or in the presence of GOAT inhibitors) mimicked the binding profile of FITC-conjugated octanoylated ghrelin, suggesting that extracellularly applied non-octanoylated ghrelin was acylated by endogenous GOAT in the live hippocampus while GOAT being mobilized out of neurons. Our results will advance the understanding for the role of endogenous GOAT in the hippocampus and facilitate the search for the source of ghrelin that is intrinsic to the brain. © 2017 International Society for Neurochemistry.

  4. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation.

    Science.gov (United States)

    Hermans, Jos; Ongay, Sara; Markov, Vadym; Bischoff, Rainer

    2017-09-05

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC-MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure-property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response.

  5. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  6. Acylation and deacylation mechanism of Helicobacter pylori AmiF formamidase: A computational DFT study

    Science.gov (United States)

    He, Rongxing; Yang, Qinlei; Li, Ming

    2014-04-01

    The acylation and deacylation mechanisms of Helicobacter pylori AmiF formamidase were investigated using DFT method. In the constructed active site, residues Glu60, Glu141 and His167 were taken into account besides Lys133 and Cys166. Calculations provided insight on the details of mechanism and explained crucial roles played by Glu60, Glu141 and His167. For acetylation, we proposed a new stepwise mechanism in which the thiol group first attacks the carbon atom of formamide and produces tetrahedral intermediate. In deacylation, Glu60 activates a water molecule to perform nucleophilic attack and then forms an intermediate, which is different from the usually suggested mechanism.

  7. Visible-Light-Driven Photocatalytic Activation of Inert Sulfur Ylides for 3-Acyl Oxindole Synthesis.

    Science.gov (United States)

    Xia, Xu-Dong; Lu, Liang-Qiu; Liu, Wen-Qiang; Chen, Dong-Zhen; Zheng, Yu-Han; Wu, Li-Zhu; Xiao, Wen-Jing

    2016-06-13

    Bicarbonyl-substituted sulfur ylide is a useful, but inert reagent in organic synthesis. Usually, harsh reaction conditions are required for its transformation. For the first time, it was demonstrated that a new, visible-light photoredox catalytic annulation of sulfur ylides under extremely mild conditions, permits the synthesis of oxindole derivatives in high selectivities and efficiencies. The key to its success is the photocatalytic single-electron-transfer (SET) oxidation of the inert amide and acyl-stabilized sulfur ylides to reactive radical cations, which easily proceeds with intramolecular C-H functionalization to give the final products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, J. A.; Severinsen, R.; Rasmussen, T. B.

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in which...... substituents have been introduced into the 3- and 4-positions of the lactone ring. These analogues have been screened for their ability to activate and inhibit a Vibrio fischeri LuxI/LuxR-derived quorum sensing reporter system....

  9. Synthesis of new 3-and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, Jacob Alsbæk; Severinsen, Rune Eg; Rasmussen, Thomas Bovbjerg

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in which...... substituents have been introduced into the 3- and 4-positions of the lactone ring. These analogues have been screened for their ability to activate and inhibit a Vibrio fischeri LuxI/LuxR-derived quorum sensing reporter system....

  10. Formation of upper rim acylated calix[4]arenes using a sacrifici al zinc anode

    OpenAIRE

    Louati, Alain; Vataj, Rame; Gabelica, Valérie; Lejeune, Manuel; MATT, DOMINIQUE

    2005-01-01

    A straightforward electrosynthetic method is described, which allows upper rim acylation of non-p-halogenated calix[4]-arenes. For example, a solution of tetrapropoxycalix[4]arene 4 was electrolysed in the presence of ZnBr2, in an undivided cell fitted with a sacrificial zinc anode using pure acetonitrile as solvent, yielding an organozinc species, which was then treated with acetyl chloride in the presence of a palladium catalyst to afford 5,11-diacety1-25,26,27,28-tetrapropoxycalix[4]arene ...

  11. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  12. Influence of additional acylation site(s) of influenza B virus hemagglutinin on syncytium formation.

    Science.gov (United States)

    Ujike, Makoto; Nakajima, Katsuhisa; Nobusawa, Eri

    2005-01-01

    We studied the effects of an increase in the hydrophobicity of the transmembrane domain (TM) and cytoplasmic tail (CT) of influenza B virus hemagglutinin (BHA) on fusion activities. For this purpose, we created mutant HAs with novel acylation site(s) in the TM and/or CT. All mutants were able to induce hemifusion and to form fusion pores as well as could wild type (wt) BHA. However, the ability of these mutants to form syncytia was impaired, indicating that the increase in the hydrophobicity of these domains (especially the CT) affected fusion pore dilation.

  13. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Heydorn, Arne; Hentzer, Morten

    2001-01-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P-luxI have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent...... detection at the single-cell level and allowed for real-time measurements of fluctuations in AHL concentrations. This green fluorescent AHL sensor provides a state-of-the art tool for studies of communication between the individuals present in mixed bacterial communities....

  14. One-step synthesis of fullerene hydride C(60)H2 via hydrolysis of acylated fullerenes.

    Science.gov (United States)

    Tzirakis, Manolis D; Alberti, Mariza N; Nye, Leanne C; Drewello, Thomas; Orfanopoulos, Michael

    2009-08-07

    The hitherto unexplored class of acylated fullerene compounds has been shown to be excellent C(60)H2 precursors. Upon a simple treatment with basic Al2O3, they are hydrolyzed quantitatively into C(60)H2. This key feature led to the development of a new, straightforward protocol for the selective synthesis of the simplest [60]fullerene hydride, C(60)H2. This protocol may offer an advantageous alternative to previously known methods for the synthesis of C(60)H2 allowing for a rapid access to C(60)H2 in good yield and high purity without tedious separating processes.

  15. Acyl glycosides lignans, coumarins, and terpenes from the stems of Erycibe obtusifolia.

    Science.gov (United States)

    Liu, Zhao-Zhen; Zhan, Zhi-Lai; Liu, Fu; Yang, Ya-Nan; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2013-05-03

    Nine new acyl glycosides, obtusifosides A-I (1-9), and eight known compounds have been isolated from an EtOH extract of the stems of Erycibe obtusifolia. Their structures were elucidated on the basis of a spectroscopic data analysis (NMR, HRESIMS, and CD) and chemical evidence. The hepatoprotective effects of some of the compounds from d-galactosamine-induced cytotoxicity in HL-7702 hepatic cells were evaluated. Compounds 1, 10, 11, 13, 16, and 17 showed significant hepatoprotective activities compared with the positive control bicyclol at concentrations of 1×10(-5)M. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  17. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  18. Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of by-products. In this paper, the elucidation of acyl...... migration by response surface design was carried out in the Lipozyme IM (Rhizomucor miehei)-catalyzed interesterification between rapeseed oil and capric acid in solvent-free media. A five-factor response surface design was used to evaluate the influence of five major factors and their relationships....... The five factors, water content, reaction temperature, enzyme load, reaction time and substrate ratio, were varied at three levels together with two star points. All parameters besides substrate ratio had strong positive influences on acyl migration, and reaction temperature was most significant...

  19. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features.

    Science.gov (United States)

    Pannek, Martin; Simic, Zeljko; Fuszard, Matthew; Meleshin, Marat; Rotili, Dante; Mai, Antonello; Schutkowski, Mike; Steegborn, Clemens

    2017-11-15

    Sirtuins are evolutionary conserved NAD+-dependent protein lysine deacylases. The seven human isoforms, Sirt1-7, regulate metabolism and stress responses and are considered therapeutic targets for aging-related diseases. Sirt4 locates to mitochondria and regulates fatty acid metabolism and apoptosis. In contrast to the mitochondrial deacetylase Sirt3 and desuccinylase Sirt5, no prominent deacylase activity and structural information are available for Sirt4. Here we describe acyl substrates and crystal structures for Sirt4. The enzyme shows isoform-specific acyl selectivity, with significant activity against hydroxymethylglutarylation. Crystal structures of Sirt4 from Xenopus tropicalis reveal a particular acyl binding site with an additional access channel, rationalizing its activities. The structures further identify a conserved, isoform-specific Sirt4 loop that folds into the active site to potentially regulate catalysis. Using these results, we further establish efficient Sirt4 activity assays, an unusual Sirt4 regulation by NADH, and Sirt4 effects of pharmacological modulators.

  20. Synthesis and characterization of a series of novel monoacylated ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids, as skin antioxidants.

    Science.gov (United States)

    Yamamoto, Itaru; Tai, Akihiro; Fujinami, Yoshihito; Sasaki, Kenji; Okazaki, Shino

    2002-01-17

    A series of novel monoacylated vitamin C derivatives were chemically synthesized with a stable ascorbate derivative, 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G), and acid anhydrides in pyridine. Their solubility in organic phase, thermal stability, radical scavenging activity, and in vitro skin permeability was evaluated. These monoacylated derivatives were identified as 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids (6-Acyl-AA-2G) by UV spectra, elemental analyses, and nuclear magnetic resonance spectroscopy. The reactions afforded 6-Acyl-AA-2G in high yields (30-60%). 6-Acyl-AA-2G exhibited satisfactory stability in neutral solution comparable to that of a typical stable derivative, AA-2G, and also showed the radical scavenging activity. The lipid solubility of 6-Acyl-AA-2G was increased with increasing length of their acyl group. Increased skin permeability was superior to those of AA-2G and ascorbic acid (AsA). 6-Acyl-AA-2G that is susceptible to enzymatic hydrolysis by tissue esterase and/or alpha-glucosidase produces AA-2G and AsA, which is in the skin tissues. Thus, these findings indicate that the novel vitamin C derivatives presented here, 6-Acyl-AA-2G, may be effective antioxidants in skin care and medicinal use.

  1. Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Færgeman, Nils J; Kragelund, Birthe B

    2008-01-01

    In the present study, we microinjected fluorescently labelled liver bovine ACBP (acyl-CoA-binding protein) [FACI-50 (fluorescent acyl-CoA indicator-50)] into HeLa and BMGE (bovine mammary gland epithelial) cell lines to characterize the localization and dynamics of ACBP in living cells. Results s...

  2. The X-ray structure of Brassica napus ß-keto acyl carrier protein reductase and its implications for substrate binding and catalysis.

    NARCIS (Netherlands)

    Fisher, M.; Kroon, J.T.M.; Martindale, W.; Stuitje, A.R.; Slabas, A.R.; Rafferty, J.B.

    2000-01-01

    Background: β-Keto acyl carrier protein reductase (BKR) catalyzes the pyridine-nucleotide-dependent reduction of a 3-oxoacyl form of acyl carrier protein (ACP), the first reductive step in de novo fatty acid biosynthesis and a reaction often performed in polyketide biosynthesis. The Brassica napus

  3. Administration of exogenous acylated ghrelin or rikkunshito, an endogenous ghrelin enhancer, improves the decrease in postprandial gastric motility in an acute restraint stress mouse model

    Science.gov (United States)

    Nahata, M; Saegusa, Y; Sadakane, C; Yamada, C; Nakagawa, K; Okubo, N; Ohnishi, S; Hattori, T; Sakamoto, N; Takeda, H

    2014-01-01

    Background Physical or psychological stress causes functional disorders in the upper gastrointestinal tract. This study aims to elucidate the ameliorating effect of exogenous acylated ghrelin or rikkunshito, a Kampo medicine which acts as a ghrelin enhancer, on gastric dysfunction during acute restraint stress in mice. Methods Fasted and postprandial motor function of the gastric antrum was wirelessly measured using a strain gauge force transducer and solid gastric emptying was detected in mice exposed to restraint stress. Plasma corticosterone and ghrelin levels were also measured. To clarify the role of ghrelin on gastrointestinal dysfunction in mice exposed to stress, exogenous acylated ghrelin or rikkunshito was administered, then the mice were subjected to restraint stress. Key Results Mice exposed to restraint stress for 60 min exhibited delayed gastric emptying and increased plasma corticosterone levels. Gastric motility was decreased in mice exposed to restraint stress in both fasting and postprandial states. Restraint stress did not cause any change in plasma acylated ghrelin levels, but it significantly increased the plasma des-acyl ghrelin levels. Administration of acylated ghrelin or rikkunshito improved the restraint stress-induced delayed gastric emptying and decreased antral motility. Ameliorating effects of rikkunshito on stress-induced gastric dysfunction were abolished by simultaneous administration of a ghrelin receptor antagonist. Conclusions & Inferences Plasma acylated/des-acyl ghrelin imbalance was observed in acute restraint stress. Supplementation of exogenous acylated ghrelin or enhancement of endogenous ghrelin signaling may be useful in the treatment of decreased gastric function caused by stress. PMID:24684160

  4. Changes in acyl and total ghrelin concentrations and their association with dry matter intake, average daily gain, and feed efficiency of finishing beef steers and heifers

    Science.gov (United States)

    Ghrelin is a peptide hormone produced in the gut that is implicated in signaling appetite and regulating DMI. The objective of this experiment was to determine the change in acyl ghrelin, total ghrelin, and the ghrelin ratio (acyl ghrelin/total ghrelin) over an 84-d DMI and ADG measurement period a...

  5. Rhabdomyolysis in the military: recognizing late-onset very long-chain acyl Co-A dehydrogenase deficiency.

    Science.gov (United States)

    Hoffman, Jodi D; Steiner, Robert D; Paradise, Lori; Harding, Carey O; Ding, Li; Strauss, Arnold W; Kaplan, Paige

    2006-07-01

    Very long-chain acyl Co-A dehydrogenase deficiency, an inborn error of lipid metabolism, is commonly thought of as a disease of infancy or early childhood. However, several cases of late-onset very long-chain acyl Co-A dehydrogenase have been reported. This report of two military men who survived basic training before their disease presentation broadens the spectrum of late-onset disease, presents two previously unreported mutations, and demonstrates the fine line between athletic, active lifestyle and severe disease presentation.

  6. The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta.

    Science.gov (United States)

    Venturi, Vittorio; Venuti, Chiara; Devescovi, Giulia; Lucchese, Carla; Friscina, Arianna; Degrassi, Giuliano; Aguilar, Claudio; Mazzucchi, Umberto

    2004-12-15

    We report for the first time the production of acyl homoserine lactones (AHLs) by Erwina amylovora, an important quarantine bacterial pathogen that causes fire blight in plants. E. amylovora produces one N-acyl homoserine lactone [a N-(3-oxo-hexanoyl)-homoserine lactone or a N-(3-hydroxy-hexanoyl)-homoserine lactone] quorum sensing signal molecule both in vitro and in planta (pear plant). Given the involvement of AHLs in plant pathogenesis, we speculate that AHL-dependent quorum sensing could play an important role in the regulation of E. amylovora virulence.

  7. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Science.gov (United States)

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  8. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    Science.gov (United States)

    Biresaw, Girma; Gordon, Sherald

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity. PMID:29484216

  9. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rogers E. Harry-O’kuru

    2018-01-01

    Full Text Available Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  10. A Novel Acylated Anthocyanin with a Linear Trisaccharide from Flowers of Convolvulus althaeoides.

    Science.gov (United States)

    Cabrita, Luis

    2015-11-01

    An acylated anthocyanin trioside was isolated from pink flowers of Convolvulus althaeoides using a combination of chromatographic techniques. On the basis of MS (MALDI-TOF) and NMR (1H NMR, 1H-1H COSY, 1D TOCSY, HSQC, HMBC, 13C CAPT) its structure was determined as cyanidin 3-O-[6-O-(4-O- (6-O-(E-caffeoyl)-β-D-glucopyranosyl)-β-L-rhamnopyranosyl)-β-D-glucopyranoside]-5-O-β-D-glucopyranoside. The absolute configuration of the aldose enantiomer moieties was determined from the separation of the corresponding thiazolidine diastereoisomer derivatives by HPLC-DAD. This is a novel trisaccharide within the flavonoids, and the first complete characterization of a linear glucosyl-rhamnosyl-glucoside (4'-glucosylrutinoside) within the anthocyanins. Whilst acylation of rhamnose moieties in position 4 is quite common, the occurrence in anthocyanins of a glycosylated rhamnose is a unique trait. Although many complex anthocyanins have been found amongst the Convolvulaceae, the genus Convolvulus had not yet been surveyed for anthocyanins and thus this account could be of significance within the current chemotaxonomy of this family.

  11. Lipase-catalyzed biodiesel production with methyl acetate as acyl acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Huang Ying; Yan Yunjun [School of Life Science and Technology, Huazhong Univ. of Science and Technology, Wuhan (China)

    2008-03-15

    Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rape-seed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cotton-seed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production. (orig.)

  12. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... and degradation of NAPE, respectively. The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat...

  13. Silica gel-Supported Palladium Catalyst for the Acyl Sonogashira Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Shahin; Park, Jihoon; Park, Minkyu; Jin, Myungjong [Inha Univ., Incheon (Korea, Republic of)

    2013-06-15

    We have demonstrated an efficient and eco-friendly procedure for the synthesis of ynones using silica supported thiol-palladium complex as a recyclable catalyst under copper free mild reaction conditions. The material was synthesized by post grafting of 3-mercaptopropyltrimethoxysilane on amorphous silica and subsequently Pd(II) attached onto thiol groups. This synthetic method has notable advantages because it involves easily available, less costly and produces an easily recyclable catalyst in high yields of the products. The mild reaction conditions encouraged us to further extension for the development of novel multicomponent reactions. Thus we have explained the three component synthesis of pyrazoles in one-pot fashion with good yields. Specifically, this simple procedure for the ynone synthesis and this approach to synthesize N-containing heterocycles may be valuable tool in future. The acyl Sonogashira reaction between acyl chlorides and terminal alkynes is one of the most useful method for the preparation of ynones which are important intermediates to prepare versatile pharmaceutically and biologically active heterocyclic compounds such as pyrroles, pyrazoles, furans, furanones, isoxazoles, pyrimidines, quinolines, indolizidinones.

  14. Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles.

    Science.gov (United States)

    Lentz, B R; Hoechli, M; Barenholz, Y

    1981-11-24

    The phase behavior of mixtures of dimyristoylphosphatidylcholine (DMPC) with N-palmitoylsphingosinephosphorylcholine (C16SHP) has been investigated in both small unilamellar and large multilamellar vesicles. The steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) has been used to detect temperature-induced structural changes in these membranes. In addition, electron microscopy has revealed vastly different fracture-face morphologies for large multilamellar vesicles "jet-frozen" from different temperatures. These data have been interpreted in terms of proposed phase diagrams for this lipid mixture. The shapes of the proposed phase diagrams have led us to conclude that phosphatidylcholine and sphingomyelin species of similar acyl chain length mix freely in both highly curved and uncurved bilayers, except at temperatures at which both lipids are in low-temperature, ordered phases. In addition, the similarity of these phase diagrams to phase diagrams for analogous mixtures of pure phosphatidylcholines suggested that sphingomyelin and phosphatidylcholine suggested that sphingomyelin and phosphatidylcholine species might substitute for each other in supporting the lamellar phase necessary for each other in supporting the lamellar phase necessary to cell membrane structure. Finally, the anisotropy of DPH fluorescence was found to be essentially invariant with sphingomyelin content at temperatures just above and below the solid--liquid phase separation in small unilamellar vesicles. This demonstrates that the sphingomyelin backbone, per se, does not order the membrane bilayer. These results are discussed in terms of the possible role of sphingomyelin in controlling acyl chain order within mammalian cell membranes.

  15. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Directory of Open Access Journals (Sweden)

    Luis V. Rodríguez-Durán

    2011-01-01

    Full Text Available Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  16. Enzymatic modification of palmarosa essential oil: chemical analysis and olfactory evaluation of acylated products.

    Science.gov (United States)

    Ramilijaona, Jade; Raynaud, Elsa; Bouhlel, Charfeddine; Sarrazin, Elise; Fernandez, Xavier; Antoniotti, Sylvain

    2013-12-01

    We have developed an enzymatic protocol to modify the composition of palmarosa essential oil by acylation of its alcohol components by three different acyl donors at various rates. The resulting modified products were characterized by qualitative and quantitative analyses by gas chromatography, and their olfactory properties were evaluated by professional perfumers. We showed that our protocol resulted in two types of modifications of the olfactory properties. The first and most obvious effect observed was the decrease of the alcohol content, with the concomitant increase of the corresponding esters, along with their fruity notes (pear, most notably). The second and less obvious effect was the expression of notes from minor components ((E)-β-ocimene, linalool, β-caryophyllene, and farnesene), originally masked by the sweet-floral-rose odor of geraniol, present in 70% in the palmarosa essential oil used, and emergence of citrus, green, spicy and clove characters in the modified products. This methodology might be considered in the future as a sustainable route to new natural ingredients for the perfumer. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Structural analysis of novel bioactive acylated steryl glucosides in pre-germinated brown rice bran.

    Science.gov (United States)

    Usuki, Seigo; Ariga, Toshio; Dasgupta, Somsankar; Kasama, Takeshi; Morikawa, Keiko; Nonaka, Shota; Okuhara, Yasuhide; Kise, Mitsuo; Yu, Robert K

    2008-10-01

    Previous studies from our laboratory indicated that pre-germinated brown rice (PR) contained certain unknown bioactive lipids that activated two enzymes related to diabetes: Na+/K+ATPase and homocysteine-thiolactonase. In this paper, we report on the isolation and structural characterization of the activator lipids from PR bran as acylated steryl glucosides (ASGs). The activator lipid was isolated by silica gel column chromatography, and its chemical structure was determined by NMR, GC-MS, and tandem mass spectrometry. We demonstrated that the bioactive component consists of a mixture of acylated steryl beta-glucosides. Delta8-cholesterol and 2-hydroxyl stearic acid were identified as constituents of ASGs. The steryl glucosides (SGs) subsequent to alkaline hydrolysis lost this enzyme activator activity. Soybean-derived ASGs were not active. This activity may be quite peculiar to PR-derived ASGs. Our findings suggest that the molecular species of ASG may play an important contributing role in the anti-diabetic properties of a PR diet.

  18. DEPENDENCE BETWEEN ACYLATION DEGREE AND SPECIFIC LYSIS ACTITIVY OF THE PSEUDOMONAS AERUGINOSA М6 BACTERIOPHAGE

    Directory of Open Access Journals (Sweden)

    Martynov A. V.

    2016-06-01

    Full Text Available Introduction. The purpose of this work is to study the influence of various degrees of protein’s acylation on lytic activity and other biological properties of Pseudomonas M6 bacteriophage. Materials and methods. The subject of the study were samples of the Pseudomonas O 12 bacteriophage, hereinafter named the M6 phage. Pure phage lines were obtained from individual standard-morphology phage plaques (plaque-forming units, or PFUs after ten passes over the indicator strain. In subsequent experiments, M6 phage samples were selected that had a sufficient level of purity (homogeneous in the morphology of virions that inactivated the homologic antiphage serum by no less than 99.0% and the heterologic antibacterial serum by no more than 1%, and a titer no lower than 10 PFU per ml (PFU/ml. Titration of the phages was conducted using the standard bilayer agar. The crude protein content in the phage suspensions was determined using the spectroscopic method (at 280 and 260 nm. Succinylation of the phage samples was conducted according to the method developed by T.J. Molenaar. The phage’s lytic activity spectrum was determined through spot tests on 224 strains of the Pseudomonas genus and 106 strains of other genera (correspondingly, of strains Enterobacter -40, Escherichia -10, Citrobacter -8, Hafnia -7, Serratia -6, Shigella -10, Salmonella -8, Proteus -7 through the use of a phage suspension containing 10 5 - 10 6 PFU/ml. (This concentration of infectious phage corpuscles corresponds with the critical distribution of the M6 phage. The results of the research were subjected to statistical processing using single-factor dispersion analysis. Results and discussion. One hundred percent phage protein acylation leads to a loss of adsorption ability on sensitive cells and is accompanied by a significant (more than 103 times decrease in the level of specific lytic activity in the phage preparations. The succinylation type being studied does not cause

  19. Deficiency of acyl-CoA: Dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome

    NARCIS (Netherlands)

    Bosch, H. van den; Schutgens, R.B.H.; Romeyn, G.J.; Wanders, R.J.A.; Schrakamp, G.; Heymans, H.S.A.

    1984-01-01

    We have recently reported on plasmalogen deficiency in tissues and fibroblasts from patients with Zellweger syndrome. In this paper we have analyzed the activity of the first enzyme in the pathway leading to plasmalogen biosynthesis, i.e. acyl-CoA: dihydroxyacetone phosphate acyltransferase in

  20. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  1. Production of acylated homoserine lactones by different serotypes of Vibrio anguillarum both in culture and during infection of rainbow trout

    DEFF Research Database (Denmark)

    Buch, Christiane; Sigh, Jens; Nielsen, John

    2003-01-01

    Onehundred and forty-eight out of onehundred and fifty strains of Vibrio anguillarum isolated from vibriosis in Danish marine aquaculture produced bacterial communication signals, acylated homoserine lactones, eliciting a response in the Agrobacterium tumefaciens (pZLR4) monitoring system. One....... anguillarum strains and that no clear pattern relating AHL production to disease or virulence appear....

  2. Acylation of Grignard reagents mediated by N-methylpyrrolidone: a remarkable selectivity for the synthesis of ketones.

    Science.gov (United States)

    Gowda, Maravanhalli Sidde; Pande, Sushanth Sudhir; Ramakrishna, Ramesha Andagar; Prabhu, Kandikere Ramaiah

    2011-08-07

    An efficient user-friendly method of acylation of Grignard reagents to selectively synthesize ketones is presented, which is assisted by simple amides such as NMP, or DMF. The present chemoselective method tolerates a variety of functional groups such as ketone, ester, nitrile and other functional groups.

  3. Nieuwe N-acyl-anthranilzuurverbindingen en toepassing van N-anthranilzuur-verbindingen bij de bestrijding van insecten.

    NARCIS (Netherlands)

    Blaakmeer, A.; Beek, van T.A.; Groot, de Ae.; Loon, van J.J.A.; Schoonhoven, L.M.

    1992-01-01

    The invention relates to the use of an N-acyl-anthranilic acid compound of the formula 1, where: R1 to R9 inclusive represent a hydrogen atom, halogen atom, alkyl group, phenyl group, hydroxyl group, alkoxy group, acyloxy group or a sugar radical, with the option of two adjacent groups out of R1 to

  4. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis

    DEFF Research Database (Denmark)

    Geisenberger, O; Givskov, M; Riedel, K

    2000-01-01

    The N-acyl-L-homoserine lactones (AHLs) produced by sequential Pseudomonas aeruginosa isolates from chronically infected patients with cystic fibrosis were analyzed by thin-layer chromatography. It is demonstrated that both the amounts and the types of molecules synthesized by isolates from...

  5. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability, a...

  6. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP g...

  7. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Olpin, Simon E; Andresen, Brage S

    2007-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD) is a disorder of fatty acid, amino acid and choline metabolism that can result from defects in two flavoproteins, electron transfer flavoprotein (ETF) or ETF: ubiquinone oxidoreductase (ETF:QO). Some patients respond to pharmacological doses of ...

  8. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  9. DNA-based prenatal diagnosis for severe and variant forms of multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Andresen, Brage S; Christensen, Ernst

    2005-01-01

    OBJECTIVES: Multiple acyl-CoA dehydrogenation deficiency (MADD) is a clinically heterogeneous disorder of mitochondrial fatty acid, amino acid, and choline oxidation due to mutations in the genes encoding electron transfer flavoprotein (ETF) or ETF ubiquinone oxidoreductase (ETFQO). So far...

  10. Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis.

    Science.gov (United States)

    Manichaikul, Ani; Wang, Xin-Qun; Zhao, Wei; Wojczynski, Mary K; Siebenthall, Kyle; Stamatoyannopoulos, John A; Saleheen, Danish; Borecki, Ingrid B; Reilly, Muredach P; Rich, Stephen S; Bornfeldt, Karin E

    2016-03-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) converts free fatty acids into acyl-CoAs. Mouse studies have revealed that ACSL1 channels acyl-CoAs to β-oxidation, thereby reducing glucose utilization, and is required for diabetes-accelerated atherosclerosis. The role of ACSL1 in humans is unknown. We therefore examined common variants in the human ACSL1 locus by genetic association studies for fasting glucose, diabetes status, and preclinical atherosclerosis by using the MAGIC and DIAGRAM consortia; followed by analyses in participants from the Multi-Ethnic Study of Atherosclerosis, the Penn-T2D consortium, and a meta-analysis of subclinical atherosclerosis in African Americans; and finally, expression quantitative trait locus analysis and identification of DNase I hypersensitive sites (DHS). The results show that three SNPs in ACSL1 (rs7681334, rs735949, and rs4862423) are associated with fasting glucose or diabetes status in these large (>200,000 subjects) data sets. Furthermore, rs4862423 is associated with subclinical atherosclerosis and coincides with a DHS highly accessible in human heart. SNP rs735949 is in strong linkage disequilibrium with rs745805, significantly associated with ACSL1 levels in skin, suggesting tissue-specific regulatory mechanisms. This study provides evidence in humans of ACSL1 SNPs associated with fasting glucose, diabetes, and subclinical atherosclerosis and suggests links among these traits and acyl-CoA synthesis. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...... with the Michaelis-Menten equation, while the acyl migration is proportional to time within the range of 20% (mole) acyl migration (MLM-type: Mf=0.2225T, R²=0.9868; LML-type: Mf =0.5618T, R²=0.9961). As water content (wt%, on the enzyme basis) increased from 3.0% to 11.6% for MLM-type and from 3.0% to 7.2% for LML......-type in the solvent-free systems, the incorporation rates in the first 5 hours increased from 3.34%/hr to 10.30%/hr, and from 7.29%/hr to 11.12%/hr, respectively. However, the acyl migration rates also increased from 0.22%/hr to 1.12%/hr and from 0.56%/hr to 1.37%/hr, respectively. Different effects in the production...

  12. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: an efficient and green catalytic system for Friedel-Crafts acylation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hoang, Huy Manh; Chau, Duy-Khiem Nguyen

    2015-01-01

    Indium triflate in the ionic liquid, 1-isobutyl-3-methylimidazolium dihydrogen phosphate ([i-BMIM]H2PO4), was found to show enhanced catalytic activity in the Friedel–Crafts acylation of various aromatic compounds with acid anhydrides. The catalytic system was easily recovered and reused without ...

  13. A simple spectrophotometric assay for long-chain acyl-CoA dehydrogenase activity measurements in human skin fibroblasts

    NARCIS (Netherlands)

    IJlst, L.; Wanders, R. J.

    1993-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) deficiency is an autosomal recessive disorder of fatty acid metabolism characterized by hypoglycemia, muscle weakness and hepato- and cardiomegaly to varying extents. Analysis of organic acids in urine usually reveals dicarboxylic aciduria with elevated

  14. Kinetics of enzyme acylation and deacylation in the penicillin acylase-catalyzed synthesis of beta-lactam antibiotics

    NARCIS (Netherlands)

    Alkema, WBL; de Vries, E; Floris, R; Janssen, DB

    Penicillin acylase catalyses the hydrolysis and synthesis of semisynthetic beta-lactam antibiotics via formation of a covalent acyl-enzyme intermediate. The kinetic and mechanistic aspects of these reactions were studied. Stopped-flow experiments with the penicillin and ampicillin analogues

  15. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study

    NARCIS (Netherlands)

    Wang, Raymond Y.; Monuki, Edwin S.; Powers, James; Schwartz, Phillip H.; Watkins, Paul A.; Shi, Yang; Moser, Ann; Shrier, David A.; Waterham, Hans R.; Nugent, Diane J.; Abdenur, Jose E.

    2014-01-01

    Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1

  16. Plasma concentrations of acyl-ghrelin are associated with average daily gain and feeding behavior in grow-finish pigs

    Science.gov (United States)

    Feeding behavior is an important component of growth and feed efficiency in swine. Acyl-ghrelin is a peptide produced in the stomach that is orexigenic. The role of ghrelin in regulating feeding behavior in swine under commercial conditions is unknown. The objectives of this study were to determine ...

  17. Twisted amides: X-ray crystallographic and theoretical study of two acylated glycolurils with aromatic substituents

    Science.gov (United States)

    Matta, Chérif F.; Cow, Christopher N.; Harrison, Paul H. M.

    2003-11-01

    X-ray crystallography and theoretical analysis were applied to explore the molecular basis for the efficient and selective Claisen-like condensations of diacylglycolurils. The crystal structures of 1-acetyl-6-benzoyl-3,4,7,8-tetramethylglycoluril ( 4b), and of 1-(3'-oxo-3'-phenylpropionyl)-3,4,7,8-tetramethylglycoluril ( 5b), the product of base-promoted intramolecular condensation of 4b, were obtained by X-ray diffraction. The acetyl (Ac) group in 4b is essentially coplanar with the attached tetrahydroimidazolone ring of the glycoluril core ( τ=7°), while the benzoyl (Bz) group is twisted by τ=45° relative to a plane through the ring to which it is bonded. Product 5b contains a flat amide ( τ=7°). Ab initio energy optimizations of the experimental structures for 4b and 5b give optimized geometries which are not dramatically altered, suggesting that crystal packing effects are small. An atoms-in-molecules study of the delocalization of the Fermi hole reveals that electrons in the Bz CO group of 4b are delocalized into the phenyl ring as well as into the urea moiety of the glycoluril core. This effect stabilizes the Bz over the Ac carbonyl group, and accounts for selective twisting of the Bz group. The Laplacian of the electron density reveals a non-bonded valence shell charge concentration at O of the Ac group, corresponding to a lone-pair region, aligned with a charge depletion in the valence shell of the Bz CO carbon [∠(C15-O16⋯C18)=113°]. The angle of approach [∠(O16⋯C18O19)] is 100°, equal to the angle for ideal nucleophilic attack on a carbonyl group. Oxygen atom O16 is thus poised to attack C18; only the O16⋯C18 distance (3.248 Å) seems to prevent reaction. These results suggest that the same distance restraint may prevent O-acylation in the enolate intermediate 6b derived from 4b. By contrast, the transition state for C-acylation, leading from 6b towards product 5b requires a different geometry, which may explain the

  18. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  19. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  20. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach.

    Science.gov (United States)

    Gahete, Manuel D; Córdoba-Chacón, Jose; Salvatori, Roberto; Castaño, Justo P; Kineman, Rhonda D; Luque, Raul M

    2010-04-12

    Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin's actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.

  1. Structure, stability, and antiplatelet activity of O-acyl derivatives of salicylic acid and lipophilic esters of acetylsalicylate.

    Science.gov (United States)

    Zavodnik, Ilya B; Lapshina, Elena; Sudnikovich, Elena; Boncler, Magdalena; Luzak, Bogusława; Rózalski, Marcin; Helińska, Magdalena; Watała, Cezary

    2009-01-01

    The anti-thrombotic activity of acetylsalicylic acid (ASA) has been shown to be due to specific irreversible acetylation of blood platelet cyclooxygenase. The aim of our study was to investigate the associations between the antiplatelet activities of derivatives of both ASA and salicylic acid (SA), as well as the structure, stability, and molecular properties of these compounds. Homologous series of O-acyl derivatives of salicylic acid (propionyl-, butyrylsalicylic acids, PSA, BSA) and lipophilic dodecyl (C12)-, hexadecyl (C16)-, and cholesteryl acetylsalicylates were synthesized and tested for structure-activity relationships. The molecular properties (heat of formation, molecular surface area, dipole moment) of ASA and SA derivatives obtained by theoretical calculations changed with the increasing length of the acyl or alkyl residue. The inhibition of whole blood platelet aggregation and the reduction in thromboxane (TX) generation by O-acyl derivatives were concentration-dependent and decreased along with increasing the length of acyl hain. These effects correlated with the extent of platelet reactivity and P-selectin expression inhibition in collagen-activated platelets. In contrast to ASA and O-acyl derivatives of SA, none of the lipophilic ASA derivatives had a significant inhibitory effect on platelet aggregation. In conclusion, all SA and ASA derivatives studied under in vitro conditions showed much lower antiplatelet activities than ASA itself, despite their higher affinity to plasma proteins or membrane components and their equivalent ability to acetylate protein free amino groups.We suggest the significance of the carboxylic group, dipole moment, geometry, and size of these pharmaceuticals in their ability to bind to the active site of cyclooxygenase and their antiplatelet efficacy.

  2. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers1[OPEN

    Science.gov (United States)

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K.; Dyer, John M.; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Jenks, Matthew A.

    2017-01-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4’s principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation’s effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. PMID:28069670

  3. SAR and QSAR studies on the N-terminally acylated pentapeptide agonists for GPR54.

    Science.gov (United States)

    Tomita, Kenji; Oishi, Shinya; Cluzeau, Jérôme; Ohno, Hiroaki; Navenot, Jean-Marc; Wang, Zi-xuan; Peiper, Stephen C; Akamatsu, Miki; Fujii, Nobutaka

    2007-07-12

    Kisspeptins (KPs) play important roles in the regulation of physiological and pathological states through activation of the cognate receptor GPR54. Our previous studies to downsize KP agonists to the essential GPR54 pharmacophore identified peptides 1-3 as low molecular weight GPR54 agonists. In this study, the effect of N-terminal acyl groups on the activity of a series of analogues (R-Phe-Gly-Leu-Arg-Trp-NH2) was investigated in order to develop novel potent GPR54 agonists. Among the compounds developed, the most potent agonistic activity for GPR54 was observed for N-terminal 4-fluorobenzoyl analogue 29. Using quantitative structure-activity relationship studies, it was demonstrated that the inductively negative and small substituents were preferred at the 4-position of N-terminal benzoyl groups.

  4. First identification of xanthone sulfonamides as potent acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors.

    Science.gov (United States)

    Hu, Honggang; Liao, Hongli; Zhang, Jun; Wu, Weifeng; Yan, Jufang; Yan, Yonghong; Zhao, Qingjie; Zou, Yan; Chai, Xiaoyun; Yu, Shichong; Wu, Qiuye

    2010-05-15

    Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT) would be useful anti-atherogenic agents, since an absence of ACAT affects the absorption and transformation of cholesterol, indirectly resulting in the reduction of cholesteryl ester accumulation in blood vessels. This report discloses xanthone sulfonamides as novel class small molecule inhibitors of ACAT. A series of xanthone sulfonamides were synthesized and evaluated to result in the identification of several potent ACAT inhibitors, among which 2n proved to be more potent than the positive control Sandoz58-35. Moreover, a molecular model for the binding between 2n and the active site of ACAT-2 was provided based computational docking results. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Kontogeorgis, Georgios; Riisager, Anders

    2012-01-01

    as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and – more importantly – the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant...... of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems...... as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening...

  7. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    Directory of Open Access Journals (Sweden)

    Nina Yusrina Muhamad Yunos

    2014-06-01

    Full Text Available Quorum sensing (QS is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs. We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL and N-decanoyl-l-homoserine lactone (C10-HSL. To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.

  8. Annelated pyridines as highly nucleophilic and Lewis basic catalysts for acylation reactions.

    Science.gov (United States)

    Tandon, Raman; Unzner, Teresa; Nigst, Tobias A; De Rycke, Nicolas; Mayer, Peter; Wendt, Bernd; David, Olivier R P; Zipse, Hendrik

    2013-05-10

    New heterocyclic derivatives of 9-azajulolidine have been synthesized and characterized with respect to their nucleophilicity and Lewis basicity. The Lewis basicity of these bases as quantified through their theoretically calculated methyl-cation affinities correlate well with the experimentally measured reaction rates for addition to benzhydryl cations. All newly synthesized pyridines show exceptional catalytic activities in benchmark acylation reactions, which correlate only poorly with Lewis basicity or nucleophilicity parameters. A combination of Lewis basicity with charge and geometric parameters in the framework of a three-component quantitative structure-activity relationship (QSAR) model is, however, highly predictive. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1.

    Science.gov (United States)

    Chen, Hubert C; Smith, Steven J; Ladha, Zuleika; Jensen, Dalan R; Ferreira, Luis D; Pulawa, Leslie K; McGuire, James G; Pitas, Robert E; Eckel, Robert H; Farese, Robert V

    2002-04-01

    Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin and to leptin. Importantly, DGAT1 deficiency protects against insulin resistance and obesity in agouti yellow mice, a model of severe leptin resistance. In contrast, DGAT1 deficiency did not affect energy and glucose metabolism in leptin-deficient (ob/ob) mice, possibly due in part to a compensatory upregulation of DGAT2 expression in the absence of leptin. Our results suggest that inhibition of DGAT1 may be useful in treating insulin resistance and leptin resistance in human obesity.

  10. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    Directory of Open Access Journals (Sweden)

    Søren Molin

    2010-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea epigallocatechin gallate (EGCG, which both function as inhibitors of the enoyl-acyl carrier protein (ACP reductase (ENR from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent. EGCG treatment was further shown to be able to attenuate the production of virulence factors and biofilm formation of P. aeruginosa.

  11. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    DEFF Research Database (Denmark)

    Tanaka, K; Yokota, I; Coates, P M

    1992-01-01

    of 172 unrelated patients each representing an independent pedigree, a total of 8 different mutations have been identified. Among them, a single prevalent mutation, 985A-->G, was found in 90% of 344 variant alleles. 985A-->G causes glutamate substitution for lysine-304 in the mature MCAD subunit, which...... causes impairment of tetramer assembly and instability of the protein. Three of 7 rarer mutations have been identified in a few unrelated patients, while the remaining 4 have each been found in only a single pedigree. In addition to tabulating the mutations, the acyl-CoA dehydrogenase gene family......, the structure of the MCAD gene and the evolution of 985A-->G mutation are briefly discussed....

  12. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents...... which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...... epigallocatechin gallate (EGCG), which both function as inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent...

  13. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    -aminovaleric acid into δ-valerolactam and 6-aminocaproic acid into ε-caprolactam. Recombinant E. coli expressing ORF26 produced valerolactam and caprolactam when 5-aminovaleric acid and 6-aminocaproic acid were added to the culture medium. Upon coexpressing ORF26 with a metabolic pathway that produced 5......ε-Caprolactam and δ-valerolactam are important commodity chemicals used in the manufacture of nylons, with millions of tons produced annually. Biological production of these highly valued chemicals has been limited due to a lack of enzymes that cyclize ω-amino fatty acid precursors to corresponding...... lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5...

  14. Synthesis and characterization of some acyl thiourea derivatives of chitosan and their biocidal activities.

    Science.gov (United States)

    Elkholy, Said S; Salem, Hend A; Eweis, Mohamed; Elsabee, Maher Z

    2014-09-01

    Three acyl derivatives of chitosan (CS) with different side chains were synthesized and their structures were characterized. Their swelling behavior was investigated. The antifungal behavior of these chitosan derivatives was investigated in vitro on the mycelial growth, sporulation and germination of conidia or sclerotia of the sugar-beet pathogens, Rhizoctonia solani K"uhn (AG2-2) and Sclerotium rolfsii Sacc. All the prepared derivatives had a significant inhibiting effect on the different stages of development on the germination of conidia or sclerotia of all the investigated fungi. In the absence of chitosan and its derivative, R. solani exhibited the fastest growth of the fungi studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    Science.gov (United States)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  16. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    Energy Technology Data Exchange (ETDEWEB)

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance [Texas A& M University, College Station, TX 77843-3474 (United States); Besra, Gurdyal S. [University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sacchettini, James C., E-mail: sacchett@tamu.edu [Texas A& M University, College Station, TX 77843-3474 (United States)

    2011-07-01

    Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix and in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.

  17. Interaction between rhein acyl glucuronide and methotrexate based on human organic anion transporters.

    Science.gov (United States)

    Yuan, Yuan; Yang, Hua; Kong, Linghua; Li, Yuan; Li, Ping; Zhang, Hongjian; Ruan, Jianqing

    2017-11-01

    Rhein, a major bioactive compound of many medicinal herbs and the prodrug of diacerein, is often used with low dose of methotrexate as drug combination to treat rheumatoid arthritis. In this study, potential drug-drug interaction between methotrexate and rhein was investigated based on organic anion transporters (OAT). Our study demonstrated that rhein acyl glucuronide (RAG), the major metabolite of rhein in the human blood circulation, significantly inhibited the uptake of p-aminohippurate in hOAT1 transfected cells with IC50 value of 691 nM and estrone sulfate uptake in hOAT3 transfected cells with IC50 value of 78.5 nM. As the substrate of both hOAT1 and hOAT3, the methotrexate transport was significantly inhibited by RAG in hOAT1 transfected cells at 50 μM and hOAT3 transfected cells at 1 μM by 69% and 87%, respectively. Further in vivo study showed that after co-administrated with RAG in rats the AUC0-24 values of methotrexate increased from 3109 to 5370 ng/mL*hr and the t1/2 was prolonged by 40.5% (from 7.4 to 10.4 h), demonstrating the inhibitory effect of RAG on methotrexate excretion. In conclusion, rhein acyl glucuronide could significantly decrease the transport of methotrexate by both hOAT1 and hOAT3. The combination use of rhein, diacerein or other rhein-containing herbs with methotrexate may cause obvious drug-drug interaction and require close monitoring for potential drug interaction in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway.

    OpenAIRE

    Tserng, K Y; Chen, L S; Jin, S.J.

    1995-01-01

    The metabolic fluxes of cis-5-enoyl-CoAs through the beta-oxidation cycle were studied in solubilized rat liver mitochondrial samples and compared with saturated acyl-CoAs of equal chain length. These studies were accomplished using either spectrophotometric assay of enzyme activities and/or the analysis of metabolites and precursors using a gas chromatographic method after conversion of CoA esters into their free acids. Cis-5-enoyl-CoAs were dehydrogenated by acyl-CoA oxidase or acyl-CoA deh...

  19. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  20. Acyl-CoA esters antagonize the effects of ligands on peroxisome proliferator-activated receptor alpha conformation, DNA binding, and interaction with Co-factors

    DEFF Research Database (Denmark)

    Elholm, M; Dam, I; Jorgensen, C

    2001-01-01

    palmitoyl-CoA analog, antagonizes the effects of agonists on PPARalpha conformation and function in vitro. In electrophoretic mobility shift assays, S-hexadecyl-CoA prevented agonist-induced binding of the PPARalpha-retinoid X receptor alpha heterodimer to the acyl-CoA oxidase peroxisome proliferator...... to the buffering effect of high affinity acyl-CoA-binding proteins, especially the acyl-CoA-binding protein. By using PPARalpha expressed in Sf21 cells for electrophoretic mobility shift assays, we demonstrate that S-hexadecyl-CoA was able to increase the mobility of the PPARalpha-containing heterodimer even...

  1. Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order

    Science.gov (United States)

    Lönnfors, Max; Doux, Jacques P.F.; Killian, J. Antoinette; Nyholm, Thomas K.M.; Slotte, J. Peter

    2011-01-01

    The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2H-NMR on bilayers made from either 14:0/14:0(d27)-PC, or 14:0(d27)-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kx) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kx did increase with acyl-chain order, the higher Kx for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kx was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kx. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial

  2. Plasma acyl ghrelin and nonesterified fatty acids are the best predictors for hunger status in pregnant gilts.

    Science.gov (United States)

    Ren, P; Yang, X J; Kim, J S; Menon, D; Pangeni, D; Manu, H; Tekeste, A; Baidoo, S K

    2017-12-01

    Sows are usually restricted fed during pregnancy to maximize their reproductive efficiency, which may predispose sows to a state of hunger. However, an objective measurement of hunger status has not been established. In the present study, we examined the correlation of plasma hormones and NEFA and selected the best predictors for hunger status using pregnant gilts. Three different levels of feed intake (0.5, 1.0 and 2.0 × maintenance energy intake [0.5M, 1.0M and 2.0M, respectively]) were imposed from Day 28 to 34 of gestation to create different hunger statuses in pregnant gilts. Plasma hormones related to energy homeostasis and NEFA were analyzed to quantify their response to different levels of feed intake. A total of 18 gilts (197.53 ± 6.41 kg) were allotted to 1 of 3 dietary treatments using a completely randomized design. Results showed that BW change, ADG, and G:F from Day 28 to 34 of gestation were higher ( gilts on the 2.0M feeding level than for gilts on the 0.5M feeding level. Plasma acyl ghrelin concentrations showed a relatively flat pattern during the 24-h period. Plasma acyl ghrelin and NEFA concentrations and areas under the curve (AUC) were greater ( gilts on the 0.5M level of feed intake than in those on the 2.0M level of feed intake. No differences were observed among the 3 feeding levels in terms of plasma glucagon-like peptide 1 and leptin concentrations. Additionally, consumption time for 1.82 kg feed on Day 35 of gestation was longer ( gilts fed the 2.0M level of feed intake from Day 28 to 34 of gestation than in those on the 0.5M level of feed intake. Simple linear regression results showed that the AUC of acyl ghrelin was the best predictor for consumption time ( = 0.82), whereas the AUC of NEFA was the best predictor for BW ( = 0.55) or backfat change ( = 0.42) from Day 28 to 34 of gestation. In conclusion, our data suggested that a relative flat pattern existed in pregnant gilts in terms of the diurnal plasma profile of acyl ghrelin and

  3. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells....... On the basis of knowledge about the three-dimensional structure of the MCAD protein, we suggest that the mutation destroys a salt bridge between arginine28 and glutamate86, thereby affecting the formation of enzymatically active protein. Twenty-two additional families with compound heterozygous patients were......-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases....

  4. On the Unusual Homeoviscous Adaptation of the Membrane Fatty Acyl Components against the Thermal Stress in Rhi{Zeta}obium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seb Yung; Jung, Seun Ho [Konkuk University, Seoul (Korea, Republic of); Choi, Yong Hoon; Yang, Chul Hak [Seoul National University, Seoul (Korea, Republic of); Kim, Hyun Won [Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    1999-06-15

    In order to maintain the optimal fluidity in membrane, microorganism genetically regulates the ratio of the unsaturated fatty acids (Ufos) to saturated ones of its biological membrane in response to external perturbing condition such as the change of temperature. The remodelling of fatty acyl chain composition is the most frequently observed response to altered growth temperature. It is reflected in the elevated proportions of unsaturated fatty acid (UFAs) at low temperature. Because cis double bonds, normally positioned at the middle of fatty acyl chains, introduce a kink of approximately 30 .deg. into acyl chain, UFAs pack less compactly and exhibit lower melting points than their saturated homologues. Thus, enrichment of membranes with UFAs offsets, to a significant degree, the increase in membrane order caused by a drop in temperature. This is so called homeoviscous adaptation of the membrane fatty acyl chains against thermal stress. Membrane maintains the optimal viscosity using homeoviscous adaptation.

  5. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions.

    Science.gov (United States)

    Nieto Penalver, Carlos G; Morin, Danièle; Cantet, Franck; Saurel, Olivier; Milon, Alain; Vorholt, Julia A

    2006-01-23

    Acyl-homoserine lactones (acyl-HSLs) have emerged as important regulatory molecules for many gram-negative bacteria. We have found that Methylobacterium extorquens AM1, a member of the pink-pigmented facultative methylotrophs commonly present on plant surfaces, produces several acyl-HSLs depending upon the carbon source. A novel HSL was discovered with a double unsaturated carbon chain (N-(tetradecenoyl)) (C14:2) and characterized by MS and proton NMR. This long-chain acyl-HSL is synthesized by MlaI that also directs synthesis of C14:1-HSL. The Alphaproteobacterium also produces N-hexanoyl-HSL (C6-HSL) and N-octanoyl-HSL (C8-HSL) via MsaI.

  6. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.

    Science.gov (United States)

    Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B

    2015-07-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    Science.gov (United States)

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.

    2015-01-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557

  8. Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree)

    OpenAIRE

    Nie, Zhiyi; Wang, Yihang; Wu, Chuntai; Li, Yu; Kang, Guijuan; Qin, Huaide; Zeng, Rizhong

    2018-01-01

    Background Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and their various functions have been characterized in model plants, such as Arabidopsis thaliana (A. thaliana), Oryza sativa (rice), and other plant species. In the present study, genome-wide mining and expression analysis of ACBP genes was performed on Hevea brasiliensis (the para rubber tree), the most important latex-producing crop in the world. Results Six membe...

  9. Compound heterozygous mutations of ACADS gene in newborn with short chain acyl-CoA dehydrogenase deficiency: case report and literatures review

    OpenAIRE

    An, Se Jin; Kim, Sook Za; Kim, Gu Hwan; Yoo, Han Wook; Lim, Han Hyuk

    2016-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive mitochondrial disorder of fatty acid ?-oxidation, and is associated with mutations in the acyl-CoA dehydrogenase (ACADS) gene. Recent advances in spectrometric screening for inborn errors of metabolism have helped detect several metabolic disorders, including SCADD, without symptoms in the neonate period. This allows immediate initiation of treatment and monitoring, so they remain largely symptomless metabolic...

  10. Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors with high potency against multiple drug resistant viral strains.

    Science.gov (United States)

    Zhao, Chen; Sham, Hing L; Sun, Minghua; Stoll, Vincent S; Stewart, Kent D; Lin, Shuqun; Mo, Hongmei; Vasavanonda, Sudthida; Saldivar, Ayda; Park, Chang; McDonald, Edith J; Marsh, Kennan C; Klein, Larry L; Kempf, Dale J; Norbeck, Daniel W

    2005-12-15

    As part of our efforts to identify potent HIV-1 protease inhibitors that are active against resistant viral strains, structural modification of the azacyclic urea (I) was undertaken by incorporating acyl groups as P(1)' ligands. The extensive SAR study has yielded a series of N-acyl azacyclic ureas (II), which are highly potent against both wild-type and multiple PI-resistant viral strains.

  11. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    , a transcription factor regulating the unfolded protein response and membrane biogenesis, as well as Hac1p target genes incl. KAR2 and PDI1. Under similar conditions, we find a massive upregulation of pre-autophagosomal structure (PAS) formation, indicative of upregulation of autophagy. Supplementation....... This and the facts that Acb1p-depleted cells are hypersensitive to the immunosuppressive drug rapamycin and accumulate the transcription factor Msn2p in  the nucleus, indicate that perturbation of intracellular acyl-CoA metabolism leads to  a starvation response that upregulate autophagy, which involves both Ras...... autophagy mainly is a response to the stress of nutrient limitation. In the present study, we demonstrate that perturbation of fatty acid synthesis and transport either through inhibition of fatty acid synthase (FAS) or by depleting cells for the acyl-CoA binding protein, Acb1p, leads to induction of Hac1p...

  12. Human acyl-CoA:cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis.

    Science.gov (United States)

    Chang, Catherine; Dong, Ruhong; Miyazaki, Akira; Sakashita, Naomi; Zhang, Yi; Liu, Jay; Guo, Michael; Li, Bo-Liang; Chang, Ta-Yuan

    2006-03-01

    Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the formation of cholesteryl esters from cholesterol and long-chain fatty-acyl-coenzyme A. At the single-cell level, ACAT serves as a regulator of intracellular cholesterol homeostasis. In addition, ACAT supplies cholesteryl esters for lipoprotein assembly in the liver and small intestine. Under pathological conditions, the accumulation of cholesteryl esters produced by ACAT in macrophages contributes to foam cell formation, a hallmark of the early stage of atherosclerosis. Several reviews addressing various aspects of ACAT and ACAT inhibitors are available. This review briefly outlines the current knowledge on the biochemical properties of human ACATs, and then focuses on discussing the merit of ACAT as a drug target for pharmaceutical interventions against atherosclerosis.

  13. Quantitation of acyl migration during lipase-catalyzed acidolysis, and of the regioisomers of structured triacylglycerols formed

    DEFF Research Database (Denmark)

    Mu, Huiling; Kurvinen, J.P.; Kallio, H.

    2001-01-01

    degradation, and ranged from 39.0 to 48.7% and 0.6 to 9.3%, respectively. Quantitation of triacylglycerol molecular species was performed by ammonia negative ion chemical ionization (NICI) mass spectrometry (MS). The proportion of ACN (acyl carbon number) 34 species that contained one C-18 fatty acid and two...... C-8:0, in samples analyzed, varied from 12.5 to 23.2%. The selected regioisomers MLM and MML within the ACN 34 species group were quantified by NICI tandem MS (MS/MS) and were in the range of 97.1 to 98.4% and 1.6 to 2.9%, respectively. There was no correlation between the level of acyl migration...

  14. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    Directory of Open Access Journals (Sweden)

    Steffen Kawelke

    Full Text Available Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2 and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2 was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  15. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    Energy Technology Data Exchange (ETDEWEB)

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H. (Michigan)

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  16. Determination of ghrelin structure in the barfin flounder (Verasper moseri and involvement of ingested fatty acids in ghrelin acylation

    Directory of Open Access Journals (Sweden)

    Hiroyuki eKaiya

    2013-09-01

    Full Text Available Ghrelin is a peptide hormone that is acylated with a fatty acid, usually n-octanoic acid, at the third amino acid residue (usually a serine or threonine, and this acylation is known to be essential for ghrelin activity not only in mammals but also in non-mammals, such as fish. However, the modification mechanisms of ghrelin modification in fish are not known. In this study, we elucidated the structure of ghrelin in a teleost, the barfin flounder (Verasper moseri, and determined whether ingested free fatty acids of various chain lengths participated in ghrelin acylation. Complementary DNA cloning revealed the barfin flounder prepro-ghrelin to be a 106-amino acid (aa peptide and the mature ghrelin to be a 20-aa peptide (GSSFLSPSHKPPNKGKPPRA. However, purification of ghrelin peptides from stomach extracts demonstrated that the major form of the hormone was a 19-aa decanoylated peptide (GSS[C10:0]FLSPSHKPPNKGKPPR missing the last alanine of the 20-aa peptide. Ingestion of feed enriched with n-heptanoic acid (C7, n-octanoic acid (C8, or n-nonanoic acid (C9 changed the modification status of the peptide: ingestion of C8 or C9 increased the amount of C8:0 or C9:0 19-aa ghrelin, respectively, but no C7:0 ghrelin was isolated after ingestion of C7. These results indicate that ingested free fatty acids are substrates for ghrelin acylation in the barfin flounder, but the types of free fatty acids utilized as substrates may be limited.

  17. Human Acyl-Coenzyme A:Cholesterol Acyltransferase Expressed in Chinese Hamster Ovary Cells: Membrane Topology and Active Site Location

    OpenAIRE

    Lin, Song; Lu, Xiaohui; Chang, Catherine C.Y.; Chang, Ta-Yuan

    2003-01-01

    Acyl-CoA:cholesterol acyltransferase (ACAT) is a membrane-bound enzyme that produces cholesteryl esters intracellularly. Two ACAT genes (ACAT1 and ACAT2) have been identified. The expression of ACAT1 is ubiquitous, whereas that of ACAT2 is tissue restricted. Previous research indicates that ACAT1 may contain seven transmembrane domains (TMDs). To study ACAT2 topology, we inserted two different antigenic tags (hemagglutinin, monoclonal antibody Mab1) at various hydrophi...

  18. Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase.

    Science.gov (United States)

    Kong, Fantao; Liang, Yuanxue; Légeret, Bertrand; Beyly-Adriano, Audrey; Blangy, Stéphanie; Haslam, Richard P; Napier, Johnathan A; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2017-04-01

    Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl-CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl-CoAs into trans-2-enoyl-CoA and produced H2 O2 . This result demonstrated that CrACX2 is a genuine acyl-CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) β-oxidation spiral. A fluorescent protein-tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA β-oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of β-oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant-type FA β-oxidation involving H2 O2 -producing acyl-CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Synthesis of ( sup 3 H)-1-(1-(3-isothiocyanatophenyl)cyclohexyl) piperidine (METAPHIT), an acylating agent for phencyclidine receptors

    Energy Technology Data Exchange (ETDEWEB)

    De Costa, B.R.; Lessor, R.A.; Thurkauf, A.; Highet, R.J.; Jacobson, A.E.; Rice, K.C. (National Insts. of Health, Bethesda, MD (USA))

    1989-09-01

    The preparation of ({sup 3}H)-labelled 1-(1-(3-isothiocyanatophenyl)cyclohexyl)piperidine (METAPHIT), an electrophilic acylating agent for the phencyclidine (PCP) site is described. Synthesis of ({sup 3}H)METAPHIT was accomplished in three steps starting from 1-(1-(3-nitrophenyl)cyclohexyl)piperidine. Introduction of the tritium-label in 20.6% radiochemical yield was achieved in the penultimate step. (author).

  20. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies.

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20-40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Structural and dynamic characterization of a freestanding acyl carrier protein involved in the biosynthesis of cyclic lipopeptide antibiotics.

    Science.gov (United States)

    Paul, Subrata; Ishida, Hiroaki; Nguyen, Leonard T; Liu, Zhihong; Vogel, Hans J

    2017-05-01

    Friulimicin is a cyclic lipodecapeptide antibiotic that is produced by Actinoplanes friuliensis. Similar to the related lipopeptide drug daptomycin, the peptide skeleton of friulimicin is synthesized by a large multienzyme nonribosomal peptide synthetase (NRPS) system. The LipD protein plays a major role in the acylation reaction of friulimicin. The attachment of the fatty acid group promotes its antibiotic activity. Phylogenetic analysis reveals that LipD is most closely related to other freestanding acyl carrier proteins (ACPs), for which the genes are located near to NRPS gene clusters. Here, we report that the solution NMR structure of apo-LipD is very similar to other four-helix bundle forming ACPs from fatty acid synthase (FAS), polyketide synthase, and NRPS systems. By recording NMR dynamics data, we found that the backbone motions in holo-LipD are more restricted than in apo-LipD due to the attachment of phosphopantetheine moiety. This enhanced stability of holo-LipD was also observed in differential scanning calorimetry experiments. Furthermore, we demonstrate that, unlike several other ACPs, the folding of LipD does not depend on the presence of divalent cations, although the presence of Mg 2+ or Ca 2+ can increase the protein stability. We propose that small structural rearrangements in the tertiary structure of holo-LipD which lead to the enhanced stability are important for the cognate enzyme recognition for the acylation reaction. Our results also highlight the different surface charges of LipD and FAS-ACP from A. friuliensis that would allow the acyl-CoA ligase to interact preferentially with the LipD instead of binding to the FAS-ACP. © 2017 The Protein Society.

  2. An efficient and green synthesis of 1-indanone and 1-tetralone via intramolecular Friedel-Crafts acylation reaction

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Huynh, Vy Hieu; Hansen, Poul Erik

    2015-01-01

    Metal-triflate-catalyzed intramolecular Friedel–Crafts acylation of 3-arylpropanoic and 4-arylbutanoic acids in triflate-anion ionic liquids under monomodal microwave irradiation is reported. The environmentally benign synthetic procedure allows the formation of cyclic ketones in good yields within...... a short reaction time. The catalytic metal triflate in triflate-anion ionic liquids can be easily recovered and reused several times without significant loss of the catalytic performance....

  3. Uncovering Structural Diversity of Unsaturated Fatty Acyls in Cholesteryl Esters via Photochemical Reaction and Tandem Mass Spectrometry

    Science.gov (United States)

    Ren, Jia; Franklin, Elissia T.; Xia, Yu

    2017-07-01

    Mass spectrometry analysis of cholesteryl esters (CEs) faces several challenges, with one of them being the determination of the carbon-carbon double bond (C=C) locations within unsaturated fatty acyl chains. Paternὸ-Büchi (PB) reaction, a photochemical reaction based on the addition of acetone to C=C, is capable of C=C location determination when coupled with tandem mass spectrometry (MS/MS). In this study, the PB reaction conditions were tailored for CEs and subsequent nanoelectrospray ionization (nanoESI). A solvent system containing acetone/methanol/dichloromethane/water (40/30/20/10, volume ratios) and 100 μM LiOH was determined to be optimal, resulting in reasonable PB reaction yield ( 30%) and good ionization efficiency (forming lithium adduct of CEs). Collision-induced dissociation (CID) of the PB reaction products produced characteristic fragment ions of CE together with those modified by the PB reactions, such as lithiated fatty acyl ([FA + Li]+) and its PB product ([FA - PB + Li]+). MS3 CID of [FA - PB + Li]+ led to abundant C=C diagnostic ion formation, which was used for C=C location determination and isomer quantitation. A PB-MS3 CID approach was developed and applied for CE analysis from human plasma. A series of unsaturated CEs was identified with specific C=C locations within fatty acyl chains. Absolute quantitation for each CE species was achieved including coexisting C=C location isomers, such as Δ9 and Δ11 isomers of CE 18:1 and ω-6 and ω-3 isomers of CE 18:3. These results show that PB-MS/MS is useful in uncovering structural diversity of CEs due to unsaturation in fatty acyls, which is often undetected from current lipid analysis approach.

  4. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  5. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  7. Acyl Chains of Phospholipase D Transphosphatidylation Products in Arabidopsis Cells: A Study Using Multiple Reaction Monitoring Mass Spectrometry

    Science.gov (United States)

    Rainteau, Dominique; Humbert, Lydie; Delage, Elise; Vergnolle, Chantal; Cantrel, Catherine; Maubert, Marie-Anne; Lanfranchi, Sandrine; Maldiney, Régis; Collin, Sylvie; Wolf, Claude; Zachowski, Alain; Ruelland, Eric

    2012-01-01

    Background Phospholipases D (PLD) are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA). PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. Methodology/Principal findings Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA). As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut), which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM) mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18∶2- and 16∶0/18∶3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. Conclusions MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18∶2- and 16∶0/18∶3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains. PMID:22848682

  8. Photopolymerization study and adhesive properties of self-etch adhesives containing bis(acyl)phosphine oxide initiator.

    Science.gov (United States)

    Besse, Vincent; Derbanne, Mathieu A; Pham, Thi-Nhàn; Cook, Wayne D; Le Pluart, Loïc

    2016-04-01

    This paper investigates the photo-co-polymerization behavior of a blend of a diacrylamide (DEBAAP) with a phosphonylated acidic monomer using either bis(acyl)phosphine oxide or camphorquinone/amine as photo-initiator and studies the effect of variation of the structure of the phosphonylated acidic monomer on the shear bond strength to human dentin. Photopolymerization kinetics has been assessed through the use of photo-DSC with either initiating system and with and without a phosphonic acid monomer, while the shear bond strengths (SBS) of dentin bonding agents formulated with several phosphonylated acidic monomers have been evaluated by macro SBS testing on human dentin. Photo-DSC results show that bis(acyl)phosphine oxide initiates a faster polymerization than camphorquinone/amine and that both photopolymerizations are accelerated by the phosphonic acid monomer. Similar results were obtained between adhesives based on camphorquinone/amine and a commercial adhesive (AdheSE, Ivoclar-Vivadent, Schaan, Liechtenstein). The best performances were obtained when BAPO was used as the initiator, in many cases far better than the commercial adhesive. Adhesive SEA6 based on difluoromethylphosphonic acid C demonstrated the best adhesion results of this study. Significance The bis(acyl)phosphine oxide photo-initiator causes faster photopolymerization of two-step self-etching dental adhesive, and its use could yield better bonding performance. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants.

    Science.gov (United States)

    Shapiro, Adam B; Gao, Ning; Gu, Rong-Fang; Thresher, Jason

    2014-10-15

    High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial β-lactam drugs, including penicillins, cephalosporins, and carbapenems. β-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because β-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37-43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    Science.gov (United States)

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lysosomal Lipases PLRP2 and LPLA2 Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens.

    Science.gov (United States)

    Gilleron, Martine; Lepore, Marco; Layre, Emilie; Cala-De Paepe, Diane; Mebarek, Naila; Shayman, James A; Canaan, Stéphane; Mori, Lucia; Carrière, Frédéric; Puzo, Germain; De Libero, Gennaro

    2016-09-22

    Complex antigens require processing within antigen-presenting cells (APCs) to form T cell stimulatory complexes with CD1 antigen-presenting molecules. It remains unknown whether lipids with multi-acylated moieties also necessitate digestion by lipases to become capable of binding CD1 molecules and stimulate T cells. Here, we show that the mycobacterial tetra-acylated glycolipid antigens phosphatidyl-myo-inositol mannosides (PIM) are digested to di-acylated forms by pancreatic lipase-related protein 2 (PLRP2) and lysosomal phospholipase A2 (LPLA2) within APCs. Recombinant PLRP2 and LPLA2 removed the sn1- and sn2-bound fatty acids from the PIM glycerol moiety, as revealed by mass spectrometry and nuclear magnetic resonance studies. PLRP2 or LPLA2 gene silencing in APCs abolished PIM presentation to T cells, thus revealing an essential role of both lipases in vivo. These findings show that endosomal lipases participate in lipid antigen presentation by processing lipid antigens and have a role in T cell immunity against mycobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    Science.gov (United States)

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  13. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel–Crafts acylation

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn

    2016-01-15

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H{sub 3}PW{sub 12}O{sub 40} denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6–31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%. - Graphical abstract: The PTA@ZIF-67 catalysts with different PTA content were prepared by encapsulating the PTA into ZIF-67 cage and the as-synthesized catalysts exhibited good catalytic activity for the Friedel–Craft acylation of anisole with benzoyl chloride.

  14. Effects of riboflavin deficiency and clofibrate treatment on the five acyl-CoA dehydrogenases in rat liver mitochondria.

    Science.gov (United States)

    Veitch, K; Draye, J P; Van Hoof, F; Sherratt, H S

    1988-09-01

    Rats were maintained on a riboflavin-deficient diet or on a diet containing clofibrate (0.5%, w/w). The activities of the mitochondrial FAD-dependent straight-chain acyl-CoA dehydrogenases (butyryl-CoA, octanoyl-CoA and palmitoyl-CoA) and the branched-chain acyl-CoA dehydrogenases (isovaleryl-CoA and isobutyryl-CoA) involved in the degradation of branched-chain acyl-CoA esters derived from branched-chain amino acids were assayed in liver mitochondrial extracts prepared in the absence and presence of exogenous FAD. These activities were low in livers from riboflavin-deficient rats (11, 28, 16, 6 and less than 2% of controls respectively) when prepared in the absence of exogenous FAD, and were not restored to control values when prepared in 25 microM-FAD (29, 47, 28, 7 and 17%). Clofibrate feeding increased the activities of butyryl-CoA, octanoyl-CoA and palmitoyl-CoA dehydrogenases (by 48, 116 and 98% of controls respectively), but not, by contrast, the activities of isovaleryl-CoA and isobutyryl-CoA dehydrogenases (62 and 102% of controls respectively). The mitochondrial fractions from riboflavin-deficient and from clofibrate-fed rats oxidized palmitoylcarnitine in State 3 at rates of 32 and 163% respectively of those from control rats.

  15. Quantification of ghrelin and des-acyl ghrelin in human plasma by using cubic-selected reaction-monitoring LCMS.

    Science.gov (United States)

    Sidibé, Jonathan; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-05-01

    Ghrelin is a peptide hormone generally measured in plasma by immunoassays. LCMS/MS was investigated as an alternative method in particular for the quantification of the two forms of the peptide with improved selectivity. A LCMS assay using a cubic-selected reaction-monitoring (LCSRM(3)/MS) mode was developed for the quantification of ghrelin and des-acyl ghrelin in human plasma. The LCSRM(3)/MS method was found to be linear from 50-75 to 2500 pg/ml for the ghrelins using a 0.5-ml plasma sample. The accuracies and precisions at LOQ for des-acyl ghrelin (50 pg/ml) and ghrelin (75 pg/ml) were found to be better than 91 and 2%, respectively. Blood and plasma stabilization was found to be essential for good assay performance. Compared to the LCSRM/MS method the addition of an additional MS step did significantly improve the selectivity and therefore the sensitivity. The LCSRM(3)/MS method could be successfully applied for the quantification of ghrelin and des-acyl ghrelin in human plasma samples.

  16. Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate

    Directory of Open Access Journals (Sweden)

    Gregory J. Fredericks

    2017-12-01

    Full Text Available Selenoprotein K (SELENOK is a selenocysteine (Sec-containing protein localized in the endoplasmic reticulum (ER membrane where it interacts with the DHHC6 (where single letter symbols represent Asp-His-His-Cys amino acids enzyme to promote protein acyl transferase (PAT reactions. PAT reactions involve the DHHC enzymatic capture of palmitate via a thioester bond to cysteine (Cys residues that form an unstable palmitoyl-DHHC intermediate, followed by transfer of palmitate to Cys residues of target proteins. How SELENOK facilitates this reaction has not been determined. Splenocyte microsomal preparations from wild-type mice versus SELENOK knockout mice were used to establish PAT assays and showed decreased PAT activity (~50% under conditions of SELENOK deficiency. Using recombinant, soluble versions of DHHC6 along with SELENOK containing Sec92, Cys92, or alanine (Ala92, we evaluated the stability of the acyl-DHHC6 intermediate and its capacity to transfer the palmitate residue to Cys residues on target peptides. Versions of SELENOK containing either Ala or Cys residues in place of Sec were equivalently less effective than Sec at stabilizing the acyl-DHHC6 intermediate or promoting PAT activity. These data suggest that Sec92 in SELENOK serves to stabilize the palmitoyl-DHHC6 intermediate by reducing hydrolyzation of the thioester bond until transfer of the palmitoyl group to the Cys residue on the target protein can occur.

  17. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis.

    Science.gov (United States)

    Westfall, Corey S; Sherp, Ashley M; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M

    2016-11-29

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A thaliana This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants.

  18. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats.

    Science.gov (United States)

    Yeh, Chun; Ting, Ching-Heng; Doong, Ming-Luen; Chi, Chin-Wen; Lee, Shou-Dong; Chen, Chih-Yen

    2016-01-01

    Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated. We examined the differential effects of central O - n -octanoylated ghrelin, des-Gln 14 -ghrelin, and urocortin 3 on food intake, as well as on charcoal nonnutrient semiliquid gastric emptying in conscious rats that were chronically implanted with intracerebroventricular (ICV) catheters. The functional importance of corticotropin-releasing factor (CRF) receptor 2 in urocortin 3-induced responses was examined by ICV injection of the selective CRF receptor 2 antagonist, astressin 2 -B. ICV infusion of urocortin 3 opposed central acyl ghrelin-elicited hyperphagia via CRF receptor 2 in satiated rats. ICV injection of O - n -octanoylated ghrelin and des-Gln 14 -ghrelin were equally potent in accelerating gastric emptying in fasted rats, whereas ICV administration of urocortin 3 delayed gastric emptying. In addition, ICV infusion of urocortin 3 counteracted central acyl ghrelin-induced gastroprokinetic effects via CRF receptor 2 pathway. ICV-infused urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. Our results clearly showed that enhancing ghrelin and blocking CRF receptor 2 signaling in the brain accelerated gastric emptying, which provided important clues for a new therapeutic avenue in ameliorating anorexia and gastric ileus found in various chronic wasting disorders.

  19. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    Science.gov (United States)

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. The effects of acylation stimulating protein supplementation VS antibody neutralization on energy expenditure in wildtype mice

    Directory of Open Access Journals (Sweden)

    Gao Ying

    2010-04-01

    Full Text Available Abstract Background Acylation stimulating protein (ASP is an adipogenic hormone that stimulates triglyceride (TG synthesis and glucose transport in adipocytes. Previous studies have shown that ASP-deficient C3 knockout mice are hyperphagic yet lean, as they display increased oxygen consumption and fatty acid oxidation compared to wildtype mice. In the present study, antibodies against ASP (Anti-ASP and human recombinant ASP (rASP were tested in vitro and in vivo. Continuous administration for 4 weeks via osmotic mini-pump of Anti-ASP or rASP was evaluated in wildtype mice on a high-fat diet (HFD to examine their effects on body weight, food intake and energy expenditure. Results In mature murine adipocytes, rASP significantly stimulated fatty acid uptake (+243% vs PBS, P Conclusion In vitro, Anti-ASP effectively neutralized ASP stimulated fatty acid uptake. In vivo, Anti-ASP treatment increased whole body energy utilization while rASP increased energy storage. Therefore, ASP is a potent anabolic hormone that may also be a mediator of energy expenditure.

  1. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  2. β-Lapachone ameliorates lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice.

    Directory of Open Access Journals (Sweden)

    Moon Hee Jeong

    Full Text Available Lipotoxic cardiomyopathy is caused by myocardial lipid accumulation and often occurs in patients with diabetes and obesity. This study investigated the effects of β-lapachone (β-lap, a natural compound that activates Sirt1 through elevation of the intracellular NAD+ level, on acyl CoA synthase (ACS transgenic (Tg mice, which have lipotoxic cardiomyopathy. Oral administration of β-lap to ACS Tg mice significantly attenuated heart failure and inhibited myocardial accumulation of triacylglycerol. Electron microscopy and measurement of mitochondrial complex II protein and mitochondrial DNA revealed that administration of β-lap restored mitochondrial integrity and biogenesis in ACS Tg hearts. Accordingly, β-lap administration significantly increased the expression of genes associated with mitochondrial biogenesis and fatty acid metabolism that were down-regulated in ACS Tg hearts. β-lap also restored the activities of Sirt1 and AMP-activated protein kinase (AMPK, the two key regulators of metabolism, which were suppressed in ACS Tg hearts. In H9C2 cells, β-lap-mediated elevation of AMPK activity was retarded when the level of Sirt1 was reduced by transfection of siRNA against Sirt1. Taken together, these results indicate that β-lap exerts cardioprotective effects against cardiac lipotoxicity through the activation of Sirt1 and AMPK. β-lap may be a novel therapeutic agent for the treatment of lipotoxic cardiomyopathy.

  3. Enzymatic Transesterification of Kraft Lignin with Long Acyl Chains in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Lise Hulin

    2015-09-01

    Full Text Available Valorization of lignin is essential for the economic viability of the biorefinery concept. For example, the enhancement of lignin hydrophobicity by chemical esterification is known to improve its miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. To this end and due to its many reactive hydroxyl groups, lignin is a challenging macromolecular substrate for biocatalyzed esterification in non-conventional media. The present work describes for the first time the lipase-catalyzed transesterification of Kraft lignin in ionic liquids (ILs. Three lipases, three 1-butyl-3-methylimidazolium based ILs and ethyl oleate as long chain acyl donor were selected. Best results were obtained with a hydrophilic/hydrophobic binary IL system (1-butyl-3-methylimidazolium trifluoromethanesulfonate/1-butyl-3-methylimidazolium hexafluoro- phosphate, 1/1 v/v and the immobilized lipase B from Candida antarctica (CALB that afforded a promising transesterification yield (ca. 30%. Similar performances were achieved by using 1-butyl-3-methylimidazolium hexafluorophosphate as a coating agent for CALB rather than as a co-solvent in 1-butyl-3-methylimidazolium trifluoromethane-sulfonate thus limiting the use of hydrophobic IL. Structural characterization of lignin oleate was performed by spectroscopic studies (FTIR and 1H-NMR. The synthesized lignin oleate exhibited interesting thermal and textural properties, different from those of the original Kraft lignin.

  4. Enzymatic Transesterification of Kraft Lignin with Long Acyl Chains in Ionic Liquids.

    Science.gov (United States)

    Hulin, Lise; Husson, Eric; Bonnet, Jean-Pierre; Stevanovic, Tatjana; Sarazin, Catherine

    2015-09-09

    Valorization of lignin is essential for the economic viability of the biorefinery concept. For example, the enhancement of lignin hydrophobicity by chemical esterification is known to improve its miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. To this end and due to its many reactive hydroxyl groups, lignin is a challenging macromolecular substrate for biocatalyzed esterification in non-conventional media. The present work describes for the first time the lipase-catalyzed transesterification of Kraft lignin in ionic liquids (ILs). Three lipases, three 1-butyl-3-methylimidazolium based ILs and ethyl oleate as long chain acyl donor were selected. Best results were obtained with a hydrophilic/hydrophobic binary IL system (1-butyl-3-methylimidazolium trifluoromethanesulfonate/1-butyl-3-methylimidazolium hexafluoro- phosphate, 1/1 v/v) and the immobilized lipase B from Candida antarctica (CALB) that afforded a promising transesterification yield (ca. 30%). Similar performances were achieved by using 1-butyl-3-methylimidazolium hexafluorophosphate as a coating agent for CALB rather than as a co-solvent in 1-butyl-3-methylimidazolium trifluoromethane-sulfonate thus limiting the use of hydrophobic IL. Structural characterization of lignin oleate was performed by spectroscopic studies (FTIR and ¹H-NMR). The synthesized lignin oleate exhibited interesting thermal and textural properties, different from those of the original Kraft lignin.

  5. Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N-acylated amino acids.

    Science.gov (United States)

    Krawinkler, Karl Heinz; Maier, Norbert M; Ungaro, Rocco; Sansone, Francesco; Casnati, Alessandro; Lindner, Wolfgang

    2003-01-01

    The synthesis and chromatographic evaluation of the enantiomer separation capabilities of covalently immobilized calix[4]arene-cinchona carbamate hybrid type receptors derived from quinine (QN) and its corresponding C9-epimer (eQN) in different solvents are reported. The receptors display complementary enantiomer separation profiles in terms of elution order, chiral substrate specificity, and mobile phase characteristics, indicating the existence of two distinct chiral recognition mechanisms. The QN-derived receptor binds the (S)-enantiomers of N-acylated amino acids more strongly, shows preferential recognition of open-chained amino acids, and superior enantioselectivity in polar media such as methanol/acetic acid. In contrast, the eQN congener preferentially recognizes the corresponding (R)-enantiomers, displays good enantioselectivity (alpha up to 1.74) for cyclic amino acids, and enhanced stereodiscriminating properties in apolar mobile phases, e.g., chloroform/acetic acid. A comparison of the enantiomer separation profiles with those of the corresponding QN and eQN tert-butyl carbamate congeners indicates no significant level of cooperativity between the calix[4]arene module and the cinchona units in terms of overall chiral recognition, most probably as a consequence of residual conformational flexibility of the calixarene module and the carbamate linkage. Copyright 2003 Wiley-Liss, Inc.

  6. STRUCTURAL AND FUNCTIONAL ASPECTS OF ACYL-COENZYME A BINDING PROTEINS (ACBPs: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Richa Arya

    2012-06-01

    Full Text Available ACBP was originally identified as a mammalian diazepam binding inhibitor – a neuropeptide that has the ability to inhibit diazepam binding to the �-aminobutyric acid (GABA receptor (Guidotti et al., 1983. Typically, ACBPs are small (~10 kDa cytosolic proteins (Burton et al., 2005. However, a number of hybrid ACBPs are reported that are fused with ankyrin repeats, such as ACBP1 and ACBP2 in Arabidopsis thaliana (Chye et al., 1999; Li and Chye, 2003. Other functional domains, such as the human peroxisomal �3/ �2-enoyl-CoA isomerase (Geisbrecht et al., 1999, or any non-functional/ uncharacterized domain are also cited. ACBP predominantly functions as an intracellular acyl-CoA transporter and pool former, and is critical to lipid metabolism in cells (Gossett et al., 1996; Knudsen et al., 2000; Schroeder et al., 1998. Impaired lipid metabolism and other cellular functions in humans arising out of ACBP defects thus need to be explored. ACBP has only been reported in eukaryotes, not in prokaryotes, except for a few pathogenic eubacteria that might have acquired ACBP from eukaryotic hosts via lateral gene transfer (Burton et al., 2005. Whole genome sequences of several prokaryotes and pathogens being available currently, it is worthwhile to extend search for ACBPs beyond eukaryotes as well, to explore their potential as drug targets, given their essential role in lipid metabolism. As a prelude to such investigations, the current review summarizes available knowledge of ACBPs and outlines the scope of future research.

  7. Synthesis, characterisation and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides.

    Science.gov (United States)

    Han, Lingyu; Ratcliffe, I; Williams, P A

    2017-12-15

    A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Purification and Characterization of Tannin Acyl Hydrolase from Aspergillus niger ATCC 16620

    Directory of Open Access Journals (Sweden)

    Abdulhameed Sabu

    2005-01-01

    Full Text Available Tannin acyl hydrolase produced extracellularly by the fungal strain Aspergillus niger ATTC 16620 in solid state fermentation was purified from the cell free culture broth by ammonium sulphate fractionation followed by DEAE–Sephadex A-50 chromatography. SDS-PAGE analysis indicated that the enzyme protein molecular mass was 168 kDa. Enzyme activity was stable up to the temperature of 40 °C and the enzyme activity was optimal at pH=6. Tannase activity was maximal at 0.01 M concentration of the substrate. The addition of metal ions like Zn2+, Mn2+, Cu2+, Ca2+, Mg2+and Fe2+ inhibited the enzyme activity. Only K+ ions enhanced tannase activity, and an activity of 4.31 U/mL was reported here. Enzyme activity was maximal after 15–20 min of incubation time, with an activity of 3.9 U/mL. Km was found to be 1.03 mM and Vmax=4.25 mmol/min. Since the enzyme is active over a wide range of pH and temperature it could find potential use in the food-processing industry.

  9. Enoyl acyl carrier protein reductase inhibitors: an updated patent review (2011 - 2015).

    Science.gov (United States)

    Zitko, Jan; Doležal, Martin

    2016-09-01

    Enoyl-(acyl-carrier-protein) reductase (ENR) is a limiting step enzyme in the Fatty Acid Synthase II system. In mammals, there is no homologue to ENR, which makes it an optimal candidate target for selective anti-infective drugs. Up-to-date, only two ENR inhibitors are used in clinical practice. This review is a survey on important patents on low molecular weight compounds with ENR inhibiting activity published in 2011-2015. Common patent databases (SciFinder, esp@cenet, WIPO) were used to locate patent applications on the proposed topic and in the timespan of 2011-2015. In 2011-2015, we have observed patents in previously known structural groups of diphenyl ethers and acrylamides as well as new structural classes, often identified by high-throughput screening campaigns. The spectrum of activity of applied derivatives covers significant bacteria, mycobacteria, and apicomplexan parasites (Plasmodia and Toxoplasma). Good news from research of ENR inhibitors: a) four selective anti-staphylococcal compounds applied in 2011-2015 or earlier were pushed to Phase I or Phase II clinical trials and some of them proved safety and tolerability after peroral and/or intravenous administration; b) big pharma companies have renewed their interest in the development of new anti-infective compounds against resistant strains of clinical relevance.

  10. Partial purification of the acyl-CoA elongase of Allium porrum leaves.

    Science.gov (United States)

    Bessoule, J J; Lessire, R; Cassagne, C

    1989-02-01

    Acyl-CoA elongase has been partially purified from leek (Allium porrum L.) epidermal cells. The microsomal elongase is first solubilized by Triton X-100. The solubilized proteins are then submitted to anion exchange chromatography on DEAE-cellulose and, finally, to gel filtration on Ultrogel 34 AcA. The purification of the elongase activity is accompanied by the enrichment in three major protein bands of 59, 61, and 65 kDa. The partially purified elongase is highly delipidated (about 10 mol lipid/mol of 60- to 65-kDa protein) and phosphatidylserine and phosphatidylethanolamine account respectively for 60 and 40% of the remaining phospholipids. The partially purified elongase retains some activities associated with fatty acid biosynthesis. The overall activity is strongly stimulated by the addition of exogenous lipids. In the presence of a mixture of PS, PE, and PC the C18-CoA elongase activity is increased more than sixfold. The Km value of stearoyl-CoA, in the presence of lipid vesicles, was determined to be 1.7 microM.

  11. Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum.

    Science.gov (United States)

    Natori, Tomomi; Fujiyoshi, Masachika; Uchida, Masashi; Abe, Natsuki; Kanaki, Tatsuro; Fukumoto, Yasunori; Ishii, Itsuko

    2017-03-01

    The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27Kip1 expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.

  12. Prolonged exercise testing in two children with a mild Multiple Acyl-CoA-Dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Helders PJM

    2005-05-01

    Full Text Available Abstract Background Multiple Acyl-CoA-Dehydrogenase deficiency (MADD is an inherited metabolic disorder characterized by impaired oxidation of fatty acids and some amino acids. Methods We were interested whether children with MADD could tolerate a prolonged low-intensity exercise test and if this test could have any additional diagnostic value. Therefore, we performed a maximal exercise test and a low-intensity prolonged exercise test in 2 patients with MADD and in 5 control subjects. During a prolonged exercise test the subjects exercised on a cycle ergometer at a constant workload of 30% of their maximum for 90 minutes and heart rate, oxygen uptake, fuel utilization and changes in relevant blood and urinary parameters were monitored. Results The tests were tolerated well. During the prolonged exercise test the fatty acid oxidation (FAO was quite low compared to 5 control subjects, while characteristic metabolites of MADD appeared in plasma and urine. Conclusion We suggest that the prolonged exercise test could be of diagnostic importance and might replace the fasting test as a diagnostic procedure in some cases, particularly in patients with anamnestic signs of intolerance for prolonged exercise.

  13. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, P.M.; Shanklin, J.; Xu, S.; Gagliardini, V.; Whittle, E.; Grossniklaus, U.; Schiestl, F. P.

    2011-04-05

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP {Delta}{sup 9} and a 16:0-ACP {Delta}{sup 4} desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.

  14. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes

    Science.gov (United States)

    Xia, Ye; Yu, Keshun; Gao, Qing-ming; Wilson, Ella V.; Navarre, Duroy; Kachroo, Pradeep; Kachroo, Aardra

    2012-01-01

    Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipid levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR) due to the plants inability to generate SAR inducing signal(s). Together, these data show that ACBP3, ACBP4, and ACBP6 are required for cuticle development as well as defense against microbial pathogens. PMID:23060893

  15. Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes

    Directory of Open Access Journals (Sweden)

    Ye eXia

    2012-10-01

    Full Text Available Fatty acids (FA and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBP, which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipids levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP 3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR due to the plants inability to generate SAR inducing signal(s. Together, these data show that ACBP3, ACBP4 and ACBP6 are required for cuticle development as well as defense against microbial pathogens.

  16. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    Science.gov (United States)

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  17. Antiplasmodial properties of acyl-lysyl oligomers in culture and animal models of malaria.

    Science.gov (United States)

    Zaknoon, Fadia; Wein, Sharon; Krugliak, Miriam; Meir, Ohad; Rotem, Shahar; Ginsburg, Hagai; Vial, Henri; Mor, Amram

    2011-08-01

    Our previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs for in vitro growth inhibition of Plasmodium falciparum strains, thus revealing the minimal requirements for antiplasmodial potency in terms of sequence and composition, as confirmed by efficacy studies in vivo. The most active sequence, dodecanoyllysyl-bis(aminooctanoyllysyl)-amide (C(12)K-2α(8)), inhibited parasite growth at submicromolar concentrations (50% inhibitory concentration [IC(50)], 0.3 ± 0.1 μM) and was devoid of hemolytic activity (affect ring and trophozoite stages of the parasite developmental cycle, the ability of various octanoyl-based OAKs to distinctively affect these stages (rings were 4- to 5-fold more sensitive) suggests a distinct antiplasmodial mechanism, nonmembranolytic to host red blood cells (RBCs). Upon intraperitoneal administration to mice, C(12)K-2α(8) demonstrated sustainable high concentrations in blood (e.g., 0.1 mM at 25 mg/kg of body weight). In Plasmodium vinckei-infected mice, C(12)K-2α(8) significantly affected parasite growth (50% effective dose [ED(50)], 22 mg/kg) but also caused mortality in 2/3 mice at high doses (50 mg/kg/day × 4).

  18. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways.

    Science.gov (United States)

    Hossain, Md Akil; Lee, Seung-Jin; Park, Na-Hye; Mechesso, Abraham Fikru; Birhanu, Biruk Tesfaye; Kang, JeongWoo; Reza, Md Ahsanur; Suh, Joo-Won; Park, Seung-Chun

    2017-09-06

    Quorum sensing (QS) is a cell density-dependent regulation of virulent bacterial gene expression by autoinducers that potentially pertains in the epidemic of bacterial virulence. This study was initially designed to evaluate the effect of 5 phenolic compounds in the modulation of QS and virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa, and to determine the mechanisms of their effects. Biosensor strains were used to assess antibacterial and anti-QS effect of these compounds. Only methyl gallate (MG) among these compounds demonstrated profound anti-QS effect in the preliminary study, and thus only MG was utilized further to evaluate the effects on the synthesis and activity of acyl homoserine lactone (AHL) in C. violaceum and on the modulation of biofilm, motility, proteolytic, elastase, pyocyanin, and rhamnolipid activity in P. aeruginosa. Finally, the effect of MG on the expression of QS-regulated genes of P. aeruginosa was verified. MG suppressed both the synthesis and activity of AHL in C. violaceum. It also restricted the biofilm formation and other QS-associated virulence factor of P. aeruginosa. MG concentration-dependently suppressed the expression of lasI/R, rhlI/R, and pqsA of P. aeruginosa and was non-toxic in in vitro study. This is the first report of the anti-QS mechanism of MG.

  19. Analysis of codon use features of stearoyl-acyl carrier protein desaturase gene in Camellia sinensis.

    Science.gov (United States)

    Pan, Lu-Lu; Wang, Yu; Hu, Jian-Hui; Ding, Zhao-Tang; Li, Chen

    2013-10-07

    The stearoyl-acyl carrier protein desaturase (SAD) gene widely exists in all kinds of plants. In this paper, the Camellia sinensis SAD gene (CsSAD) sequence was firstly analyzed by Codon W, CHIPS, and CUSP programs online, and then compared with genomes of the tea plant, other species and SAD genes from 11 plant species. The results show that the CsSAD gene and the selected 73 of C. sinensis genes have similar codon usage bias. The CsSAD gene has a bias toward the synonymous codons with A and T at the third codon position, the same as the 73 of C. sinensis genes. Compared with monocotyledons such as Triticum aestivum and Zea mays, the differences in codon usage frequency between the CsSAD gene and dicotyledons such as Arabidopsis thaliana and Nicotiana tobacum are less. Therefore, A. thaliana and N. tobacum expression systems may be more suitable for the expression of the CsSAD gene. The analysis result of SAD genes from 12 plant species also shows that most of the SAD genes are biased toward the synonymous codons with G and C at the third codon position. We believe that the codon usage bias analysis presented in this study will be essential for providing a theoretical basis for discussing the structure and function of the CsSAD gene. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Directory of Open Access Journals (Sweden)

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  1. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.

    Directory of Open Access Journals (Sweden)

    Moe Kawamura

    Full Text Available We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone inhibits the activity of human mitochondrial DNA polymerase γ (pol γ. In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins. These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin showed the strongest suppression of human colon carcinoma (HCT116 cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

  2. An Evaluation of Acylated Ghrelin and Obestatin Levels in Childhood Obesity and Their Association with Insulin Resistance, Metabolic Syndrome, and Oxidative Stress.

    Science.gov (United States)

    Razzaghy-Azar, Maryam; Nourbakhsh, Mitra; Pourmoteabed, Abdolreza; Nourbakhsh, Mona; Ilbeigi, Davod; Khosravi, Mohsen

    2016-06-23

    Ghrelin is a 28-amino acid peptide with an orexigenic property, which is predominantly produced by the stomach. Acylated ghrelin is the active form of this hormone. Obestatin is a 23-amino acid peptide which is produced by post-translational modification of a protein precursor that also produces ghrelin. Obestatin has the opposite effect of ghrelin on food intake. The aim of this study was to evaluate acylated ghrelin and obestatin levels and their ratio in obese and normal-weight children and adolescents, and their association with metabolic syndrome (MetS) parameters. Serum acyl-ghrelin, obestatin, leptin, insulin, fasting plasma glucose (FPG), lipid profile, and malondialdehyde (MDA) were evaluated in 73 children and adolescents (42 obese and 31 control). Insulin resistance was calculated by a homeostasis model assessment of insulin resistance (HOMA-IR). MetS was determined according to IDF criteria. Acyl-ghrelin levels were significantly lower in obese subjects compared to the control group and lower in obese children with MetS compared to obese subjects without MetS. Obestatin was significantly higher in obese subjects compared to that of the control, but it did not differ significantly among those with or without MetS. Acyl-ghrelin to obestatin ratio was significantly lower in obese subjects compared to that in normal subjects. Acyl-ghrelin showed significant negative and obestatin showed significant positive correlations with body mass index (BMI), BMI Z-score, leptin, insulin, and HOMA-IR. Acyl-ghrelin had a significant negative correlation with MDA as an index of oxidative stress. Ghrelin is decreased and obestatin is elevated in obesity. Both of these hormones are associated with insulin resistance, and ghrelin is associated with oxidative stress. The balance between ghrelin and obestatin seems to be disturbed in obesity.

  3. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular Utilization

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Black, P N; Zhao, X D

    2001-01-01

    Exogenous long-chain fatty acids are activated to coenzyme A derivatives prior to metabolic utilization. In the yeast Saccharomyces cerevisiae, the activation of these compounds prior to metabolic utilization proceeds through the fatty acyl-CoA synthetases Faa1p and Faa4p. Faa1p or Faa4p...... enzymes acyl-CoA oxidase (POX1) and medium-chain acyl-CoA synthetase (FAA2). These data support the hypothesis that fatty acyl-CoA synthetase (Faa1p or Faa4p) functions as a component of the fatty acid import system by linking import and activation of exogenous fatty acids to intracellular utilization...

  4. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples.

    Science.gov (United States)

    Kumari, Anjali; Pasini, Patrizia; Daunert, Sylvia

    2008-07-01

    Bacteria communicate among themselves using certain chemical signaling molecules. These signaling molecules generally are N-acyl homoserine lactones (AHLs) in Gram-negative bacteria and oligopeptides in Gram-positive bacteria. In addition, both Gram-positive and Gram-negative bacteria produce a family of signaling molecules known as autoinducer-2 that they employ for their communications. Bacteria coordinate their behavior by releasing and responding to the chemical signaling molecules present in proportion to their population density. This phenomenon is known as quorum sensing. The role of bacteria in the pathogenesis of several diseases, including gastrointestinal (GI) disorders, is well established. Moreover, rather recently bacterial quorum sensing has been implicated in the onset of bacterial pathogenicity. Thus, we hypothesized that the signaling molecules involved in bacterial communication may serve as potential biomarkers for the diagnosis and management of several bacteria-related diseases. For that, we previously developed a method based on genetically engineered whole-cell sensing systems for the rapid, sensitive, cost-effective and quantitative detection of AHLs in biological samples, such as saliva and stool, from both healthy and diseased individuals with GI disorders. Although various analytical methods, based on physical-chemical techniques and bacterial whole-cell biosensors, have been developed for the detection of AHLs in the supernatants of bacterial cultures, only a few of them have been applied to AHL monitoring in real samples. In this paper, we report work performed in our laboratory and review that from others that describes the detection of AHLs in biological, clinical samples, and report some of our recent experimental results.

  5. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mercedes Nancy Munkonda

    Full Text Available BACKGROUND: Complement 3 (C3, a key component of the innate immune system, is involved in early inflammatory responses. Acylation stimulating protein (ASP; aka C3adesArg, a C3 cleavage product, is produced in adipose tissue and stimulates lipid storage. We hypothesized that, depending on the diet, chronic ASP administration in C3(-/- mice would affect lipid metabolism and insulin sensitivity via an adaptive adipose tissue inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: C3(-/- mice on normal low fat diet (ND or high fat diet (HFD were chronically administered recombinant ASP (rASP for 25 days via an osmotic mini-pump. While there was no effect on food intake, there was a decrease in activity, with a relative increase in adipose tissue weight on ND, and a shift in adipocyte size distribution. While rASP administration to C3(-/- mice on a ND increased insulin sensitivity, on a HFD, rASP administration had the opposite effect. Specifically, rASP administration in C3(-/- HFD mice resulted in decreased gene expression of IRS1, GLUT4, SREBF1 and NFκB in muscle, and decreased C5L2 but increased JNK, CD36, CD11c, CCR2 and NFκB gene expression in adipose tissue as well as increased secretion of proinflammatory cytokines (Rantes, KC, MCP-1, IL-6 and G-CSF. In adipose tissue, although IRS1 and GLUT4 mRNA were unchanged, insulin response was reduced. CONCLUSION: The effects of chronic rASP administration are tissue and diet specific, rASP administration enhances the HFD induced inflammatory response leading to an insulin-resistant state. These results suggest that, in humans, the increased plasma ASP associated with obesity and cardiovascular disease could be an additional factor directly contributing to development of metabolic syndrome, insulin resistance and diabetes.

  6. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.

    Science.gov (United States)

    Brocca, Stefania; Ferrari, Cristian; Barbiroli, Alberto; Pesce, Alessandra; Lotti, Marina; Nardini, Marco

    2016-12-01

    Life in cold environments requires an overall increase in the flexibility of macromolecular and supramolecular structures to allow biological processes to take place at low temperature. Conformational flexibility supports high catalytic rates of enzymes in the cold but in several cases is also a cause of instability. The three-dimensional structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) reported in this paper highlights adaptive molecular changes resulting in a fine-tuned trade-off between flexibility and stability. In its functional form SpAAP is a dimer, and an increase in flexibility is achieved through loosening of intersubunit hydrophobic interactions. The release of subunits from the quaternary structure is hindered by an 'arm exchange' mechanism, in which a tiny structural element at the N terminus of one subunit inserts into the other subunit. Mutants lacking the 'arm' are monomeric, inactive and highly prone to aggregation. Another feature of SpAAP cold adaptation is the enlargement of the tunnel connecting the exterior of the protein with the active site. Such a wide channel might compensate for the reduced molecular motions occurring in the cold and allow easy and direct access of substrates to the catalytic site, rendering transient movements between domains unnecessary. Thus, cold-adapted SpAAP has developed a molecular strategy unique within this group of proteins: it is able to enhance the flexibility of each functional unit while still preserving sufficient stability. Structural data are available in the Protein Data Bank under the accession number 5L8S. © 2016 Federation of European Biochemical Societies.

  7. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization.

    Science.gov (United States)

    Cases, S; Novak, S; Zheng, Y W; Myers, H M; Lear, S R; Sande, E; Welch, C B; Lusis, A J; Spencer, T A; Krause, B R; Erickson, S K; Farese, R V

    1998-10-09

    The synthesis of cholesterol esters by acyl-CoA:cholesterol acyltransferase (ACAT, EC 2.3.1.26) is an important component of cellular cholesterol homeostasis. Cholesterol ester formation also is hypothesized to be important in several physiologic processes, including intestinal cholesterol absorption, hepatic lipoprotein production, and macrophage foam cell formation in atherosclerotic lesions. Mouse tissue expression studies and the disruption of the mouse ACAT gene (Acact) have indicated that more than one ACAT exists in mammals and specifically that another enzyme is important in mouse liver and intestine. We now describe a second mammalian ACAT enzyme, designated ACAT-2, that is 44% identical to the first cloned mouse ACAT (henceforth designated ACAT-1). Infection of H5 insect cells with an ACAT-2 recombinant baculovirus resulted in expression of a approximately 46-kDa protein in cell membranes that was associated with high levels of cholesterol esterification activity. Both ACAT-1 and ACAT-2 also catalyzed the esterification of the 3beta-hydroxyl group of a variety of oxysterols. Cholesterol esterification activities for ACAT-1 and ACAT-2 exhibited different IC50 values when assayed in the presence of several ACAT-specific inhibitors, demonstrating that ACAT inhibitors can selectively target specific forms of ACAT. ACAT-2 was expressed primarily in mouse liver and small intestine, supporting the hypothesis that ACAT-2 contributes to cholesterol esterification in these tissues. The mouse ACAT-2 gene (Acact2) maps to chromosome 15 in a region containing a quantitative trait locus influencing plasma cholesterol levels. The identification and cloning of ACAT-2 will facilitate molecular approaches to understanding the role of ACAT enzymes in mammalian biology.

  8. Up-regulation of acyl-coenzyme A:cholesterol acyltransferase (ACAT) in nephrotic syndrome.

    Science.gov (United States)

    Vaziri, Nosratola D; Liang, Kaihui

    2002-05-01

    We have previously demonstrated that hypercholesterolemia in rats with puromycin-induced nephrotic syndrome (NS) is associated with up-regulation of hepatic 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and relative down-regulation of cholesterol 7alpha-hydroxylase (Ch-7alpha), which represent the rate-limiting steps in cholesterol biosynthesis and catabolism. Expression of HMG-CoA reductase is inhibited and Ch-7alpha is augmented by intracellular free cholesterol, which is avidly esterified by acyl-CoA:cholesterol acyltransferase (ACAT). Therefore, we hypothesized that NS may result in up-regulation of hepatic ACAT. Hepatic tissue ACAT mRNA (Northern blot), protein (Western blot) and enzymatic activity were determined in rats with puromycin-induced NS, placebo-treated control rats and Nagase hypoalbuminemic (NAG) rats. The NS group exhibited heavy proteinuria, hypoalbuminemia, normal creatinine clearance, severe hypercholesterolemia and hypertriglyceridemia. Despite severe hypoalbuminemia, NAG rats with inherited hypoalbuminemia exhibited only a mild elevation of plasma cholesterol and triglycerides. Severe hypercholesterolemia in the NS group was coupled with depressed liver tissue free cholesterol concentration and marked increases in hepatic ACAT mRNA, protein and enzymatic activity. In contrast, ACAT mRNA and protein contents of the liver were normal and ACAT activity was mildly elevated in the NAG group. NS results in marked up-regulation of hepatic ACAT, which is primarily due to proteinuria and not hypoalbuminemia, since the latter alone, as seen in NAG rats, does not significantly impact ACAT expression. Elevated ACAT in NS can contribute to dysregulation of cholesterol biosynthesis and catabolism by limiting the normal cholesterol signaling involved in regulation of these processes.

  9. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    Science.gov (United States)

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226.

  10. Molecular Characterization of Two Fatty Acyl-CoA Reductase Genes From Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu

    2016-01-01

    Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  11. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    Energy Technology Data Exchange (ETDEWEB)

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance; Besra, Gurdyal S.; Sacchettini, James C. (Birmingham UK); (TAM)

    2011-09-20

    The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS-ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the {alpha}2 helix and in the conformation of the {alpha}3-{alpha}4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4-6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS-ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS-ADP adopt different conformations depending upon the pH conditions of the crystallization solution.

  12. The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation

    Directory of Open Access Journals (Sweden)

    Leoni Livia

    2007-07-01

    Full Text Available Abstract Background In Pseudomonas putida and Pseduomonas aeruginosa, the similar PpuR/RsaL/PpuI and LasR/RsaL/LasI acyl homoserine lactones (AHLs quorum sensing (QS systems have been shown to be under considerable regulation by other global regulators. A major regulator is the RsaL protein which strongly directly represses the transcription of the P. putida ppuI and P. aeruginosa lasI AHL synthases. In this study we screened a transposon mutant bank of P. putida in order to identify if any other regulators were involved in negative regulation of AHL QS. Results In our screen we identified three Tn5 mutants which displayed overproduction of AHLs in P. putida strain WCS358. Two of the mutants had a Tn5 located in the rsaL gene, whereas in one mutant the transposon was located in the lon protease gene. Lon proteases play important roles in protein quality control via degradation of misfolded proteins. It was determined that in the P. putida lon mutant, AHL levels, PpuR levels and ppuI promoter activity all increased significantly; we therefore postulated that PpuR is a target for Lon. The Lon protease had no effect on AHL production in P. aeruginosa. Conclusion The Lon protease is a negative regulator of AHL production in P. putida WCS358. The Lon protease has also been shown by others to influence AHL QS in Vibrio fischeri and Agrobacterium tumefaciens and can thus become an important regulator of AHL QS timing and regulation in bacteria.

  13. Acylation stimulating protein, complement C3 and lipid metabolism in ketosis-prone diabetic subjects.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Ketosis-prone diabetes (KPDM is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear.Twenty KPDM patients and twelve type 1 diabetic patients (T1DM, evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT for 2 h.At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001 with no differences in non-esterified fatty acids (NEFA while Acylation Stimulating Protein (ASP tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins, while 9 were maintained (KPDM+ins. NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006, 12 months (p<0.0001 and 24 months (p<0.0001 during MMTT. NEFA in KPDM-ins decreased over 30-120 minutes (p<0.05, but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081 and 24 months (p = 0.0019, while ASP was lower at baseline (p = 0.0024 and 12 months (p = 0.0281, with a decrease in ASP/C3 ratio.Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.

  14. Augmentation of acyl homoserine lactones-producing and -quenching bacterium into activated sludge for its granulation.

    Science.gov (United States)

    Li, Yu-Sheng; Pan, Xin-Rong; Cao, Jia-Shun; Song, Xiang-Ning; Fang, Fang; Tong, Zhong-Hua; Li, Wen-Wei; Yu, Han-Qing

    2017-11-15

    Quorum sensing (QS), especially acyl homoserine lactone (AHL)-mediated QS, in activated sludge arouses great interests because of its vital role in the formation of biofilm and aerobic granules (AG). Although QS is reported to be largely related to the properties of activated sludge, it is not economically feasible to tune QS in an activated sludge reactor through dosing pure AHL or AHL hydrolase. A more reasonable way to tune QS is to augment reactors with AHL-producing or -quenching bacteria. In this work, the impacts of continuous dose of AHL-producing or -quenching strains on the activated sludge during its granulation process were explored. Augmentation of AHL-producing or -quenching strains resulted in up- or down-regulation of the AHL concentration in the reactors. Granulation of activated sludge was also accomplished in all reactors, but the granules showed negligible or slight differences in the physicochemical properties of sludge, such as nutrients removal, biomass concentration, extracellular polymeric substances, and zeta potential. Interestingly, a smaller granule size was observed for both the reactor augmented with either an AHL-quenching strain or an AHL-producing strain, suggesting that the AHL augmentation suppressed the biofilm development. Pyrosequencing analysis reveals that the granules cultured in the reactors varied widely in bacterial community structure, indicating that the AHL augmentation had a greater impact on the bacterial community structure, rather than on the physicochemical properties of activated sludge. These results demonstrate that the role of QS in the biofilm formation in complex wastewater treatment bioreactors should be re-evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  16. Anthocyanins in berries of ribes including gooseberry cultivars with a high content of acylated pigments.

    Science.gov (United States)

    Jordheim, Monica; Måge, Finn; Andersen, Øyvind M

    2007-07-11

    Consumption of berries from various sources including the genus Ribes has been associated with diverse potential health benefits. The 14 examined cultivars of European gooseberry (R. grossularia L.) contained in various proportions the 3-glucoside (3), 3-rutinoside (4), 3-xyloside (7), 3-O-beta-(6' '-E-caffeoylglucopyranoside) (8), and 3-O-beta-(6' '-E-p-coumaroylglucopyranoside) (10) of cyanidin and the 3-rutinoside (6) and 3-glucoside of peonidin (5). Pigments 3, 4, delphinidin 3-rutinoside (2), delphinidin 3-glucoside (1), and minor amounts of 6, 7, and 10 were found in red flowering currant (R. sanguineum Pursh). Golden currant (R. aureum Pursh) contained 3, 4, and trace amounts of 1, 6, and 7, while alpine currant (R. alpinum L.) contained 3, 4, and trace amounts of 10. The major anthocyanins in two cultivars of jostaberries (R. x nidigrolaria Bauer), 1-4, 8, and 10, reflected that this hybrid contained the major anthocyanins of both parents, black currant and gooseberry. This is the first complete identification of 8 and the ring size of the sugar of 10. Pigment 9 was tentatively identified as cyanidin 3-(6' '-Z-p-coumaroylglucoside). This new pigment occurred in minor amounts (<2%) in all R. grosssularia and R. x nidigrolaria cultivars. No commercially available berries have been reported to contain such high proportions of aromatic acylated anthocyanins as found in the gooseberry cultivars "Samsø", "Hinnomäki Red", "Taastrup", "Lofthus", and "Glendal", which are in this context the most obvious candidates for consumption, colorant, and breeding programs.

  17. 3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis.

    Science.gov (United States)

    Wilson, Michael B; Pawlus, Alison D; Brinkman, Doug; Gardner, Gary; Hegeman, Adrian D; Spivak, Marla; Cohen, Jerry D

    2017-06-01

    Honey bees, Apis mellifera, collect antimicrobial plant resins from the environment and deposit them in their nests as propolis. This behavior is of practical concern to beekeepers since the presence of propolis in the hive has a variety of benefits, including the suppression of disease symptoms. To connect the benefits that bees derive from propolis with particular resinous plants, we determined the identity and botanical origin of propolis compounds active against bee pathogens using bioassay-guided fractionation against the bacterium Paenibacillus larvae, the causative agent of American foulbrood. Eleven dihydroflavonols were isolated from propolis collected in Fallon, NV, including pinobanksin-3-octanoate. This hitherto unknown derivative and five other 3-acyl-dihydroflavonols showed inhibitory activity against both P. larvae (IC50 = 17-68 μM) and Ascosphaera apis (IC50 = 8-23 μM), the fungal agent of chalkbrood. A structure-activity relationship between acyl group size and antimicrobial activity was found, with longer acyl groups increasing activity against P. larvae and shorter acyl groups increasing activity against A. apis. Finally, it was determined that the isolated 3-acyl-dihydroflavonols originated from Populus fremontii, and further analysis showed these compounds can also be found in other North American Populus spp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins1

    Science.gov (United States)

    Rinaldo, Amy R.; Cavallini, Erika; Jia, Yong; Moss, Sarah M.A.; McDavid, Debra A.J.; Hooper, Lauren C.; Robinson, Simon P.; Tornielli, Giovanni B.; Zenoni, Sara; Ford, Christopher M.; Boss, Paul K.; Walker, Amanda R.

    2015-01-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. PMID:26395841

  19. Neisseria gonorrhoeae penicillin-binding protein 3 demonstrates a pronounced preference for N(epsilon)-acylated substrates.

    Science.gov (United States)

    Peddi, Sridhar; Nicholas, Robert A; Gutheil, William G

    2009-06-23

    Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis and are the lethal targets of beta-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-l-Ala-gamma-d-Glu-l-Lys-d-Ala-d-Ala, were synthesized to test specificity for three features of PBP substrates: (1) the presence or absence of an N(epsilon)-acyl group, (2) the presence of d-IsoGln in place of gamma-d-Glu, and (3) the presence or absence of the N-terminal l-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 x 10(5) M(-1) s(-1)) with the best of these substrates, with a pronounced preference (50-fold) for N(epsilon)-acylated substrates over N(epsilon)-nonacylated substrates. This observation suggests that NG PBP3 is specific for the approximately d-Ala-d-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity. NG PBP3 demonstrated low selectivity for gamma-d-Glu vs d-IsoGln and for the presence or absence of the terminal l-Ala residue. The implications of this substrate specificity of NG PBP3 with respect to its possible role in cell wall biosynthesis, and for understanding the substrate specificity of the LMM PBPs in general, are discussed.

  20. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    Science.gov (United States)

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  1. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    OpenAIRE

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D.; Thinon, Emmanuelle; Rodgers, Ursula R.; Owens, Raymond J.; Magee, Anthony I.; Tate, Edward W.

    2016-01-01

    ? 2016 The Authors.In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed RU-SKI ) class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related a...

  2. Postprandial response of plasma insulin, amylin and acylated ghrelin to various test meals in lean and obese cats

    OpenAIRE

    Martin, Lucile J. M.; Siliart, Brigitte; Lutz, Thomas A.; Biourge, Vincent; Nguyen, Patrick; Dumon, Henri J. W.

    2010-01-01

    The propensity of diets of different composition to promote obesity is a current topic in feline medicine. The effects of three meals with different protein:fat ratios on hormones (insulin, acylated ghrelin and amylin) involved in the control of food intake and glucose metabolism were compared. Five lean (two females and three males, 28.6 (sd 3.4) % body fat mass (BFM), mean body weight (BW) 4590 g) and five obese (two females and three males, 37.1 (sd 4.1) % BFM, mean BW 4670 g) adult cats w...

  3. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Udvari, S

    1997-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of mitochondrial beta-oxidation. It is potentially fatal, but shows a wide clinical spectrum. The aim of the present study was to investigate whether any correlation exists between MCAD genotype and disease....../phenotype correlation in MCAD deficiency is not straightforward. Different mutations may contribute with different susceptibilities for disease precipitation, when the patient is subjected to metabolic stress, but other genetic and environmental factors may play an equally important role....

  4. "Hot Stuff": The Many Uses of a Radiolabel Assay in Detecting Acyl-Homoserine Lactone Quorum-Sensing Signals.

    Science.gov (United States)

    Schaefer, Amy L; Harwood, Caroline S; Greenberg, E Peter

    2018-01-01

    Many Proteobacteria synthesize acyl-homoserine lactone (AHL) molecules for use as signals in cell density-dependent gene regulation known as quorum sensing (QS) and response. AHL detection protocols are essential to QS researchers and several techniques are available, including a 14C-AHL radiolabel assay. This assay is based on the uptake of radiolabeled methionine by living cells and conversion of the radiolabel into S-adenosylmethionine (SAM). The radiolabeled SAM is then incorporated into AHL signal by an AHL synthase enzyme. Here we describe a methodology to perform the AHL radiolabel assay, which is unbiased, relatively fast, and very sensitive compared to other AHL detection protocols.

  5. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators

    DEFF Research Database (Denmark)

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.

    2013-01-01

    triazole-containing analogs of natural N-acyl l-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(i)-catalyzed azide–alkyne couplings...... QS to initiate virulence once they achieve a threshold cell number on a host. Consequently, approaches to intercept QS have attracted considerable attention as potential anti-infective therapies. Our interest in the development of small molecule tools to modulate QS pathways motivated us to evaluate...

  6. Acyl carrier protein (ACP) inhibition and other differences between b-ketoacyl synthase (KAS) I and II

    DEFF Research Database (Denmark)

    McGuire, Kirsten Arnvig; McGuire, J.N.; Wettstein-Knowles, Penny von

    2000-01-01

    , whereas KAS I also forms higher multimers. The binding affinities for KAS I and KAS II to C14-acyl carrier protein (ACP) as well as for C14-ACP to KAS I and KAS II were determined. KAS I is sensitive to the ACP released during the transfer reaction, with 50% inhibition at 0.17 µM ACP close...... to the physiological concentration of ACP (0.13 µM). KAS I and II also differ in carrying out the decarboxylation step of the elongation reaction....

  7. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    OpenAIRE

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenyl...

  8. The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

    Directory of Open Access Journals (Sweden)

    Bo Mi Kim

    2016-11-01

    Full Text Available Peptide-thioester is a pivotal intermediate for peptide ligation and N-, C-terminal cyclization. In this study, desired pathway and the side products of two C-terminal handles, hydroxyethylthiol (HET and hydroxypropylthiol (HPT are described in different conditions as well as kinetic studies. In addition, a new mechanism of C-terminal residue racemization is proposed on the basis of differentiation of products derived from the two C-terminal handles in preparing peptide thioesters through an acid-catalyzed tandem thiol switch, first by an intramolecular O-S acyl shift, and then by an intermolecular S-S exchange.

  9. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  10. Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site

    DEFF Research Database (Denmark)

    Einarsdottir, Eydis; Liu, Hong Bing; Freysdottir, Jona

    2016-01-01

    A chemical investigation of the sponge (Porifera) Myxilla incrustans collected from the unique submarine hydrothermal vent site Strytan, North of Iceland, revealed a novel family of closely related N-acyl dopamine glycosides. Three new compounds, myxillin A (1), B (2) and C (3), were isolated...... and structurally elucidated using several analytical techniques, such as HR-MS, 1D and 2D NMR spectroscopy. Myxillin A (1) and B (2)were shown to be structurally similar, composed of a dopamine moiety, but differ in the acyl chain length and saturation. The myxillin C (3) has a dehydrotyrosine moiety composing...... the same acyl chain and glycosylation as myxillin B (2). Myxillins A (1) and C (3) were tested for immunomodulating activity in an in vitro dendritic cell model. Dendritic cells matured and stimulated in the presence of myxillin A (1) secreted lower levels of IL-12p40, whilst dendritic cells matured...

  11. A new way of stabilization of furosemide upon cryogenic grinding by using acylated saccharides matrices. The role of hydrogen bonds in decomposition mechanism.

    Science.gov (United States)

    Kaminska, E; Adrjanowicz, K; Kaminski, K; Wlodarczyk, P; Hawelek, L; Kolodziejczyk, K; Tarnacka, M; Zakowiecki, D; Kaczmarczyk-Sedlak, I; Pilch, J; Paluch, M

    2013-05-06

    Recently it was reported that upon mechanical milling of pure furosemide significant chemical degradation occurs (Adrjanowicz et al. Pharm. Res.2011, 28, 3220-3236). In this paper, we present a novel way of chemical stabilization amorphous furosemide against decomposing that occur during mechanical treatment by preparing binary mixtures with acylated saccharides. To get some insight into the mechanism of chemical degradation of furosemide induced by cryomilling, experimental investigations supported by density functional theory (DFT) computations were carried out. This included detailed studies on molecular dynamics and physical properties of cryoground samples. The main thrust of our paper is that we have shown that furosemide cryomilled with acylated saccharides forms chemically and physically stable homogeneous mixtures with only one glass transition temperature, Tg. Finally, solubility measurements have demonstrated that furosemide cryomilled with acylated saccharides (glucose, maltose and sucrose) is much more soluble with respect to the crystalline form of this active pharmaceutical ingredient (API).

  12. Comparative chemical composition, antioxidant and anticoagulant properties of phenolic fraction (a rich in non-acylated and acylated flavonoids and non-polar compounds) and non-polar fraction from Elaeagnus rhamnoides (L.) A. Nelson fruits.

    Science.gov (United States)

    Olas, Beata; Żuchowski, Jerzy; Lis, Bernadetta; Skalski, Bartosz; Kontek, Bogdan; Grabarczyk, Łukasz; Stochmal, Anna

    2018-05-01

    This study focuses on two fractions from sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) fruits: the phenolic fraction (rich in non-acylated and acylated flavonoids and non-polar compounds) and the non-polar fraction. The objective was to investigate both the chemical composition of these fractions, as well as their biological activities in vitro. The tested fractions of sea buckthorn inhibited lipid peroxidation induced by H2O2, however, the non-polar fraction reduced more powerfully the process induced by H2O2/Fe as compared to the phenolic fraction. The tested fractions of sea buckthorn fruits also inhibited carbonylation stimulated by H2O2/Fe. Moreover, the action of the phenolic fraction and non-polar fraction on hemostatic parameters of plasma was also compared to activities of other phenolic fraction, in which flavonoids were the dominant compounds. Our results indicate that sea buckthorn fruits are a rich source of different secondary metabolites, i.e. triterpenes and their derivates, which possess not only antioxidant properties, but may also display anticoagulant attributes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Total and acylated ghrelin levels in type 2 diabetic patients: similar levels observed after treatment with metformin, pioglitazone or diet therapy.

    Science.gov (United States)

    Kiyici, S; Ersoy, C; Oz Gul, O; Sarandol, E; Demirci, M; Tuncel, E; Sigirli, D; Erturk, E; Imamoglu, S

    2009-09-01

    Ghrelin, a potent gut-brain orexigenic peptide, has a role in stimulation of food intake and long-term regulation of body weight. Metformin and pioglitazone treatment have different effects on body weight. This discrepancy might be related with the effect of these two drugs on plasma ghrelin levels. We investigated the effect of these two drugs on post-prandial acylated and total ghrelin levels in patients with type 2 diabetes. Eleven patients treated with diet, 12 patients treated with 850 mg/day metformin monotherapy and 12 patients treated with 30 mg/day pioglitazone monotherapy for at least 6 months were enrolled in the study. Plasma acylated and total ghrelin levels were investigated at baseline and at the 60 (th), 120 (th), 180 (th), 240 (th) minutes after a mixed meal test. There were no differences between groups in any of baseline metabolic and anthropometric parameters, including acylated and total ghrelin levels. Acylated and total ghrelin concentrations were suppressed similarly after food consumption, and we could not determine any significant difference between the groups at any time interval. A prolonged postprandial suppression of acylated ghrelin concentrations was observed in the pioglitazone treatment group compared with baseline values. In conclusion, total and acylated ghrelin levels after a mixed meal test were similar in type 2 diabetic patients treated with metformin, pioglitazone or diet therapy alone. These results suggest that changes in body weight during metformin and pioglitazone treatment are not associated with plasma ghrelin levels. J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart.New York.

  14. Influence of fluorocarbon and hydrocarbon acyl groups at the surface of bovine carbonic anhydrase II on the kinetics of denaturation by sodium dodecyl sulfate.

    Science.gov (United States)

    Lee, Andrew; Mirica, Katherine A; Whitesides, George M

    2011-02-10

    This paper examines the influence of acylation of the Lys-ε-NH(3)(+) groups of bovine carbonic anhydrase (BCA, EC 4.2.1.1) to Lys-ε-NHCOR (R = -CH(3), -CH(2)CH(3), and -CH(CH(3))(2), -CF(3)) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (k(Ac,n)) of each series of acylated derivatives depended on the number of acylations (n). Plots of log k(Ac,n) vs n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ∼7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ∼7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 denaturation stayed approximately constant; analysis suggested that these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ∼3 for n ∼ 14) in the order CH(3)CONH- < CH(3)CH(2)CONH- < (CH(3))(2)CHCONH- < CF(3)CONH-. These results suggested that the hydrophobicity of CF(3)CONH- is slightly greater (by a factor of <2) than that of RHCONH- with similar surface area.

  15. The Influence of Fluorocarbon and Hydrocarbon Acyl Groups at the Surface of Bovine Carbonic Anhydrase II on the Kinetics of Denaturation by Sodium Dodecyl Sulfate

    Science.gov (United States)

    Lee, Andrew; Mirica, Katherine A.; Whitesides, George M.

    2011-01-01

    This paper examines the influence of acylation of the Lys-ε-NH3+ groups of bovine carbonic anhydrase (BCA, E.C. 4.2.1.1) to Lys-ε-NHCOR (R = -CH3, -CH2CH3, and -CH(CH3)2, -CF3) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (kAc,n) of each series of acylated derivatives depended on the number of acylations (n). Plots of log kAc,n vs. n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ~7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ~7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 denaturation stayed approximately constant; analysis suggested these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ~3 for n ~ 14) in the order CH3CONH- < CH3CH2CONH- < (CH3)2CHCONH- < CF3CONH-. These results suggested that the hydrophobicity of CF3CONH- is slightly greater (by a factor of < 2) than that of RHCONH- similar in surface area. PMID:21182314

  16. Analysis of an acyl-CoA binding protein in Aspergillus oryzae that undergoes unconventional secretion.

    Science.gov (United States)

    Kwon, Hee Su; Kawaguchi, Kouhei; Kikuma, Takashi; Takegawa, Kaoru; Kitamoto, Katsuhiko; Higuchi, Yujiro

    2017-11-04

    Acyl-CoA binding protein (ACBP) plays important roles in the metabolism of lipids in eukaryotic cells. In the industrially important filamentous fungus Aspergillus oryzae, although we have previously demonstrated that the A. oryzae ACBP (AoACBP) localizes to punctate structures and exhibits long-range motility, which is dependent on autophagy-related proteins, the physiological role of AoACBP remains elusive. Here, we describe identification and characterization of another ACBP from A. oryzae; we named this ACBP as AoAcb2 and accordingly renamed AoACBP as AoAcb1. The deduced amino acid sequence of AoAcb2 lacked a signal peptide. Phylogenetic analysis classified AoAcb2 into a clade that was same as the ACBP Acb1 of the model yeast Saccharomyces cerevisiae, but was different from that of AoAcb1. In contrast to punctate localization of AoAcb1, AoAcb2 was found to be dispersedly distributed in the cytoplasm, as was previously observed for the S. cerevisiae Acb1. Since we could not generate an Aoacb2 disruptant, we created an Aoacb2 conditional mutant that exhibited less growth under Aoacb2-repressed condition, suggesting that Aoacb2 is an essential gene for growth. Moreover, we observed that A. oryzae AoAcb2, but not A. oryzae AoAcb1, was secreted under carbon-starved condition, suggesting that AoAcb2 might be secreted via the unconventional protein secretion (UPS) pathway, just like S. cerevisiae Acb1. We also demonstrated that the unconventional secretion of AoAcb2 was dependent on the t-SNARE AoSso1, but was independent of the autophagy-related protein AoAtg1, suggesting that the unconventional secretion of AoAcb2, unlike that of S. cerevisiae Acb1, via the UPS pathway, is not regulated by the autophagy machinery. Thus, the filamentous fungus A. oryzae harbors two types of ACBPs, one of which appears to be essential for growth and undergoes unconventional secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Interaction between acyl-ghrelin and BMI predicts clinical outcomes in hemodialysis patients.

    Science.gov (United States)

    Beberashvili, Ilia; Sinuani, Inna; Azar, Ada; Shapiro, Gregory; Feldman, Leonid; Doenyas-Barak, Keren; Stav, Kobi; Efrati, Shai

    2017-01-18

    Ghrelin, a gastric orexigenic peptide, and body mass index (BMI) are known as inversely associated to each other and are both linked to cardiovascular (CV) risk and mortality in maintenance hemodialysis (MHD) patients. However, it is unclear whether the interaction between ghrelin and BMI is associated with a risk of all-cause and CV death in this population. A prospective observational study was performed on 261 MHD outpatients (39% women, mean age 68.6 ± 13.6 years) recruited from October 2010 through April 2012, and were followed until November 2014 (median follow-up-28 months, interquartile range-19-34 months). We measured acyl-ghrelin (AG) levels, appetite, nutritional and inflammatory markers, prospective all-cause and cardiovascular (CV) mortality. During follow-up, 109 patients died, 51 due to CV causes. A significant interaction effect of high BMI and high AG (defined as levels higher than median) on all-cause mortality was found. Crude Cox HR for the product termed BMI x AG was 0.52, with a 95% confidence interval (CI): 0.29 to 0.95 (P = 0.03). Evaluating the interaction on an additive scale revealed that the combined predictive value of BMI and AG is larger than the sum of their individual predictive values (synergy index was 1.1). Across the four BMI-AG categories, the group with high BMI and high AG exhibited better all-cause and cardiovascular mortality irrespective of appetite and nutritional status (multivariable adjusted hazard ratios were 0.31, 95% CI 0.16 to 0.62, P = 0.001, and 0.35, 95% CI 0.13 to 0.91, P = 0.03, respectively). Data analyses made by dividing patients according to fat mass-AG, but not to lean body mass-AG categories, provided similar results. Higher AG levels enhance the favourable association between high BMI and survival in MHD patients irrespective of appetite, nutritional status and inflammation.

  18. The gene encoding acyl-CoA-binding protein is subject to metabolic regulation by both sterol regulatory element-binding protein and peroxisome proliferator-activated receptor alpha in hepatocytes

    DEFF Research Database (Denmark)

    Sandberg, Maria B; Bloksgaard, Maria; Duran-Sandoval, Daniel

    2005-01-01

    The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular lipid-binding protein that transports acylCoA esters. The protein is expressed in most cell types at low levels; however, expression is particularly high in cells with a high turnover of fatty acids. Here we confirm a previous observat...

  19. An efficient one-pot procedure for asymmetric bifunctionalization of 5,15-disubstituted porphyrins: a simple preparation of meso acyl-, alkoxycarbonyl-, and carbamoyl-substituted meso-formylporphyrins.

    Science.gov (United States)

    Takanami, Toshikatsu; Wakita, Atsushi; Matsumoto, Jun; Sekine, Sadashige; Suda, Kohji

    2009-01-07

    An efficient one-pot procedure which converts 5,15-disubstituted porphyrins into their corresponding meso acyl-, alkoxycarbonyl-, and carbamoyl-substituted meso-formylporphyrins has been developed, where the procedure involves a sequential S(N)Ar reaction of porphyrins with PyMe(2)SiCH(2)Li, followed by acylation or related reactions and oxidation.

  20. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  1. The acyl nitroso Diels-Alder (ANDA) reaction of sorbate derivatives: an X-ray and 15N NMR study with an application to amino-acid synthesis.

    Science.gov (United States)

    Bollans, Lee; Bacsa, John; Iggo, Jonathan A; Morris, Gareth A; Stachulski, Andrew V

    2009-11-07

    We present a study of the acyl nitroso Diels-Alder (ANDA) reaction of sorbate esters and sorbic alcohol derivatives, using alkoxycarbonyl nitroso dienophiles. An optimisation of the reaction conditions for ethyl sorbate is first presented, and the product is used in an efficient synthesis of 5-methylornithine. Structure-reactivity trends in sorbic alcohol (E,E-2,4-hexadien-1-ol) and its acylated analogues are then discussed. We present single-crystal X-ray structural proof for key adducts in both series and present in detail a novel HMBC/HSQC ((1)H-(15)N) criterion for ready distinction of regioisomers arising from such ANDA reactions.

  2. Microwave assisted chemistry: A rapid and regioselective route for direct ortho-acylation of phenols and naphthols by methanesulfonic acid as catalyst

    Directory of Open Access Journals (Sweden)

    Hossein Naeimi

    2017-05-01

    Full Text Available Direct ortho-acylation of phenols and naphthols with methanesulfonic acid (MSA as the catalyst has been studied under microwave stimulation. The microwave assisted reaction was environmentally benign in terms of faster reaction, useful conditions and higher yield of the desired products. However, after 3–4 min reaction time at 200–300 Watt, selectivity to over 98% ortho-acylation products was obtained. These reactions have some advantages in competition with other methods such as; short reaction times, high yield and regioselectivity of products, mild reaction conditions and easy workup of the reactions.

  3. The ETFDH c.158A>G Variation Disrupts the Balanced Binding of ESE and ESS Proteins Causing Missplicing and Multiple acyl-CoA Dehydrogenation Deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan

    2013-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostica......Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only...

  4. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3......, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3...

  5. Sequential one-pot synthesis of imidazoles and 2H-imidazolones from β-ketoamines, acylating agents and ammonium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Jalani, Hitesh B.; Venkateswararao, Edda; Manickam, Manoj; Jung, Sang Hun [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon (Korea, Republic of)

    2016-12-15

    An efficient, practical, straight forward, and transition metal-free three-component synthesis of diversely substituted imidazoles and 2H-imidazolones from β-ketoamines, acylating agents, and ammonium acetate has been described herein. This approach involves [3+1+1] cyclization through consecutive formation of three C–N bonds as a sequence of initial amidation of β-ketoamines with acylating agent, β-iminoketoamide formation with ammonia, and acid catalyzed concomitant cyclodehydration to afford the imidazoles and 2H-imidazolones. This methodology has advantages such as single flask operation, readily available starting materials, mild conditions, broad functional groups tolerance, and simple work-up procedure.

  6. RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication

    Directory of Open Access Journals (Sweden)

    Minagawa Shu

    2012-05-01

    Full Text Available Abstract Background Bacteria release a wide variety of small molecules including cell-to-cell signaling compounds. Gram-negative bacteria use a variety of self-produced autoinducers such as acylated homoserine lactones (acyl-HSLs as signal compounds for quorum sensing (QS within and between bacterial species. QS plays a significant role in the pathogenesis of infectious diseases and in beneficial symbiosis by responding to acyl-HSLs in Pseudomonas aeruginosa. It is considered that the selection of bacterial languages is necessary to regulate gene expression and thus it leads to the regulation of virulence and provides a growth advantage in several environments. In this study, we hypothesized that RND-type efflux pump system MexAB-OprM of P. aeruginosa might function in the selection of acyl-HSLs, and we provide evidence to support this hypothesis. Results Loss of MexAB-OprM due to deletion of mexB caused increases in QS responses, as shown by the expression of gfp located downstream of the lasB promoter and LasB elastase activity, which is regulated by a LasR-3-oxo-C12-HSL complex. Either complementation with a plasmid containing wild-type mexB or the addition of a LasR-specific inhibitor, patulin, repressed these high responses to 3-oxo-acyl-HSLs. Furthermore, it was shown that the acyl-HSLs-dependent response of P. aeruginosa was affected by the inhibition of MexB transport activity and the mexB mutant. The P. aeruginosa MexAB-OprM deletion mutant showed a strong QS response to 3-oxo-C10-HSL produced by Vibrio anguillarum in a bacterial cross-talk experiment. Conclusion This work demonstrated that MexAB-OprM does not control the binding of LasR to 3-oxo-Cn-HSLs but rather accessibility of non-cognate acyl-HSLs to LasR in P. aeruginosa. MexAB-OprM not only influences multidrug resistance, but also selects acyl-HSLs and regulates QS in P. aeruginosa. The results demonstrate a new QS regulation mechanism via the efflux system MexAB-OprM in P

  7. Identification of human telomerase inhibitors having the core of N-acyl-4,5-dihydropyrazole with anticancer effects.

    Science.gov (United States)

    Xiao, Xuan; Ni, Yong; Jia, Ying-Ming; Zheng, Min; Xu, Han-Fei; Xu, Jun; Liao, Chenzhong

    2016-03-15

    Eight human telomerase inhibitors (5a-5h) having the core of N-acyl-4,5-dihydropyrazole with anticancer effects were identified in this study. Biological results revealed that a few compounds had potent anticancer activities against three common tumor cell lines (SGC-7901, HepG2 and MGC-803). Among them, compound 5c, with a molecular weight of only 272.2 Da, had antiproliferative activities against SGC-7901 and MGC-803 with EC50 values of 2.06 ± 0.17 and 2.89 ± 0.62 μM, respectively, better than 5-Fluorouracil. Compound 5c inhibited the enzyme of telomerase with an IC50 value of 1.86 ± 0.51 μM, surpassing the control compound, ethidium bromide. Modeling study showed that this compound can reside in the binding pocket of the telomerase/TNA:DNA hairpin complex. When the moiety of N-acyl was changed to N-sulfonyl, the gotten compounds (8a-8i) had deteriorative activities against both these three cancer cell lines and the enzyme of telomerase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes.

    Science.gov (United States)

    Camões, Fátima; Islinger, Markus; Guimarães, Sofia C; Kilaru, Sreedhar; Schuster, Martin; Godinho, Luis F; Steinberg, Gero; Schrader, Michael

    2015-01-01

    Peroxisomes are ubiquitous organelles which participate in a variety of essential biochemical pathways. An intimate interrelationship between peroxisomes and mitochondria is emerging in mammals, where both organelles cooperate in fatty acid β-oxidation and cellular lipid homeostasis. As mitochondrial fatty acid β-oxidation is lacking in yeast and plants, suitable genetically accessible model systems to study this interrelationship are scarce. Here, we propose the filamentous fungus Ustilago maydis as a suitable model for those studies. We combined molecular cell biology, bioinformatics and phylogenetic analyses and provide the first comprehensive inventory of U. maydis peroxisomal proteins and pathways. Studies with a peroxisome-deficient Δpex3 mutant revealed the existence of parallel and complex, cooperative β-oxidation pathways in peroxisomes and mitochondria, mimicking the situation in mammals. Furthermore, we provide evidence that acyl-CoA dehydrogenases (ACADs) are bona fide peroxisomal proteins in fungi and mammals and together with acyl-CoA oxidases (ACOX) belong to the basic enzymatic repertoire of peroxisomes. A genome comparison with baker's yeast and human gained new insights into the basic peroxisomal protein inventory shared by humans and fungi and revealed novel peroxisomal proteins and functions in U. maydis. The importance of our findings for the evolution and function of the complex interrelationship between peroxisomes and mitochondria in fatty acid β-oxidation is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) Inhibitors as hypolipidemic and antiatherosclerosis drugs.

    Science.gov (United States)

    Leon, Carlos; Hill, John S; Wasan, Kishor M

    2005-10-01

    Acyl-coenzyme A:cholesterol transferase (ACAT) is an integral membrane protein localized in the endoplasmic reticulum. ACAT catalyzes the formation of cholesteryl esters from cholesterol and fatty acyl coenzyme A. The cholesteryl esters are stored as cytoplasmic lipid droplets inside the cell. This process is very important to the organism as high cholesterol levels have been associated with cardiovascular disease. In mammals, two ACAT genes have been identified, ACAT1 and ACAT2. ACAT1 is ubiquitous and is responsible for cholesteryl ester formation in brain, adrenal glands, macrophages, and kidneys. ACAT2 is expressed in the liver and intestine. The inhibition of ACAT activity has been associated with decreased plasma cholesterol levels by suppressing cholesterol absorption and by diminishing the assembly and secretion of apolipoprotein B-containing lipoproteins such as very low density lipoprotein (VLDL). ACAT inhibition also prevents the conversion of macrophages into foam cells in the arterial walls, a critical event in the development of atherosclerosis. This review paper will focus on the role of ACAT in cholesterol metabolism, in particular as a target to develop novel therapeutic agents to control hypercholesterolemia, atherosclerosis, and Alzheimer's disease.

  10. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    Directory of Open Access Journals (Sweden)

    Thomas Lanyon-Hogg

    2016-06-01

    Full Text Available In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed “RU-SKI” class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a, RU-SKI 43 (9b, RU-SKI 101 (9c, and RU-SKI 201 (9d were profiled for activity in the related article “Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase” (Lanyon-Hogg et al., 2015 [1]. 1H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors.

  11. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    Science.gov (United States)

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D.; Thinon, Emmanuelle; Rodgers, Ursula R.; Owens, Raymond J.; Magee, Anthony I.; Tate, Edward W.

    2016-01-01

    In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed “RU-SKI”) class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related article “Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase” (Lanyon-Hogg et al., 2015) [1]. 1H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors. PMID:27077078

  12. Psychiatric comorbidity and plasma levels of 2-acyl-glycerols in outpatient treatment alcohol users. Analysis of gender differences.

    Science.gov (United States)

    García Marchena, Nuria; Araos, Pedro; Pavón, Francisco Javier; Ponce, Guillermo; Pedraz, María; Serrano, Antonia; Arias, Francisco; Romero-Sanchiz, Pablo; Suárez, Juan; Pastor, Antoni; De la Torre, Rafael; Torrens, Marta; Rubio, Gabriel; Rodríguez de Fonseca, Fernando

    2016-09-29

    Alcohol addiction is associated with high psychiatric comorbidity. Objective stratification of patients is necessary to optimize care and improve prognosis. The present study is designed to gain insights into this challenge by addressing the following objectives: a) to estimate the prevalence of psychiatric comorbidities in a sample of outpatients seeking treatment for alcohol use disorder, b) to describe the existence of gender differences and c) to validate 2-acyl-glycerols as biomarkers of alcohol use disorder and/or psychiatric comorbidity. One hundred and sixty-two patients were recruited and evaluated with the semi-structured interview PRISM. The presence of psychopathology was associated with a greater number of criteria for alcohol abuse and dependence according to DSM-IV-TR. We found gender differences in psychiatric comorbidity, e.g., mood disorder, as well as in comorbid substance use disorders. The prevalence of lifetime psychiatric comorbidity was 68.5%, with mood disorders the most frequent (37%), followed by attention deficit disorder (24.7%) and anxiety disorders (17.9%). Substance-induced disorders were more frequent in mood and psychotic disorders, whereas the primary disorders were more prevalent in patients with comorbid anxiety disorders. We found that 2-acyl-glycerols were significantly decreased in comorbid anxiety disorders in alcohol dependent patients in the last year, which makes them a potential biomarker for this psychopathological condition.

  13. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using...... an established steady-state kinetic model. Liver was used as a negative control, and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetase (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was completely restored...... after the addition of exogenous wild-type mouse or human alpha-synuclein, but not by A30P, E46K, and A53T forms of alpha-synuclein. Acsl and acyl-CoA hydrolase expression was not different between groups. The incorporation and turnover of 20:4n-6 into brain phospholipid pools were markedly reduced...

  14. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    Science.gov (United States)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  15. Crystallization and preliminary X-ray analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Jun, E-mail: jun-saito@meiji.co.jp; Yamada, Mototsugu; Watanabe, Takashi; Kitagawa, Hideo; Takeuchi, Yasuo [Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567 (Japan)

    2006-06-01

    Enoyl-acyl carrier protein (ACP) reductases are responsible for bacterial type II fatty-acid biosynthesis and are attractive targets for developing novel antibiotics. The S. pneumoniae enoyl-ACP reductase (FabK) was crystallized and selenomethionine MAD data were collected to 2 Å resolution. The enoyl-acyl carrier protein (ACP) reductase from Streptococcus pneumoniae (FabK; EC 1.3.1.9) is responsible for catalyzing the final step in each elongation cycle of fatty-acid biosynthesis. Selenomethionine-substituted FabK was purified and crystallized by the hanging-drop vapour-diffusion method at 277 K. The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 50.26, b = 126.70, c = 53.63 Å, β = 112.46°. Diffraction data were collected to 2.00 Å resolution using synchrotron beamline BL32B2 at SPring-8. Two molecules were estimated to be present in the asymmetric unit, with a solvent content of 45.1%.

  16. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT)

    Energy Technology Data Exchange (ETDEWEB)

    Ghadbane, Hemza; Brown, Alistair K. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Kremer, Laurent [Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II et I, CNRS, UMR 5235, Case 107, Place Eugène Bataillon, 34095 Montpellier CEDEX 05 (France); INSERM, DIMNP, Place Eugène Bataillon, 34095 Montpellier CEDEX 05 (France); Besra, Gurdyal S., E-mail: g.besra@bham.ac.uk; Fütterer, Klaus, E-mail: g.besra@bham.ac.uk [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-10-01

    Binding of Ni{sup 2+} ions to the uncleaved affinity tag facilitated de novo phasing of the crystal structure of M. tuberculosis mtFabD to 3.0 Å resolution. Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 Å resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni{sup 2+} ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.

  17. The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase.

    Science.gov (United States)

    Yocum, R R; Rasmussen, J R; Strominger, J L

    1980-05-10

    Penicillin kills susceptible bacteria by specifically inhibiting the transpeptidase that catalyzes the final step in cell wall biosynthesis, the cross-linking of peptidoglycan. It was hypothesized (Tipper, D., and Strominger, J. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141) that 1) penicillin is a structural analog of the acyl-D-alanyl-D-alanine terminus of the pentapeptide side chains of nascent peptidoglycan, and that 2) penicillin, by virtue of its highly reactive beta-lactam structure, irreversibly acylates the active site of the cell wall transpeptidase. Although the cell wall transpeptidase has proven elusive, a closely related penicillin-sensitive cell wall enzyme, D-alanine carboxypeptidase, has been purified from membranes of Bacillus stearothermophilus by penicillin affinity chromatography. By amino acid sequence analysis of 14C-labeled cyanogen bromide peptides generated and purified from this carboxypeptidase covalently labeled with either [14C]penicillin G or the substrate, [14C]diacetyl-L-lysyl-D-alanyl-D-lactate, it was shown that the penicillin and substrate were both bound as esters to a serine at residue 36. Therefore, the second hypothesis stated above was proven to be correct for D-alanine carboxypeptidase. Several new methods were developed in the course of this work, including 1) a rapid penicillin-binding assay, 2) use of hydroxylamine to protect peptides against carbamylation during ion exchange chromatography in concentrated urea solutions, and 3) gel filtration chromatography in 70% formic acid, a universal solvent for peptides.

  18. Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids

    Science.gov (United States)

    Hofbauer, Harald F.; Schopf, Florian H.; Schleifer, Hannes; Knittelfelder, Oskar L.; Pieber, Bartholomäus; Rechberger, Gerald N.; Wolinski, Heimo; Gaspar, Maria L.; Kappe, C. Oliver; Stadlmann, Johannes; Mechtler, Karl; Zenz, Alexandra; Lohner, Karl; Tehlivets, Oksana; Henry, Susan A.; Kohlwein, Sepp D.

    2014-01-01

    Summary Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription. PMID:24960695

  19. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase.

    Science.gov (United States)

    Soutar, A K; Garner, C W; Baker, H N; Sparrow, J T; Jackson, R L; Gotto, A M; Smith, L C

    1975-07-15

    The human plasma apoproteins apoA-I and apoC-I enhanced the activity of partially purified lecithin: cholesterol acyltransferase five to tenfold with chemically defined phosphatidylcholine:cholesterol single bilayer vesicles as substrates. By contrast, apoproteins apoA-II, apoC-II, and apoC-III did not give any enhancement of enzyme activity. The activation by apoA-I and apoC-I differed, depending upon the nature of the hydrocarbon chains of phosphatidylcholine acyl donor. ApoA-I was most effective with a phosphatidylcholine containing an unsaturated fatty acyl chain. ApoC-I activated LCAT to the same extent with both saturated and unsaturated phosphatidylcholine substrates. Two of the four peptides obtained by cyanogen bromide cleavage of apoA-I retained some ability to activate LCAT. The efficacy of each of these peptides was approximately 25% that of the whole protein. Cyanogen bromide fragments of apoC-I were inactive. The apoproteins from HDL, HDL2, and HDL3, at low protein concentrations, were equally effective as activators of LCATand less effective than apoA-I. Higher concentrations of apoHDL, apoHDL2, and apoHDL3 inhibited LCAT activity. ApoC and apoA-II were both found to inhibit the activation of LCAT by apoA-I. The inhibition of LCAT by higher concentrations of apoHDL was not correlated with the aopA-II and apoC content.

  20. Acyl/free carnitine ratio is a risk factor for hepatic steatosis after pancreatoduodenectomy and total pancreatectomy.

    Science.gov (United States)

    Nakamura, Masafumi; Nakata, Kohei; Matsumoto, Hideo; Ohtsuka, Takao; Yoshida, Koji; Tokunaga, Shoji; Hino, Keisuke

    Hepatic steatosis, one of the most frequent long-term complications of pancreatectomy, influences not only hepatic function but also survival rate. However, its risk factors and pathogenesis have not been established. The purpose of this study was to clarify the risk factors for hepatic steatosis after pancreatectomy. In this retrospective study of 21 patients who had undergone pancreatectomy (19 cases of pancreatoduodenectomy and 2 cases of total pancreatectomy), serum carnitine concentrations, fractions of carnitine, and hepatic attenuation on computed tomography images were analyzed with the aim of identifying risk factors for hepatic steatosis. Thirteen (61.9%) of the 21 patients were diagnosed as having hypocarnitinemia after pancreatectomy. Average hepatic attenuation was as low as 42.2HU (±21.3 SD). A high ratio of acyl/free carnitine was associated with less pronounced hepatic attenuation according to both univariate (P pancreatectomy in some patients. The statistical analyses suggest that a high ratio of acyl/free carnitine is an independent risk factor for hepatic steatosis after pancreatectomy. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.