WorldWideScience

Sample records for acyl-coa dehydrogenase deficiency

  1. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency

    DEFF Research Database (Denmark)

    ØRngreen, Mette C; Nørgaard, Mette; Sacchetti, Massimo

    2004-01-01

    Fuel utilization in two adult patients with the myopathic form of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and five healthy subjects was investigated with stable isotopes during exercise at 50% of VO2max. The findings indicate that residual VLCAD activity in the patients...

  2. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  3. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Science.gov (United States)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  4. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  5. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    Directory of Open Access Journals (Sweden)

    Aldo Franco De Rose

    2016-10-01

    Full Text Available Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  6. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  7. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  8. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Kaplan, M; Rubaltelli, F F; Hammerman, C; Vilei, M T; Leiter, C; Abramov, A; Muraca, M

    1996-05-01

    We used a system capable of measuring conjugated bilirubin and its monoconjugated and diconjugated fractions in serum to assess bilirubin conjugation in 29 glucose-6-phosphate dehydrogenase (G6PD)-deficient, term, male newborn infants and 35 control subjects; all had serum bilirubin levels > or = 256 mumol/L (15 mg/dI). The median value for diconjugated bilirubin was lower in the G6PD-deficient neonates than in control subjects (0.06 (range 0.00 to 1.84) vs 0.21 (range 0.00 to 1.02) mumol/L, p = 0.006). Diglucuronide was undetectable in 11 (38.9%) of the G6PD-deficient infants versus 3 (8.6%) of the control subjects (p = 0.015). These findings imply a partial defect of bilirubin conjugation not previously demonstrated in G6PD-deficient newborn infants.

  9. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Directory of Open Access Journals (Sweden)

    Vijender Singh

    2012-01-01

    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  10. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  11. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  12. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the ... of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective ...

  13. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  14. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...

  15. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  16. INCIDENCE OF ERYTHROCYTE GLUCOSE-6-PHOSPHATE- DEHYDROGENASE DEFICIENCY

    Directory of Open Access Journals (Sweden)

    Sh. Rahbar

    1974-06-01

    The fluorescent spot technique was used for screening and qualitative determination of G-6-PD in erythrocytes. This technique was compared with other methods of G-6-PD enzyme assay and proved to be very reliable. Qualitative enzyme estimation was carried out with spectrophotometer methods. A total of 738 specimens tested and some degree of enzyme deficiencies were detected. In 20 specimens there was a complete enzyme deficiency and in 5 cases the enzyme activity was between 15 to 50 percent of normal subject. The data suggests, the blood bank should be warned of transfusion of enzyme deficient bloods to the patients with fauvism.

  17. 5FU and oxaliplatin-containing chemotherapy in two dihydropyrimidine dehydrogenase-deficient patients.

    Science.gov (United States)

    Reerink, O; Mulder, N H; Szabo, B G; Hospers, G A P

    2004-01-01

    Patients with a germline mutation leading to a deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme are at risk from developing severe toxicity on the administration of 5FU-containing chemotherapy. We report on the implications of this inborn genetic error in two patients who received 5FU and oxaliplatin. A possible co-medication effect of oxaliplatin is considered, as are the consequences of screening for DPD deficiency.

  18. 5FU and oxaliplatin-containing chemotherapy in two dihydropyrimidine dehydrogenase-deficient patients

    NARCIS (Netherlands)

    Reerink, O; Mulder, NH; Szabo, BG; Hospers, GAP

    2004-01-01

    Patients with a germline mutation leading to a deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme are at risk from developing severe toxicity on the administration of 5FU-containing chemotherapy. We report on the implications of this inborn genetic error in two patients who received 5FU

  19. Relevance of expanded neonatal screening of medium-chain acyl co-a dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Couce, M L; Castiñeiras, D E; Moure, J D;

    2011-01-01

    Neonatal screening of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is of major importance due to the significant morbidity and mortality in undiagnosed patients. MCADD screening has been performed routinely in Galicia since July 2000, and until now 199,943 newborns have been screened. W...

  20. Prevalence of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency in Estonia

    DEFF Research Database (Denmark)

    Joost, K; Ounap, K; Zordania, R;

    2012-01-01

    The aim of our study was to evaluate the prevalence of long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the general Estonian population and among patients with symptoms suggestive of fatty acid oxidation (FAO) defects. We collected DNA from a cohort of 1,040 anonymous newborn blo...... prevalence of LCHADD in Estonia would be 1: 91,700....

  1. Medium-Chain Acyl-CoA Dehydrogenase Deficiency in Gene-Targeted Mice.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase (MCAD deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD by gene targeting in embryonic stem (ES cells. The MCAD mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors in Sana’a City, Yemen

    Science.gov (United States)

    Al-Nood, Hafiz A.; Bazara, Fakiha A.; Al-Absi, Rashad; Habori, Molham AL

    2012-01-01

    Objectives To determine the prevalence of Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency among Yemeni people from different regions of the country living in the capital city, Sana’a, giving an indication of its overall prevalence in Yemen. Methods A cross-sectional study was conducted among Yemeni male blood donors attending the Department of Blood Bank at the National Centre of the Public Health Laboratories in the capital city, Sana’a, Yemen. Fluorescent spot method was used for screening, spectrophotometeric estimation of G-6-PD activity and separation by electrophoresis was done to determine the G-6-PD phenotype. Results Of the total 508 male blood donors recruited into the study, 36 were G-6-PD deficient, giving a likely G-6-PD deficiency prevalence of 7.1%. None of these deficient donors had history of anemia or jaundice. Thirty-five of these deficient cases (97.2%) showed severe G-6-PD deficiency class II (<10% of normal activity), and their phenotyping presumptively revealed a G-6-PD-Mediterranean variant. Conclusion The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiency type in these blood donors in Sana’a City, which could represent an important health problem through occurrence of hemolytic anemia under oxidative stress. A larger sample size is needed to determine the overall prevalence of G-6-PD deficiency, and should be extended to include DNA analysis to identify its variants in Yemen. PMID:22359725

  3. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...... and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. RESULTS: We found homozygosity for A > G...... changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. CONCLUSION: This mutation was also found in two...

  4. Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Anna-Kaisa Niemi

    2014-01-01

    Full Text Available The pathophysiology of succinic semialdehyde dehydrogenase (SSADH deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH, and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.

  5. Glucose-6-Phosphate Dehydrogenase Deficiency and Adrenal Hemorrhage in a Filipino Neonate with Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Akira Ohishi

    2013-05-01

    Full Text Available We report on a Filipino neonate with early onset and prolonged hyperbilirubinemia who was delivered by a vacuum extraction due to a prolonged labor. Subsequent studies revealed adrenal hemorrhage and glucose-6-phosphate dehydrogenase (G6PD deficiency. It is likely that asphyxia and resultant hypoxia underlie the occurrence of adrenal hemorrhage and the clinical manifestation of G6PD deficiency and that the presence of the two events explains the early onset and prolonged hyperbilirubinemia of this neonate. Our results represent the importance of examining possible underlying factors for the development of severe, early onset, or prolonged hyperbilirubinemia.

  6. Evaluation of Glucose-6-Phosphate Dehydrogenase Deficiency without Hemolysis in Icteric Newborns

    Directory of Open Access Journals (Sweden)

    Farzaneh Eghbalian

    2007-04-01

    Full Text Available Objective: Glucose-6- phosphate dehydrogenase (G6PD deficiency is an inherited deficiency that may be the cause of neonatal jaundice. Our aim was to study the prevalence of G6PD deficiency without hemolysis in relation to neonatal jaundice. Material & Methods: This prospective descriptive study has been conducted on 272 icteric newborns admitted to the Ekbatan Hospital from October 2002 to September 2004. The dataset included: age, sex, total and direct bilirubin, hemoglobin, reticulocyte count, blood group and Rh of mother and newborn, direct Coombs, G6PD level and the type of treatment. All data was analyzed by using statistical method. Findings: From 272 neonates, 12 neonates (4.4% were found to have G6PD deficiency. The male to female ratio was 5 to 1 (10 male and 2 female neonates. From 12 neonates with G6PD deficiency, hemolysis was seen in 5 neonates (41.7% and the rate of G6PD deficiency without hemolysis was 2.6%. There was no difference in the mean bilirubin level, hemoglobin level and also reticulocyte count between patients with G6PD deficiency and those without G6PD deficiency (p>0.05. Out of 12 patients with G6PD deficiency, 2 patients (16.7% had blood exchange transfusion. Rh and ABO incompatibility were not seen in any of the12 patients with G6PD deficiency. Conclusion: In this study the prevalence of G6PD deficiency in icteric newborns was considerably high and most of them were non hemolytic, so we recommend G6PD test as a screening program for every newborn at the time of delivery.

  7. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  8. An incidental case of dihydropyrimidine dehydrogenase deficiency: One case, multiple challenges

    Directory of Open Access Journals (Sweden)

    Hamoud H Al Khallaf

    2013-01-01

    Full Text Available Dihydropyrimidine dehydrogenase (DPD deficiency is an autosomal recessive disorder that shows large phenotypical variability, ranging from no symptoms to intellectual disability, motor retardation, and convulsions. In addition, homozygous and heterozygous mutation carriers can develop severe 5-fluorouracil (5-FU toxicity. The lack of genotype-phenotype correlation and the possibility of other factors playing a role in the manifestation of the neurological abnormalities, make the management and education of asymptomatic DPD individuals more challenging. We describe a 3-month-old baby who was incidentally found by urine organic acid testing (done as part of positive newborn screen to have very high level of thymine and uracil, consistent with DPD deficiency. Since the prevalence of asymptomatic DPD deficiency in the general population is fairly significant (1 in 10,000, we emphasize in this case study the importance of developing a guideline in genetic counseling and patient education for this condition as well as other incidental laboratory findings.

  9. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico and description of a novel mutation

    Indian Academy of Sciences (India)

    N. García-Magallanes; F. Luque-Ortega; E. M. Aguilar-Medina; R. Ramos-Payán; C. Galaviz-Hernández; J. G. Romero-Quintana; L. Del Pozo-Yauner; H. Rangel-Villalobos; E. Arámbula-Meraz

    2014-08-01

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in the northern region of Mexico, which is important because of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochemically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% ($n = 1993$); the mutations in 86% of these samples were G6PD A-202A/376G, G6PD A-376G/968C and G6PD Santamaria376G/542T. Contrary to previous reports, we demonstrated that G6PD deficiency distribution is relatively homogenous throughout the country $(P = 0.48336)$, and the unique exception with high frequency of G6PD deficiency does not involve a coastal population (Chihuahua: 2.4%). Analysis of eight polymorphic sites showed only 10 haplotypes. In one individual we identified a new G6PD mutation named Mexico DF193A>G (rs199474830), which probably results in a damaging functional effect, according to PolyPhen analysis. Proteomic impact of the mutation is also described.

  10. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates.

    Science.gov (United States)

    Kaplan, M; Vreman, H J; Hammerman, C; Leiter, C; Abramov, A; Stevenson, D K

    1996-06-01

    We determined the contribution of haemolysis to the development of hyperbilirubinaemia in glucose-6-phosphate dehydrogenase (G-6-PD) deficient neonates and G-6-PD normal controls. Blood carboxyhaemoglobin (COHb), sampled on the third day of life, was measured by gas chromatography, corrected for inhaled carbon monoxide (COHbC), and expressed as a percentage of total haemoglobin concentration (Hb). Serum bilirubin was tested as clinically necessary. 37 non-jaundiced (peak serum total bilirubin (PSTB) or = 257 mumol/l) G-6-PD-deficient neonates were compared to 31 non-jaundiced and 24 jaundiced controls with comparable PSTB values, respectively. COHbC values for the entire G-6-PD deficient group were higher than in the controls (0.75 +/- 0.17% v 0.62 +/- 0.19%, P 0.05) but did in the controls (r = 0.58, P < 0.001). COHbC values were increased to a similar extent in the G-6-PD-deficient, non-jaundiced (0.72 +/- 0.16%), the G-6-PD-deficient, jaundiced (0.80 +/- 0.19%) and the control, jaundiced (0.75 +/- 0.18%) subgroups, compared to the control, non-jaundiced subgroup (0.53 +/- 0.13%) (P < 0.05). Although present in G-6-PD deficient neonates, increased haemolysis was not directly related to the PSTB.

  11. Diversity in expression of glucose-6-phosphate dehydrogenase deficiency in females.

    Science.gov (United States)

    Abdulrazzaq, Y M; Micallef, R; Qureshi, M; Dawodu, A; Ahmed, I; Khidr, A; Bastaki, S M; Al-Khayat, A; Bayoumi, R A

    1999-01-01

    The aims of this study were to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the United Arab Emirates (UAE), to describe the different mutations in the population, to determine its prevalence, and to study inheritance patterns in families of G6PD-deficient individuals. All infants born at Tawam Hospital, Al-Ain, UAE from January 1994 to September 1996 were screened at birth for their G6PD status. In addition, those attending well-baby clinics during the period were also screened for the disorder. Families of 40 known G6PD-deficient individuals, selected randomly from the records of three hospitals in the country, were assessed for G6PD deficiency. Where appropriate, this was followed by definition of G6PD mutations. Of 8198 infants, 746 (9.1%), comprising 15% of males and 5% of females tested, were found to be G6PD deficient. A total of 27 families were further assessed: of these, all but one family had the nt563 Mediterranean mutation. In one family, two individuals had the nt202 African mutation. The high manifestation of G6PD deficiency in women may be due to the preferential expression of the G6PD-deficient gene and X-inactivation of the normal gene, and/or to the presence of an 'enhancer' gene that makes the expression of the G6PD deficiency more likely. The high level of consanguinity which, theoretically, should result in a high proportion of homozygotes and consequently a higher proportion of females with the deficiency, was not found to be a significant factor.

  12. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A

    2010-10-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  13. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies

    DEFF Research Database (Denmark)

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper

    2015-01-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigran...

  14. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands : Clinical presentation and outcome

    NARCIS (Netherlands)

    Derks, Terry G J; Reijngoud, Dirk-Jan; Waterham, Hans R; Gerver, Willem-Jan M; van den Berg, Maarten P; Sauer, Pieter J J; Smit, G Peter A

    2006-01-01

    OBJECTIVES: To describe the clinical presentation and long-term follow-up of a large cohort of patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. STUDY DESIGN: A nationwide, retrospective analysis of clinical presentation and follow-up in 155 Dutch patients with MCAD deficiency. RE

  15. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    OpenAIRE

    FitzGerald, R.J.; Adams, B. O.; Sandham, H. J.; Abhyankar, S

    1989-01-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation ...

  16. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.

 PMID:11124787

  17. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    Science.gov (United States)

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  18. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  19. A new paper-based analytical device for detection of Glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Kaewarsa, Phuritat; Laiwattanapaisal, Wanida; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic haemolytic disorder. Most persons with G6PD deficiency are asymptomatic, but exposure to oxidant drugs, such as the anti-malarial drug primaquine, may induce haemolysis, which is commonly found in Asian countries. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis. This study proposes a novel quantitative method to detect G6PD deficiency using paper-based analytical devices (G6PDD-PAD). Wax printing was utilized for fabricating circular reaction zone patterns in paper. The colorimetric assay is based on the formation of formazan via a reduction of tetra-nitro blue tetrazolium (TNBT) by the G6PD enzyme on G6PDD-PAD. Detection was achieved by capturing the colour using a desktop scanner and the colour intensity was analysed with Adobe Photoshop C56. The results showed that the G6PD activity analysed by G6PDD-PAD was highly correlated with the standard biochemical assay (SBA) (r(2)=0.87, pPAD and the SBA (mean bias 1.4 IU/gHb). The detection limit was 0 IU/gHb of G6PD activity. This study demonstrates the feasibility of using G6PDD-PAD. This simple, low-cost test ($0.1/test) should be useful for diagnosing G6PD deficiency in resource-limited settings.

  20. Evaluation of the blue formazan spot test for screening glucose 6 phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Pujades, A; Lewis, M; Salvati, A M; Miwa, S; Fujii, H; Zarza, R; Alvarez, R; Rull, E; Corrons, J L

    1999-06-01

    Several screening tests for glucose 6 phosphate dehydrogenase (G6PD) deficiency have been reported thus far, and a standardized method of testing was proposed by the International Council for Standardization in Hematology (ICSH). The screening test used in any particular laboratory depends upon a number of factors such as cost, time required, temperature, humidity, and availability of reagents. In this study, a direct comparison between three different G6PD screening methods has been undertaken. In 71 cases (50 hematologically normal volunteers, 9 hemizygous G6PD-deficient males, and 12 heterozygous deficient females), the blue formazan spot test (BFST) was compared with the conventional methemoglobin reduction test (HiRT) and the ICSH-recommended fluorescent spot test (FST-ICSH). In all cases, the results obtained with the three screening tests were correlated with the enzyme activity assayed spectrophotometrically. In hemizygous G6PD-deficient males, all cases were equally detected with the three methods: BFST (4.7-6.64, controls: 11.1-13.4), BMRT (score +3 in all 9 cases), and FST (no fluorescence in 9 cases). In heterozygous G6PD-deficient females, two methods detected 7 out of 12 cases (BFST: 8.71-11.75, controls: 11.1-13.4; and BMRT: score +3 in 7 cases), whereas the FST-ICSH missed all 12 cases that presented a variable degree of fluorescence. Although the sensitivity for G6PD-deficient carrier detection is the same for the BMRT and the BFST, the latter has the advantage of being semiquantitative and not merely qualitative. Unfortunately, none of the three screening tests compared here allowed the detection of the 100% heterozygote carrier state of G6PD deficiency.

  1. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    Directory of Open Access Journals (Sweden)

    Kanavin Oivind J

    2007-09-01

    Full Text Available Abstract Background 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD is caused by a defect in the degradation pathway of the amino acid L-isoleucine. Methods We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. Results We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. Conclusion This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.

  2. Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD-deficient human fibroblasts

    Directory of Open Access Journals (Sweden)

    Wu Yi-Hsuan

    2009-02-01

    Full Text Available Abstract Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction.

  3. Prevalence of glucose-6-phosphate dehydrogenase deficiency and sickle cell trait among blood donors in Riyadh

    Directory of Open Access Journals (Sweden)

    Alabdulaali Mohammed

    2010-01-01

    Full Text Available Background and Aims: Blood donation from glucose-6-phosphate dehydrogenase (G6PD-deficient and sickle cell trait (SCT donors might alter the quality of the donated blood during processing, storage or in the recipient′s circulatory system. The aim of this study was to determine the prevalence of G6PD deficiency and SCT among blood donors coming to King Khalid University Hospital (KKUH in Riyadh. It was also reviewed the benefits and risks of transfusing blood from these blood donors. Materials and Methods: This cross-sectional study was conducted on 1150 blood samples obtained from blood donors that presented to KKUH blood bank during the period April 2006 to May 2006. All samples were tested for Hb-S by solubility test, alkaline gel electrophoresis; and for G6PD deficiency, by fluorescent spot test. Results: Out of the 1150 donors, 23 (2% were diagnosed for SCT, 9 (0.78% for G6PD deficiency and 4 (0.35% for both conditions. Our prevalence of SCT and G6PD deficiency is higher than that of the general population of Riyadh. Conclusion: We recommend to screen all units for G6PD deficiency and sickle cell trait and to defer donations from donors with either of these conditions, unless if needed for special blood group compatibility, platelet apheresis or if these are likely to affect the blood bank inventory. If such blood is to be used, special precautions need to be undertaken to avoid complications in high-risk recipients.

  4. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    Science.gov (United States)

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  5. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Udvari, S;

    1997-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of mitochondrial beta-oxidation. It is potentially fatal, but shows a wide clinical spectrum. The aim of the present study was to investigate whether any correlation exists between MCAD genotype and disea...

  6. Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity

    Directory of Open Access Journals (Sweden)

    Dallol Ashraf

    2012-09-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established. Methods In this study, we determined G6PD enzyme levels and sequenced the coding region, including the intron-exon boundaries, in a group of individuals (163 males and 86 females who were referred to the clinic with suspected G6PD deficiency. The sequence data were analysed by physical linkage analysis and PHASE haplotype reconstruction. Results All previously reported G6PD missense changes, including the AURES, MEDITERRANEAN, A-, SIBARI, VIANGCHAN and ANANT, were identified in our cohort. The AURES mutation (p.Ile48Thr was the most common variant in the cohort (30% in males patients followed by the Mediterranean variant (p.Ser188Phe detectable in 17.79% in male patients. Variant forms of the A- mutation (p.Val68Met, p.Asn126Asp or a combination of both were detectable in 15.33% of the male patients. However, unique to this study, several of such mutations co-existed in the same patient as shown by physical linkage in males or PHASE haplotype reconstruction in females. Based on 6 non-synonymous variants of G6PD, 13 different haplotypes (13 in males, 8 in females were identified. Five of these were previously unreported (Jeddah A, B, C, D and E and were defined by previously unreported combinations of extant mutations where patients harbouring these haplotypes exhibited severe G6PD deficiency. Conclusions Our findings will help design a focused population screening approach and provide better management for G6PD deficiency patients.

  7. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Fernandes, Joao P.; Ribeiro, Manuel; Magalhaes, Zita; Rocha, Jaime F. [Hospital de S. Marcos, Department of Neuroradiology, Braga (Portugal); Teixeira-Gomes, Roseli [Hospital Pedro Hispano, Division of Neuropediatrics, Matosinhos (Portugal); Cruz, Romeu [Hospital Geral de Sto. Antonio, Department of Neuroradiology, Porto (Portugal); Leijser, Lara M. [Leiden University Medical Center, Department of Paediatrics, Division of Neonatology, Leiden (Netherlands)

    2008-05-15

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making. (orig.)

  8. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  9. Neurotransmitter alterations in embryonic succinate semialdehyde dehydrogenase (SSADH deficiency suggest a heightened excitatory state during development

    Directory of Open Access Journals (Sweden)

    Snead O Carter

    2008-11-01

    Full Text Available Abstract Background SSADH (aldehyde dehydrogenase 5a1 (Aldh5a1; γ-hydroxybutyric (GHB aciduria deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate. The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of the globi pallidi and variable seizures, the latter displayed prominently in Aldh5a1-/- mice with lethal convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives succinate semialdehyde (SSA, homocarnosine (HC, 4,5-dihydroxyhexanoic acid (DHHA and guanidinobutyrate (GB] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG] at birth. Because of early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite features during Aldh5a1-/- embryo development. Methods Embryos were obtained from pregnant dams sacrificed at E (embryo day of life 10–13, 14–15, 16–17, 18–19 and newborn mice. Intact embryos were extracted and metabolites quantified by isotope dilution mass spectrometry (n = 5–15 subjects, Aldh5a1+/+ and Aldh5a1-/- for each gestational age group. Data was evaluated using the t test and one-way ANOVA with Tukey post hoc analysis. Significance was set at the 95th centile. Results GABA and DHHA were significantly elevated at all gestational ages in Aldh5a1-/- mice, while GB was increased only late in gestation; SSA was not elevated at any time point. GHB and D-2-HG increased in an approximately linear fashion with gestational age. Correlative studies in human amniotic fluid from SSADH-deficient pregnancies (n = 5 also revealed significantly increased GABA. Conclusion Our findings indicate early GABAergic alterations in Aldh5a1-/- mice, possibly exacerbated by other metabolites, which likely induce a heightened excitatory state that may predispose neural networks to epilepsy in these animals.

  10. Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in Portugal.

    Science.gov (United States)

    Ventura, F V; Leandro, P; Luz, A; Rivera, I A; Silva, M F B; Ramos, R; Rocha, H; Lopes, A; Fonseca, H; Gaspar, A; Diogo, L; Martins, E; Leão-Teles, E; Vilarinho, L; Tavares de Almeida, I

    2014-06-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.

  11. Glucose-6-phosphate dehydrogenase deficiency A- variant in febrile patients in Haiti.

    Science.gov (United States)

    Carter, Tamar E; Maloy, Halley; von Fricken, Michael; St Victor, Yves; Romain, Jean R; Okech, Bernard A; Mulligan, Connie J

    2014-08-01

    Haiti is one of two remaining malaria-endemic countries in the Caribbean. To decrease malaria transmission in Haiti, primaquine was recently added to the malaria treatment public health policy. One limitation of primaquine is that, at certain doses, primaquine can cause hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd). In this study, we genotyped two mutations (A376G and G202A), which confer the most common G6PDd variant in West African populations, G6PDd A-. We estimated the frequency of G6PDd A- in a sample of febrile patients enrolled in an on-going malaria study who represent a potential target population for a primaquine mass drug administration. We found that 33 of 168 individuals carried the G6PDd A- allele (includes A- hemizygous males, A- homozygous or heterozygous females) and could experience toxicity if treated with primaquine. These data inform discussions on safe and effective primaquine dosing and future malaria elimination strategies for Haiti.

  12. Splenic artery pseudoaneurysm due to seatbelt injury in a glucose-6-phosphate dehydrogenase-deficient adult.

    Science.gov (United States)

    Lau, Yu Zhen; Lau, Yuk Fai; Lai, Kang Yiu; Lau, Chu Pak

    2013-11-01

    A 23-year-old man presented with abdominal pain after suffering blunt trauma caused by a seatbelt injury. His low platelet count of 137 × 10(9)/L was initially attributed to trauma and his underlying hypersplenism due to glucose-6-phosphate dehydrogenase (G6PD) deficiency. Despite conservative management, his platelet count remained persistently reduced even after his haemoglobin and clotting abnormalities were stabilised. After a week, follow-up imaging revealed an incidental finding of a pseudoaneurysm (measuring 9 mm × 8 mm × 10 mm) adjacent to a splenic laceration. The pseudoaneurysm was successfully closed via transcatheter glue embolisation; 20% of the spleen was also embolised. A week later, the platelet count normalised, and the patient was subsequently discharged. This case highlights the pitfalls in the detection of a delayed occurrence of splenic artery pseudoaneurysm after blunt injury via routine delayed phase computed tomography. While splenomegaly in G6PD may be a predisposing factor for injury, a low platelet count should arouse suspicion of internal haemorrhage rather than hypersplenism.

  13. Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency in south-east Sicily.

    Science.gov (United States)

    Cittadella, R; Civitelli, D; Manna, I; Azzia, N; Di Cataldo, A; Schilirò, G; Brancati, C

    1997-05-01

    In order to explore the nature of glucose-6-phosphate dehydrogenase (G6PD) deficiency in south-east Sicily, we have analysed the G6PD gene in 25 unrelated males with abnormal G6PD activity and/or electrophoretic mobility, by using the analysis of the appropriate PCR-amplified fragment of DNA and subsequent digestion by appropriate restriction-enzymes, looking for the presence of certain known G6PD mutations. We amplified the entire G6PD coding sequence into eight fragments, followed by single-strand conformation polymorphism (SSCP) analysis and sequencing of those individual fragments that were found to be abnormal by SSCP. Through these methods we found a total of twelve G6PD Mediterranean variants with the association of a silent mutation 1311 (also known as polymorphic site Bcl I), one G6PD Mediterranean without this association, four G6PD A-Val 68 and two G6PD Santamaria and five G6PD Chatham. In a subject with normal activity a mutation was found in exon 5, designated as G6PD Sao Borja. This is the first report on the molecular analysis of G6PD mutations in Sicily and we have obtained evidence for four distinct classes of variants.

  14. Prevalence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase deficiency among hill-tribe school children in Omkoi District, Chiang Mai Province, Thailand.

    Science.gov (United States)

    Yanola, Jintana; Kongpan, Chatpat; Pornprasert, Sakorn

    2014-07-01

    The prevalaence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency were examined among 265 hill-tribe school children, 8-14 years of age, from Omkoi District, Chiang Mai Province, Thailand. Anemia was observed in 20 school children, of whom 3 had iron deficiency anemia. The prevalence of G-6-PD deficiency and β-thalassemia trait [codon 17 (A>T), IVSI-nt1 (G>T) and codons 71/72 (+A) mutations] was 4% and 8%, respectively. There was one Hb E trait, and no α-thalassemia-1 SEA or Thai type deletion. Furthermore, anemia was found to be associated with β-thalassemia trait in 11 children. These data can be useful for providing appropriate prevention and control of anemia in this region of Thailand.

  15. Immune Thrombocytopenia Resolved by Eltrombopag in a Carrier of Glucose-6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Laura Scaramucci

    2016-03-01

    Full Text Available Eltrombopag, a thrombopoietin mimetic peptide, may provide excellent clinical efficacy in steroid-refractory patients with immune thrombocytopenic purpura (ITP [1,2]. Eltrombopag is generally well tolerated. However, its use in the particular setting of glucose-6-phosphate dehydrogenase (G6PD and history of acute hemolytic anemia (AHA has not been reported so far. A 51-year-old female was diagnosed as having ITP in September 2014. She was not taking any medication and her past history was negative, apart from having been diagnosed a carrier (heterozygous of G6PD deficiency (Mediterranean variant after a familial screening by molecular and biochemical methods. She presented with only slightly reduced (about 50% enzyme level, belonging to World Health Organization-defined class 3 [3,4]. In the following years, the patient experienced some episodes of AHA, which were managed at outside institutions; in particular, a severe episode of AHA, probably triggered by urinary infection and antibiotics [5], had complicated her second and last delivery. The hemolytic episodes were selflimiting and resolved without sequelae. No other causes of hemolysis were documented. When the case came to our attention, a diagnosis of ITP was made; hemolytic parameters were normal, although the G6PD enzyme concentration was not measured. Oral prednisone (1 mg/kg was given with only a transient benefit. The patient was then a candidate for elective splenectomy. However, given her extremely low platelet count, she was started in October 2014 on eltrombopag at 50 mg/day as a bridge to splenectomy. Given that, to the best of our knowledge, the use of this drug has never been reported in the particular setting of G6PD deficiency, the patient was constantly monitored. A prompt platelet increase (178x109/L was observed 1 week after the start of treatment. After she achieved the target platelet count, the dose of eltrombopag was tapered to the lowest effective dose. The patient

  16. 琥珀酸半醛脱氢酶缺陷病%Succinic semialdehyde dehydrogenase deficiency

    Institute of Scientific and Technical Information of China (English)

    邓小鹿; 尹飞; 向秋莲; 刘沉涛; 彭镜

    2011-01-01

    琥珀酸半醛脱氢酶(SSADH)缺陷病是一种少见的常染色休隐性遗传病.本研究总结3例SSADH缺陷病患儿的临床资料并复习相关文献.3例患儿均为婴幼儿,主要表现为智力运动、语言发育落后,抽搐和肌张力低下.3例患儿脑电图均表现异常;2例脑MRI检查异常,表现为大脑脚对称性长T2高信号和基底节损害;3例尿液的气相色谱-质谱(GC-MS)分析均显示4-羟基丁酸增高,根据临床表现及尿液GC-MS分析确诊为SSADH缺陷病.对不明原因发育迟缓、智力运动障碍和癫病的患儿应早期进行尿液有机酸分析,对明确诊断具有重要意义.%Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessive disorder. This paper reports three cases of SSADH deficiency in infants. Hie infants developed the symptoms including developmental delay, intellectual disability, hypotonia, hyporeflexia and seizures. The electroencephalogram (EEC) showed background slowing and focal spike discharges in all of 3 patients. Head magnetic resonance imaging ( MRI) demonstrated abnormalities in 2 patients, including basal ganglia damage and increased T2-weighted signal in bilateral cerebral peduncles. Urinary organic acid analysis with gas chromatography-mass spectrometry (GC-MS) revealed increased levels of 4-hydroxybutyrate (CHB) in 3 patients. SSADH deficiency was definitely diagnosed based on the clinical manifestations and the results of urinary organic acid analysis in the 3 children. It was concluded that early urine organic acid analysis is essential for children presenting with mental retardation, neuropsychiatric disturbance or epilepsy of unknown etiology.

  17. Glucose-6-phosphate-dehydrogenase deficiency and its correlation with other risk factors in jaundiced newborns in Southern Brazil

    Institute of Scientific and Technical Information of China (English)

    Clarissa Gutirrez Carvalho; Simone Martins Castro; Ana Paula Santin; Carina Zaleski; Felipe Gutirrez Carvalho; Roberto Giugliani

    2011-01-01

    Objective:To evaluate the correlation between glucose-6-phosphate-dehydrogenase (G6PD) deficiency and neonatal jaundice.Methods: Prospective, observational case-control study was conducted on490 newborns admitted to Hospital de Clínicas de Porto Alegre for phototherapy, who all experienced35 or more weeks of gestation, from March to December2007. Enzymatic screening ofG6PD activity was performed, followed byPCR.Results:There was prevalence of4.6% and a boy-girl ratio of3:1 in jaundiced newborns. No jaundiced neonate withABO incompatibility presented G6PD deficiency, and no Mediterranean mutation was found. A higher proportion of deficiency was observed in Afro-descendants. There was no association withUGT1A1 variants. Conclusions:G6PD deficiency is not related to severe hyperbilirubinemia and considering the high miscegenation in this area of Brazil, other gene interactions should be investigated.

  18. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    Science.gov (United States)

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-03-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.

  19. Hereditary sideroblastic anemia and glucose-6-phosphate dehydrogenase deficiency in a Negro family.

    Science.gov (United States)

    Prasad, A S; Tranchida, L; Konno, E T; Berman, L; Albert, S; Sing, C F; Brewer, G J

    1968-06-01

    Detailed clinical and genetic studies have been performed in a Negro family, which segregated for sex-linked sideroblastic anemia and glucose-6-phosphate dehydrogenase (G-6-DP) deficiency. This is the first such pedigree reported. Males affected with sideroblastic anemia had growth retardation, hypochromic microcytic anemia, elevated serum iron, decreased unsaturated iron-binding capacity, increased (59)Fe clearance, low (59)Fe incorporation into erythrocytes, normal erythrocyte survival ((51)Cr), normal hemoglobin electrophoretic pattern, erythroblastic hyperplasia of marrow with increased iron, and marked increase in marrow sideroblasts, particularly ringed sideroblasts. Perinuclear deposition of ferric aggregates was demonstrated to be intramitochondrial by electron microscopy. Female carriers of the sideroblastic gene were normal but exhibited a dimorphic population of erythrocytes including normocytic and microcytic cells. The bone marrow studies in the female (mother) showed ringed marrow sideroblasts. Studies of G-6-PD involved the methemoglobin elution test for G-6-PD activity of individual erythrocytes, quantitative G-6-PD assay, and electrophoresis. In the pedigree, linkage information was obtained from a doubly heterozygous woman, four of her sons, and five of her daughters. Three sons were doubly affected, and one was normal. One daughter appeared to be a recombinant. The genes appeared to be linked in the coupling phase in the mother. The maximum likelihood estimate of the recombination value was 0.14. By means of Price-Jones curves, the microcytic red cells in peripheral blood were quantitated in female carriers. The sideroblast count in the bone marrow in the mother corresponded closely to the percentage of microcytic cells in peripheral blood. This is the second example in which the cellular expression of a sex-linked trait has been documented in the human red cells, the first one being G-6-PD deficiency. The coexistence of the two genes in doubly

  20. False-Positive Newborn Screen Using the Beutler Spot Assay for Galactosemia in Glucose-6-Phosphate Dehydrogenase Deficiency.

    Science.gov (United States)

    Stuhrman, Grace; Perez Juanazo, Stefanie J; Crivelly, Kea; Smith, Jennifer; Andersson, Hans; Morava, Eva

    2017-01-12

    Classical galactosemia is detected through newborn screening by measuring galactose-1-phosphate uridylyltransferase (GALT) in the USA primarily via the Beutler spot assay. We report on an 18-month-old patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency that was originally diagnosed with classical galactosemia. The patient presented with elevated liver function enzymes and bilirubinemia and was immediately treated with soy-based formula. Confirmatory tests revealed deficiency of the GALT enzyme, however, full-sequencing of GALT was normal, suggestive of a different ideology. The Beutler spot assay uses three other enzymatic steps in addition to GALT. A deficiency in either of these enzymes can result in suspected decreased GALT activity when using the Beutler assay. Congenital Disorders of Glycosylation screening for phosphoglucomutase-1 deficiency was negative. Quantitative analysis of G6PD enzyme in red blood cells showed a severe deficiency and a deletion in G6PD. Soy-formula, the standard treatment for galactosemia, has been reported to trigger hemolysis in G6PD deficient patients. G6PD and phosphoglucomutase-1 deficiencies should be considered when confirmatory tests are negative for pathogenic variants in GALT and galactose-1-phosphate level is normal.

  1. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Abdoul Karim Ouattara; Cyrille Bisseye; Birama Diarra; Tegwind Rebeca Compaore; Florencia Djigma; Virginio Pietra; Remy Moret; Jacques Simpore

    2014-01-01

    Objective: To investigate 4 combinations of mutations responsible for glucose-6-phosphate dehydrogenase (G6PD) deficiency in a rural community of Burkina Faso, a malaria endemic country. Methods: Two hundred individuals in a rural community were genotyped for the mutations A376G, G202A, A542T, G680T and T968C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism. Results: The prevalence of the G6PD deficiency was 9.5% in the study population. It was significantly higher in men compared to women (14.3%vs 6.0%, P=0.049). The 202A/376G G6PD A-was the only deficient variant detected. Plasmodium falciparum asymptomatic parasitaemia was significantly higher among the G6PD-non-deficient persons compared to the G6PD-deficient (P Conclusions:This study showed that the G6PD A-variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.

  2. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    Science.gov (United States)

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti.

  3. Glucose-6-phosphate dehydrogenase (G6PD-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Hsieh

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key enzyme in the pentose phosphate pathway and provides reducing energy to all cells by maintaining redox balance. The most common clinical manifestations in patients with G6PD deficiency are neonatal jaundice and acute hemolytic anemia. The effects of microbial infection in patients with G6PD deficiency primarily relate to the hemolytic anemia caused by Plasmodium or viral infections and the subsequent medication that is required. We are interested in studying the impact of bacterial infection in G6PD-deficient cells. G6PD knock down A549 lung carcinoma cells, together with the common pathogen Staphylococcus aureus, were employed in our cell infection model. Here, we demonstrate that a lower cell viability was observed among G6PD-deficient cells when compared to scramble controls upon bacterial infection using the MTT assay. A significant increase in the intracellular ROS was detected among S. aureus-infected G6PD-deficient cells by observing dichlorofluorescein (DCF intensity within cells under a fluorescence microscope and quantifying this signal using flow cytometry. The impairment of ROS removal is predicted to enhance apoptotic activity in G6PD-deficient cells, and this enhanced apoptosis was observed by annexin V/PI staining under a confocal fluorescence microscope and quantified by flow cytometry. A higher expression level of the intrinsic apoptotic initiator caspase-9, as well as the downstream effector caspase-3, was detected by Western blotting analysis of G6PD-deficient cells following bacterial infection. In conclusion, we propose that bacterial infection, perhaps the secreted S. aureus α-hemolysin in this case, promotes the accumulation of intracellular ROS in G6PD-deficient cells. This would trigger a stronger apoptotic activity through the intrinsic pathway thereby reducing cell viability when compared to wild type cells.

  4. Somatic mosaicism for a novel PDHA1 mutation in a male with severe pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Kristin K. Deeb

    2014-01-01

    Full Text Available Pyruvate dehydrogenase complex (PDC deficiencies are mostly due to mutations in the X-linked PDHA1 gene. Males with hemizygous PDHA1 mutations are clinically more severely affected, while those with mosaic PDHA1 mutations may manifest milder phenotypes. We report a patient harboring a novel, mosaic missense PDHA1 mutation, c.523G > A (p.A175T, with a severe clinical presentation of congenital microcephaly, significant brain abnormalities, persistent seizures, profound developmental delay, and failure to thrive. We review published cases of PDHA1 mosaicism.

  5. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  6. Prevalence of thalassaemia, iron-deficiency anaemia and glucose-6-phosphate dehydrogenase deficiency among Arab migrating nomad children, southern Islamic Republic of Iran.

    Science.gov (United States)

    Pasalar, M; Mehrabani, D; Afrasiabi, A; Mehravar, Z; Reyhani, I; Hamidi, R; Karimi, M

    2014-12-17

    This study investigated the prevalence of iron-deficiency anaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and β-thalassaemia trait among Arab migrating nomad children in southern Islamic Republic of Iran. Blood samples were analysed from 134 schoolchildren aged < 18 years (51 males, 83 females). Low serum ferritin (< 12 ng/dL) was present in 17.9% of children (21.7% in females and 11.8% in males). Low haemoglobin (Hb) correlated significantly with a low serum ferritin. Only 1 child had G6PD deficiency. A total of 9.7% of children had HbA2 ≥ 3.5 g/dL, indicating β-thalassaemia trait (10.8% in females and 7.8% in males). Mean serum iron, serum ferritin and total iron binding capacity were similar in males and females. Serum ferritin index was as accurate as Hb index in the diagnosis of iron-deficiency anaemia. A high prevalence of β-thalassaemia trait was the major potential risk factor in this population.

  7. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Andresen, B S; Olpin, S; Poorthuis, B J; Scholte, H R; Vianey-Saban, C; Wanders, R; Ijlst, L; Morris, A; Pourfarzam, M; Bartlett, K; Baumgartner, E R; deKlerk, J B; Schroeder, L D; Corydon, T J; Lund, H; Winter, V; Bross, P; Bolund, L; Gregersen, N

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting. To examine whether these different phenotypes are due to differences in the VLCAD genotype, we investigated 58 different mutations in 55 unrelated patients representing all known clinical phenotypes and correlated the mutation type with the clinical phenotype. Our results show a clear relationship between the nature of the mutation and the severity of disease. Patients with the severe childhood phenotype have mutations that result in no residual enzyme activity, whereas patients with the milder childhood and adult phenotypes have mutations that may result in residual enzyme activity. This clear genotype-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established. PMID:9973285

  8. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  9. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C;

    1999-01-01

    A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase...

  10. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  11. A novel c.197T ® A variant among Brazilian neonates with glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    José Pereira de Moura Neto

    2008-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is the most common enzyme deficiency worldwide, causing a spectrum of diseases including neonatal hyperbilirubinemia and acute or chronic hemolysis. We used the methemoglobin reduction test and G6PD electrophoresis to screen 655 neonates (354 females and 301 males for common G6PD mutations in the city of Salvador in the Northeastern Brazilian state Bahia and found that 66 (10.1% were G6PD-deficient (41 females and 25 males. The 66 (10.1% G6PD-deficient neonates were assessed for the c.376 A -> G (exon 5 and c.202 G -> A (exon 4 mutations using the polymerase chain reaction and restriction enzyme fragment length polymorphism (PCR-RFLP analysis and the results validated by DNA sequencing. Of the 66 G6PD-deficient neonates investigated we found that 54 (81.8% presented the c.376 A -> G (p.Asn126Asp and c.202 G -> A (p.Val68Met mutations, two (3% had the c.376 A -> G mutation only, two (3% had the c.202 G -> A mutation only, five (7.6% exhibited a previously unrecorded 197T -> A (p.Phe66Thr substitution in exon 4 and three showed no mutations at any of these sites. Of the five neonates exhibiting the new 197T -> A (p.Phe66Thr substitution, four (6.1% also presented the c.202 G -> A and c.376 A -> G mutations and one (1.5% had the c.[197T -> A / 202 G -> A] combination. We propose to name the new variant G6PD Bahia.

  12. Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany.

    Science.gov (United States)

    Kölker, Stefan; Garbade, Sven F; Boy, Nikolas; Maier, Esther M; Meissner, Thomas; Mühlhausen, Chris; Hennermann, Julia B; Lücke, Thomas; Häberle, Johannes; Baumkötter, Jochen; Haller, Wolfram; Muller, Edith; Zschocke, Johannes; Burgard, Peter; Hoffmann, Georg F

    2007-09-01

    Glutaryl-CoA dehydrogenase (GCDH) deficiency is a rare neurometabolic disorder that is considered treatable if patients are identified before the onset of acute encephalopathic crises. To allow early identification of affected individuals, tandem mass spectrometry-based newborn screening for GCDH deficiency has been started in Germany in 1999. We prospectively followed neonatally screened patients (n=38) and compared the neurologic outcome with patients from a historical cohort (n=62). In the majority of neonatally screened children, the onset of encephalopathic crises has been prevented (89%), whereas acute encephalopathic crises or progressive neurologic impairment was common in the historical cohort. Neonatal screening in combination with intensive management is effective--even assuming ascertainment bias in the historical cohort. Similar proportions of commonest mutations and biochemical phenotypes (high and low excretors) were found in neonatally screened and historical patients. However, potential predictor variables for mild clinical phenotypes are not yet known and thus a selection of these patients by newborn screening is not excluded. No patient was known to be missed by newborn screening from 1999 to 2005. In conclusion, this study confirms that newborn screening for GCDH deficiency in combination with intensive management is beneficial.

  13. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast.

    Science.gov (United States)

    Haglind, C Bieneck; Nordenström, A; Ask, S; von Döbeln, U; Gustafsson, J; Stenlid, M Halldin

    2015-03-01

    Children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) have a defect in the degradation of long-chain fatty acids and are at risk of hypoketotic hypoglycemia and insufficient energy production as well as accumulation of toxic fatty acid intermediates. Knowledge on substrate metabolism in children with LCHAD deficiency during fasting is limited. Treatment guidelines differ between centers, both as far as length of fasting periods and need for night feeds are concerned. To increase the understanding of fasting intolerance and improve treatment recommendations, children with LCHAD deficiency were investigated with stable isotope technique, microdialysis, and indirect calometry, in order to assess lipolysis and glucose production during 6 h of fasting. We found an early and increased lipolysis and accumulation of long chain acylcarnitines after 4 h of fasting, albeit no patients developed hypoglycemia. The rate of glycerol production, reflecting lipolysis, averaged 7.7 ± 1.6 µmol/kg/min, which is higher compared to that of peers. The rate of glucose production was normal for age; 19.6 ± 3.4 µmol/kg/min (3.5 ± 0.6 mg/kg/min). Resting energy expenditure was also normal, even though the respiratory quotient was increased indicating mainly glucose oxidation. The results show that lipolysis and accumulation of long chain acylcarnitines occurs before hypoglycemia in fasting children with LCHAD, which may indicate more limited fasting tolerance than previously suggested.

  14. Alleviation of PEGylated Puerarin on Erythrocyte Hemolysis Induced by Puerarin in Glucose-6-phosphate Dehydrogenase-deficient Rats

    Institute of Scientific and Technical Information of China (English)

    LIU; Xin-yi; LI; Jian-rong; WANG; Nai-jie; ZHANG; Guang-ping; DU; Feng; YE; Zu-guang; XIANG; Da-xiong

    2013-01-01

    Objective To explore and analyze the reducing hemolytic effects of PEGylated puerarin (PEG-PUE) on erythrocytes induced by PUE in glucose-6-phosphate dehydrogenase (G6PD)-deficient rats. Methods The rat model with G6PD-deficiency was established via sc injecting 1% acetylphenyl-hydrazine. Then the G6PD-deficient erythrocyte suspension obtained from this rat model was used to evaluate the hemolytic effects of PUE and the reducing hemolytic effects of PEG-PUE via hemolytic activity and erythrocyte osmotic fragility assay. Results It was found that PUE could cause a serious hemolysis to the erythrocyte suspension with the increase of drug concentration and the prolongation of drug incubation time, the hemolytic rate of PUE was up to 40%, while the addition of PEG-PUE to the erythrocyte suspension revealed no significant hemolysis. Additionally, the result of erythrocyte osmotic fragility indicated that PEG-PUE exerted a slight effect on the erythrocyte membranes, and the NaCl concentration that induced 50% hemolysis (32 mmol/L) was about one-third PUE. Conclusion These results demonstrate that PEG-PUE could play a significant role in reducing the side effect of hemolysis induced by PUE. The low hemolytic activity of PEG-PUE makes it a favorable candidate for in vivo tests and PEG-PUE could also provide the useful insight for the further formulation development as an innovative drug.

  15. Alleviation of PEGylated Puerarin on Erythrocyte Hemolysis Induced by Puerarin in Glucose-6-phosphate Dehydrogenase-deficient Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-yi; LI Jian-rong; WANG Nai-jie; ZHANG Guang-ping; DU Feng; YE Zu-guang; XIANG Da-xiong

    2013-01-01

    Objective To explore and analyze the reducing hemolytic effects of PEGylated puerarin (PEG-PUE) on erythrocytes induced by PUE in glucose-6-phosphate dehydrogenase (G6PD)-deficient rats.Methods The rat model with G6PD-deficiency was established via sc injecting 1% acetylphenyl-hydrazine.Then the G6PD-deficient erythrocyte suspension obtained from this rat model was used to evaluate the hemolytic effects of PUE and the reducing hemolytic effects of PEG-PUE via hemolytic activity and erythrocyte osmotic fragility assay.Results It was found that PUE could cause a serious hemolysis to the erythrocyte suspension with the increase of drug concentration and the prolongation of drug incubation time,the hemolytic rate of PUE was up to 40%,while the addition of PEG-PUE to the erythrocyte suspension revealed no significant hemolysis.Additionally,the result of erythrocyte osmotic fragility indicated that PEG-PUE exerted a slight effect on the erythrocyte membranes,and the NaCl concentration that induced 50% hemolysis (32 mmol/L) was about one-third PUE.Conclusion These results demonstrate that PEG-PUE could play a significant role in reducing the side effect of hemolysis induced by PUE.The low hemolytic activity of PEG-PUE makes it a favorable candidate for in vivo tests and PEG-PUE could also provide the useful insight for the further formulation development as an innovative drug.

  16. DETECTION OF OCCULT GLOMERULAR DYSFUNCTION IN GLUCOSE SIX PHOSPHATE DEHYDROGENASE DEFICIENCY ANEMIA

    Directory of Open Access Journals (Sweden)

    Gehan Abdel Hakeem

    2016-08-01

    G6PD deficiency anemia is associated with a variable degree of glomerular dysfunction during acute hemolytic episodes. This glomerular dysfunction can result in chronic subclinical or occult chronic kidney injury.

  17. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  18. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method

    DEFF Research Database (Denmark)

    Enevold, Anders; Vestergaard, Lasse S; Lusingu, John

    2005-01-01

    BACKGROUND: Mutations in the haemoglobin beta-globin (HbB) and glucose-6-phosphate dehydrogenase (G6PD) genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority...

  19. LIPID ABNORMALITIES IN SUCCINATE SEMIALDEHYDE DEHYDROGENASE (Aldh5a1−/−) DEFICIENT MOUSE BRAIN PROVIDE ADDITIONAL EVIDENCE FOR MYELIN ALTERATIONS

    OpenAIRE

    Barcelo-Coblijn, G.; Murphy, E.J.; Mills, K.; Winchester, B; Jakobs, C.; Snead, O.C.; Gibson, K. M.

    2007-01-01

    Lipid abnormalities in succinate semialdehyde dehydrogenase (aldh5a1-/-) deficient mouse brain provide additional evidence for myelin alterations correspondence: Corresponding author. Tel.: +1 412 692 7608; fax: +1 412 692 7816. (Gibson, K.M.) (Gibson, K.M.) Department of Pharmacology - Physiology--> , and Therapeutics--> , School of Medicine and Health Sciences--> , University of North Dakota--...

  20. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice

    NARCIS (Netherlands)

    Herrema, H.J.; Derks, T.G.; Dijk, van T.H.; Bloks, V.W.; Gerding, A.; Havinga, R.; Tietge, U.J.; Müller, M.R.; Smit, G.P.; Kuipers, F.; Reijngoud, D.J.

    2008-01-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency

  1. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; Touw, Catharina M L; Ribas, Graziela S; Biancini, Giovana B; Vanzin, Camila S; Negretto, Giovanna; Mescka, Caroline P; Reijngoud, Dirk Jan; Smit, G Peter A; Wajner, Moacir; Vargas, Carmen R

    2014-01-01

    The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and prote

  2. Genetic Basis for Correction of Very‐Long‐Chain Acyl-Coenzyme A Dehydrogenase Deficiency by Bezafibrate in Patient Fibroblasts: Toward a Genotype‐Based Therapy

    DEFF Research Database (Denmark)

    Gobin‐Limballe, S.; Djouadi, F.; Aubey, F.

    2007-01-01

    Very‐long‐chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty‐acid β‐oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent‐onset myopathy, and for which there is no establishe...

  3. A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient Arabidopsis mutants.

    Science.gov (United States)

    Boex-Fontvieille, Edouard R A; Gauthier, Paul P G; Gilard, Françoise; Hodges, Michael; Tcherkez, Guillaume G B

    2013-08-01

    The cornerstone of carbon (C) and nitrogen (N) metabolic interactions - respiration - is presently not well understood in plant cells: the source of the key intermediate 2-oxoglutarate (2OG), to which reduced N is combined to yield glutamate and glutamine, remains somewhat unclear. We took advantage of combined mutations of NAD- and NADP-dependent isocitrate dehydrogenase activity and investigated the associated metabolic effects in Arabidopsis leaves (the major site of N assimilation in this genus), using metabolomics and (13)C-labelling techniques. We show that a substantial reduction in leaf isocitrate dehydrogenase activity did not lead to changes in the respiration efflux rate but respiratory metabolism was reorchestrated: 2OG production was supplemented by a metabolic bypass involving both lysine synthesis and degradation. Although the recycling of lysine has long been considered important in sustaining respiration, we show here that lysine neosynthesis itself participates in an alternative respiratory pathway. Lys metabolism thus contributes to explaining the metabolic flexibility of plant leaves and the effect (or the lack thereof) of respiratory mutations.

  4. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G;

    1995-01-01

    alleles from patients from all over the world; 2. that the allele frequency of G985 in the general population from most European countries is very high (the carrier frequency ranges from 1/68 to 1/333); 3. that MCAD deficiency is not, as has previously been suggested, related to Sudden Infant Death...

  5. Genetics Home Reference: long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... LCHAD deficiency typically appear during infancy or early childhood and can include feeding difficulties, lack of energy (lethargy), low blood sugar (hypoglycemia), weak muscle tone (hypotonia), liver problems, and abnormalities in the ... Later in childhood, people with this condition may experience muscle pain, ...

  6. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    Science.gov (United States)

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  7. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

    Science.gov (United States)

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-09-01

    L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

  8. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  9. Icterícia neonatal e deficiência de glicose-6-fosfato desidrogenase Neonatal jaundice and glucose-6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Amauri Antiquera Leite

    2010-01-01

    Full Text Available A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase in newborn babies may be responsible for neonatal jaundice. There is a concern of many authors from other countries in respect to complications in neonates with hyperbilirubinemia; some authors even propose screening for glucose-6-phosphate dehydrogenase deficiency in newborn babies. A scientific report on this subject is published in this issue.

  10. Effects of variant UDP-glucuronosyltransferase 1A1 gene,glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    Institute of Scientific and Technical Information of China (English)

    Yang-Yang Huang; Ching-Shui Huang; Sien-Sing Yang; Min-Shung Lin; May-Jen Huang; Ching-Shan Huang

    2005-01-01

    AIM: To test the hypothesis that the variant UDPglucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis.METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups,respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency.RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P<0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese.

  11. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern indonesian populations

    Directory of Open Access Journals (Sweden)

    Tantular,Indah S.

    2010-12-01

    Full Text Available We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  12. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations.

    Science.gov (United States)

    Tantular, Indah S; Matsuoka, Hiroyuki; Kasahara, Yuichi; Pusarawati, Suhintam; Kanbe, Toshio; Tuda, Josef S B; Kido, Yasutoshi; Dachlan, Yoes P; Kawamoto, Fumihiko

    2010-12-01

    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  13. Frequency of Thalassemia, Iron and Glucose-6Phosphate Dehydrogenase Deficiency Among Turkish Migrating Nomad Children in Southern Iran

    Directory of Open Access Journals (Sweden)

    Mehrabani D

    2009-04-01

    Full Text Available Ferropenia and consequent iron deficiency anemia (IDA, β-thalassemia, and glucose 6-phosphate dehydrogenase (G6PD deficiency are three main common hematological problems in Iran. This study was conducted to investigate the prevalence of these problems in Turkish migrating nomads in southern Iran. From June to October 2006, the blood sample of 152 Turkish migrating nomadic children including 79 (52% males and 73 (48% females were evaluated for iron indices and G6PD deficiency in southern Iran. The family history of thalassemia, favism, and signs and symptoms related to anemia of participants were determined. RBC count, different types of Hb, Hct, MCV, MCH, MCHC, RDW, SI, TIBC and SF were measured immediately after blood sampling. Twenty-seven (17.7% children had serum ferritin (SF level <12 ng/dL, while this low serum ferritin level was similar in both genders. The low hemoglobin (Hb level had a statistical correlation with the low serum ferritin level. Among all participants, the prevalence of G6PD deficiency was 7.2% which was more frequent in males compared to females (8.9% vs. 5.5%. Seven (4.6% children had Hb  3.5 g/dL; and the prevalence of β-thalassemia trait was higher in female children compared with males (5.5% vs. 3.8%. The prevalence of IDA was 17.7%. Although this figure is less than the prevalence found in other developing countries (25-35%; but it shows that Turkish ethnic nomads in southern Iran are still behind the health statues in the industrialized countries (5-8%. The relatively high prevalence of β-thalassemia trait also is a major potential risk; and careful performance of Iranian thalassaemia program is highly suggested. It seems that G6PD deficiency is a prevalent disease in migrating Turkish nomads, and again establishment of educational programs, and investigation of dietary habits of Turkish migrating nomads on how and by whom the fava beans are consumed; seems to be a good way to prevent favism.

  14. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase product

  15. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.;

    2003-01-01

    Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...... and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate...... with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H...

  16. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency.

    Directory of Open Access Journals (Sweden)

    E F Diekman

    Full Text Available Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr and inorganic phosphate (Pi concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.

  17. Survey of the Prevalence of Glucose-6-Phosphate Dehydrogenase (G6PD Deficiency in Admitted Men for Premarriage Tests in Zahedan-Iran Reference Laboratory

    Directory of Open Access Journals (Sweden)

    Nakhaee Ali Reza

    2009-09-01

    Full Text Available Background: GLucose-6-phosphate dehydrogenase (G6PD deficiency is the most common known enzymopathy in human. G6PD deficiency is usually asymptomatic, however, deficient individuals are at increased risk of developing acute hemolytic anemia and hyperbilirubinemia following intake of oxidative agents and fava. The objective of present study was to detect prevalence of G6PD deficiency in admitted males for premarriage tests in Zahedan Reference Laboratory. Also, we compared blood indices of normal and G6PD deficient individuals.Materials and Methods: This descriptive study was carried out on 1340 admitted males in Zahedan Reference Laboratory from February 2008 to March 2009. G6PD activity was determined in EDTA containing blood samples by qualitative fluorescence spot test, then G6PD deficiency was confirmed by quantitative spectrophotometric method. Total leukocyte count and RBC indices of G6PD deficient samples and the same number of normal samples were compared. The differences between two groups were compared using Sigmaplot software and t-Student test. A P-value less than 0.05 was considered statistically significant.Results: G6PD deficiency was found in 84 individuals of total 1340 by fluorescence spot test and confirmed in 79 by quantitative method. Therefore, prevalence of G6PD deficiency in Zahedan was estimated to be 5.9%. Comparison of deficient and normal individuals did not show significant difference in WBC count, RBC count, hemoglobin concentration, hematocrit, mean corpuscular hemoglobin (MCH and RDW-SD. However, mean corpuscular volume (MCV was significantly high and mean corpuscular hemoglobin concentration (MCHC and RDW-CV were significantly low in G6PD deficient individuals compared to those with normal enzyme level.Discussion: Present study revealed that the prevalence of G6PD deficiency in Zahedan is 5.9%. Severity of G6PD deficiency in quantitative assay indicated that class I and II are probably dominant variants in

  18. Modulation effect of blu-ray irradiation combined with comprehensive therapy on serum indexes of neonatal erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia

    Institute of Scientific and Technical Information of China (English)

    Xuan Yang

    2016-01-01

    Objective:To study the modulation effect of blu-ray irradiation combined with comprehensive therapy on serum indexes of neonatal erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia.Methods:A total of42 cases of neonates with erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia were chosen for study and randomly divided into observation group (n=21) and control group (n=21). Observation group received blu-ray irradiation combined with comprehensive treatment and control group only received routine treatment. Then bilirubin levels, bilirubin encephalopathy condition, anemia condition and oxidative stress degree of two groups were compared. Results:12 h, 24 h and 48 h after treatment, serum TBIL, DBIL, IBIL, Hb, GSH and CAT contents of both groups showed decreasing trend and MDA contents showed increasing trend; serum TBIL, DBIL, IBIL, Hb, GSH and CAT contents of observation group were lower than those of control group and MDA contents were higher than those of control group. 6 d, 7 d and 8 d after treatment, serum S100β and NSE contents of both groups showed decreasing trend and serum S100β and NSE contents of observation group were lower than those of control group.Conclusion:Blu-ray irradiation combined with comprehensive therapy helps to reduce bilirubin levels of neonatal erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia and protect nerve function, but it will aggravate anemia condition and oxidative stress degree, and needs attention and intervention in clinical practice.

  19. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency

    Institute of Scientific and Technical Information of China (English)

    Rui-Nan Zhang; Yi-Fan Li; Wen-Juan Qiu; Jun Ye; Lian-Shu Han; Hui-Wen Zhang; Na Lin; Xue-Fan Gu

    2014-01-01

    Background: Very long chain acyl-CoA dehydrogenase deficiency (VLCADD) is an inherited metabolic disease caused by deleterious mutations in the ACADVL gene that encodes very long chain acyl-CoA dehydrogenase (VLCAD), and which can present as cardiomyopathy in neonates, as hypoketotic hypoglycemia in infancy, and as myopathy in late-onset patients. Although many ACADVL mutations have been described, no prevalent mutations in the ACADVL gene have been associated with VLCADD. Herein, we report the clinical course of the disease and explore the genetic mutation spectrum in seven Chinese patients with VLCADD. Methods: Seven Chinese patients, from newborn to 17 years old, were included in this study. Tandem mass spectrometry was performed to screen for VLCAD defi ciency. All exons and fl anking introns of the ACADVL gene were analyzed using polymerase chain reaction and direct sequencing. Online analysis tools were used to predict the impact of novel mutations. Results: All cases had elevated serum levels of tetradecanoylcarnitine (C14:1) which is the characteristic biomarker for VLCADD. The phenotype of VLCADD is heterogeneous. Two patients were hospitalized for hypoactivity and hypoglycemia shortly after birth. Three patients showed hepatomegaly and hypoglycemia in infancy. The other two adolescent patients showed initial manifestations of exercise intolerance or rhabdomyolysis. Three of the patients died at the age of 6-8 months. Eleven different mutations in the ACADVL gene in the 7 patients were identified, including seven reported mutations (p.S22X, p.W427X, p.A213T, p.G222R, p.R450H, c.296- 297delCA, c.1605+1G>T) and four novel mutations (p.S72F, p.Q100X, p.M437T, p.D466Y). The p.R450H and p.D466Y (14.28%, 2/14 alleles) mutations were identifi ed in two alleles respectively. Conclusions: The clinical manifestations were heterogeneous and ACADVL gene mutations were heterozygous in the seven VLCADD Chinese patients. R450H may be a relatively common mutation in Asian

  20. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G......) in the MCAD gene has been characterized, thus rendering diagnosis easy in the majority of cases. Since the clinical spectrum of MCAD deficiency ranges from death in the first days of life to an asymptomatic life, there are probably other genetic factors--in addition to MCAD mutations......--involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...

  1. Glucose-6-phosphate dehydrogenase(G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Abdoul; Karim; Ouattara; Cyrille; Bisseye; Bapio; Valery; Jean; Télesphore; Elvira; Bazie; Birama; Diarra; Tegwindé; Rebeca; Compaore; Florencia; Djigma; Virginio; Pietra; Remy; Moret; Jacques; Simpore

    2014-01-01

    Objective:To investigate 4 combinations of mutations responsible for glucose-6—phosphate dehydrogenase(G6PD) deficiency in a rural community of Burkina Faso,a malaria endemic country.Methods:Two hundred individuals in a rural community were genotyped for the mutations A376 G.G202A,A542 T,G680T and T968 C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism.Results:The prevalence of the G6 PD deficiency was 9.5%,in the study population.It was significantly higher in men compared to women(14.23%vs 6.0%,P=0.049).The 202A/376 G G6PD Awas the only deficient variant detected.Plasmodium falciparum asymptomatic parasitemia was significantly higher among the C6PD-non—deficient persons compared to the G6PD-deficient(P<0.001).The asymptomatic parasitemia was also significantly higher among G(SPI) nondeficient compared to C6PD—heterozygous females(P<0.001).Conclusions:This study showed that the G6 PD A- variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.

  2. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    Full Text Available Abstract Background Medium chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of mitochondrial fatty acid oxidation and is one of the most common inborn errors of metabolism. Identification of MCADD via newborn screening permits the introduction of interventions that can significantly reduce associated morbidity and mortality. This study reports on the first three years of newborn screening for MCADD in Ontario, Canada. Methods Newborn Screening Ontario began screening for MCADD in April 2006, by quantification of acylcarnitines (primarily octanoylcarnitine, C8 in dried blood spots using tandem mass spectrometry. Babies with positive screening results were referred to physicians at one of five regional Newborn Screening Treatment Centres, who were responsible for diagnostic evaluation and follow-up care. Results From April 2006 through March 2009, approximately 439 000 infants were screened for MCADD in Ontario. Seventy-four infants screened positive, with a median C8 level of 0.68 uM (range 0.33-30.41 uM. Thirty-one of the screen positive infants have been confirmed to have MCADD, while 36 have been confirmed to be unaffected. Screening C8 levels were higher among infants with MCADD (median 8.93 uM compared to those with false positive results (median 0.47 uM. Molecular testing was available for 29 confirmed cases of MCADD, 15 of whom were homozygous for the common c.985A > G mutation. Infants homozygous for the common mutation tended to have higher C8 levels (median 12.13 uM relative to compound heterozygotes for c.985A > G and a second detectable mutation (median 2.01 uM. Eight confirmed mutation carriers were identified among infants in the false positive group. The positive predictive value of a screen positive for MCADD was 46%. The estimated birth prevalence of MCADD in Ontario is approximately 1 in 14 000. Conclusions The birth prevalence of MCADD and positive predictive value of the screening test were similar to those

  3. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/- mouse to compensate a defective fatty acid β-oxidation.

    Directory of Open Access Journals (Sweden)

    Sara Tucci

    Full Text Available Very long-chain acyl-CoA dehydrogenase (VLCAD-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/- remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/- mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD and medium-chain acyl-CoA dehydrogenase (MCAD was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/- mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/- mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/- mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  4. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G......--involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...... polymerase chain reaction (PCR) assay for the G985 mutation. The analysis was positive and resulted in abortion. We verified the diagnosis by direct analysis on blood spots and other tissue material from the aborted fetus and from family members....

  5. STUDY OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE (G6PD DEFICIENCY IN JAUNDICED NEONATES OF A TERTIARY CARE CENTRE OF NORTH-EAST INDIA

    Directory of Open Access Journals (Sweden)

    Aukifa Khamim

    2016-05-01

    Full Text Available roteins from oxidative damage. Glucose-6-Phosphate Dehydrogenase (G6PD deficiency is the commonest red cell enzyme abnormality associated with haemolysis leading to Neonatal Jaundice (NNJ. It is a genetically inherited X-linked abnormality. AIMS To find out incidence of G6PD deficiency amongst jaundiced patients and relation between G6PD deficiency and sex, peak level of Total Serum Bilirubin (TSB, significant hyperbilirubinemia, duration of phototherapy and need for exchange transfusion. SETTINGS AND DESIGN Hospital based retrospective study. METHODS AND MATERIALS This retrospective study was carried out among 1224 jaundiced neonates needing phototherapy admitted in the Neonatology Unit of Dept. of Paediatrics (March 2015 to October 2015, Assam Medical College and Hospital (AMCH, Dibrugarh, Assam. STATISTICAL ANALYSIS USED Data were entered in SPSS (Software package for statistical analysis, version 16 and analysed using Chi-Square test and Mann Whitney U test. RESULTS A total of 2574 neonates were admitted during the 8 months period, of which 1224 had NNJ (47.5%. Of these 77 (5.07% babies were G6PD deficient. Male (n=53 to female (n=24 ratio was 2:1. The commonest age at presentation was 2nd to 4th days in both G6PD deficient and G6PD normal neonates. Mean peak-TSB level in G6PD deficient cases (20.03±5.30 mg/dL was significantly higher than G6PD normal cases (16.67±3.93 mg/dL; 45% of G6PD deficient neonates developed significant hyperbilirubinemia (Indirect bilirubin more than 20 mg% and required Double Volume Exchange Transfusion (DVET. Mean duration of phototherapy in G6PD deficient NNJ babies is 2.5±1.2 days, which is significantly higher (p<0.05 when compared to G6PD normal NNJ babies where it is 2±1.1 days. In babies with significant hyperbilirubinemia, it is seen that there is signif icant difference (p<0.001 between G6PD deficient and G6PD normal babies. There was significant difference in requirement of DVET between G6PD deficient

  6. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2016-09-01

    Full Text Available This article contains data on the variation in several physiological parameters of red blood cells (RBCs donated by eligible glucose-6-phosphate dehydrogenase (G6PD deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+ cells. Intracellular reactive oxygen species (ROS generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in “Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells” [1].

  7. Successful Treatment of Cardiomyopathy due to Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: First Case Report from Oman with Literature Review

    Directory of Open Access Journals (Sweden)

    Sharef Waadallah Sharef

    2013-09-01

    Full Text Available Very long-chain acyl-CoA dehydrogenase deficiency (MIM 201475 is a severe defect of mitochondrial energy production from oxidation of very long-chain fatty acids. This inherited metabolic disorder often presents in early neonatal period with episodes of symptomatic hypoglycemia usually responding well to intravenous glucose infusion. These babies are often discharged without establishment of diagnosis but return by 2-5 months of age with severe and progressive cardiac failure due to hypertrophic cardiomyopathy with or without hepatic failure and steatosis. An early diagnosis and treatment with high concentration medium chain triglycerides based feeding formula can be life saving in such patients. Here, we report the first diagnosed and treated case of Very long-chain acyl-CoA dehydrogenase deficiency in Oman. This infant developed heart failure with left ventricular dilation, hypertrophy and pericardial effusion at the age of 7 weeks. Prompt diagnosis and subsequent intervention with medium chain triglycerides-based formula resulted in a reversal of severe clinical symptoms with significant improvement of cardiac status. This treatment also ensured normal growth and neurodevelopment. It is stressed that the disease must be recognized by the pediatricians and cardiologists since the disease can be identified by Tandem Mass Spectrometry; therefore, it should be considered to be included in expanded newborn screening program, allowing early diagnosis and intervention in order to ensure better outcome and prevent complications.

  8. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  9. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-01

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.

  10. First evaluation of glucose-6-phosphate dehydrogenase (G6PD deficiency in vivax malaria endemic regions in the Republic of Korea.

    Directory of Open Access Journals (Sweden)

    Youn-Kyoung Goo

    Full Text Available BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK. METHODS: Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK. RESULTS: Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants. CONCLUSIONS: No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.

  11. Familial very long chain acyl-CoA dehydrogenase deficiency as a cause of neonatal sudden infant death: improved survival by prompt diagnosis.

    Science.gov (United States)

    Scalais, Emmanuel; Bottu, Jean; Wanders, Ronald J A; Ferdinandusse, Sacha; Waterham, Hans R; De Meirleir, Linda

    2015-01-01

    In neonates, very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is often characterized by cardiomyopathy, hepatic encephalopathy, or severe hypoketotic hypoglycemia, or a combination thereof. The purpose of this study was to further elucidate a familial VLCAD deficiency in three patients, two of whom died in the neonatal period. We report on a family with VLCAD deficiency. Acyl-carnitine profiles were obtained from dried blood spot and/or from oxidation of (13) C-palmitate by cultured skin fibroblasts. In the index patient, VLCAD deficiency was ascertained by enzyme activity measurement in fibroblasts and by molecular analysis of ACADVL. At 30 hr of life, the proband was diagnosed with hypoglycemia (1.77 mmol/L), rhabdomyolysis (CK: 12966 IU/L) and hyperlactacidemia (10.6 mmol/L). Acylcarnitine profile performed at 31 hr of life was consistent with VLCAD deficiency and confirmed by cultured skin fibroblast enzyme activity measurement. Molecular analysis of ACADVL revealed a homozygous splice-site mutation (1077 + 2T>C). The acyl-carnitine profile obtained from the sibling's original newborn screening cards demonstrated a similar, but less pronounced abnormal profile. In the proband, the initial metabolic crisis was controlled with 10% dextrose solution and oral riboflavin followed by specific diet (Basic-F and medium chain triglyceride (MCT). This clinical report demonstrates a familial history of repeated neonatal deaths explained by VLCAD deficiency, and the clinical evolution of the latest affected, surviving sibling. It shows that very early metabolic screening is an effective approach to avoid sudden unexpected death.

  12. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  13. Risks of hemolysis in glucose-6-phosphate dehydrogenase deficient infants exposed to chlorproguanil-dapsone, mefloquine and sulfadoxine-pyrimethamine as part of intermittent presumptive treatment of malaria in infants

    DEFF Research Database (Denmark)

    Poirot, Eugenie; Vittinghoff, Eric; Ishengoma, Deus;

    2015-01-01

    BACKGROUND: Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi) antimala......BACKGROUND: Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi...

  14. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf;

    2007-01-01

    individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  15.  Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors inSana’a City, Yemen

    Directory of Open Access Journals (Sweden)

    Molham AL-Habori

    2012-01-01

    Full Text Available  Objectives: To determine the prevalence of Glucose-6-phosphatedehydrogenase (G-6-PD deficiency among Yemeni people fromdifferent regions of the country living in the capital city, Sana’a,giving an indication of its overall prevalence in Yemen.Methods: A cross-sectional study was conducted among Yemenimale blood donors attending the Department of Blood Bank atthe National Centre of the Public Health Laboratories in thecapital city, Sana’a, Yemen. Fluorescent spot method was used forscreening, spectrophotometeric estimation of G-6-PD activityand separation by electrophoresis was done to determine the G-6-PD phenotype.Results: Of the total 508 male blood donors recruited into thestudy, 36 were G-6-PD deficient, giving a likely G-6-PD deficiencyprevalence of 7.1�20None of these deficient donors had history ofanemia or jaundice. Thirty-five of these deficient cases (97.2�howed severe G-6-PD deficiency class II (<10�0of normalactivity, and their phenotyping presumptively revealed a G-6-PDMediterraneanvariant.Conclusion: The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiencytype in these blood donors in Sana’a City, which could representan important health problem through occurrence of hemolyticanemia under oxidative stress. A larger sample size is needed todetermine the overall prevalence of G-6-PD deficiency, and shouldbe extended to include DNA analysis to identify its variants in Yemen.

  16. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Directory of Open Access Journals (Sweden)

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  17. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  18. [Frequency of color blindness and glucose-6-phosphate dehydrogenase enzyme deficiency in non-industrialized populations in the state of Nuevo León, México].

    Science.gov (United States)

    Ceda-Flores, R M; Arriaga-Ríos, G; Muñoz-Campos, J; Bautista-Peña, V A; Angeles Rojas-Alvarado, M; González-Quiróga, G; Leal-Garza, C H; Garza-Chapa, R

    1990-01-01

    In order to know if there would be genetic structural differences among non industrial and industrial populations, two genetic markers were studied: color-blindness (CPC) and glucose-6-phosphate dehydrogenase deficiency (G6PD), in students, males and females that were resident in five non industrial populations in the State of Nuevo Leon. The results were compared with the information for industrial zone from the Monterrey Metropolitan area (AMM). It was found that the frequencies of CPC and G6PD in non industrial populations (2.57 and 0.00 per cent), were lower than the ones in the industrial AMM (4.0 and 0.66 per cent), probably as a result that in the first populations, with minor urbanization, the main factors that influence are: natural selection, interacial mixed or genetic drift and the second population is the immigration, since 1940 to present time, of Mexican populations with greater influence from the Indians and Africans.

  19. Pyridoxine-dependent seizures caused by alpha amino adipic semialdehyde dehydrogenase deficiency: the first polish case with confirmed biochemical and molecular pathology.

    Science.gov (United States)

    Kaczorowska, Magdalena; Kmiec, Tomasz; Jakobs, Cornelis; Kacinski, Marek; Kroczka, Slawomir; Salomons, Gajja S; Struys, Eduard A; Jozwiak, Sergiusz

    2008-12-01

    Pyridoxine-dependent seizures are a rare condition recognized when numerous seizures respond to pyridoxine treatment and recur on pyridoxine withdrawal. For decades the diagnosis was confirmed only with pyridoxine treatment withdrawal trial. Recently described biochemical and molecular pathology improved the diagnostic process for those cases in which seizures are caused by alpha amino adipic semialdehyde dehydrogenase deficiency. This article presents a girl with recurrent status epilepticus episodes resistant to phenobarbital and phenytoin and partly responding to midazolam. Eventually the seizures were completely controlled with pyridoxine; however, due to the severe condition of this child when seizing, no trial of withdrawal has been performed. The diagnosis of pyridoxine-dependent seizures was confirmed with biochemical and molecular testing revealing elevated alpha-AASA excretion and the presence of 2 different mutations in the antiquitin ( ALDH7A1) gene. Due to the availability of reliable laboratory testing, confirmation of the diagnosis was made without the life-threatening trial of pyridoxine withdrawal.

  20. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.

    Directory of Open Access Journals (Sweden)

    Zarazuela Zolkipli

    Full Text Available OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10, compound heterozygous for c.625G>A/c.319C>T (n = 3 or homozygous for pathogenic c.319C>T (n = 2 and c.1138C>T (n = 2 mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2 (n = 5, mitochondrial trifunctional protein (MTP/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD (n = 7, and medium-chain acyl-CoA dehydrogenase (MCAD deficiencies (n = 4 and normal controls (n = 9. All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine, Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness

  1. Glutaric acid and its metabolites cause apoptosis in immature oligodendrocytes: a novel mechanism of white matter degeneration in glutaryl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Gerstner, Bettina; Gratopp, Alexander; Marcinkowski, Monika; Sifringer, Marco; Obladen, Michael; Bührer, Christoph

    2005-06-01

    Glutaryl-CoA dehydrogenase deficiency is an inherited metabolic disease characterized by elevated concentrations of glutaric acid (GA) and its metabolites glutaconic acid (GC) and 3-hydroxy-glutaric acid (3-OH-GA). Its hallmarks are striatal and cortical degeneration, which have been linked to excitotoxic neuronal cell death. However, magnetic resonance imaging studies have also revealed widespread white matter disease. Correspondingly, we decided to investigate the effects of GA, GC, and 3-OH-GA on the rat immature oligodendroglia cell line, OLN-93. For comparison, we also exposed the neuroblastoma line SH-SY5Y and the microglia line BV-2 to GA, GC, and 3-OH-GA. Cell viability was measured by metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium. Flow cytometry was used to assess apoptosis via annexin-V, anti-active caspase-3 antibody, and propidium iodide staining. GA, GC, and 3-OH-GA reduced OLN-93 oligodendroglia cell viability in a dose-dependent manner. Toxicity of GA, GC, and 3-OH-GA was abrogated by preincubation with the pan-caspase inhibitor z-VAD-fmk. Apoptosis but not necrosis was detected at various stages (early: annexin-V; effector: caspase-3) after 24-48 h of incubation with GA, GC, or 3-OH-GA in OLN-93 but not in neuroblastoma or microglia cells. OLN-93 lacked expression of N-methyl-d-aspartate receptors, making classical glutamatergic excitotoxicity an unlikely explanation for the selective toxicity of GA, GC, and 3-OH-GA for OLN-93 cells. GA, GC, and 3-OH-GA directly initiate the apoptotic cascade in oligodendroglia cells. This mechanism may contribute to the white matter damage observed in glutaryl-CoA dehydrogenase deficiency.

  2. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

    Science.gov (United States)

    De Boeck, Reinout; Sarmiento-Rubiano, Luz Adriana; Nadal, Inmaculada; Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-02-01

    Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main L-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTS(Gut)) in BL251. These results showed that the PTS(Gut) did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Deltaldh1 DeltagutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate.

  3. Deficiência da glicose-6-fosfato desidrogenase com infecções de repetição: relato de caso Glucose-6-phosphate dehydrogenase deficiency with recurrent infections: case report

    Directory of Open Access Journals (Sweden)

    Abertina Rosa-Borges

    2001-08-01

    Full Text Available OBJETIVO: relatar a ocorrência de uma deficiência funcional de neutrófilos rara, com quadro clínico e laboratorial semelhante ao da doença granulomatosa crônica. MÉTODOS: relato de caso de paciente com deficiência acentuada da glicose-6-fosfato desidrogenase e infecções de repetição. Realizada pesquisa bibliográfica utilizando as bases de dados Medline e Lilacs, abrangendo o período de 1972 a 2000. RESULTADOS: paciente com nível da glicose-6-fosfato desidrogenase extremamente reduzido e quadro de infeções graves com melhora clínica após uso de cotrimoxazol contínuo. Os leucócitos do paciente apresentam defeito no metabolismo oxidativo, similar ao da doença granulomatosa crônica. CONCLUSÕES: o diagnóstico da deficiência da glicose-6-fosfato desidrogenase em neutrófilos deve ser considerado em qualquer paciente com anemia hemolítica não esferocítica congênita no qual o nível da glicose-6-fosfato desidrogenase esteja anormalmente baixo ou apresente infeções de repetição. É diagnóstico diferencial da doença granulomatosa crônica.OBJECTIVE: To report a case of rare neutrophil functional disorder with clinical and laboratory findings similar to those of chronic granulomatous disease. METHODS: Patient with extremely reduced level of glucose-6-phosphate dehydrogenase and recurrent infections that improved after continuous use of cotrimoxazole. The patient presented leukocytes with defective respiratory burst, similar to what occurs in chronic granulomatous disease. COMMENTS: The diagnosis of glucose-6-phosphate dehydrogenase deficiency in neutrophils should be considered in any patient with hemolytic anemia whose level of G6PD is extremely low or in any patient that presents recurrent infections as differential diagnosis of chronic granulomatous disease.

  4. Human 3β-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk

    DEFF Research Database (Denmark)

    Burckhardt, Marie-Anne; Udhane, Sameer S; Marti, Nesa

    2015-01-01

    . RESULTS: A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene...... enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS: The testis with HSD3B2...... deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis....

  5. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study

    Science.gov (United States)

    Uyoga, Sophie; Ndila, Carolyne M; Macharia, Alex W; Nyutu, Gideon; Shah, Shivang; Peshu, Norbert; Clarke, Geraldine M; Kwiatkowski, Dominic P; Rockett, Kirk A; Williams, Thomas N

    2015-01-01

    Summary Background The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya. Methods We did this study in Kilifi County, Kenya, where the G6PD c.202T allele is the only significant cause of G6PD deficiency. We tested the associations between G6PD deficiency and severe and complicated Plasmodium falciparum malaria through a case-control study of 2220 case and 3940 control children. Cases were children aged younger than 14 years, who visited the high dependency ward of Kilifi County Hospital with severe malaria between March 1, 1998, and Feb 28, 2010. Controls were children aged between 3–12 months who were born within the same study area between August 2006, and September 2010. We assessed the association between G6PD deficiency and both uncomplicated malaria and other common diseases of childhood in a cohort study of 752 children aged younger than 10 years. Participants of this study were recruited from a representative sample of households within the Ngerenya and Chonyi areas of Kilifi County between Aug 1, 1998, and July 31, 2001. The primary outcome measure for the case-control study was the odds ratio for hospital admission with severe malaria (computed by logistic regression) while for the cohort study it was the incidence rate ratio for uncomplicated malaria and non-malaria illnesses (computed by Poisson regression), by G6PD deficiency category. Findings 2863 (73%) children in the control group versus 1643 (74%) in the case group had the G6PD normal genotype, 639 (16%) versus 306 (14%) were girls heterozygous for G6PD c.202T, and 438 (11%) versus 271 (12%) children were either homozygous girls or hemizygous boys. Compared with boys and girls without G6PD deficiency, we found significant

  6. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  7. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency.

    Science.gov (United States)

    Olsen, Rikke K J; Koňaříková, Eliška; Giancaspero, Teresa A; Mosegaard, Signe; Boczonadi, Veronika; Mataković, Lavinija; Veauville-Merllié, Alice; Terrile, Caterina; Schwarzmayr, Thomas; Haack, Tobias B; Auranen, Mari; Leone, Piero; Galluccio, Michele; Imbard, Apolline; Gutierrez-Rios, Purificacion; Palmfeldt, Johan; Graf, Elisabeth; Vianey-Saban, Christine; Oppenheim, Marcus; Schiff, Manuel; Pichard, Samia; Rigal, Odile; Pyle, Angela; Chinnery, Patrick F; Konstantopoulou, Vassiliki; Möslinger, Dorothea; Feichtinger, René G; Talim, Beril; Topaloglu, Haluk; Coskun, Turgay; Gucer, Safak; Botta, Annalisa; Pegoraro, Elena; Malena, Adriana; Vergani, Lodovica; Mazzà, Daniela; Zollino, Marcella; Ghezzi, Daniele; Acquaviva, Cecile; Tyni, Tiina; Boneh, Avihu; Meitinger, Thomas; Strom, Tim M; Gregersen, Niels; Mayr, Johannes A; Horvath, Rita; Barile, Maria; Prokisch, Holger

    2016-06-02

    Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.

  8. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I;

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present....... In contrast, the same haplotype was present in only 23% of normal alleles (P less than or equal to 3.4 x 10(-18)). These findings are consistent with the existence of a pronounced founder effect, possibly combined with biological and/or sampling selection....

  9. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  10. A comprehensive HADHA c.1528G>C frequency study reveals high prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Poland

    DEFF Research Database (Denmark)

    Piekutowska-Abramczuk, Dorota; Olsen, Rikke K J; Wierzba, Jolanta;

    2010-01-01

    Isolated long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is associated with c.1528G>C substitution in the HADHA gene, since most patients have the prevalent mutation on at least one allele. As it is known that the disease is relatively frequent in Europe, especially around the Balt...... Sea, and that the majority of Polish LCHADD patients originate from the coastal Pomeranian province, partly inhabited by an ancient ethnic group, the Kashubians, we aimed to determine the carrier frequency of the prevalent HADHA mutation in various districts of Poland with special focus....... Our data reveal a geographically skewed distribution of the c.1528C allele in the Polish population; in the northern Pomeranian province the carrier frequency is 1:73, which is the highest frequency ever reported, whereas in the remaining regions it is 1:217. Hence, the incidence of LCHADD in Poland...... is predicted to be 1:118,336 versus 1:16,900 in the Pomeranian district. Despite the relative rarity of the disease, screening for LCHADD in neonates born in the northern part of Poland, especially those of Kashubian origin, is justified. Our data allow us to suggest a probable Kashubian origin...

  11. The role of reduced glutathione during the course of acute haemolysis in glucose-6-phosphate dehydrogenase deficient patients: clinical and pharmacodynamic aspects.

    Science.gov (United States)

    Corbucci, G G

    1990-01-01

    Tissue hypoperfusion leads to cellular oxidative and peroxidative damage due to biochemical disorders in the oxygen and substrate metabolism. The metabolic turnover of glutathione (GSH) represents one the main cytoprotective systems against the peroxide attack and the depletion or defect in resynthesis of this compound is accompanied by pathological consequences. In the present study the clinical effects of glutathione depletion were investigated in conditions of acute tissue hypoxia due to marked haemolysis in glucose-6-phosphate dehydrogenase deficient patients (favism syndrome). In these subjects a significant marker of the tissue oxidative damage was represented by the uric acid blood levels, presumably linked to xanthine-hypoxanthine altered metabolism. To antagonize the effects of oxyradical pathology, reduced glutathione was administered to a group of patients and the results confirmed the cytoprotective role played by the GSH supplementation. The GSH action was evident on the tissue metabolism and this supports the opinion that reduced glutathione could represent a new and interesting therapeutic approach in marked and acute hypoxic conditions.

  12. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton.

    Science.gov (United States)

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-07-16

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition.

  13. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain.

    Science.gov (United States)

    Schuck, Patrícia Fernanda; Ferreira, Gustavo da Costa; Tonin, Anelise Miotti; Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Zanatta, Angela; Klamt, Fábio; Wajner, Moacir

    2009-11-03

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.

  14. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    Science.gov (United States)

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  15. 46,XY DSD with Female or Ambiguous External Genitalia at Birth due to Androgen Insensitivity Syndrome, 5-Reductase-2 Deficiency, or 17-Hydroxysteroid Dehydrogenase Deficiency: A Review of Quality of Life Outcomes

    Directory of Open Access Journals (Sweden)

    Mazur Tom

    2009-08-01

    Full Text Available Disorders of sex development refer to a collection of congenital conditions in which atypical development of chromosomal, gonadal, or anatomic sex occurs. Studies of 46,XY DSD have focused largely on gender identity, gender role, and sexual orientation. Few studies have focused on other domains, such as physical and mental health, that may contribute to a person's quality of life. The current review focuses on information published since 1955 pertaining to psychological well-being, cognition, general health, fertility, and sexual function in people affected by androgen insensitivity syndromes, 5- reductase-2 deficiency, or 17-hydroxysteroid dehydrogenase-3 deficiency—reared male or female. The complete form of androgen insensitivity syndrome has been the focus of the largest number of investigations in domains other than gender. Despite this, all of the conditions included in the current review are under-studied. Realms identified for further study include psychological well-being, cognitive abilities, general health, fertility, and sexual function. Such investigations would not only improve the quality of life for those affected by DSD but may also provide information for improving physical and mental health in the general population.

  16. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding.

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease.

  17. A Historical Cohort Study on the Efficacy of Glucocorticoids and Riboflavin Among Patients with Late-onset Multiple Acyl-CoA Dehydrogenase Deficiency

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Zhi-Qiang Wang; Dan-Ni Wang; Min-Ting Lin; Ning Wang

    2016-01-01

    Background:Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common type of lipid storage myopathies in China.Most patients with late-onset MADD are well responsive to riboflavin.Up to now,these patients are often treated with glucocorticoids as the first-line drug because they are misdiagnosed as polymyositis without muscle biopsy or gene analysis.Although glucocorticoids seem to improve the fatty acid metabolism of late-onset MADD,the objective evaluation of their rationalization on this disorder and comparison with riboflavin treatment are unknown.Methods:We performed a historical cohort study on the efficacy of the two drugs among 45 patients with late-onset MADD,who were divided into glucocorticoids group and riboflavin group.Detailed clinical information of baseline and 1-month follow-up were collected.Results:After 1-month treatment,a dramatic improvement of muscle strength was found in riboflavin group (P < 0.05).There was no significant difference in muscle enzymes between the two groups.Significantly,the number of patients with full recovery in glucocorticoids group was less than the number in riboflavin group (P < 0.05).On the other hand,almost half of the patients in riboflavin group still presented high-level muscle enzymes and weak muscle strength after 1-month riboflavin treatment,meaning that 1-month treatment duration maybe insufficient and patients should keep on riboflavin supplement for a longer time.Conclusions:Our results provide credible evidences that the overall efficacy of riboflavin is superior to glucocorticoids,and a longer duration of riboflavin treatment is necessary for patients with late-onset MADD.

  18. General (medium-chain) acyl-CoA dehydrogenase deficiency (non-ketotic dicarboxylic aciduria): quantitative urinary excretion pattern of 23 biologically significant organic acids in three cases.

    Science.gov (United States)

    Gregersen, N; Kølvraa, S; Rasmussen, K; Mortensen, P B; Divry, P; David, M; Hobolth, N

    1983-08-15

    Urinary analysis of the pattern of 23 organic acid metabolites derived from fatty acids in three patients with general (medium-chain) acyl-CoA dehydrogenase deficiency was performed. Although there exist quantitative differences in the excreted amounts of the different metabolites in the three patients the qualitative picture was the same. The excretion of adipic, suberic and sebacic acids was substantial, whereas that of dodecanedioic acid was within or just above control limit. The monounsaturated C6-C10-dicarboxylic acid excretion was only marginally or not increased. 5-OH-hexanoic acid and hexanoylglycine were excreted in excessive amounts, whereas 7-OH-octanoic acid, 9-OH-decanoic acid, octanoylglycine and decanoylglycine were excreted in limited amounts. The excreted amounts of 6-OH-hexanoic, 8-OH-octanoic and 10-OH-decanoic acids were not or only marginally elevated compared to controls. In one of the patients the excretion of ethylmalonic and methylsuccinic acids was enhanced, whereas the excretion of these two acids in the two other patients was comparable to that in controls. The urinary excretion of hexanoic, octanoic, decanoic and dodecanoic acids was just a little above the control limit, whereas the esterified hexanoic and octanoic acids were excreted in appreciable amounts. It is argued that the microsomal omega- and omega-1-oxidation systems are involved in the dicarboxylic and omega-1-OH-monocarboxylic acids formation at C10 and C12 level and that the C8-C6-dicarboxylic and omega-1-OH-monocarboxylic acids are formed from higher chained acids by beta-oxidation in both mitochondria and peroxisomes.

  19. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    Science.gov (United States)

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.

  20. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836

  1. High-resolution melting analysis of the common c.1905+1G>A mutation causing dihydropyrimidine dehydrogenase deficiency and lethal 5-fluorouracil toxicity

    Directory of Open Access Journals (Sweden)

    Emma eBorràs

    2013-01-01

    Full Text Available Dihydropyrimidine dehydrogenase (DPD deficiency is a pharmacogenetic syndrome associated with life-threatening toxicity following exposure to the fluoropyrimidine drugs 5-fluorouracil (5-FU and capecitabine (CAP, widely used for the treatment of colorectal cancer and other solid tumors. The most prominent loss-of-function allele of the DPYD gene is the splice-site mutation c.1905+1G>A. In this study we report the case of a 73-year old woman with metastatic colorectal cancer who died from drug-induced toxicity after the first cycle of 5-FU-containing chemotherapy. Her symptoms included severe neutropenia, thrombocytopenia, mucositis and diarrhea; and she died 16 days later despite intensive care measures. Post-mortem genetic analysis revealed that the patient was homozygous for the c.1905+1G>A deleterious allele and several family members consented to being screened for this mutation. This is the first report in Spain of a case of 5-FU-induced lethal toxicity associated with a genetic defect that results in the complete loss of the DPD enzyme. Although the frequency of c.1905+1G>A carriers in the white population ranges between 1-2%, the few data available for the Spanish population and the severity of this case prompted us to design a genotyping procedure to prevent future toxic effects of 5-FU/CAP. Since our group had previously developed a high-resolution melting (HRM assay for the simultaneous detection of KRAS, BRAF and/or EGFR somatic mutations in colorectal and lung cancer patients considered for EGFR-targeted therapies, we included the DPYD c.1905+1G>A mutation in the screening test that we describe herein. HRM provides a rapid, sensitive and inexpensive method that can be easily implemented in diagnostic settings for the routine pre-therapeutic testing of a gene mutation panel with implications in the pharmacologic treatment.

  2. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  3. Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Bross, P; Jensen, T G; Andresen, B S;

    1994-01-01

    Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli or in eukar......Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli...... of one aspartic acid residue per monomer. Comparison of pulse labeling and steady-state amounts of MCAD protein in overexpressing COS-7 cells confirms that K304E MCAD is synthesized and transported into mitochondria in amounts similar to the wild-type protein, but is degraded much more readily. For wild...

  4. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    OpenAIRE

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal c...

  5. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L;

    2008-01-01

    by the disease. In November-December 2003, we conducted a cross-sectional survey to determine the prevalence of G6PD deficiency and HbS in the population and relate these to malaria infection and haemoglobin levels in lowland and highland areas of differing malaria transmission patterns of Muheza, Tanzania...... prevalence of G6PD deficiency and HbS than highlands (G6PD deficiency = 11.32% (24/212) versus 4.43% (9/203), P = 0.01, and HbS = 16.04% (98/611) versus 6.32% (36/570), P = 0.0001). Logistic regression model showed an association between G6PD deficiency and altitude [lowlands] (Odds ratio [OR] 3.4, 95% CI...

  6. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Lioudmila Pliss

    2016-06-01

    Conclusion: The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  7. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria.

    Science.gov (United States)

    Kranendijk, M; Salomons, G S; Gibson, K M; Aktuglu-Zeybek, C; Bekri, S; Christensen, E; Clarke, J; Hahn, A; Korman, S H; Mejaski-Bosnjak, V; Superti-Furga, A; Vianey-Saban, C; van der Knaap, M S; Jakobs, C; Struys, E A

    2009-12-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphocyte lysates has hitherto been unavailable. We developed an L-2-HGDH enzyme assay in cell lysates based on the conversion of stable-isotope-labelled L-2-hydroxyglutarate to 2-ketoglutarate, which is converted into L-glutamate in situ. The formation of stable isotope labelled L-glutamate is therefore a direct measure of L-2-HGDH activity, and this product is detected by liquid chromatography-tandem mass spectrometry. A deficiency of L-2-HGDH activity was detected in cell lysates from 15 out of 15 L-2-HGA patients. Therefore, this specific assay confirmed the diagnosis unambiguously affirming the relationship between molecular and biochemical observations. Residual activity was detected in cells derived from one L-2-HGA patient. The L-2-HGDH assay will be valuable for examining in vitro riboflavin/FAD therapy to rescue L-2-HGDH activity.

  8. Chronic nonspherocytic hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency: report of two families with novel mutations causing G6PD Bangkok and G6PD Bangkok Noi.

    Science.gov (United States)

    Tanphaichitr, Voravarn S; Hirono, Akira; Pung-amritt, Parichat; Treesucon, Ajjima; Wanachiwanawin, Wanchai

    2011-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymopathies worldwide. Mostly G6PD deficient cases are asymptomatic though they may have the risk of neonatal jaundice (NNJ) and acute intravascular hemolysis during oxidative stress. Chronic nonspherocytic hemolytic anemia (CNSHA) due to G6PD deficiency is rare. In Thailand, one case was reported 40 years ago and by biochemical study this G6PD was reported to be a new variant G6PD Bangkok. We, herein, report two families with CNSHA due to G6PD deficiency. In the first family, we have been following up the clinical course of the patient with G6PD Bangkok. In addition to chronic hemolysis, he had three acute hemolytic episodes requiring blood transfusions during childhood period. Multiple gallstones were detected at the age of 27. His two daughters who inherited G6PD Bangkok from him and G6PD Vanua Lava from his wife are asymptomatic. Both of them had NNJ and persistent evidences of compensated hemolysis. Molecular analysis revealed a novel missense mutation 825 G→C predicting 275 Lys→Asn causing G6PD Bangkok. In the second family, two male siblings are affected. They had NNJ and several hemolytic episodes which required blood transfusions. On follow-up they have been diagnosed with chronic hemolysis as evidenced by reticulocytosis and indirect hyperbilirubinemia. Molecular analysis revealed combined missense mutations in exons 12 and 13. The first mutation was 1376 G→T predicting 459 Arg→Leu (known as G6PD Canton) and the second one was 1502 T→G predicting 501 Phe→Cys. We designated the resulting novel G6PD variant, G6PD Bangkok Noi.

  9. Acquired hemoglobin variants and exposure to glucose-6-phosphate dehydrogenase deficient red blood cell units during exchange transfusion for sickle cell disease in a patient requiring antigen-matched blood.

    Science.gov (United States)

    Raciti, Patricia M; Francis, Richard O; Spitalnik, Patrice F; Schwartz, Joseph; Jhang, Jeffrey S

    2013-08-01

    Red blood cell exchange (RBCEx) is frequently used in the management of patients with sickle cell disease (SCD) and acute chest syndrome or stroke, or to maintain target hemoglobin S (HbS) levels. In these settings, RBCEx is a category I or II recommendation according to guidelines on the use of therapeutic apheresis published by the American Society for Apheresis. Matching donor red blood cells (RBCs) to recipient phenotypes (e.g., C, E, K-antigen negative) can decrease the risk of alloimmunization in patients with multi-transfused SCD. However, this may select for donors with a higher prevalence of RBC disorders for which screening is not performed. This report describes a patient with SCD treated with RBCEx using five units negative for C, E, K, Fya, Fyb (prospectively matched), four of which were from donors with hemoglobin variants and/or glucose-6-phosphate dehydrogenase (G6PD) deficiency. Pre-RBCEx HbS quantification by high performance liquid chromatography (HPLC) demonstrated 49.3% HbS and 2.8% hemoglobin C, presumably from transfusion of a hemoglobin C-containing RBC unit during a previous RBCEx. Post-RBCEx HPLC showed the appearance of hemoglobin G-Philadelphia. Two units were G6PD-deficient. The patient did well, but the consequences of transfusing RBC units that are G6PD-deficient and contain hemoglobin variants are unknown. Additional studies are needed to investigate effects on storage, in-vivo RBC recovery and survival, and physiological effects following transfusion of these units. Post-RBCEx HPLC can monitor RBCEx efficiency and detect the presence of abnormal transfused units.

  10. Molecular Heterogeneity of Glucose-6-Phosphate Dehydrogenase Deficiency in Burkina Faso: G-6-PD Betica Selma and Santamaria in People with Symptomatic Malaria in Ouagadougou

    Science.gov (United States)

    Ouattara, Abdoul Karim; Yameogo, Pouiré; Diarra, Birama; Obiri-Yeboah, Dorcas; Yonli, Albert; Compaore, Tegwindé Rebeca; Soubeiga, Serge Théophile; Djigma, Florencia Wenkuuni; Simpore, Jacques

    2016-01-01

    The G-6-PD deficiency has an important polymorphism with genotypic variants such as 202A/376G, 376G/542T and 376G/968T known in West African populations. It would confer protection against severe forms of malaria although there are differences between the various associations in different studies. In this study we genotyped six (06) variants of the G-6-PD gene in people with symptomatic malaria in urban areas in Burkina Faso. One hundred and eighty-two (182) patients who tested positive using rapid detection test and microscopy were included in this study. A regular PCR with the GENESPARK G6PD African kit was run followed by electrophoresis, allowing initially to genotype six SNPs (G202A, A376G, A542T, G680T, C563T and T968C). Women carrying the mutations 202A and/or 376G were further typed by real-time PCR using TaqMan probes rs1050828 and rs1050829. In the study population the G-6-PD deficiency prevalence was 9.9%. In addition of G-6-PD A- (202A/376G) variant, 376G/542T and 376G/968T variants were also detected. Hemoglobin electrophoresis revealed that 22.5% (41/182) of the individuals had HbAC compared with2.2% with HbAS and one individual had double heterozygous HbSC. There was no correlation between the G-6-PD deficiency or haemoglobinopathies and symptomatic malaria infections in this study. Our study confirms that the G-6-PD deficiency does not confer protection against Plasmodium falciparum infections. As opposed to previous genotyping studies carried out in Burkina Faso, this study shows for the first time the presence of the variant A- (376G/968C) and warrants further investigation at the national level and in specific ethnic groups. PMID:27413522

  11. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobin Drop after Sulphadoxine-Pyrimethamine Use for Intermittent Preventive Treatment of Malaria during Pregnancy in Ghana - A Cohort Study.

    Directory of Open Access Journals (Sweden)

    Ruth Owusu

    Full Text Available Sulphadoxine-Pyrimethamine (SP is still the only recommended antimalarial for use in intermittent preventive treatment of malaria during pregnancy (IPTp in some malaria endemic countries including Ghana. SP has the potential to cause acute haemolysis in G6PD deficient people resulting in significant haemoglobin (Hb drop but there is limited data on post SP-IPTp Hb drop. This study determined the difference, if any in proportions of women with significant acute haemoglobin drop between G6PD normal, partial deficient and full deficient women after SP-IPTp.Prospectively, 1518 pregnant women who received SP for IPTp as part of their normal antenatal care were enrolled. Their G6PD status were determined at enrollment followed by assessments on days 3, 7,14 and 28 to document any adverse effects and changes in post-IPTp haemoglobin (Hb levels. The three groups were comparable at baseline except for their mean Hb (10.3 g/dL for G6PD normal, 10.8 g/dL for G6PD partial deficient and 10.8 g/dL for G6PD full defect women.The prevalence of G6PD full defect was 2.3% and 17.0% for G6PD partial defect. There was no difference in the proportions with fractional Hb drop ≥ 20% as compared to their baseline value post SP-IPTp among the 3 groups on days 3, 7, 14. The G6PD full defect group had the highest median fractional drop at day 7. There was a weak negative correlation between G6PD activity and fractional Hb drop. There was no statistical difference between the three groups in the proportions of those who started the study with Hb ≥ 8g/dl whose Hb level subsequently fell below 8g/dl post-SP IPTp. No study participant required transfusion or hospitalization for severe anaemia.There was no significant difference between G6PD normal and deficient women in proportions with significant acute haemoglobin drop post SP-IPTp and lower G6PD enzyme activity was not strongly associated with significant acute drug-induced haemoglobin drop post SP-IPTp but a larger

  12. Erythrocyte glucose-6-phosphate dehydrogenase deficiency in male newborn babies and its relationship with neonatal jaundice Deficiência de glicose-6-fosfato desidrogenase eritrocitária em recém-nascidos do sexo masculino e sua relação com a icterícia neonatal

    Directory of Open Access Journals (Sweden)

    Marli Auxiliadora C. Iglessias

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency, the commonest red cell enzymopathy in humans, has an X-linked inheritance. The major clinical manifestations are drug induced hemolytic anemia, neonatal jaundice and chronic nonspherocytic hemolytic anemia. The incidence of neonatal hyperbilirubinemia is much greater in G6PD-deficient neonates than babies without this deficiency. The aim of this study was to ascertain the presence of neonatal jaundice in erythrocyte G6PD-deficient male newborns. Samples of umbilical cord blood from a total of 204 male newborns of the Januário Cicco School Maternity located in Natal, Rio Grande do Norte, Brazil were analyzed. The G6PD deficiency was identified by the methemoglobin reduction test (Brewer's test. The deficiency was confirmed by quantitative spectrophotometric assay for enzyme activity and cellulose acetate electrophoresis was used to identify the G6PD variant. Eight newborns were found to be G6PD deficient with four of them exhibiting jaundice during the first 48 hours after birth with bilirubin levels higher than 10 mg/dL. All deficient individuals presented the G6PD A- variant at electrophoresis. Our findings confirmed the association between G6PD deficiency and neonatal jaundice. Hence, early diagnosis of the deficiency at birth is essential to control the appearance of jaundice and to prevent the exposure of these newborns to known hemolytic agents.A deficiência de glicose-6-fosfato desidrogenase (G6PD é a anormalidade enzimática hereditária mais frequente. É transmitida como caráter recessivo ligado ao cromossomo X e as principais manifestações clínicas são hemólise induzida por fármacos, icterícia neonatal e anemia hemolítica não esferocítica. O objetivo do estudo foi determinar a presença de icterícia neonatal em recém-nascidos do sexo masculino deficientes de glicose-6-fosfato desidrogenase. Foram analisadas 204 amostras de sangue umbilical de recém-nascidos do sexo

  13. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  14. Characterization of glucose-6-phosphate dehydrogenase deficiency and identification of a novel haplotype 487G>A/IVS5-612(G>C) in the Achang population of southwestern China

    Institute of Scientific and Technical Information of China (English)

    YANG YinFeng; ZHU YueChun; LI DanYi; LI ZhiGang; L(U) HuiRu; WU Jing; TANG Jing; TONG ShuFen

    2007-01-01

    The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31%(19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2-13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen independent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping(1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.

  15. Characterization of glucose-6-phosphate dehydrogenase deficiency and identification of a novel haplotype 487G>A/IVS5-612(G>C) in the Achang population of southwestern China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31% (19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2―13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen inde-pendent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping (1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.

  16. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, M; Salomons, G S; Gibson, K M

    2009-01-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphoc...

  17. Anestesia em paciente portador de deficiência de glicose-6-fosfato-desidrogenase: relato de caso Anestesia en paciente portador de deficiencia de glicosa-6-fosfato-desidrogenasa: relato de caso Anesthesia in glucose 6-phosphate dehydrogenase-deficient patient: case report

    Directory of Open Access Journals (Sweden)

    Múcio Paranhos de Abreu

    2002-11-01

    caso relatado, la anestesia subaracnóidea con bupivacaína asociada a anestesia venosa total con propofol, mostró que es una técnica segura en pacientes portadores de deficiencia de G6PD.BACKGROUND AND OBJECTIVES: Glucose 6-phosphate dehydrogenase (G6PD deficiency is a relatively common enzymopathy, but there are few publications relating such condition to anesthesia. This report aimed at presenting a case of a G6PD-deficient patient, submitted to Achilles tendon tenotomy under intravenous anesthesia associated to spinal block. CASE REPORT: Male patient, 9 years old, 48 kg, with G6PD deficiency and peripheral polineuropathy, submitted to Achilles tendon tenotomy under general intravenous anesthesia with midazolam, propofol and fentanyl, associated to spinal block with 0.5% hyperbaric bupivacaine. At surgery completion patient awakened relaxed, without pain or other complaints, had a good evolution and was discharged without intercurrences. CONCLUSIONS: According to the evolution of this case, spinal anesthesia with bupivacaine associated to total intravenous anesthesia with propofol has shown to be a safe technique for G6PD-deficient patients.

  18. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek;

    2011-01-01

    , little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice go through a crisis with overall weakness, and a slightly decreased growth...... rate. Using microarray analysis we show that the liver of ACBP-/- mice display a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  19. Deficiencia de glucosa 6-fostato deshidrogenasa en hombres sanos y en pacientes maláricos; Turbo (Antioquia, Colombia Deficiency of glucose-6-phosphate dehydrogenase in healthy men and malaria patients; Turbo (Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Carmona-Fonseca

    2008-06-01

    Full Text Available INTRODUCCIÓN: En América Latina la deficiencia de glucosa 6-fosfato deshidrogenasa (d-G6PD ha sido poco estudiada y en Colombia solo conocemos tres publicaciones antiguas. Urge conocer más la prevalencia de d-G6PD, sobre todo ahora que el tratamiento de la malaria vivax plantea aumentar la dosis diaria o total de primaquina. OBJETIVO: Medir la prevalencia de d-G6PD en poblaciones masculina sana y de enfermos con malaria por Plasmodium vivax, en Turbo (Urabá, departamento de Antioquia, Colombia. METODOLOGÍA: Encuestas de prevalencia, para evaluar la G6PD en dos poblaciones de Turbo (Antioquia: hombres sanos; hombres y mujeres con malaria vivax. Se trabajó con muestras diseñadas con criterios estadístico-epidemiológicos. La actividad enzimática se midió con el método normalizado de Beutler para valorar la G6PD en hemolizados. RESULTADOS: Entre los hombres sanos (n = 508, el intervalo de confianza 95% para el promedio (IC95% estuvo entre 4,15 y 4,51 UI/g hemoglobina y 14,8% presentaron valores por debajo del "límite normal" de INTRODUCTION: Glucose-6-phosphate dehydrogenase (G6PD deficiency in Latin America has not been fully studied and in Colombia only three outdated publications are known. Recent information on the prevalence of G6PD deficiency is required now, because the recommended treatment of vivax malaria requires higher daily or total doses of primaquine. OBJECTIVE: To measure the prevalence of G6PD in a healthy male population and in a Plasmodium vivax infected population in Turbo (Urabá, Antioquia Department, Colombia. METHOD: Prevalence survey to evaluate G6PD in two populations of Turbo (Antioquia: healthy male; male and female with vivax malaria. The work was carried out on population samples selected using statistical and epidemiological criteria. Enzyme activity was measured using Beutler's normalized method to evaluate G6PD after hemolysis. RESULTS: For the healthy male group (n = 508, and with a 95% confidence

  20. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  1. Genetics Home Reference: phosphoglycerate dehydrogenase deficiency

    Science.gov (United States)

    ... by an unusually small head size (microcephaly); impaired development of physical reactions, movements, and speech (psychomotor retardation); and recurrent seizures (epilepsy). Different types of ...

  2. VLCAD deficiency

    DEFF Research Database (Denmark)

    Boneh, A; Andresen, B S; Gregersen, N

    2006-01-01

    -negative diagnoses of VLCADD in asymptomatic newborn babies. In view of the emerging genotype-phenotype correlation in this disorder, the information derived from mutational analysis can be helpful in designing the appropriate follow-up and therapeutic regime for these patients.......We diagnosed six newborn babies with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) through newborn screening in three years in Victoria (prevalence rate: 1:31,500). We identified seven known and two new mutations in our patients (2/6 homozygotes; 4/6 compound heterozygotes). Blood...... samples taken at age 48-72 h were diagnostic whereas repeat samples at an older age were normal in 4/6 babies. Urine analysis was normal in 5/5. We conclude that the timing of blood sampling for newborn screening is important and that it is important to perform mutation analysis to avoid false...

  3. Electron transfer flavoprotein deficiency: Functional and molecular aspects

    DEFF Research Database (Denmark)

    Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft

    2006-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta...

  4. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.

    Science.gov (United States)

    Cecatto, Cristiane; Hickmann, Fernanda H; Rodrigues, Marília D N; Amaral, Alexandre U; Wajner, Moacir

    2015-12-01

    Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.

  5. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  6. Neonatal lactic acidosis, complex I/IV deficiency, and fetal cerebral disruption

    NARCIS (Netherlands)

    van Straaten, HLM; van Tintelen, JP; Trijbels, JMF; van den Heuvel, LP; Troost, D; Rozemuller, JM; Duran, M; de Vries, LS; Schuelke, M; Barth, PG

    2005-01-01

    Cerebral developmental abnormalities occur in various inborn errors of metabolism including peroxisomal deficiencies, pyruvate dehydrogenase complex deficiency and others. Associations with abnormalities of the respiratory chain are rare. Here we report male and female siblings with microcephaly, a

  7. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  8. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    Science.gov (United States)

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  9. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  10. Study on the Activity of Succinate Dehydrogenase in Hepatic Cells of Rat Models of Excess Heat Syndrome and Deficiency Heat Syndrome%实热证、虚热证模型大鼠肝细胞琥珀酸脱氢酶活性研究

    Institute of Scientific and Technical Information of China (English)

    陈群; 刘亚梅; 徐志伟; 王斌

    2000-01-01

    观察实热证、虚热证大鼠模型组与治疗组肝细胞线粒体琥珀酸脱氢酶(SDH)活性的变化。用紫外分光光度计测定肝细胞线粒体琥珀酸脱氢酶活性。结果表明:热证时(实热、虚热)SDH活性升高,经清热解毒、滋阴清热中药治疗后,SDH活性有所降低。说明:实热证、虚热证与机体能量代谢呈正相关,中药治疗有利于肝细胞线粒体呼吸亢进的恢复。%Rats were divided into control group, excess heat syndrome (EHS) group, and deficiency heat syndrome(DHS) group, and ultra-violet spectrophotometer was used to determine the activity of succinate dehydrogenase (SDH) in the hepatic cell mitochondria in the rots of these groups. The results showed that SDH increased in both EHS group and DHS group, but it decreased in the two groups after traditional Chinese drugs (for clearing away heat and dispelling toxic substances, and for nourishing yin and clearing away heat) were given. The results imply that there is a positive correlation between these two syndromes (EHS and DHS) and the energy metabolism in the body; and the treatment with traditional Chinese drugs benefits the restoration of mitochondrial hyperactive respiration of hepatic cells to the normal level.

  11. Iodine Deficiency

    Science.gov (United States)

    ... 2017 By ATA | Featured , Iodine Deficiency , News Releases , Potassium Iodide (KI) | No Comments IDD NEWSLETTER – February 2017 VOLUME ... 2016 By ATA | Featured , Iodine Deficiency , News Releases , Potassium Iodide (KI) | No Comments IDD NEWSLETTER – November 2015 (PDF ...

  12. Safe and unsafe duration of fasting for children with MCAD deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; van Spronsen, Francjan J; Rake, Jan Peter; van der Hilst, Christian S; Span, Mark M; Smit, G Peter A

    2007-01-01

    OBJECTIVE: To study the safe and unsafe duration of fasting in children with medium chain acyl-Coenzyme A dehydrogenase (MCAD) deficiency, the literature and the database on Dutch MCAD-deficient patients were searched for data on fasting studies in patients with MCAD deficiency. MATERIALS AND METHOD

  13. Disaccharidase deficiency.

    Science.gov (United States)

    Bayless, T M; Christopher, N L

    1969-02-01

    This review of the literature and current knowledge concerning a nutritional disorder of disaccharidase deficiency discusses the following topics: 1) a description of disorders of disaccharide digestion; 2) some historical perspective on the laboratory and bedside advances in the past 10 years that have helped define a group of these digestive disorders; 3) a classification of conditions causing disaccharide intolerance; and 4) a discussion of some of the specific clinical syndromes emphasizing nutritional consequences of these syndromes. The syndromes described include congenital lactase deficiency, acquired lactase deficiency in teenagers and adults, acquired generalized disaccharidase deficiency secondary to diffuse mucosal damage, acquired lactose intolerance secondary to alterations in the intestinal transit, sucrase-isomaltase deficiencies, and other disease associations connected with lactase deficiency such as colitis.

  14. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  15. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  16. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  17. Clinical analysis of ABO hemolytic disease in newborn with giucose-6-phosphate dehydrogenase deficiency.%新生儿ABO溶血病并红细胞葡萄糖-6-磷酸脱氢酶缺乏症临床对比分析

    Institute of Scientific and Technical Information of China (English)

    黄世荣; 段捷华

    2010-01-01

    目的 探讨新生儿ABO溶血病、红细胞葡萄糖-6-磷酸脱氢酶(G-6-PD)缺乏症及两者合并患儿的临床特点.方法 对160例新生儿ABO溶血病(ABO组)、219例G-6-PD缺乏症(G6PD组)、52例新生儿ABO溶血病并G-6-PD缺乏症(ABO+G617D组)3组临床相关指标进行对比分析.结果 G6PD组血红蛋白[(159.7±24.9)g/L]高于ABO组[(150.2±23.0)g/L]和ABO+G6PD组[(149.2±22.8)g/L],差异均有统计学意义(P均<0.01);血清总胆红紊高于ABO组[(419.0±152.9)μmol/L与(355.4±113.2)μmol/L],差异有统计学意义(P<0.01);黄疸消退时间较ABO组长[(9.4±2.3)d与(8.1±2.2)d],差异有统计学意义(P<0.01).ABO+G6PD组黄疸消退时间[(12.0±2.7)d]、光疗时间[(43.2±16.0)h]、光疗次数[(3.5±1.2)次]均长或多于ABO组[(8.1.4-2.2)d、(36.1 4-15.9)h、(2.6±1.2)次]及其G6PD组[(9.4±2.3)d、(37.6±17.3)h、(2.8 4-1.3)次],差异均有统计学意义(P均<0.05).G6PD组胆红素脑病(16.O%)、低钙血症发生率(32.9%)高于ABO组(6.9%、20.0%),差异有统计学意义(P<0.05);而其贫血发生率(23.3%)则低于ABO组(40.0%)及其ABO+G6PD组(51.9%),差异有统计学意义(P<0.01).结论 新生儿ABO溶血病并G-6-PD缺乏症时,黄疸出现时间、黄疸程度、胆红素脑病发生率与新生儿ABO溶血病、G-6-PD缺乏症差异无显著性,但黄疸消退时间更长,黄疸更易反复.G-6-PD缺乏症与新生儿ABO溶血痛相比,黄疸程度更重,退黄时间更长,更易发生胆红素脑病,但贫血发生率更低.%Objective To explore the clinical features of ABO hemolytic disease in newboms,red blood cell glucose-6-phosphate dehydrogenase(G-6-PD) deficiency and the combined. Methods In the study, 160 cases of ABO hemolytic disease in newborn (ABO group) ,219 cases of G-6-PD deficiency(G6PD group) ,52 cases of the combined(ABO + G6PD group). The three groups were analyzed. Results The hemoglobin in the G6PD group ( (159. 7 ± 24.9) g/L) was significantly higher than in the ABO group ((150. 2

  18. [Dihydropirymidine dehydrogenase (DPD)--a toxicity marker for 5-fluorouracil?].

    Science.gov (United States)

    Jedrzychowska, Adriana; Dołegowska, Barbara

    2013-01-01

    In proceedings relating to patients suffering from cancer, an important step is predicting response and toxicity to treatment. Depending on the type of cancer, physicians use the generally accepted schema of treatment, for example pharmacotherapy. 5-fluorouracil (5-FU) is the most widely used anticancer drug in chemotherapy for colon, breast, and head and neck cancer. Patients with dihydropyrimidine dehydrogenase (DPD) deficiency, which is responsible for the metabolism of 5-FU, may experience severe side effects during treatment, and even death. In many publications the need for determining the activity of DPD is discussed, which would protect the patient from the numerous side effects of treatment. However, in practice these assays are not done routinely, despite the high demand. In most cases, a genetic test is used to detect changes in the gene encoding DPD (such as in the USA), but because of the large number of mutations the genetic test cannot be used as a screening test. Dihydropyrimidine dehydrogenase activity has been shown to have high variability among the general population, with an estimated proportion of at least 3-5% of individuals showing low or deficient DPD activity. In this publication we presents data about average dihydropirymidine dehydrogenase activity in various populations of the world (e.g. Japan, Ghana, Great Britain) including gender differences and collected information about the possibility of determination of DPD activity in different countries. Detection of reduced DPD activity in patients with planned chemotherapy will allow a lower dosage of 5-FU or alternative treatment without exposing them to adverse reactions.

  19. Transient multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin deficiency

    DEFF Research Database (Denmark)

    Chiong, M A; Sim, K G; Carpenter, K

    2007-01-01

    A newborn female presented on the first day of life with clinical and biochemical findings consistent with multiple acyl-CoA dehydrogenase deficiency (MADD). Riboflavin supplementation corrected the biochemical abnormalities 24 h after commencing the vitamin. In vitro acylcarnitine profiling...

  20. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos.

    Science.gov (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G

    2000-08-01

    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  1. Measurement of short-chain acyl-CoA dehydrogenase (SCAD) in cultured skin fibroblasts with hexanoyl-CoA as a competitive inhibitor to eliminate the contribution of medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Niezen-Koning, K E; Wanders, R J; Nagel, G T; Sewell, A C; Heijmans, Hugo

    1994-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) deficiency has so far been reported in only very few patients. This is due, in part, to the problems involved in measuring the activity of SCAD unequivocally. The main reason for this difficulty is that butyryl-CoA, the substrate preferably used for SCAD act

  2. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  3. Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency

    DEFF Research Database (Denmark)

    Sahebekhtiari, Navid; Thomsen, Michelle M.; Sloth, Jens Jørgen

    2016-01-01

    Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences...... of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency...... and redox active proteins, as reflected by down-regulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through up...

  4. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells......-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases....

  5. The difference between observed and expected prevalence of MCAD deficiency in The Netherlands : a genetic epidemiological study

    NARCIS (Netherlands)

    Derks, Terry G J; Duran, Marinus; Waterham, Hans R; Reijngoud, Dirk-Jan; Ten Kate, Leo P; Smit, G Peter A

    2005-01-01

    Medium chain acyl coenzyme A dehydrogenase ( MCAD) deficiency is assumed to be the most common inherited disorder of mitochondrial fatty acid oxidation. Few reports mention the difference between the expected and observed prevalence of MCAD deficiency on the basis of the carrier frequency in the pop

  6. The difference between observed and expected prevalence of MCAD deficiency in The Netherlands: a genetic epidemiological study

    NARCIS (Netherlands)

    Derks, T.G.J.; Duran, M.; Waterham, H.R.; Reijngoud, D.J.; Kate, L.P. ten; Smit, G.P.A.

    2005-01-01

    Medium chain acyl coenzyme A dehydrogenase (MCAD) deficiency is assumed to be the most common inherited disorder of mitochondrial fatty acid oxidation. Few reports mention the difference between the expected and observed prevalence of MCAD deficiency on the basis of the carrier frequency in the popu

  7. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  8. Vitamin Deficiency Anemia

    Science.gov (United States)

    Vitamin deficiency anemia Overview By Mayo Clinic Staff Vitamin deficiency anemia is a lack of healthy red ... you have lower than normal amounts of certain vitamins. Vitamins linked to vitamin deficiency anemia include folate, ...

  9. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  10. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  11. A novel homozygous mutation p.E25X in the HSD3B2 gene causing salt wasting 3β-hydroxysteroid dehydrogenases deficiency in a Chinese pubertal girl: a delayed diagnosis until recurrent ovary cysts%HSD3B2基因p.E25X新纯合突变致失盐型3β-羟类固醇脱氢酶缺乏症一例及文献复习

    Institute of Scientific and Technical Information of China (English)

    黄永兰; 郑纪鹏; 谢婷; 肖青; 卢少媚; 李秀珍; 程静; 陈励和; 刘丽

    2014-01-01

    Objective 3 β-hydroxysteroid dehydrogenase deficiency (3βHSD),a rare form of congenital adrenal hyperplasia (CAH) resulted from mutations in the HSD3B2 gene that impair steroidogenesis in both adrenals and gonads.We report clinical features and the results of HSD3B2 gene analysis of a Chinese pubertal girl with salt wasting 3βHSD deficiency.Method We retrospectively reviewed clinical presentations and steroid profiles of the patient diagnosed in Guangzhou Women and Children's Medical Center in 2013.PCR and direct sequencing were used to identify any mutation in the HSD3B2 gene.Result A 13-year-old girl was diagnosed as CAH after birth because of salt-wasting with mild clitorimegaly and then was treated with glucocorticoid replacement.Breast and pubic hair development were normal,and menarche occurred at 12 yr,followed by menstrual bleeding about every 45 days.In the last one year laparoscopic operation and ovariocentesis were performed one after another for recurrent ovary cysts.Under corticoid acetate therapy,ACTH 17.10 pmol/L (normal 0-10.12),testosterone 1.31 nmol/L (normal < 0.7),dehydroepiandrosterone sulfate 13.30 μmol/L (normal 0.95-11.67),cortisol 720 nmol/L (normal 130-772.8),androstenedione,17-hydroxyprogesterone and progesterone were normal.Estradiol 461 pmol/L,follicle-stimulating hormone 3.04 IU/L,luteinizing hormone 8.52 IU/L in follicular phase.A pelvic ultrasound showed lateral ovaries cysts (58 mm × 50 mm × 35 mm) and a midcycle-type endometrium.A novel nonsense mutation c.73G > T (p.E25X) was identified in HSD3B2 gene.The girl was homozygous and her mother was heterozygous,while her father was not identified with this mutation.Conclusion A classic 3βHSD deficiency is characterized by salt wasting and mild virilization in female.Ovary cysts may be the one of features of gonad phenotype indicating ovary 3βHSD deficiency.A novel homozygous mutation c.73G > T(p.E25X) was related to the classical phenotype.%目的 总结一例失盐型3

  12. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia

    OpenAIRE

    Mueller, Ivo; MalariaGEN Consortium

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effect has proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study ...

  13. Carnitine Deficiency and Pregnancy

    OpenAIRE

    Anouk de Bruyn; Yves Jacquemyn; Kristof Kinget; François Eyskens

    2015-01-01

    We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, su...

  14. Fatal cerebral edema associated with serine deficiency in CSF.

    Science.gov (United States)

    Keularts, Irene M L W; Leroy, Piet L J M; Rubio-Gozalbo, Estela M; Spaapen, Leo J M; Weber, Biene; Dorland, Bert; de Koning, Tom J; Verhoeven-Duif, Nanda M

    2010-12-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and enzyme measurement (in one patient) excluded 3-PGDH deficiency. Deficiencies in other serine biosynthesis enzymes were highly unlikely on clinical grounds. On basis of the fasting state, ketone bodies and lactate in plasma, urine and CSF, we speculate that reduced serine levels were due to its use as gluconeogenic substrate, conversion to pyruvate by brain serine racemase or decreased L-serine production because of a lack of glucose. These are the first strikingly similar cases of patients with a clear secondary serine deficiency associated with a toxic encephalopathy.

  15. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  16. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity

    NARCIS (Netherlands)

    van Kuilenburg, A.B.P.; Meijer, J.; Mul, A.N.P.M.; Meinsma, R.; Schmid, V.; Dobritzsch, D.; Hennekam, R.C.M.; Mannens, M.M.A.M.; Kiechle, M.; Etienne-Grimaldi, M.C.; Klümpen, H.J.; Maring, J.G.; Derleyn, V.A.; Maartense, E.; Milano, G.; Vijzelaar, R.; Gross, E.

    2010-01-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD d

  17. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4.

    Science.gov (United States)

    Liu, Jun; Krulwich, Terry A; Hicks, David B

    2008-05-01

    A putative Type II NADH dehydrogenase from Halobacillus dabanensis was recently reported to have Na+/H+ antiport activity (and called Nap), raising the possibility of direct coupling of respiration to antiport-dependent pH homeostasis. This study characterized a homologous type II NADH dehydrogenase of genetically tractable alkaliphilic Bacillus pseudofirmus OF4, in which evidence supports antiport-based pH homeostasis that is mediated entirely by secondary antiport. Two candidate type II NADH dehydrogenase genes with canonical GXGXXG motifs were identified in a draft genome sequence of B. pseudofirmus OF4. The gene product designated NDH-2A exhibited homology to enzymes from Bacillus subtilis and Escherichia coli whereas NDH-2B exhibited homology to the H. dabanensis Nap protein and its alkaliphilic Bacillus halodurans C-125 homologue. The ndh-2A, but not the ndh-2B, gene complemented the growth defect of an NADH dehydrogenase-deficient E. coli mutant. Neither gene conferred Na+-resistance on an antiporter-deficient E. coli strain, nor did they confer Na+/H+ antiport activity in vesicle assays. The purified hexa-histidine-tagged gene products were approximately 50 kDa, contained noncovalently bound FAD and oxidized NADH. They were predominantly cytoplasmic in E. coli, consonant with the absence of antiport activity. The catalytic properties of NDH-2A were more consistent with a major respiratory role than those of NDH-2B.

  18. Serum lactic dehydrogenase isoenzymes and serum hydroxy butyric dehydrogenase in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kanekar D

    1979-01-01

    Full Text Available Total serum lactate dehydrogenase activity in cases of myocar-dial infarct is difficult to interpret as abnormal values can occur in diseases of liver, kidney and skeletal muscle. The estimation of its isoenzymes is of better diagnostic help because of its tissue specificity. Serum LDH isoenzymes were studied in patients o f myocardial infarction and results are quantitated by densitometry. As LDH 1 represents serum hydroxybutyric dehydrogenase when 2-oxylbutyrate is used as substrate, serum hydroxybutyric dehydro-genase was also estimated in above patients. Greater specificity in diagnosis is achieved with SHBDH because of its myocardial nature and lower incidence of false positive results.

  19. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  20. Alcohol dehydrogenase – physiological and diagnostic Importance

    Directory of Open Access Journals (Sweden)

    Magdalena Łaniewska-Dunaj

    2013-08-01

    Full Text Available Alcohol dehydrogenase (ADH is a polymorphic enzyme, existing in multiple isoenzymes divided into several classes and localized in different organs. ADH plays a significant role in the metabolism of many biologically important substances, catalyzing the oxidation or reduction of a wide spectrum of specific substrates. The best characterized function of ADH is protection against excess of ethanol and some other exogenous xenobiotics and products of lipid peroxidation. The isoenzymes of alcohol dehydrogenase also participate in the metabolism of retinol and serotonin. The total alcohol dehydrogenase activity is significantly higher in cancer tissues than in healthy organs (e.g. liver, stomach, colorectum. The changes in activity of particular ADH isoenzymes in the sera of patients with different cancers (especially of the digestive system seem to be caused by release of these isoenzymes from cancer cells, and may play a potential role as markers of this cancer. The particular isoenzymes of ADH present in the serum may indicate the cancer localization. Alcohol dehydrogenase may also be useful for diagnostics of non-cancerous liver diseases (e.g. viral hepatitis, non-alcoholic cirrhosis.

  1. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  2. Folate-deficiency anemia

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  3. Anemia - B12 deficiency

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000574.htm Vitamin B12 deficiency anemia To use the sharing features on ... tissues. There are many types of anemia. Vitamin B12 deficiency anemia is a low red blood cell ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require ...

  5. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir;

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  6. Triacylglycerol infusion improves exercise endurance in patients with mitochondrial myopathy due to complex I deficiency

    NARCIS (Netherlands)

    Roef, MJ; de Meer, K; Reijngoud, DJ; Straver, HWHC; de Barse, M; Kalhan, SC; Berger, R

    2002-01-01

    Background: A high-fat diet has been recommended for the treatment of patients with mitochondrial myopathy due to complex I (NADH dehydrogenase) deficiency (CID). Objective: This study evaluated the effects of intravenous infusion of isoenergetic amounts of triacylglycerol or glucose on substrate ox

  7. Clinical Manifestation and a New "ISCU" Mutation in Iron-Sulphur Cluster Deficiency Myopathy

    Science.gov (United States)

    Kollberg, Gittan; Tulinius, Mar; Melberg, Atle; Darin, Niklas; Andersen, Oluf; Holmgren, Daniel; Oldfors, Anders; Holme, Elisabeth

    2009-01-01

    Myopathy with deficiency of succinate dehydrogenase and aconitase is a recessively inherited disorder characterized by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, severe metabolic acidosis and rhabdomyolysis may occur. The…

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  9. Iron-Deficiency Anemia

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  10. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  11. Carnitine Deficiency and Pregnancy

    Directory of Open Access Journals (Sweden)

    Anouk de Bruyn

    2015-01-01

    Full Text Available We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations.

  12. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.

    1976-03-01

    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  13. Purification of arogenate dehydrogenase from Phenylobacterium immobile.

    Science.gov (United States)

    Mayer, E; Waldner-Sander, S; Keller, B; Keller, E; Lingens, F

    1985-01-07

    Phenylobacterium immobile, a bacterium which is able to degrade the herbicide chloridazon, utilizes for L-tyrosine synthesis arogenate as an obligatory intermediate which is converted in the final biosynthetic step by a dehydrogenase to tyrosine. This enzyme, the arogenate dehydrogenase, has been purified for the first time in a 5-step procedure to homogeneity as confirmed by electrophoresis. The Mr of the enzyme that consists of two identical subunits amounts to 69000 as established by gel electrophoresis after cross-linking the enzyme with dimethylsuberimidate. The Km values were 0.09 mM for arogenate and 0.02 mM for NAD+. The enzyme has a high specificity with respect to its substrate arogenate.

  14. Acquired color vision deficiency.

    Science.gov (United States)

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  15. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    Science.gov (United States)

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.

  16. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.

    OpenAIRE

    1989-01-01

    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  17. Malate dehydrogenase: a model for structure, evolution, and catalysis.

    OpenAIRE

    1994-01-01

    Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid s...

  18. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  19. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  20. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  1. Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Ömer Tarım

    2010-05-01

    Full Text Available Growth hormone deficiency is the most promising entity in terms of response to therapy among the treatable causes of growth retardation. It may be due to genetic or acquired causes. It may be isolated or a part of multiple hormone deficiencies. Diagnostic criteria and therefore treatment indications are still disputed. (Journal of Current Pediatrics 2010; 8: 36-8

  2. Iron induced nickel deficiency

    Science.gov (United States)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Blood Tests Blood Transfusion Restless Legs Syndrome Send a link to NHLBI to someone by E-MAIL | ... Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you ...

  4. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  5. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  6. Plants Possess a Cyclic Mitochondrial Metabolic Pathway similar to the Mammalian Metabolic Repair Mechanism Involving Malate Dehydrogenase and l-2-Hydroxyglutarate Dehydrogenase.

    Science.gov (United States)

    Hüdig, Meike; Maier, Alexander; Scherrers, Isabell; Seidel, Laura; Jansen, Erwin E W; Mettler-Altmann, Tabea; Engqvist, Martin K M; Maurino, Veronica G

    2015-09-01

    Enzymatic side reactions can give rise to the formation of wasteful and toxic products that are removed by metabolite repair pathways. In this work, we identify and characterize a mitochondrial metabolic repair mechanism in Arabidopsis thaliana involving malate dehydrogenase (mMDH) and l-2-hydroxyglutarate dehydrogenase (l-2HGDH). We analyze the kinetic properties of both A. thaliana mMDH isoforms, and show that they produce l-2-hydroxyglutarate (l-2HG) from 2-ketoglutarate (2-KG) at low rates in side reactions. We identify A. thaliana l-2HGDH as a mitochondrial FAD-containing oxidase that converts l-2HG back to 2-KG. Using loss-of-function mutants, we show that the electrons produced in the l-2HGDH reaction are transferred to the mitochondrial electron transport chain through the electron transfer protein (ETF). Thus, plants possess the biochemical components of an l-2HG metabolic repair system identical to that found in mammals. While deficiencies in the metabolism of l-2HG result in fatal disorders in mammals, accumulation of l-2HG in plants does not adversely affect their development under a range of tested conditions. However, orthologs of l-2HGDH are found in all examined genomes of viridiplantae, indicating that the repair reaction we identified makes an essential contribution to plant fitness in as yet unidentified conditions in the wild.

  7. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  8. Placental glucose dehydrogenase polymorphism in Koreans.

    Science.gov (United States)

    Kim, Y J; Paik, S G; Park, H Y

    1994-12-01

    The genetic polymorphism of placental glucose dehydrogenase (GDH) was investigated in 300 Korean placentae using horizontal starch gel electrophoresis. The allele frequencies for GDH1, GDH2 and GDH3 were 0.537, 0.440 and 0.005, respectively, which were similar to those in Japanese. We also observed an anodal allele which was similar to the GDH4 originally reported in Chinese populations at a low frequency of 0.015. An additional new cathodal allele (named GDH6) was observed in the present study with a very low frequency of 0.003.

  9. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site...

  10. Evaluation of 5-FU pharmacokinetics in cancer patients with DPD deficiency using a Bayesian limited sampling strategy

    NARCIS (Netherlands)

    Van Kuilenburg, A.; Hausler, P.; Schalhorn, A.; Tanck, M.; Proost, J.H.; Terborg, C.; Behnke, D.; Schwabe, W.; Jabschinsky, K.; Maring, J.G.

    2011-01-01

    Aims: Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme in the catabolism of 5-fluorouracil (5FU) and DPD deficiency is an important pharmacogenetic syndrome. The main purpose of this study was to develop a limited sampling strategy to evaluate the pharmacokinetics of 5FU and to detect dec

  11. Triacylglycerol infusion does not improve hyperlactemia in resting patients with mitochondrial myopathy due to complex I deficiency

    NARCIS (Netherlands)

    Roef, MJ; de Meer, K; Reijngoud, DJ; Straver, HWHC; de Barse, M; Kalhan, SC; Berger, R

    2002-01-01

    Background: A high-fat diet has been recommended for correction of biochemical abnormalities and muscle energy state in patients with complex I (NADH dehydrogenase) deficiency (CID). Objective: This study evaluated the effects of intravenous infusion of isoenergetic amounts of triacylglycerol or glu

  12. Two novel variants of human medium chain acyl-CoA dehydrogenase (MCAD). K364R, a folding mutation, and R256T, a catalytic-site mutation resulting in a well-folded but totally inactive protein

    DEFF Research Database (Denmark)

    O'Reilly, Linda P; Andresen, Brage S; Engel, Paul C

    2005-01-01

    Two novel rare mutations, MCAD approximately 842G-->C (R256T) and MCAD approximately 1166A-->G (K364R), have been investigated to assess how far the biochemical properties of the mutant proteins correlate with the clinical phenotype of medium chain acyl-CoA dehydrogenase (MCAD) deficiency. When t...

  13. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  14. Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans

    DEFF Research Database (Denmark)

    Nguyen, Tien V; Andresen, Brage S; Corydon, Thomas J

    2002-01-01

    uncharacterized ACD-like sequence (ACAD8) and define its substrate specificity. Purified recombinant enzyme had a k(cat)/K(m) of 0.8, 0.23, and 0.04 (microM(-1)s(-1)) with isobutyryl-CoA, (S) 2-methylbutyryl-CoA, and n-propionyl-CoA, respectively, as substrates. Thus, this enzyme is an isobutyryl...

  15. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P;

    1991-01-01

    their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A...

  16. Genetics Home Reference: very long-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Sources for This Page Andresen BS, Bross P, Vianey-Saban C, Divry P, Zabot MT, Roe CR, ... Delevaux I, Lombès A, Andresen BS, Eymard B, Vianey-Saban C. Diagnostic assessment and long-term follow- ...

  17. GLUCOSE -6- PHOSPHATE DEHYDROGENASE DEFICIENCY AND HAEMOGLOBINOPHATIES IN RESIDENT OF ARSO PIR, IRIAN JAYA

    Directory of Open Access Journals (Sweden)

    Trevor R. Jones

    2012-09-01

    Full Text Available Telah dilakukan penelitian tentang defisiensi glukose —6- fosfatase dehidrogenase G-6-PD dan haemoglobinopati dengan populasi 223 penduduk yang terdiri atas 102 suku Jawa dan 121 suku Irian Jaya. Enam orang dari Suku Irian Jaya, ditemukan dengan defisiensi tingkat G-6-PD. Tingkat G-6-PD pada orang-orang ini berkisar antara 4 sampai 50% dari nilai nominal minimum. Ditemukan pula 5 kasus haemoglobinopati. Pada satu orang dari suku Irian Jaya ditemukan haemoglobinopati yang konsisten dengan hemoblobin Lepore-Hollandia. Tiga orang dari suku Jawa menunjukkan suatu varian hemoglobin E dan seorang dari suku Jawa lainnya menunjukkan satu varian yang konsisten dengan hemoglobin fetal. Sementara penemuan ini menunjukkan adanya varian hematologi dalam populasi penelitian yang mungkin berperan dalam kerentanan terhadap malaria, tetapi persentase subyek dengan varian tidak cukup besar untuk mempengaruhi secara berarti angka transmisi malaria di dalam populasi.

  18. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Korman, Stanley H; Andresen, Brage S; Zeharia, Avraham

    2005-01-01

    -mass spectrometry for urine organic acids, quantification of 2-MBG, and chiral determination of 2-methylbutyric acid. Blood-spot acylcarnitines were measured by electrospray-tandem mass spectrometry. Mutations in the ACADSB gene encoding SBCAD were identified by direct sequencing. RESULTS: SBCADD was confirmed...... of urine acylglycines is problematic. Excretion of 2-ethylhydracrylic acid (2-EHA), an intermediate formed in the normally minor R-pathway of L-isoleucine oxidation, has not previously been described in SBCADD. METHODS: Samples from four patients with 2-MBG excretion were analyzed by gas chromatography...... in each patient by demonstration of different ACADSB gene mutations. In multiple urine samples, organic acid analysis revealed a prominent 2-EHA peak usually exceeding the size of the 2-MBG peak. Approximately 40-46% of total 2-methylbutyric acid conjugates were in the form of the R-isomer, indicating...

  19. Expression of novel cytosolic malate dehydrogenases (cMDH) in Lupinus angustifolius nodules during phosphorus starvation.

    Science.gov (United States)

    Le Roux, Marcellous; Phiri, Ethel; Khan, Wesaal; Sakiroğlu, Muhammet; Valentine, Alex; Khan, Sehaam

    2014-11-01

    During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency.

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... chest pain, and other symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and other complications. Infants and young children and ...

  1. Vitamin D Deficiency

    Science.gov (United States)

    ... fractures), muscle weakness, and the bone-thinning disease osteoporosis. Severe vitamin D deficiency can cause rickets in children and osteomalacia in adults. Both problems cause soft, weak bones, as well ...

  2. Factor II deficiency

    Science.gov (United States)

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  3. Factor VII deficiency

    Science.gov (United States)

    ... if one or more of these factors are missing or are not functioning like they should. Factor VII is one such coagulation factor. Factor VII deficiency runs in families (inherited) and is very rare. Both parents must ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL TRIALS LINKS Related Topics ... Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of ...

  6. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Digg. Share this page from the NHLBI on Facebook. Add this link to the NHLBI to my ... Deficiency Anemia article. Updated: March 26, 2014 Twitter Facebook YouTube Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA ...

  8. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  9. Proximal Focal Femoral Deficiency

    OpenAIRE

    Vishal Kalia, Vibhuti

    2008-01-01

    Proximal focal femoral deficiency (PFFD) is a developmental disorder of the proximal segment of thefemur and of acetabulum resulting in shortening of the affected limb and impairment of the function. It isa spectrum of congenital osseous anomalies characterized by a deficiency in the structure of the proximalfemur. The diagnosis is often made by radiological evaluation which includes identification and descriptionof PFFD and evaluation of associated limb anomalies by plain radiographs. Contra...

  10. Iron deficiency anemia

    OpenAIRE

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be ...

  11. Glucose-6-phosphatase deficiency.

    OpenAIRE

    Labrune Philippe; Gajdos Vincent; Eberschweiler Pascale; Hubert-Buron Aurélie; Petit François; Vianey-Saban Christine; Boudjemline Alix; Piraud Monique; Froissart Roseline

    2011-01-01

    Abstract Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, betw...

  12. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  13. Stability of immobilized yeast alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ooshima, H.; Genko, Y.; Harano, Y.

    1981-12-01

    The effects of substrate on stabilities of native (NA) and three kinds of immobilized yeast alcohol dehydrogenase (IMA), namely PGA (the carrier; porous glass), SEA (agarose gel) prepared covalently, and AMA (anion-exchange resin) prepared ionically, were studied. The following results were obtained. 1) The deactivations of NA and IMA free from the substrate or in the presence of ethanol obey the first-order kinetics, whereas, in the presence of butyraldehyde, their deactivation behaviors are explained on the basis of coexistence of two components of YADHs, namely the labile E1 and the comparatively stable E2, with different first-order deactivation constants. (2) A few attempts for stabilization of IMA were carried out from the viewpoint of the effects of crosslinkages among the subunits of YADH for PGA and the multibonding between the carrier and enzyme for SEA. The former is effective for the stabilization, whereas the latter is not. (Refs. 19).

  14. Interactions between heparinoids and alcohol dehydrogenase.

    Science.gov (United States)

    Paulíková, H; Valusová, E; Antalík, M

    1997-07-01

    The interaction between polysulfated polysaecharides (low-molecular-weight heparin LMWH, dextran sulfate DS and pentosan sulfate PS) and yeast alcohol dehydrogenase (YADH) was investigated. The fluorescence and UV spectra of YADH after adding the tested polysaccharides have confirmed the interaction between the enzyme and these compounds. Kinetic studies have shown that LMWH, DS and PS are inhibitors of YADH (mixed type with respect to NAD). The most potent inhibitor is PS (ID50=37.5 ng/ml, Ki=0.6 muM). The inhibition effect depends on the ionic strength (the inhibition decreased by about 50% in the presence of 100 mM Na2SO4) and pH value (the inhibition decreased at pH>7). The results indicate that the inhibition effect of these polyanions is caused by their electrostatic interactions with the NAD-binding region of YADH.

  15. Optimization of adsorptive immobilization of alcohol dehydrogenases.

    Science.gov (United States)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C; Daussmann, Thomas; Büchs, Jochen

    2005-04-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers' yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.

  16. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  17. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  18. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion

    Directory of Open Access Journals (Sweden)

    Momoko Hamano

    2016-06-01

    Full Text Available Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh, the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687.

  19. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Science.gov (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa

    2014-09-01

    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.

  20. Cell wall-associated malate dehydrogenase activity from maize roots.

    Science.gov (United States)

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Vučinić, Zeljko

    2011-10-01

    Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn(2+) and Cu(2+) in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn(2+) and Cu(2+) in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.

  1. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle.

    Science.gov (United States)

    Hartong, Dyonne T; Dange, Mayura; McGee, Terri L; Berson, Eliot L; Dryja, Thaddeus P; Colman, Roberta F

    2008-10-01

    Here we describe two families with retinitis pigmentosa, a hereditary neurodegeneration of rod and cone photoreceptors in the retina. Affected family members were homozygous for loss-of-function mutations in IDH3B, encoding the beta-subunit of NAD-specific isocitrate dehydrogenase (NAD-IDH, or IDH3), which is believed to catalyze the oxidation of isocitrate to alpha-ketoglutarate in the citric acid cycle. Cells from affected individuals had a substantial reduction of NAD-IDH activity, with about a 300-fold increase in the K(m) for NAD. NADP-specific isocitrate dehydrogenase (NADP-IDH, or IDH2), an enzyme that catalyzes the same reaction, was normal in affected individuals, and they had no health problems associated with the enzyme deficiency except for retinitis pigmentosa. These findings support the hypothesis that mitochondrial NADP-IDH, rather than NAD-IDH, serves as the main catalyst for this reaction in the citric acid cycle outside the retina, and that the retina has a particular requirement for NAD-IDH.

  2. The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG.

    Directory of Open Access Journals (Sweden)

    Albertus J Viljoen

    Full Text Available Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT and glutamate dehydrogenase (GDH, respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB and small (gltD subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine.

  3. [The role glucose-6-phosphate dehydrogenase in pathogenesis of anemia in leptospirosis].

    Science.gov (United States)

    Avdeeva, M G; Moĭsova, D L; Gorodin, V N; Kostomarov, A M; Zotov, S V; Cherniavskaia, O V

    2002-01-01

    The activity of glucose-6-phosphate dehydrogenase (G-6-PDG) of plasma and erythrocytes, levels of erythrocytes, hemoglobin, free hemoglobin and reticulocytes in different periods of illness were assessed in 30 men with severe icteric leptospirosis and anemia. Elevation of plasma G-6-PDG activity, levels of free hemoglobin (FH) and reticulocytes were found. Hemolysis was more pronounced at the height of the disease. One of the causes of hemolysis in severe leptospiral jaundice may be deficiency of erythrocytic G-6-PDG which is inheritable male disease. Low G-6-PDG activity of erythrocytes on the second week of the illness preceded anemia in 83.3% cases which could be a prognostic criterion of developing anemic syndrome. Combined treatment of leptospirosis with administration of tocopherol acetate resulted in a significant fall of plasma FH and G-6-PDG, of severity and duration of anemia versus the control group.

  4. Iron deficiency anaemia.

    Science.gov (United States)

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  5. Effect of ADH II Deficiency on the Intracellular Redox Homeostasis in Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Nina Galinina

    2012-01-01

    Full Text Available Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II, showed impaired homeostasis of the intracellular NAD(PH during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.

  6. Effect of ADH II deficiency on the intracellular redox homeostasis in Zymomonas mobilis.

    Science.gov (United States)

    Galinina, Nina; Lasa, Zane; Strazdina, Inese; Rutkis, Reinis; Kalnenieks, Uldis

    2012-01-01

    Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II), showed impaired homeostasis of the intracellular NAD(P)H during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.

  7. Reversible Vitamin B12 Deficiency Presenting with Acute Dementia, Paraparesis, and Normal Hemoglobin

    Directory of Open Access Journals (Sweden)

    Hani Almoallim

    2016-01-01

    Full Text Available Vitamin B12 is essential for neurological function and its deficiency is associated with many neuropsychiatric disorders. We report the case of a previously healthy 53-year-old male patient presenting with delirium and multiple neurological findings. Complete blood analysis indicated megaloblastic anemia. All infectious causes were excluded owing to negative cultures (blood and urine. Tests for human immunodeficiency virus, syphilis, and toxoplasma were also negative. Metabolic workup showed severe vitamin B12 deficiency, decreased reticulocyte count, and increased direct bilirubin and lactate dehydrogenase. Intramuscular injection of cobalamin was started, and the patient showed significant improvement.

  8. [Vitamin deficiencies and hypervitaminosis].

    Science.gov (United States)

    Mino, M

    1999-10-01

    There have recently been very few deficiencies with respect to fat soluble and water soluble vitamins in Japan All-trans-retinoic acid as induction or maintenance treatment improves disease free and overall survival against acute promyelocytic leukemia. In the isolated vitamin E deficiencies gene mutation has been cleared for alpha-tocopherol transferprotein. Recently, a relation of nutritional vitamin K intake and senile osteoporosis in women was epidemiologically demonstrated on a prospective study. Thiamin was yet noticed as development of deficiency in alcoholism, while the importance of supplemental folic acid during pregnancy has become especially clear in light of studies showing that folic acid supplements reduce the risk of neural tube defects in the fetus. With respect to hypervitaminosis, the Council for Responsible Nutrition (CRN), USA, has established safe intakes by identifying the NOAEL (No Observed Adverse Effect Level) and LOAEL (Lowest Observed Adverse Effect Level). Summaries of NOAEL and LOAEL for individual vitamins were shown.

  9. Antepartum Ornithine Transcarbamylase Deficiency

    Directory of Open Access Journals (Sweden)

    Hitoshi Nakajima

    2014-11-01

    Full Text Available Ornithine transcarbamylase deficiency (OTCD is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left.

  10. Mortality and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Gravholt, Claus Højbjerg; Laursen, Torben;

    2007-01-01

    OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided into chil......OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided...

  11. Red cell pyruvate kinase deficiency in Southern Sardinia.

    Science.gov (United States)

    Perseu, L; Giagu, N; Satta, S; Sollaino, M C; Congiu, R; Galanello, R

    2010-12-15

    Pyruvate kinase (PK) deficiency is the most frequent red cell enzymatic defect responsible for hereditary non-spherocytic hemolytic anemia. The clinical picture is quite variable and the reasons of this variability have been only partially clarified. We report the clinical description and the extended molecular analysis in 3 PK deficient patients with clinical phenotype of variable severity. We studied the clinical and hematological aspects of 3 patients and analyzed the following genes: pyruvate kinase-R, glucose-6-phosphate-dehydrogenase, α-globin, uridindiphosphoglucuronil transferase and HFE. One patient (A) with a severe clinical picture resulted homozygote for exon 8 nt994A substitution, the other 2 (brothers) were compound heterozygotes for exon 8 nt994A and exon 11 nt1456T mutation. One of the two brothers with a more severe phenotype coinherited also had G6PD deficiency, while both had microcytosis due to the homozygosity for the non-deletional form of α-thalassemia ATG→ACG substitution at the initiation codon of the alpha2 globin gene. Our results suggest that extended molecular analysis is useful for studying how several interacting gene mutations contribute to the clinical variability of pyruvate kinase deficiency.

  12. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    OpenAIRE

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  13. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.

    OpenAIRE

    Tang, J C; Forage, R G; Lin, E C

    1982-01-01

    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  14. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  15. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  16. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase.

    Science.gov (United States)

    Lessmeier, Lennart; Hoefener, Michael; Wendisch, Volker F

    2013-12-01

    Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

  17. Lactic dehydrogenase and cancer: an overview.

    Science.gov (United States)

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  18. Resurrecting ancestral alcohol dehydrogenases from yeast.

    Science.gov (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A

    2005-06-01

    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  19. Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride.

    Science.gov (United States)

    Roig, M G; Bello, J F; Moreno de Vega, M A; Cachaza, J M; Kennedy, J F

    1990-01-01

    A physical method for immobilization of liver alcohol dehydrogenase (ADH) by hydrophobic adsorption onto a supporting membrane of polyvinylidene difluoride (PVDF) was performed. Simultaneously, a physicochemical characterization of the immobilized enzyme regarding its kinetic behaviour was performed. The activity/pH profile observed points to an effect of pH on activity that is completely different from the case of ADH in solution. The disturbance in the typical bell-shaped profile owing to the fact that the enzyme was immobilized is explained on the basis of a potent limitation to the diffusion of the protons in the support. The findings of the present work also reveal the existence of an effect that limits free external diffusion of the substrate towards and/or the product from the support; this effect seems to be the determinant of the overall rate of the enzymatic reaction and is thus of great importance in the effective kinetic behaviour (v([S])) of immobilized ADH, whose kinetic behaviour is complex (non-Michaelian), as may be seen from the lack of linearity observed in the corresponding double reciprocal and Eadie-Hofstee plots. By non-linear regression numerical analysis of the v([S]) data and application of the F-test for model discrimination, the minimum rate equation necessary to describe the intrinsic kinetic behaviour of PVDF-immobilized ADH proved to be one of the polynomial quotient type of degree 2:2 (in substrate concentration).

  20. Vitamin A deficiency induces congenital spinal deformities in rats.

    Directory of Open Access Journals (Sweden)

    Zheng Li

    Full Text Available Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58 in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis.

  1. COMPUTATIONAL STUDIES OF THE KINETIC ISOTOPE EFFECT INMETHYLAMINE DEHYDROGENASE

    OpenAIRE

    Kopec-Harding, Kamilla Rosa

    2012-01-01

    There is currently experimental evidence of hydrogen tunnelling in over 20 different enzymes include yeast alcohol dehydrogenase (YADH), morphinone reductase (MR) and methylamine dehydrogenase (MADH). Various models have been used to describe hydrogen tunnelling in enzymes including the static barrier model, the vibrationally enhanced ground state tunnelling model (VEGST) and the environmentally coupled tunnelling model (ECT). Despite some differences in these models, there is a general cons...

  2. Dehydrogenase isoenzyme polymorphism in genus Prunus, subgenus Cerasus

    Directory of Open Access Journals (Sweden)

    Čolić Slavica

    2012-01-01

    Full Text Available Dehydrogenase polymorphism was studied in 36 sour cherry (Prunus cerasus L., sweet cherry (Prunus avuim L., mahaleb (Prunus mahaleb L., ground cherry (Prunus fruticosa Pall., duke cherry (Prunus gondounii Redh., Japanese flowering cherry (Prunus serrulata Lindl. and four iterspecific hybrids (standard cherry rootstocks ‘Gisela 5’, ‘Gisela 6’, ‘Max Ma’ and ‘Colt’. Inner bark of one-year-old shoots, in dormant stage, was used for enzyme extraction. Vertical PAGE was used for isoenzyme analysis: alcohol dehydrogenase (ADH, formate dehydrogenase (FDH, glutamate dehydrogenase (GDH, isocitrate dehydrogenaze (IDH, malate dehydrogenase (MDH, phosphogluconate dehydrogenase (PGD, and shikimate dehydrogenase (SDH. All studied systems were polymorphic at 10 loci: Adh -1 (3 genotypes and Adh-2 (5 genotypes, Fdh-1 (2 genotypes, Gdh-1 (3 genotypes, Idh-1 (4 genotypes i Idh -2 (5 genotypes, Mdh-1 (3 genotypes, Pgd-1 (4 genotypes, Sdh-1 (1 genotype i Sdh-2 (3 genotypes. Cluster analysis was used to construct dendrogram on which four groups of similar genotypes were separated. Obtained results indicate that studied enzyme systems can be used for determination of genus Prunus, subgenus Cerasus. Among studied enzyme systems ADH, IDH and SDH were the most polymorphic and most useful to identify genetic variability. Polymorphism of FDH and GDH in genus Prunus, subgenus Cerasus was described first time in this work. First results for dehydrogenase variability of Oblačinska indicate that polymorphism of loci Idh-2 and Sdh-2 can be useful for discrimination of different clones.

  3. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  4. Diagnosing oceanic nutrient deficiency

    Science.gov (United States)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  5. Factor V deficiency

    Science.gov (United States)

    ... When certain blood clotting factors are low or missing, your blood does not clot properly. Factor V deficiency is rare. It may be caused by: A defective Factor V gene passed down through families (inherited) An antibody that interferes with normal Factor ...

  6. Iodine-deficiency disorders

    NARCIS (Netherlands)

    Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S.

    2008-01-01

    billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed iodine-deficien

  7. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    biennially to exchange views and research findings. The fourth biennial meeting was held in Copenhagen, Denmark, on 2-3 June 2005. This review covers the wide range of AAT deficiency-related topics that were addressed encompassing advances in genetic characterization, risk factor identification, clinical...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  8. Sleep Deprivation and Deficiency

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Sleep Deprivation and Deficiency? Sleep deprivation (DEP-rih-VA-shun) is a condition that ... the following: You don't get enough sleep (sleep deprivation) You sleep at the wrong time of day ( ...

  9. Morbidity and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Laursen, Torben; Green, Anders;

    2008-01-01

    OBJECTIVE: To estimate morbidity in Denmark in all patients with GH deficiency (GHD). DESIGN: Morbidity was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in the GHD patients were studied and additional morbidity noted. Diagnoses and dates of admissions were...

  10. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase.

    Science.gov (United States)

    Clark-Taylor, Tonya; Clark-Taylor, Benjamin E

    2004-01-01

    Long chain acyl-CoA dehydrogenase (LCAD) has recently been shown to be the mitochondrial enzyme responsible for the beta-oxidation of branched chain and unsaturated fatty acids [Biochim. Biophys. Acta 1393 (1998) 35; Biochim. Biophys. Acta 1485 (2000) 121]. Whilst disorders of short, medium and very long chain acyl dehydrogenases are known, there is no known disorder of LCAD deficiency in humans. Experimental LCAD deficiency in mice shows an acyl-carnitine profile with prominent elevations of unsaturated fatty acid metabolites C14:1 and C14:2 [Hum. Mol. Genet. 10 (2001) 2069]. A child with autism whose acyl-carnitine profile also shows these abnormalities is presented, and it is hypothesized that the child may have LCAD deficiency. Additional metabolic abnormalities seen in this patient include alterations of TCA energy production, ammonia detoxification, reduced synthesis of omega-3 DHA, and abnormal cholesterol metabolism. These metabolic changes are also seen as secondary abnormalities in dysfunction of fatty acid beta-oxidation, and have also been reported in autism. It is hypothesized that LCAD deficiency may be a cause of autism. Similarities between metabolic disturbances in autism, and those of disorders of fatty acid beta-oxidation are discussed.

  11. Growth Hormone Deficiency in Children

    Science.gov (United States)

    ... c m y one in Children What is growth hormone deficiency? Growth hormone deficiency (GHD) is a rare condition in which the body does not make enough growth hormone (GH). GH is made by the pituitary gland, ...

  12. Molecular genetic characterization and urinary excretion pattern of metabolites in two families with MCAD deficiency due to compound heterozygosity with a 13 base pair insertion in one allele

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Lyonnet, S

    1994-01-01

    Two families with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency due to compound heterozygosity are described. All patients have a 13 bp insertion in exon 11 of one allele at the MCAD gene locus. In the other allele patients in one of the families harbour the prevalent G985 mutation, and t...

  13. Risk stratification by residual enzyme activity after newborn screening for medium-chain acyl-CoA dehyrogenase deficiency : data from a cohort study

    NARCIS (Netherlands)

    Touw, Catharina M. L.; Smit, G. Peter A.; de Vries, Maaike; de Klerk, Johannis B. C.; Bosch, Annet M.; Visser, Gepke; Mulder, Margot F.; Rubio-Gozalbo, M. Estela; Elvers, Bert; Niezen-Koning, Klary E.; Wanders, Ronald J. A.; Waterham, Hans R.; Reijngoud, Dirk-Jan; Derks, Terry G. J.

    2012-01-01

    Background: Since the introduction of medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency in population newborn bloodspot screening (NBS) programs, subjects have been identified with variant ACADM (gene encoding MCAD enzyme) genotypes that have never been identified in clinically ascertaine

  14. Risk stratification by residual enzyme activity after newborn screening for medium-chain acyl-CoA dehyrogenase deficiency: Data from a cohort study

    NARCIS (Netherlands)

    C.M.L. Touw (Catharina M L); G.P. Smit; M. de Vries (Maaike); J.B.C. de Klerk (Johannes); A.M. Bosch (Annet); G. Visser (G.); M.F. Mulder; M.E. Rubio-Gozalbo (Estela); L.H. Elvers; K.E. Niezen-Koning; R.J.A. Wanders (Ronald); H.R. Waterham; D.J. Reijngoud; T.G.J. Derks (Terry G J)

    2012-01-01

    textabstractBackground. Since the introduction of medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency in population newborn bloodspot screening (NBS) programs, subjects have been identified with variant ACADM (gene encoding MCAD enzyme) genotypes that have never been identified in clinicall

  15. Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation.

    Science.gov (United States)

    Chapman, Karen E; Coutinho, Agnes E; Zhang, Zhenguang; Kipari, Tiina; Savill, John S; Seckl, Jonathan R

    2013-09-01

    Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled 'CSR 2013'.

  16. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  17. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2016-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC. Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  18. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  19. Glucose-6-phosphate dehydrogenase (G6PD. Response of the human erythrocyte and another cells to the decrease in their activity.

    Directory of Open Access Journals (Sweden)

    Javier Fernando Bonilla

    2009-11-01

    Full Text Available Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway and the main intracellular source of reduced nicotidamineadenine nucleotidephosphate (NADPH, involved in diverse physiological processes such as antioxidant defense, (for instance in the erythrocyte endothelial growth modulation, erithropoyesis, vascularization and phagocitosis. G6PDH deficiency is the most common X-chromosome-linked enzymopathy in human beings. Although it is present in any type cell, its absolute deficiency is incompatible with life. According to WHO, 400 million people are affected by G6PD deficiency in the world but in Colombia, the severe form prevalence is about 3% to 7%. There are no data related to slight and moderate alterations, that also have clinical effects. This paper reviews some G6PD biomolecular aspects, its classification according to activity and electrophoretic mobility, as well as some main clinical aspects related to its activity alteration.

  20. Proximal Focal Femoral Deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Kalia, Vibhuti

    2008-01-01

    Full Text Available Proximal focal femoral deficiency (PFFD is a developmental disorder of the proximal segment of thefemur and of acetabulum resulting in shortening of the affected limb and impairment of the function. It isa spectrum of congenital osseous anomalies characterized by a deficiency in the structure of the proximalfemur. The diagnosis is often made by radiological evaluation which includes identification and descriptionof PFFD and evaluation of associated limb anomalies by plain radiographs. Contrast arthrography orMagnetic Resonance Imaging is indicated when radiological features are questionable and to disclose thepresence and location of the femoral head and any cartilagenous anlage. The disorder is more commonlyunilateral and is apparent at birth. However, bilateral involvement is rarely seen. Therapy of the disorder isdirected towards satisfactory ambulation and specific treatment depending on the severity of dysplasia.

  1. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    Science.gov (United States)

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.

  2. Properties and subunit structure of pig heart pyruvate dehydrogenase.

    Science.gov (United States)

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T

    1976-06-01

    Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  3. Micronutrient deficiency in children.

    Science.gov (United States)

    Bhan, M K; Sommerfelt, H; Strand, T

    2001-05-01

    Malnutrition increases morbidity and mortality and affects physical growth and development, some of these effects resulting from specific micronutrient deficiencies. While public health efforts must be targeted to improve dietary intakes in children through breast feeding and appropriate complementary feeding, there is a need for additional measures to increase the intake of certain micronutrients. Food-based approaches are regarded as the long-term strategy for improving nutrition, but for certain micronutrients, supplementation, be it to the general population or to high risk groups or as an adjunct to treatment must also be considered. Our understanding of the prevalence and consequences of iron, vitamin A and iodine deficiency in children and pregnant women has advanced considerably while there is still a need to generate more knowledge pertaining to many other micronutrients, including zinc, selenium and many of the B-vitamins. For iron and vitamin A, the challenge is to improve the delivery to target populations. For disease prevention and growth promotion, the need to deliver safe but effective amounts of micronutrients such as zinc to children and women of fertile age can be determined only after data on deficiency prevalence becomes available and the studies on mortality reduction following supplementation are completed. Individual or multiple micronutrients must be used as an adjunct to treatment of common infectious diseases and malnutrition only if the gains are substantial and the safety window sufficiently wide. The available data for zinc are promising with regard to the prevention of diarrhea and pneumonia. It should be emphasized that there must be no displacement of important treatment such as ORS in acute diarrhea by adjunct therapy such as zinc. Credible policy making requires description of not only the clinical effects but also the underlying biological mechanisms. As findings of experimental studies are not always feasible to extrapolate to

  4. Orexin deficiency and narcolepsy

    OpenAIRE

    Sakurai, Takeshi

    2013-01-01

    Orexin deficiency results in the sleep disorder narcolepsy in many mammalian species, including mice, dogs, and humans, suggesting that the orexin system is particularly important for normal regulation of sleep/wakefulness states, and especially for maintenance of wakefulness. This review discusses animal models of narcolepsy; the contribution of each orexin receptor subtype to the narcoleptic phenotypes; and the etiology of orexin neuronal death. It also raises the possibility of novel thera...

  5. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  6. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia A A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  7. Phenylalanine hydroxylase deficiency.

    Science.gov (United States)

    Mitchell, John J; Trakadis, Yannis J; Scriver, Charles R

    2011-08-01

    Phenylalanine hydroxylase deficiency is an autosomal recessive disorder that results in intolerance to the dietary intake of the essential amino acid phenylalanine. It occurs in approximately 1:15,000 individuals. Deficiency of this enzyme produces a spectrum of disorders including classic phenylketonuria, mild phenylketonuria, and mild hyperphenylalaninemia. Classic phenylketonuria is caused by a complete or near-complete deficiency of phenylalanine hydroxylase activity and without dietary restriction of phenylalanine most children will develop profound and irreversible intellectual disability. Mild phenylketonuria and mild hyperphenylalaninemia are associated with lower risk of impaired cognitive development in the absence of treatment. Phenylalanine hydroxylase deficiency can be diagnosed by newborn screening based on detection of the presence of hyperphenylalaninemia using the Guthrie microbial inhibition assay or other assays on a blood spot obtained from a heel prick. Since the introduction of newborn screening, the major neurologic consequences of hyperphenylalaninemia have been largely eradicated. Affected individuals can lead normal lives. However, recent data suggest that homeostasis is not fully restored with current therapy. Treated individuals have a higher incidence of neuropsychological problems. The mainstay of treatment for hyperphenylalaninemia involves a low-protein diet and use of a phenylalanine-free medical formula. This treatment must commence as soon as possible after birth and should continue for life. Regular monitoring of plasma phenylalanine and tyrosine concentrations is necessary. Targets of plasma phenylalanine of 120-360 μmol/L (2-6 mg/dL) in the first decade of life are essential for optimal outcome. Phenylalanine targets in adolescence and adulthood are less clear. A significant proportion of patients with phenylketonuria may benefit from adjuvant therapy with 6R-tetrahydrobiopterin stereoisomer. Special consideration must be

  8. Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice.

    Science.gov (United States)

    Kim, Seontae; Kim, Sung Youl; Ku, Hyeong Jun; Jeon, Yong Hyun; Lee, Ho Won; Lee, Jaetae; Kwon, Taeg Kyu; Park, Kwon Moo; Park, Jeen-Woo

    2014-02-01

    The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.

  9. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    Science.gov (United States)

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  10. Retinoic acid deficiency alters second heart field formation

    Science.gov (United States)

    Ryckebusch, Lucile; Wang, Zengxin; Bertrand, Nicolas; Lin, Song-Chang; Chi, Xuan; Schwartz, Robert; Zaffran, Stéphane; Niederreither, Karen

    2008-01-01

    Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2−/− knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2−/− embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2−/− embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2−/− mutant heart, in a gene dosage-dependent manner. PMID:18287057

  11. Impaired energy metabolism of the taurine‑deficient heart.

    Science.gov (United States)

    Schaffer, Stephen W; Shimada-Takaura, Kayoko; Jong, Chian Ju; Ito, Takashi; Takahashi, Kyoko

    2016-02-01

    Taurine is a β-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.

  12. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  13. Crystal Structure of Human Dihydrolipoamide Dehydrogenase: NAD[superscript +]/NADH Binding and the Structural Basis of Disease-causing Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Brautigam, Chad A.; Chuang, Jacinta L.; Tomchick, Diana R.; Machius, Mischa; Chuang, David T. (U. of Texas-SMED)

    2010-07-13

    Human dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial {alpha}-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: noncovalently bound FAD and a transiently bound substrate, NAD{sup +}. To address the catalytic mechanism of hE3 and the structural basis for E3 deficiency, the crystal structures of hE3 in the presence of NAD{sup +} or NADH have been determined at resolutions of 2.5 {angstrom} and 2.1 {angstrom}, respectively. Although the overall fold of the enzyme is similar to that of yeast E3, these two structures differ at two loops that protrude from the proteins and at their FAD-binding sites. The structure of oxidized hE3 with NAD{sup +} bound demonstrates that the nicotinamide moiety is not proximal to the FAD. When NADH is present, however, the nicotinamide base stacks directly on the isoalloxazine ring system of the FAD. This is the first time that this mechanistically requisite conformation of NAD{sup +} or NADH has been observed in E3 from any species. Because E3 structures were previously available only from unicellular organisms, speculations regarding the molecular mechanisms of E3 deficiency were based on homology models. The current hE3 structures show directly that the disease-causing mutations occur at three locations in the human enzyme: the dimer interface, the active site, and the FAD and NAD{sup +}-binding sites. The mechanisms by which these mutations impede the function of hE3 are discussed.

  14. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Han and Li nationalities in Hainan, China and identification of a new mutation in human G6PD gene%海南汉族、黎族人葡萄糖-6-磷酸脱氢酶缺乏症 的基因突变型分析及一种新的G6PD 基因突变型的鉴定

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的阐明海南汉族、黎族人群中葡萄糖-6-磷酸脱氢酶缺乏症的分子基础。方法用聚合酶链反应、限制性内切酶消化筛查了1388G→A、1360C→T、1024C→T、592C→T、517T→C、493A→G、487G→A、392G→T和95A→G突变;用单链构象多态性分析筛查其它突变;用核苷酸顺序分析鉴定具有SSCP异常区带样品的突变。结果在59例汉族G6PD缺乏症患者中,发现1388G→A 14例(23.7%)、871G→A 3例(5.1%)、835A→T 1例(1.7%)、517T→C 1例(1.7%)、392G→T 3例(5.1%)和95A→G 4例(6.8%);在32例黎族G6PD缺乏症患者中,发现1388G→A 6例(18.8%)、871G→A 3例(9.4%)和95A→G2例(6.3%);在1例汉族患者中发现了一种新的G6PD基因突变——835A→G突变,此突变导致第279位的苏氨酸被丙氨酸取代,将此突变型命名为G6PD-海口,其酶活性约是正常的10%,比835A→T突变的活性低,后者的酶活性约是正常的40%。分析人G6PD的三维结构模型表明,第279位苏氨酸残基的羟基是维持G6PD亚基相互作用的基团。结论海南汉族、黎族人群中具有共同的常见G6PD基因突变型;与中国其它地区人群的G6PD基因突变谱比较,结果表明某些G6PD基因突变广泛分布于中国南方不同地区人群中;G6PD第279位苏氨酸残基的羟基可能是维持G6PD亚基相互作用及酶活性的必需基团。%Objective  To elucidate the molecular basis of G6PD deficiency in the Han and Li nationalities in Hainan, China. Methods  Polymerase chain reaction and restriction enzyme digestion were used to screen the mutations 1388G→A, 1360C→T, 1024C→T, 592C→T,517T→C, 493A→G,487G→A,392G→T and 95A→G. Single strand conformation polymorphism analysis was used to screen the other mutations followed by DNA sequencing to characterize the mutations of the samples with abnormal SSCP bands. Results  Of the fifty-nine Han cases with G6PD deficiency, fourteen with 1388G→A(23

  15. Hereditary characteristics of enzyme deficiency and dermatoglyphics in congenital color blindness.

    Science.gov (United States)

    Wu, L Z; Zeng, L H; Ma, Q Y; Xie, Y J; Chen, Y Z; Wu, D Z

    1988-01-01

    The hereditary characteristics of enzyme deficiency and dermatoglyphics in congenital color blindness (CCB) were studied. We propose that there is a linkage between the two loci on the X-chromosome determining CCB and glucose-6-phosphate dehydrogenase (G6PD), based on our study of a high incidence of G6PD deficiency in 156 male cases with CCB. The CCB gene is closely linked with that of G6PD deficiency from our pedigree investigations. The rise in the frequency of eight or more whorls, the low value of atd angle and the presenting rate of real palmar patterns of the thenar, hypothenar and I, areas presented the hereditary traits of congenital color blindness.

  16. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  17. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  18. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  19. Iatrogenic nutritional deficiencies.

    Science.gov (United States)

    Young, R C; Blass, J P

    1982-01-01

    This article catalogs the nutritional deficiencies inadvertently introduced by certain treatment regimens. Specifically, the iatrogenic effects on nutrition of surgery, hemodialysis, irradiation, and drugs are reviewed. Nutritional problems are particularly frequent consequences of surgery on the gastrointestinal tract. Gastric surgery can lead to deficiencies of vitamin B12, folate, iron, and thiamine, as well as to metabolic bone disease. The benefits of small bowel bypass are limited by the potentially severe nutritional consequences of this procedure. Following bypass surgery, patients should be monitored for signs of possible nutritional probems such as weight loss, neuropathy, cardiac arrhythmias, loss of stamina, or changes in mental status. Minimal laboratory tests should include hematologic evaluation, B12, folate, iron, albumin, calcium, phosphorus, alkaline phosphatase, transaminases, sodium, potassium, chloride, and carbon dioxide levels. Roentgenologic examination of the bone should also be obtained. Loss of bone substance is a major consequence of many forms of treatment, and dietary supplementation with calcium is warranted. Patients undergoing hemodialysis have shown carnitine and choline deficiencies, potassium depletion, and hypovitaminosis, as well as osteomalacia. Chronic drug use may alter intake, synthesis, absorption, transport, storage, metabolism, or excretion of nutrients. Patients vary markedly in the metabolic effects of drugs, and recommendations for nutrition must be related to age, sex, reproductive status, and genetic endowment. Moreover, the illness being treated can itself alter nutritional requirements and the effect of the treatment on nutrient status. The changes in nutritional levels induced by use of estrogen-containing oral contraceptives (OCs) are obscure; however, the effects on folate matabolism appear to be of less clinical import than previously suggested. Reduction in pyridoxine and serum vitamin B12 levels has been

  20. Treatment of carnitine deficiency.

    Science.gov (United States)

    Winter, S C

    2003-01-01

    Carnitine deficiency is a secondary complication of many inborn errors of metabolism. Pharmacological treatment with carnitine not only corrects the deficiency, it facilitates removal of accumulating toxic acyl intermediates and the generation of mitochondrial free coenzyme A (CoA). The United States Food and Drug Administration (US FDA) approved the use of carnitine for the treatment of inborn errors of metabolism in 1992. This approval was based on retrospective chart analysis of 90 patients, with 18 in the untreated cohort and 72 in the treated cohort. Efficacy was evaluated on the basis of clinical and biochemical findings. Compelling data included increased excretion of disease-specific acylcarnitine derivatives in a dose-response relationship, decreased levels of metabolites in the blood, and improved clinical status with decreased hospitalization frequency, improved growth and significantly lower mortality rates as compared to historical controls. Complications of carnitine treatment were few, with gastrointestinal disturbances and odour being the most frequent. No laboratory or clinical safety issues were identified. Intravenous carnitine preparations were also approved for treatment of secondary carnitine deficiency. Since only 25% of enteral carnitine is absorbed and gastrointestinal tolerance of high doses is poor, parenteral carnitine treatment is an appealing alternative therapeutic approach. In 7 patients treated long term with high-dose weekly to daily venous boluses of parenteral carnitine through a subcutaneous venous port, benefits included decreased frequency of decompensations, improved growth, improved muscle strength and decreased reliance on medical foods with liberalization of protein intake. Port infections were the most troubling complication. Theoretical concerns continue to be voiced that carnitine might result in fatal arrhythmias in patients with long-chain fat metabolism defects. No published clinical studies substantiate these

  1. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  2. Xanthine dehydrogenase-1 silencing in Aedes aegypti mosquitoes promotes a blood feeding-induced adulticidal activity.

    Science.gov (United States)

    Isoe, Jun; Petchampai, Natthida; Isoe, Yurika E; Co, Katrina; Mazzalupo, Stacy; Scaraffia, Patricia Y

    2017-02-08

    Aedesaegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real-time quantitative PCR in tissues from sugar- and blood-fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well-characterized XDH inhibitor. We also tested the effects of injecting double-stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1-deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA-XDH1-injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up-regulation of several transcripts including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae.aegypti vector control.-Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase-1 silencing in Aedes aegypti mosquitoes promotes a blood feeding-induced adulticidal activity.

  3. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Directory of Open Access Journals (Sweden)

    Kruhøffer Mogens

    2009-01-01

    Full Text Available Abstract Background Microsatellite instability (MSI refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR. Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression in colorectal cancer were evaluated. Methods MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2, thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. Results MSI was found in 43 (13.8% tumors. Absence of repair protein expression was assessed in 52 (17.0% tumors, which had primarily lost hMLH1 in 39 (12.7%, hMSH2 in 5 (1.6%, and hMSH6 in 8 (2.6% tumors. In multivariate analysis MSI (instable compared to MSS (stable tumors were significantly associated with lower risk of recurrence (hazard ratio (HR = 0.3; 95% CI: 0.2–0.7; P = 0.0007 and death (HR = 0.4; 95% CI: 0.2–0.9; P = 0.02 independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001 was found, while there was no significant association with DPD intensity (P = 0.1. Conclusion The favourable outcome of MSI colorectal carcinomas is ascribed mainly to the tumor biology and to a lesser extent to antitumor response to 5-fluorouracil therapy. There is no evidence that differential TS or DPD expression may account for these outcome characteristics.

  4. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  5. Phosphorus Deficiency in Ducklins

    Institute of Scientific and Technical Information of China (English)

    CuiHengmin; LuoLingping

    1995-01-01

    20 one-day-old Tianfu ducklings were fed on a natural diet deficient in phosphorus(Ca 0.80%,P 0.366%)for three weeks and examined for signs and lesions.Signs began to appear at the age of one week,and became serous at two weeks.13 ducklings died during the experiment.Morbidity was 100% and mortality was 65%.The affected ducklings mainly showed leg weakness,severe lamencess,deprssion,lack of appetite and stunted growth,The serum alkaline phosphatase activities increased markedly.The serum phosphorus concentration,tibial ash,ash calcium and phosphorus content decreased obviously.At necropsy,maxillae and ribe were soft,and the latter was crooked.Long ones were soft and broke easily.The hypertrophic zone of the growth-plate in the epiphysis of long ones was lengthened and osteoid tissue increased in the metaphyseal spongiosa histopathologically.The above mentioned symptoms and lesions could be prevented by adding phosphorus to the natural deficient diet(up to 0.65%),The relationship between lesions and signs,pathomorphological characterisation and pathogensis were also discussed in this paper.

  6. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  7. Glucose-6-phosphatase deficiency.

    Science.gov (United States)

    Froissart, Roseline; Piraud, Monique; Boudjemline, Alix Mollet; Vianey-Saban, Christine; Petit, François; Hubert-Buron, Aurélie; Eberschweiler, Pascale Trioche; Gajdos, Vincent; Labrune, Philippe

    2011-05-20

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  8. An Unusual Case of LCHAD Deficiency Presenting With a Clinical Picture of Hemophagocytic Lymphohistiocytosis: Secondary HLH or Coincidence?

    Science.gov (United States)

    Erdol, Sahin; Ture, Mehmet; Baytan, Birol; Yakut, Tahsin; Saglam, Halil

    2016-11-01

    There are published reports stating that some of the congenital metabolic diseases, such as lysinuric protein intolerance, multiple sulphatase deficiency, galactosemia, Gaucher disease, Pearson syndrome, and galactosialidosis, might lead to secondary hemophagocytic lymphohistiocytosis (HLH). However, to date, to our knowledge, the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency has never been investigated among patients with HLH. Here, we report on a patient who was referred to our institution for a differential diagnosis of pancytopenia, liver failure, and rhabdomyolysis. The patient was diagnosed with HLH. Further investigation revealed an underlying diagnosis of the LCHAD deficiency. Our case was reported to contribute to the literature, as well as the HLH clinic, emphasizing the consideration of LCHAD deficiency, especially in 1 to 6 months' old infants with laboratory findings of hypoglycemia, metabolic acidosis, and elevated creatine kinase.

  9. [Iron deficiency and digestive disorders].

    Science.gov (United States)

    Cozon, G J N

    2014-11-01

    Iron deficiency anemia still remains problematic worldwide. Iron deficiency without anemia is often undiagnosed. We reviewed, in this study, symptoms and syndromes associated with iron deficiency with or without anemia: fatigue, cognitive functions, restless legs syndrome, hair loss, and chronic heart failure. Iron is absorbed through the digestive tract. Hepcidin and ferroportin are the main proteins of iron regulation. Pathogenic micro-organisms or intestinal dysbiosis are suspected to influence iron absorption.

  10. Management of Iron Deficiency Anemia

    OpenAIRE

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Gasche, Christoph

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blo...

  11. Cranial ultrasound and chronological changes in molybdenum cofactor deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Mercedes; Dias, Anna P.; Perez-Duenas, Belen; Campistol, Jaume; Garcia-Cazorla, Angels [Hospital Sant Joan de Deu, Department of Pediatric Neurology, Paseo de Sant Joan de Deu, Barcelona (Spain); Lizarraga, Isabel [Hospital Sant Joan de Deu, Department of Neonatology, Barcelona (Spain); Reiss, Jochen [University of Goettingen, Institute for Human Genetics, Goettingen (Germany); Vilaseca, Maria A.; Artuch, Rafael [Hospital Sant Joan de Deu, Clinical Biochemistry Department, Barcelona (Spain)

    2007-10-15

    Molybdenum cofactor is essential for the function of three human enzymes: sulphite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Molybdenum cofactor deficiency is a rare autosomal recessively inherited disease. Disturbed development and damage to the brain may occur as a result of accumulation of toxic levels of sulphite. The CT and MRI findings include severe early brain abnormalities and have been widely reported, but the cranial US imaging findings have seldom been reported. We report a chronological series of cranial US images obtained from an affected infant that show the rapid development of cerebral atrophy, calcifications and white matter cysts. Our report supports the utility of cranial US, a noninvasive bed-side technique, in the detection and follow-up of these rapidly changing lesions. (orig.)

  12. Nutritional deficiencies after bariatric surgery.

    Science.gov (United States)

    Bal, Bikram S; Finelli, Frederick C; Shope, Timothy R; Koch, Timothy R

    2012-09-01

    Lifestyle intervention programmes often produce insufficient weight loss and poor weight loss maintenance. As a result, an increasing number of patients with obesity and related comorbidities undergo bariatric surgery, which includes approaches such as the adjustable gastric band or the 'divided' Roux-en-Y gastric bypass (RYGB). This Review summarizes the current knowledge on nutrient deficiencies that can develop after bariatric surgery and highlights follow-up and treatment options for bariatric surgery patients who develop a micronutrient deficiency. The major macronutrient deficiency after bariatric surgery is protein malnutrition. Deficiencies in micronutrients, which include trace elements, essential minerals, and water-soluble and fat-soluble vitamins, are common before bariatric surgery and often persist postoperatively, despite universal recommendations on multivitamin and mineral supplements. Other disorders, including small intestinal bacterial overgrowth, can promote micronutrient deficiencies, especially in patients with diabetes mellitus. Recognition of the clinical presentations of micronutrient deficiencies is important, both to enable early intervention and to minimize long-term adverse effects. A major clinical concern is the relationship between vitamin D deficiency and the development of metabolic bone diseases, such as osteoporosis or osteomalacia; metabolic bone diseases may explain the increased risk of hip fracture in patients after RYGB. Further studies are required to determine the optimal levels of nutrient supplementation and whether postoperative laboratory monitoring effectively detects nutrient deficiencies. In the absence of such data, clinicians should inquire about and treat symptoms that suggest nutrient deficiencies.

  13. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  14. Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance.

    Directory of Open Access Journals (Sweden)

    Dong-Ho Han

    Full Text Available BACKGROUND: It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete fat oxidation. The purpose of the present study was to test this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Rats were made severely iron deficient, by means of an iron-deficient diet. Iron deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD, used as a marker for the fatty acid oxidation pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin resistance. CONCLUSIONS/SIGNIFICANCE: The results of the study argue against the hypothesis that a deficiency of the electron transport chain (ETC, and imbalance between the ETC and β-oxidation pathways, causes muscle insulin resistance.

  15. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Andresen, B S; Jensen, T G; Bross, P

    1994-01-01

    spot. Here we describe the results from sequence analysis of exon 11 and part of the flanking introns from 36 compound heterozygous patients with MCAD deficiency. We have identified four previously unknown disease-causing mutations (M301T, S311R, R324X, and E359X) and two silent mutations in exon 11......Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of the mitochondrial beta-oxidation in humans. It is a potentially fatal, autosomal recessive inherited defect. Most patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985......), causing a change from lysine to glutamate at position 304 (K304E) in the mature MCAD. Only seven non-G985 mutations, all of which are rare, have been reported. Because the G985 mutation and three of the non-G985 mutations are located in exon 11, it has been suggested that this exon may be a mutational hot...

  16. Identification of point mutations in Glucose-6-Phosphate Dehydrogenase gene in Timor Island people : A preliminary report

    Directory of Open Access Journals (Sweden)

    Widanto Hardjowasito

    2001-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD deficiency is common in malaria endemic region, however no molecular study has been performed on G6PD deficiency in Timor Island, Indonesia a malarial hyperendemic area which Proto Malay is the majority of the people in that island. To observe the frequency and molecular type of mutations in G6PD deficient Proto Malay people, 118 native people were screened using formazan ring test. Mutation in the G6PD gene were determined by MPTP (Multiple PCR using Multiple Tandem Forward Primers and a common Reserve Pimer method and confirmed by automatic sequencer. This study shows that three males have lower G6PD activity. Using MPTP method, a point mutation could be indicated in the two cases. Sequencing of the amplified products in 2 G6PD patients disclosed mutations of T383C in exon 5 and C 592 T in exon 6 in respective case. Our result documents point mutations in exon 5 and exon 6 in the G6PD gene of two Proto Malay people in Timor. These mutations are common in Asia region. (Med J Indones 2001; 10: 210-3Keywords: mutations, G6PD, Proto Malay.

  17. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  18. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2016-05-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I, Vanua-Lava (Class II and Viangchan (Class II. For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT. Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.

  19. Prevalence and hematological indicators of G6PD deficiency in malaria-infected patients

    Institute of Scientific and Technical Information of China (English)

    Manas Kotepui; Kwuntida Uthaisar; Bhukdee PhunPhuech; Nuoil Phiwklam

    2016-01-01

    Background:This study aimed to evaluate the prevalence and alteration of hematological parameters in malaria patients with a glucose-6-phosphate dehydrogenase (G6PD) deficiency,in the western region of Thailand,an endemic region for malaria.Methods:Data about patients with malaria hospitalized between 2013 and 2015 were collected.Clinical and sociodemographic characteristics such as age and gender,diagnosis on admission,and parasitological results were mined from medical records of the laboratory unit of the Phop Phra Hospital in Tak Province,Thailand.Venous blood samples were collected at the time of admission to hospital to determine G6PD deficiency by fluorescence spot test and detect malaria parasites by thick and thin film examination.Other data such as complete blood count and parasite density were also collected and analyzed.Results:Among the 245 malaria cases,28 (11.4 %) were diagnosed as Plasmodium falciparum infections and 217 cases (88.6 %) were diagnosed as P.vivax infections.Seventeen (6.9 %) patients had a G6PD deficiency and 228 (93.1%) patients did not have a G6PD deficiency.Prevalence of male patients with G6PD deficiency was higher than that of female patients (P < 0.05,OR =5.167).Among the patients with a G6PD deficiency,two (11.8 %) were infected with P.falciparum,while the remaining were infected with P.vivax.Malaria patients with a G6PD deficiency have higher monocyte counts (0.6 × 103/μL) than those without a G6PD deficiency (0.33 × 103/μL) (P< 0.05,OR=5.167).Univariate and multivariate analyses also confirmed that malaria patients with a G6PD deficiency have high monocyte counts.The association between G6PD status and monocyte counts was independent of age,gender,nationality,Plasmodium species,and parasite density (P < 0.005).Conclusion:This study showed a prevalence of G6PD deficiency in a malaria-endemic area.This study also supported the assertion that patients with G6PD-deficient red blood cells had no protection

  20. Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure.

    OpenAIRE

    1987-01-01

    The citric acid cycle enzyme malate dehydrogenase was purified to homogeneity from the nonsulfur purple bacteria Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodomicrobium vannielii, and Rhodocyclus purpureus. Malate dehydrogenase was purified from each species by either a single- or a two-step protocol: triazine dye affinity chromatography was the key step in purification of malate dehydrogenase in all cases. Purification of malate dehydrogenase resulted in a 130- to 240-fold increase in ...

  1. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.

    2008-01-01

    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  2. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...

  3. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.;

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  4. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnologica

  5. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Travis Hartman

    2014-11-01

    Full Text Available In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2; we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.

  6. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  7. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  8. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase.

    Science.gov (United States)

    Aoshima, Miho; Igarashi, Yasuo

    2008-03-01

    Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

  9. Iodine deficiency in Europe.

    Science.gov (United States)

    Delange, F

    1995-01-18

    Iodine is a trace element present in the human body in minute amounts (15-20 mg in adults, i.e. 0.0285 x 10(-3)% of body weight). The only confirmed function of iodine is to constitute an essential substrate for the synthesis of thyroid hormones, tetraiodothyronine, thyroxine or T4 and triiodothyronine, T3 (1). In thyroxine, iodine is 60% by weight. Thyroid hormones, in turn, play a decisive role in the metabolism of all cells of the organism (2) and in the process of early growth and development of most organs, especially of the brain (3). Brain development in humans occurs from fetal life up to the third postnatal year (4). Consequently, a deficit in iodine and/or in thyroid hormones occurring during this critical period of life will result not only in the slowing down of the metabolic activities of all the cells of the organism but also in irreversible alterations in the development of the brain. The clinical consequence will be mental retardation (5). When the physiological requirements of iodine are not met in a given population, a series of functional and developmental abnormalities occur (Table 1), including thyroid function abnormalities and, when iodine deficiency is severe, endemic goiter and cretinism, endemic mental retardation, decreased fertility rate, increased perinatal death, and infant mortality. These complications, which constitute an hindrance to the development of the affected population, are grouped under the general heading of Iodine Deficiency Disorders, IDD (6). Broad geographic areas exist in which the population is affected by IDD.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Iron deficiency and iron deficiency anemia in women.

    Science.gov (United States)

    Coad, Jane; Pedley, Kevin

    2014-01-01

    Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.

  11. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  12. Iron deficiency and cardiovascular disease

    NARCIS (Netherlands)

    von Haehling, Stephan; Jankowska, Ewa A.; van Veldhuisen, Dirk J.; Ponikowski, Piotr; Anker, Stefan D.

    2015-01-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of card

  13. Iron deficiency anemia in children

    OpenAIRE

    Pochinok, T. V.

    2016-01-01

    In the article the role of iron in the human body is highlighted. The mechanism of development of iron deficiency states, their consequences and the basic principles of diagnosis and correction of children of different ages are shown.Key words: children, iron deficiency anemia, treatment.

  14. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  15. Iron deficiency anemia in children.

    Science.gov (United States)

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency.

  16. Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways

    Science.gov (United States)

    Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890

  17. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase.

    Science.gov (United States)

    Sieg, Alex G; Trotter, Pamela J

    2014-01-01

    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.

  18. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Srinivas B Narayan

    Full Text Available Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD and glutamate dehydrogenase (GDH explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1 from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  19. Toxic response caused by a misfolding variant of the mitochondrial protein short-chain acyl-CoA dehydrogenase

    DEFF Research Database (Denmark)

    Schmidt, Stinne P; Corydon, Thomas J; Pedersen, Christina B;

    2011-01-01

    the disease-associated misfolding variant of SCAD protein, p.Arg107Cys, disturbs mitochondrial function. METHODS: We have developed a cell model system, stably expressing either the SCAD wild-type protein or the misfolding SCAD variant protein, p.Arg107Cys (c.319 C > T). The model system was used......BACKGROUND: Variations in the gene ACADS, encoding the mitochondrial protein short-chain acyl CoA-dehydrogenase (SCAD), have been observed in individuals with clinical symptoms. The phenotype of SCAD deficiency (SCADD) is very heterogeneous, ranging from asymptomatic to severe, without a clear...... for investigation of SCAD with respect to expression, degree of misfolding, and enzymatic SCAD activity. Furthermore, cell proliferation and expression of selected stress response genes were investigated as well as proteomic analysis of mitochondria-enriched extracts in order to study the consequences of p.Arg107...

  20. Pituitary Adenoma With Paraganglioma/Pheochromocytoma (3PAs) and Succinate Dehydrogenase Defects in Humans and Mice

    Science.gov (United States)

    Xekouki, Paraskevi; Szarek, Eva; Bullova, Petra; Giubellino, Alessio; Quezado, Martha; Mastroyannis, Spyridon A.; Mastorakos, Panagiotis; Wassif, Christopher A.; Raygada, Margarita; Rentia, Nadia; Dye, Louis; Cougnoux, Antony; Koziol, Deloris; Sierra, Maria de La Luz; Lyssikatos, Charalampos; Belyavskaya, Elena; Malchoff, Carl; Moline, Jessica; Eng, Charis; Maher, Louis James; Pacak, Karel; Lodish, Maya

    2015-01-01

    Context: Germline mutations in genes coding succinate dehydrogenase (SDH) subunits A, B, C, and D have been identified in familial paragangliomas (PGLs)/pheochromocytomas (PHEOs) and other tumors. We described a GH-secreting pituitary adenoma (PA) caused by SDHD mutation in a patient with familial PGLs. Additional patients with PAs and SDHx defects have since been reported. Design: We studied 168 patients with unselected sporadic PA and with the association of PAs, PGLs, and/or pheochromocytomas, a condition we named the 3P association (3PAs) for SDHx germline mutations. We also studied the pituitary gland and hormonal profile of Sdhb+/− mice and their wild-type littermates at different ages. Results: No SDHx mutations were detected among sporadic PA, whereas three of four familial cases were positive for a mutation (75%). Most of the SDHx-deficient PAs were either prolactinomas or somatotropinomas. Pituitaries of Sdhb+/− mice older than 12 months had an increased number mainly of prolactin-secreting cells and several ultrastructural abnormalities such as intranuclear inclusions, altered chromatin nuclear pattern, and abnormal mitochondria. Igf-1 levels of mutant mice tended to be higher across age groups, whereas Prl and Gh levels varied according to age and sex. Conclusion: The present study confirms the existence of a new association that we termed 3PAs. It is due mostly to germline SDHx defects, although sporadic cases of 3PAs without SDHx defects also exist. Using Sdhb+/− mice, we provide evidence that pituitary hyperplasia in SDHx-deficient cells may be the initial abnormality in the cascade of events leading to PA formation. PMID:25695889

  1. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings.

    Science.gov (United States)

    Lu, Yi-Bin; Yang, Lin-Tong; Li, Yan; Xu, Jing; Liao, Tian-Tai; Chen, Yan-Bin; Chen, Li-Song

    2014-06-01

    Boron (B) deficiency is a widespread problem in many crops, including Citrus. The effects of B-deficiency on gas exchange, carbohydrates, organic acids, amino acids, total soluble proteins and phenolics, and the activities of key enzymes involved in organic acid and amino acid metabolism in 'Xuegan' [Citrus sinensis (L.) Osbeck] leaves and roots were investigated. Boron-deficient leaves displayed excessive accumulation of nonstructural carbohydrates and much lower CO2 assimilation, demonstrating feedback inhibition of photosynthesis. Dark respiration, concentrations of most organic acids [i.e., malate, citrate, oxaloacetate (OAA), pyruvate and phosphoenolpyruvate] and activities of enzymes [i.e., phosphoenolpyruvate carboxylase (PEPC), NAD-malate dehydrogenase, NAD-malic enzyme (NAD-ME), NADP-ME, pyruvate kinase (PK), phosphoenolpyruvate phosphatase (PEPP), citrate synthase (CS), aconitase (ACO), NADP-isocitrate dehydrogenase (NADP-IDH) and hexokinase] involved in glycolysis, the tricarboxylic acid (TCA) cycle and the anapleurotic reaction were higher in B-deficient leaves than in controls. Also, total free amino acid (TFAA) concentration and related enzyme [i.e., NADH-dependent glutamate 2-oxoglutarate aminotransferase (NADH-GOGAT) and glutamate OAA transaminase (GOT)] activities were enhanced in B-deficient leaves. By contrast, respiration, concentrations of nonstructural carbohydrates and three organic acids (malate, citrate and pyruvate), and activities of most enzymes [i.e., PEPC, NADP-ME, PK, PEPP, CS, ACO, NAD-isocitrate dehydrogenase, NADP-IDH and hexokinase] involved in glycolysis, the TCA cycle and the anapleurotic reaction, as well as concentration of TFAA and activities of related enzymes (i.e., nitrate reductase, NADH-GOGAT, glutamate pyruvate transaminase and glutamine synthetase) were lower in B-deficient roots than in controls. Interestingly, leaf and root concentration of total phenolics increased, whereas that of total soluble protein decreased

  2. Genetics Home Reference: isolated growth hormone deficiency

    Science.gov (United States)

    ... Home Health Conditions isolated growth hormone deficiency isolated growth hormone deficiency Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Isolated growth hormone deficiency is a condition caused by a severe ...

  3. Genetics Home Reference: familial HDL deficiency

    Science.gov (United States)

    ... Genetics Home Health Conditions familial HDL deficiency familial HDL deficiency Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Familial HDL deficiency is a condition characterized by low levels ...

  4. Genetics Home Reference: eosinophil peroxidase deficiency

    Science.gov (United States)

    ... Genetics Home Health Conditions eosinophil peroxidase deficiency eosinophil peroxidase deficiency Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Eosinophil peroxidase deficiency is a condition that affects certain white ...

  5. Genetics Home Reference: protein C deficiency

    Science.gov (United States)

    ... Management Genetic Testing (1 link) Genetic Testing Registry: Thrombophilia, hereditary, due to protein C deficiency, autosomal dominant ... my area? Other Names for This Condition hereditary thrombophilia due to protein C deficiency PROC deficiency Related ...

  6. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index.

    Science.gov (United States)

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-07-01

    Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD.Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin 2 in the presence of inflammation.One-hundred fifty patients with median age 38 years (16-78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients.TfR-F in addition to ferritin iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD.

  7. A novel R198H mutation in the glucose-6-phosphate dehydrogenase gene in the tribal groups of the Nilgiris in Southern India.

    Science.gov (United States)

    Chalvam, R; Kedar, P S; Colah, R B; Ghosh, K; Mukherjee, M B

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common red cell enzymopathy among humans. In India, G6PD Mediterranean, G6PD Orissa, and G6PD Kerala-Kalyan are the three common mutations which account almost 90% of G6PD deficiency. Here we describe G6PD Coimbra, an unreported variant from India, and a novel 593 G --> A mutation in exon 6 with an amino acid change of Arg 198 His, among the tribal groups of the Nilgiris in Southern India. Further, this novel mutation was structurally characterized and it was found that the mutation is located at the end of the coenzyme domain, which may cause enzyme instability.

  8. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  9. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma.

    Science.gov (United States)

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun

    2017-03-01

    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  10. Iron Deficiency Anemia in Pregnancy.

    Science.gov (United States)

    Breymann, Christian

    2015-10-01

    Anemia is a common problem in obstetrics and perinatal care. Any hemoglobin below 10.5 g/dL can be regarded as true anemia regardless of gestational age. Reasons for anemia in pregnancy are mainly nutritional deficiencies, parasitic and bacterial diseases, and inborn red blood cell disorders such as thalassemias. The main cause of anemia in obstetrics is iron deficiency, which has a worldwide prevalence between estimated 20%-80% and consists of a primarily female population. Stages of iron deficiency are depletion of iron stores, iron-deficient erythropoiesis without anemia, and iron deficiency anemia, the most pronounced form of iron deficiency. Pregnancy anemia can be aggravated by various conditions such as uterine or placental bleedings, gastrointestinal bleedings, and peripartum blood loss. In addition to the general consequences of anemia, there are specific risks during pregnancy for the mother and the fetus such as intrauterine growth retardation, prematurity, feto-placental miss ratio, and higher risk for peripartum blood transfusion. Besides the importance of prophylaxis of iron deficiency, the main therapy options for the treatment of pregnancy anemia are oral iron and intravenous iron preparations.

  11. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    Science.gov (United States)

    Melo-Oliveira, R; Oliveira, I C; Coruzzi, G M

    1996-05-14

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.

  12. Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis.

    Science.gov (United States)

    Beeler, Seraina; Liu, Hung-Chi; Stadler, Martha; Schreier, Tina; Eicke, Simona; Lue, Wei-Ling; Truernit, Elisabeth; Zeeman, Samuel C; Chen, Jychian; Kötting, Oliver

    2014-03-01

    In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.

  13. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    Science.gov (United States)

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  14. Genetics Home Reference: hereditary antithrombin deficiency

    Science.gov (United States)

    ... Merck Manual Home Edition for Patients and Caregivers: Thrombophilia National Blood Clot Alliance: Antithrombin Deficiency Orphanet: Hereditary thrombophilia due to congenital antithrombin deficiency Patient Support and ...

  15. Small for Gestational Age and Magnesium: Intrauterine magnesium deficiency may induce metabolic syndrome in later life

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    2015-12-01

    Full Text Available Magnesium deficiency during pregnancy as a result of insufficient or low intake of magnesium is common in developing and developed countries. Previous reports have shown that intracellular magnesium of cord blood platelets is lower among small for gestational age (SGA groups than that of appropriate for gestational age (AGA groups, suggesting that intrauterine magnesium deficiency may result in SGA. Additionally, the risk of adult-onset diseases such as insulin resistance syndrome is greater among children whose mothers were malnourished during pregnancy, and who consequently had a low birth weight. In a number of animal models, poor nutrition during pregnancy leads to offspring that exhibit pathophysiological changes similar to human diseases. The offspring of pregnant rats fed a magensium restricted diet have developed hypermethylation in the hepatic 11β-hydroxysteroid dehydrogenase-2 promoter. These findings indicate that maternal magnesium deficiencies during pregnancy influence regulation of non-imprinted genes by altering the epigenetic regulation of gene expression, thereby inducing different metabolic phenotypes. Magnesium deficiency during pregnancy may be responsible for not only maternal and fetal nutritional problems, but also lifelong consequences that affect the offspring throughout their life. Epidemiological, clinical, and basic research on the effects of magnesium deficiency now indicates underlying mechanisms, especially epigenetic processes.

  16. IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization

    Science.gov (United States)

    Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y.; Wakeham, Andrew; Cairns, Rob A.; Mak, Tak W.

    2017-01-01

    Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG–dependent transamination of glucogenic AAs such as alanine. PMID:28011762

  17. Late-onset form of beta-electron transfer flavoprotein deficiency.

    Science.gov (United States)

    Curcoy, A; Olsen, R K J; Ribes, A; Trenchs, V; Vilaseca, M A; Campistol, J; Osorio, J H; Andresen, B S; Gregersen, N

    2003-04-01

    Multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein (ETF) or electron transfer flavoprotein ubiquinone oxidoreductase (ETF-QO). We report the clinical features and biochemical and molecular genetic analyses of a patient with a mild late-onset form of GAII due to beta-ETF deficiency. Biochemical data showed an abnormal urine organic acid profile, low levels of free carnitine, increased levels of C(10:1n-6), and C(14:1n-9) in plasma, and decreased oxidation of [9,10-3H]palmitate and [9,10-3H]myristate in fibroblasts, suggesting MAD deficiency. In agreement with these findings, mutational analysis of the ETF/ETFDH genes demonstrated an ETFB missense mutation 124T>C in exon 2 leading to replacement of cysteine-42 with arginine (C42R), and a 604_606AAG deletion in exon 6 in the ETFB gene resulting in the deletion of lysine-202 (K202del). The present report delineates further the phenotype of mild beta-ETF deficiency and illustrates that the differential diagnosis of GAII is readily achieved by mutational analysis.

  18. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  19. SERUM LACTATE DEHYDROGENASE AS A PROGNOSTIC MARKER IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Hardik

    2015-11-01

    Full Text Available : BACKGROUND: Breast cancer a multifactorial disease and one of the most dreaded of human diseases that claims the lives of thousands of women all over the globe every year. This may probably due to the fact that it remains undiagnosed at an early stage perhaps due to lack of awareness amongst the females and the fact that most cancers do not produce any symptoms until the tumour are too large to be removed surgically. Hence there is need to detect cancer at an early stage. AIM: Estimation of diagnostic importance and prognostication of serum Lactate dehydrogenase in cases on breast cancer. SETTINGS AND DESIGN: An observational study was conducted in Acharya Vinoba Bhave Rural Hospital, Sawangi (Meghe, Wardha which included 44 confirmed cases of carcinoma breast and 44 normal healthy females admitted in AVBRH in a span of 2 years. METHODS AND MATERIAL: Determination of serum LDH was done using TC matrix analyser. The values of LDH were obtained on presentation, 21 days after intervention, 2 months after intervention and 6 months after intervention. The values of LDH on presentation in both the groups were compared. The decline in the values of LDH were observed with the due course of treatment. Chisquare test and Student’s Unpaired and paired t test were used for statistical analysis. RESULT: The mean Lactate dehydrogenase on presentation was in study group and control group was 564.38±219.41 IU/L and 404.18±101.32 IU/L respectively (p<0.05. The levels of Lactate dehydrogenase decreased with due course of treatment. The levels of LDH were proportionate to the stage of disease. CONCLUSION: The results of the study concludes cost effective usefulness of serum Lactate dehydrogenase in early detection of breast cancer and to assess its prognostic importance which can be done in smaller laboratories. The traditional model of DS-

  20. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  1. GLUTAMATE DEHYDROGENASE 1 AND SIRT4 REGULATE GLIAL DEVELOPMENT

    OpenAIRE

    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.

    2012-01-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  2. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    OpenAIRE

    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  3. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    OpenAIRE

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency...

  4. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  5. Recent advances in biotechnological applications of alcohol dehydrogenases.

    Science.gov (United States)

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  6. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  7. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    Science.gov (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  8. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  9. Helicobacterpy loriinfection and micronutrient deficiencies

    Institute of Scientific and Technical Information of China (English)

    Javed Yakoob; Wasim Jafri; Shahab Abid

    2003-01-01

    It is known that deficiencies of micronutrients due to infections increase morbidity and mortality. This phenomenon depicts itself conspicuously in developing countries.Deficiencies of iron, vitamins A, E, C, B12, etc are widely prevalent among populations living in the third world countries. Helicobacterpylori (Hpylori) infection has a high prevalence throughout the world. Deficiencies of several micronutrients due to Hpylori infection may be concomitantly present and vary from subtle sub-clinical states to severe clinical disorders. These essential trace elementsl micronutrients are involved in host defense mechanisms,maintaining epithelial cell integrity, glycoprotein synthesis,transport mechanisms, myocardial contractility, brain development, cholesterol and glucose metabolism. In this paper Hpyloriinfection in associaed with various micronutrients deficiencies is briefly reviewed.

  10. Vitamin D deficiency in adolescents

    OpenAIRE

    Ashraf T Soliman; Vincenzo De Sanctis; Rania Elalaily; Said Bedair; Islam Kassem

    2014-01-01

    The prevalence of severe vitamin D deficiency (VDD) in adolescents is variable but considerably high in many countries, especially in Middle-east and Southeast Asia. Different factors attribute to this deficiency including lack of sunlight exposure due to cultural dress codes and veiling or due to pigmented skin, and less time spent outdoors, because of hot weather, and lower vitamin D intake. A potent adaptation process significantly modifies the clinical presentation and therefore clinical ...

  11. Iron deficiency and cognitive functions

    OpenAIRE

    Jáuregui-Lobera I

    2014-01-01

    Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with...

  12. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  13. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Li

    Full Text Available Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017 and TP53 mutation (p < 0.001, but not 1p/19q loss (p = 0.834, occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041 and frontal lobe location (p = 0.010 were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response

  14. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Science.gov (United States)

    Li, Ming-Yang; Wang, Yin-Yan; Cai, Jin-Quan; Zhang, Chuan-Bao; Wang, Kuan-Yu; Cheng, Wen; Liu, Yan-Wei; Zhang, Wei; Jiang, Tao

    2015-01-01

    Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA

  15. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles.

    Science.gov (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus

    2016-09-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition.

  16. On the molecular basis of D-bifunctional protein deficiency type III.

    Directory of Open Access Journals (Sweden)

    Maija L Mehtälä

    Full Text Available Molecular basis of D-bifunctional protein (D-BP deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2 protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations were correlated with clinical data of known patients. Despite variations not affecting the catalytic residues, enzyme kinetic performance (K(m, V(max and k(cat of the recombinant protein variants were compromised to a varying extent and this can be judged as the direct molecular cause for D-BP deficiency. Protein stability plays an additional role in producing non-functionality of MFE-2 in case structural variations affect cofactor or substrate binding sites. Structure-function considerations of the variant proteins matched well with the available data of the patients.

  17. The ETFDH c.158A>G Variation Disrupts the Balanced Binding of ESE and ESS Proteins Causing Missplicing and Multiple acyl-CoA Dehydrogenation Deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan

    2013-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostica......Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only......-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing...

  18. Clinical manifestation of myeloperoxidase deficiency.

    Science.gov (United States)

    Lanza, F

    1998-09-01

    Myeloperoxidase (MPO), an iron-containing heme protein localized in the azurophilic granules of neutrophil granulocytes and in the lysosomes of monocytes, is involved in the killing of several micro-organisms and foreign cells, including bacteria, fungi, viruses, red cells, and malignant and nonmalignant nucleated cells. Despite the primary role of the oxygen-dependent MPO system in the destruction of certain phagocytosed microbes, subjects with total or partial MPO deficiency generally do not have an increased frequency of infections, probably because other MPO-independent mechanism(s) for microbicidal activity compensate for the lack of MPO. Infectious diseases, especially with species of Candida, have been observed predominantly in MPO-deficient patients who also have diabetes mellitus, but the frequency of such cases is very low, less than 5% of reported MPO-deficient subjects. Evidence from a number of investigators indicates that individuals with total MPO deficiency show a high incidence of malignant tumors. Since MPO-deficient PMNs exhibit in vitro a depressed lytic action against malignant human cells, it can be speculated that the neutrophil MPO system plays a central role in the tumor surveillance of the host. However, any definitive conclusion on the association between MPO deficiency and the occurrence of cancers needs to be confirmed in further clinical studies. Clinical manifestations of this disorder depend on the nature of the defect; an acquired abnormality associated with other hematological or nonhematological diseases has been occasionally described, but the primary deficiency is the form more commonly reported. Another area of interest pertinent to MPO expression is related to the use of anti-MPO monoclonal antibodies for the lineage assignment of acute leukemic cells, the definition of FAB MO acute myeloid leukemia, the identification of biphenotypic acute leukemias, and their distinction from acute leukemia with minimal phenotypic deviation

  19. [Iron deficiency and iron deficiency anemia are global health problems].

    Science.gov (United States)

    Dahlerup, Jens; Lindgren, Stefan; Moum, Björn

    2015-03-10

    Iron deficiency and iron deficiency anemia are global health problems leading to deterioration in patients' quality of life and more serious prognosis in patients with chronic diseases. The cause of iron deficiency and anemia is usually a combination of increased loss and decreased intestinal absorption and delivery from iron stores due to inflammation. Oral iron is first line treatment, but often hampered by intolerance. Intravenous iron is safe, and the preferred treatment in patients with chronic inflammation and bowel diseases. The goal of treatment is normalisation of hemoglobin concentration and recovery of iron stores. It is important to follow up treatment to ensure that these objectives are met and also long-term in patients with chronic iron loss and/or inflammation to avoid recurrence of anemia.

  20. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.

    Science.gov (United States)

    Parmentier, S; Arnaut, F; Soetaert, W; Vandamme, E J

    2003-01-01

    D-Mannitol and D-sorbitol were produced enzymatically from D-fructose using NAD-dependent polyol dehydrogenases. For the production of D-mannitol the Leuconostoc mesenteroides mannitol dehydrogenase could be used. Gluconobacter oxydans cell extract contained however both mannitol and sorbitol dehydrogenase. When this cell extract was used, the reduction of D-fructose resulted in a mixture of D-sorbitol and D-mannitol. To determine the optimal bioconversion conditions the polyol dehydrogenases were characterized towards pH- and temperature-optimum and -stability. As a compromise between enzyme activity and stability, the bioconversion reactions were performed at pH 6.5 and 25 degrees C. Since the polyol dehydrogenases are NADH-dependent, an efficient coenzyme regeneration was needed. Regeneration of NADH was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.

  1. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Armando Cortés

    2005-03-01

    Full Text Available Context: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. Objective: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors. Design: From march 20 to April 5, 2004, three hundred potential blood donors from Hemocentro del Café y Tolima Grande were studied. Diagnostic tests: Using a combination of biochemical measurements of iron status: serum ferritin (RIA, ANNAR and the hemoglobin pre and post-donation (HEMOCUE Vital technology medical . Results: The frequency of iron deficiency in potential blood donors was 5%, and blood donors accepted was 5.1%; in blood donors rejected for low hemoglobin the frequency of iron deficiency was 3.7% and accepted blood donors was 1.7% in male and 12.6% in female. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, but not stadistic significative. Increase nivel accepted hemoglobina in 1 g/dl no incidence in male; in female increase of 0.5 g/dl low in 25% blood donors accepted with iron deficiency, but increased rejected innecesary in 16.6% and increased is 1 g/dl low blood donors female accepted in 58% (7/12, but increased the rejected innecesary in 35.6%. Conclusions: We conclude that blood donation not is a important factor for iron deficiency in blood donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia, and ajustes hacia

  2. Iron deficiency and cardiovascular disease.

    Science.gov (United States)

    von Haehling, Stephan; Jankowska, Ewa A; van Veldhuisen, Dirk J; Ponikowski, Piotr; Anker, Stefan D

    2015-11-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of cardiovascular medicine. Data indicate that iron deficiency has detrimental effects in patients with coronary artery disease, heart failure (HF), and pulmonary hypertension, and possibly in patients undergoing cardiac surgery. Around one-third of all patients with HF, and more than one-half of patients with pulmonary hypertension, are affected by iron deficiency. Patients with HF and iron deficiency have shown symptomatic improvements from intravenous iron administration, and some evidence suggests that these improvements occur irrespective of the presence of anaemia. Improved exercise capacity has been demonstrated after iron administration in patients with pulmonary hypertension. However, to avoid iron overload and T-cell activation, it seems that recipients of cardiac transplantations should not be treated with intravenous iron preparations.

  3. Long-term outcome of isobutyryl-CoA dehydrogenase deficiency diagnosed following an episode of ketotic hypoglycaemia

    DEFF Research Database (Denmark)

    Santra, S; Macdonald, A; Preece, M A;

    2017-01-01

    -screened patient had dilated cardiomyopathy and anaemia at the age of two years. We report a 13 month old girl diagnosed with IBDD after developing hypoglycaemic encephalopathy (blood glucose 1.9 mmol/l) during an episode of rotavirus-induced gastroenteritis. Metabolic investigations demonstrated an appropriate...

  4. Gamma-Hydroxybutyrate (GHB) Content in Hair Samples Correlates Negatively with Age in Succinic Semialdehyde Dehydrogenase Deficiency

    DEFF Research Database (Denmark)

    Johansen, S S; Wang, X.; Pedersen, Daniel Sejer

    2017-01-01

    shed light on the developmental course of this neurometabolic disease. Since GHB may be quantified in hair as a potential surrogate to identify victims of drug-related assault, we have opted to examine its level in SSADHD. We quantified GHB in hair derived from ten patients with SSADHD, and documented...

  5. Dissimilar Deficiency of Glucose-6-Phosphate Dehydrogenase (G-6-PD) among the AFARS and the Somalis of Djibouti

    Science.gov (United States)

    1991-01-01

    directly related to the type ot variant Plus de 200 variantes de la moliculc G-6-PD present. ont it dicrites i ce jour, (1) Medical Research Assistant...Research Associate, International Health Program, School of Medicine, University of Maryland. Baltimore. MEDECINE TROPICALE - Volume 51 - IN’ 2 - Avni - Juin...hemolytiques severes qui semblent relativementfriquentes i Djibouti chez les malades awc himaties parasities accis palustres (MIARY, Uniti de Soins Intensifs

  6. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  7. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  8. Arteriovenous malformation within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Grace Lai

    2015-01-01

    Full Text Available Background: The co-occurrence of intracranial arteriovenous malformations (AVMs and cerebral neoplasms is exceedingly rare but may harbor implications pertaining to the molecular medicine of brain cancer pathogenesis. Case Description: Here, we present a case of de novo AVM within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma (WHO Grade III and review the potential contribution of this mutation to aberrant angiogenesis as an interesting case study in molecular medicine. Conclusion: The co-occurrence of an IDH1 mutated neoplasm and AVM supports the hypothesis that IDH1 mutations may contribute to aberrant angiogenesis and vascular malformation.

  9. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  10. Structural determinants of stereospecificity in yeast alcohol dehydrogenase.

    OpenAIRE

    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A

    1991-01-01

    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-m...

  11. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2015-02-01

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described.

  12. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    Cellular toxicity and/or cell death entail complex mechanisms that require detailed evaluation for proper characterization. A detailed mechanistic assessment of cytotoxicity is essential for design and construction of more effective polycations for nucleic acid delivery. A single toxicity assay...... cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  13. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  14. Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei

    Science.gov (United States)

    Bertelli, Massimo; El-Bastawissy, Eman; Knaggs, Michael H.; Barrett, Michael P.; Hanau, Stefania; Gilbert, Ian H.

    2001-05-01

    A number of triphenylmethane derivatives have been screened against 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Some of these compounds show good inhibition of the enzymes and also selectivity towards the parasite enzyme. Modelling was undertaken to dock the compounds into the active sites of both enzymes. Using a combination of DOCK 3.5 and FLEXIDOCK a correlation was obtained between docking score and both activity for the enzymes and selectivity. Visualisation of the docked structures of the inhibitors in the active sites of the enzymes yielded a possible explanation of the selectivity for the parasite enzyme.

  15. Essential histidine residue in 3-ketosteroid-Δ1-dehydrogenase

    OpenAIRE

    Matsushita, Hiroyuki; Itagaki, Eiji; 板垣, 英治

    1992-01-01

    The variation with pH of kinetic parameters was examined for 3-ketosteroid-Δ1-dehydrogenase from Nocardia corallina. The V(max)/K(m) profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the ina...

  16. Differential diagnosis of iron deficiency

    OpenAIRE

    2010-01-01

    A deficiência de ferro é considerada a patologia hematológica mais prevalente no homem. Assim, é fundamental a adequada identificação de suas causas, bem como a diferenciação com outras patologias distintas para adequada abordagem da deficiência de ferro. Neste artigo são brevemente descritas outras condições que podem cursar com anemia microcítica, tais como: talassemias, anemia de doença crônica, anemia sideroblástica e envenenamento por chumbo, patologias estas que devem ser afastadas dura...

  17. [Phosphate metabolism and iron deficiency].

    Science.gov (United States)

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  18. Primary Carnitine (OCTN2) Deficiency Without Neonatal Carnitine Deficiency

    NARCIS (Netherlands)

    Boer, L. de; Kluijtmans, L.A.J.; Morava, E.

    2013-01-01

    Although the diagnosis of a primary carnitine deficiency is usually based on a very low level of free and total carnitine (free carnitine: 1-5 muM, normal 20-55 muM) (Longo et al. 2006), we detected a patient via newborn screening with a total carnitine level 67 % of the normal value. At the age of

  19. Perioperative challenges in a patient of severe G6PD deficiency undergoing open heart surgery

    Directory of Open Access Journals (Sweden)

    Vivek Chowdhry

    2012-01-01

    Full Text Available We describe a successful perioperative management of a case of 38-year-old male, presented with chronic jaundice with severe mitral stenosis and moderate tricuspid regurgitation; upon evaluation, he was found to have severe glucose-6-phosphate dehydrogenase (G6PD deficiency. Usually, patients deficient in G6PD exhibit increased hemolysis andtherefore increased need for blood transfusion after cardiac surgery as well as impaired oxygenation in the postoperative period leading to prolonged ventilation. On reperfusion after a period of ischemia, the antioxidant system recruits all of its components in an attempt to neutralize the overwhelming oxidative stress of free radicals, as the free radical scavenging system is deficient in these patients, the chances of free-radical-induced injury is more. Our patient underwent mitral valve replacement and tricuspid annuloplasty under cardiopulmonary bypass with necessary precautions to reduce the formation of free radicals. Treatment was targeted toward theprevention of free radical injuryin the G6PD-deficient patient. He had an uneventful intraoperative and postoperative course.

  20. Late-onset form of beta-electron transfer flavoprotein deficiency

    DEFF Research Database (Denmark)

    Curcoy, A; Olsen, R K J; Ribes, A;

    2003-01-01

    Multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein (ETF) or electron transfer flavoprotein ubiquinone oxidoreductase (ETF-QO). We report the clinical features...... and biochemical and molecular genetic analyses of a patient with a mild late-onset form of GAII due to beta-ETF deficiency. Biochemical data showed an abnormal urine organic acid profile, low levels of free carnitine, increased levels of C(10:1n-6), and C(14:1n-9) in plasma, and decreased oxidation of [9,10-3H......]palmitate and [9,10-3H]myristate in fibroblasts, suggesting MAD deficiency. In agreement with these findings, mutational analysis of the ETF/ETFDH genes demonstrated an ETFB missense mutation 124T>C in exon 2 leading to replacement of cysteine-42 with arginine (C42R), and a 604_606AAG deletion in exon 6...

  1. G6PD deficiency: global distribution, genetic variants and primaquine therapy.

    Science.gov (United States)

    Howes, Rosalind E; Battle, Katherine E; Satyagraha, Ari W; Baird, J Kevin; Hay, Simon I

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.

  2. EFFECT OF FREE FATTY ACIDS ON LONG-CHAIN ACYL-COA SYNTHETASE 1 EXPRESSION LEVEL AND LIPID METABOLISM IN LIVER CELLS%游离脂肪酸对肝细胞ACSL1表达及相关脂代谢的影响

    Institute of Scientific and Technical Information of China (English)

    刘艳; 施文荣; 洪振丰; 郑海音; 李颖

    2013-01-01

    目的 研究游离脂肪酸(FFA)的诱导对L02肝细胞长链脂酰CoA合成酶1(ACSL1)的表达及相关代谢的影响.方法 用含不同浓度(0.2、0.4、0.8 mmol/L) FFA的培养液诱导L02细胞48 h,Western blot检测ACSL1蛋白水平,荧光定量PCR检测ACSL1 mRNA水平,比色法测定甘油三酯(TG)含量、ATP水平和培养上清FFA浓度变化,生化法测定酮体含量和培养上清葡萄糖浓度变化.结果 FFA的诱导可显著提高ACSL1蛋白表达水平(P<0.01),但对ACSL1 mRNA水平无明显影响(P>0.05),细胞内TG含量显著升高(P<0.01或P<0.05),酮体含量显著升高(P<0.05),培养上清葡萄糖消耗显著增加(P<0.01),胞内ATP水平无明显变化(P>0.05),与0.2 mmol/L、0.4 mmol/L FFA组相比,0.8 mmol/L FFA组培养上清FFA消耗显著增加(P<0.01或P<0.05).结论 FFA通过上调ACSL1蛋白表达水平致肝细胞TG蓄积.%Objective To investigate the effect of free fatty acids (FFA) on long-chain acyl-CoA synthetase l(ACSL1) expression level and lipid metabolism in L02 cells.Methods The cells were treated by FFA (0.2,0.4,0.8 mmol/L) for 48 h.ACSL1 mRNA level was measured by quantitative real-time polymerase chain reaction (PCR) and protein level by Western blotting.Cellular triglyceride (TG),ketone bodies (Ket),ATP and consumption of FFA and glucose in culture supernatant were measured.Results Compared with normal control group,treatment of L02 cells with FFA did not affect ACSL1 mRNA expression level but significantly increased ACSL1 protein expression level.TG content,Ket level and consumption of glucose in culture supernatant were significantly higher and ATP level was not affected.Compared with 0.2 and 0.4 mmol/L FFA group,the consumption of FFA in culture supernatant was significantly higher in treatment with 0.8 mmol/L FFA.Conclusion FFA induced intracellular TG accumulation by up-regulating ACSL1 protein level in L02 cells.

  3. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  4. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes.

    Science.gov (United States)

    Chou, K H; Splittstoesser, W E

    1972-04-01

    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  5. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Directory of Open Access Journals (Sweden)

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  6. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  7. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon

    2011-01-01

    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  8. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández

    2016-01-01

    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  9. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  10. Structural analysis of fungus-derived FAD glucose dehydrogenase.

    Science.gov (United States)

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-08-27

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management.

  11. Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum.

    Science.gov (United States)

    Lü, Jun; Gao, Xiaorong; Dong, Zhimin; Yi, Jun; An, Lijia

    2012-01-01

    Phosphorus (P) is an essential nutrient for plant growth and development, but is generally unavailable and inaccessible in soil, since applied P is mostly fixed to aluminium (Al) and ferrum (Fe) in acidic soils and to calcium (Ca) in alkaline soils. Increased organic acid excretion is thought to be one mechanism by which plants use to enhance P uptake. In this study, we overexpressed a mitochondrial malate dehydrogenase (MDH) gene from the mycorrhizal fungi Penicillium oxalicum in tobacco. The MDH activity of transgenic lines was significantly increased compared to that of wild type. Malate content in root exudation of transgenic lines induced in response to P deficiency was 1.3- to 2.9-fold greater than that of wild type under the same condition. Among the transgenic lines that were selected for analysis, one line (M1) showed the highest level of MDH activity and malate exudate. M1 showed a significant increase in growth over wild type, with 149.0, 128.5, and 127.9% increases in biomass, when grown in Al-phosphate, Fe-phosphate, and Ca-phosphate media, respectively. M1 also had better P uptake compared to wild type, with total P content increased by 287.3, 243.5, and 223.4% when grown in Al-phosphate, Fe-phosphate, and Ca-phosphate media, respectively. To our knowledge, this is the first study on improving the ability of a plant to utilize P from Al-phosphate, Fe-phosphate, and Ca-phosphate by manipulating the organic acid metabolism of the plant through genetic engineering.

  12. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene.

    Science.gov (United States)

    Kuilenburg, André B P van; Meijer, Judith; Tanck, Michael W T; Dobritzsch, Doreen; Zoetekouw, Lida; Dekkers, Lois-Lee; Roelofsen, Jeroen; Meinsma, Rutger; Wymenga, Machteld; Kulik, Wim; Büchel, Barbara; Hennekam, Raoul C M; Largiadèr, Carlo R

    2016-04-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil, thymine and the antineoplastic agent 5-fluorouracil. Genetic variations in the gene encoding DPD (DPYD) have emerged as predictive risk alleles for 5FU-associated toxicity. Here we report an in-depth analysis of genetic variants in DPYD and their consequences for DPD activity and pyrimidine metabolites in 100 Dutch healthy volunteers. 34 SNPs were detected in DPYD and 15 SNPs were associated with altered plasma concentrations of pyrimidine metabolites. DPD activity was significantly associated with the plasma concentrations of uracil, the presence of a specific DPYD mutation (c.1905+1G>A) and the combined presence of three risk variants in DPYD (c.1905+1G>A, c.1129-5923C>G, c.2846A>T), but not with an altered uracil/dihydrouracil (U/UH2) ratio. Various haplotypes were associated with different DPD activities (haplotype D3, a decreased DPD activity; haplotype F2, an increased DPD activity). Functional analysis of eight recombinant mutant DPD enzymes showed a reduced DPD activity, ranging from 35% to 84% of the wild-type enzyme. Analysis of a DPD homology model indicated that the structural effect of the novel p.G401R mutation is most likely minor. The clinical relevance of the p.D949V mutation was demonstrated in a cancer patient heterozygous for the c.2846A>T mutation and a novel nonsense mutation c.1681C>T (p.R561X), experiencing severe grade IV toxicity. Our studies showed that the endogenous levels of uracil and the U/UH2 ratio are poor predictors of an impaired DPD activity. Loading studies with uracil to identify patients with a DPD deficiency warrants further investigation.

  13. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  14. Educational paper: Primary antibody deficiencies

    NARCIS (Netherlands)

    G.J.A. Driessen (Gertjan); M. van der Burg (Mirjam)

    2011-01-01

    textabstractPrimary antibody deficiencies (PADs) are the most common primary immunodeficiencies and are characterized by a defect in the production of normal amounts of antigen-specific antibodies. PADs represent a heterogeneous spectrum of conditions, ranging from often asymptomatic selective IgA a

  15. Epigenetic Deficiencies and Replicative Stress

    DEFF Research Database (Denmark)

    Shoaib, Muhammad; Sørensen, Claus Storgaard

    2015-01-01

    Cancer cell-specific synthetic lethal interactions entail promising therapeutic possibilities. In this issue of Cancer Cell, Pfister et al. describe a synthetic lethal interaction where cancer cells deficient in H3K36me3 owing to SETD2 loss-of-function mutation are strongly sensitized to inhibiti...

  16. Deferasirox in pyruvate kinase deficiency

    OpenAIRE

    Deeren, Dries

    2008-01-01

    Deferasirox in pyruvate kinase deficiency phone: +32-51-237437 (Deeren, Dries) (Deeren, Dries) Department of Haematology, Heilig-Hartziekenhuis Roeselare-Menen vzw - Wilgenstraat 2 - B-8800 - Roeselare - BELGIUM (Deeren, Dries) BELGIUM Registration: 2008-09-10 Received: 2008-09-05 Accepted: 2008-09-10 ePublished: 2008-09-23

  17. Management of Iron Deficiency Anemia

    Science.gov (United States)

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blood transfusions. Treatment options include oral and intravenous iron therapy; however, the efficacy of oral iron is limited in certain gastrointestinal conditions, such as inflammatory bowel disease, celiac disease, and autoimmune gastritis. This article provides a critical summary of the diagnosis and treatment of iron deficiency anemia. In addition, it includes a management algorithm that can help the clinician determine which patients are in need of further gastrointestinal evaluation. This facilitates the identification and treatment of the underlying condition and avoids the unnecessary use of invasive methods and their associated risks. PMID:27099596

  18. Congenital β-lipoprotein deficiency

    NARCIS (Netherlands)

    Buchem, F.S.P. van; Pol, G.; Gier, J. de; Böttcher, C.J.F.; Pries, C.

    1966-01-01

    There are several degrees of β-lipoprotein deficiency. If there is no β-lipoprotein present, or if there are only traces of it, the Bassen-Kornzweig syndrome develops. A constant feature of this syndrome is disturbed fat absorption with accumulation of fat in the epithelium of intestinal mucosa and

  19. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati......BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...... populations.SUBJECTS/METHODS: A nested case-control study (1269 cases matched to 2107controls by sex, age, study centre and date of blood collection) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate the impact of rs1229984 (ADH1B), rs1573496 (ADH7...

  20. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  1. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  2. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli.

    Science.gov (United States)

    Ogawa, Tadashi; Murakami, Keiko; Mori, Hirotada; Ishii, Nobuyoshi; Tomita, Masaru; Yoshin, Masataka

    2007-02-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  3. Role of Phosphoenolpyruvate in the NADP-Isocitrate Dehydrogenase and Isocitrate Lyase Reaction in Escherichia coli▿

    OpenAIRE

    2006-01-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki′ of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  4. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations

    NARCIS (Netherlands)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2016-01-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regener

  5. Identifying Causes of Job Performance Deficiencies.

    Science.gov (United States)

    Herem, Maynard A.

    1979-01-01

    A model to guide the search for types of performance deficiencies is set forth within the general framework of systems theory. Five types of problems, singly or in combination, are discussed as causes of deficiencies. (Author)

  6. Genetics Home Reference: congenital leptin deficiency

    Science.gov (United States)

    ... Obesity? National Institute of Diabetes and Digestive and Kidney Diseases: Active at Any Size! Educational Resources (6 links) Centers for Disease Control and Prevention: Obesity and Genetics MalaCards: congenital leptin deficiency Orphanet: Obesity due to congenital leptin deficiency ...

  7. Genetics Home Reference: protein S deficiency

    Science.gov (United States)

    ... my area? Other Names for This Condition hereditary thrombophilia due to protein S deficiency Related Information How are ... Merck Manual Home Edition for Patients and Caregivers: Thrombophilia Orphanet: Hereditary thrombophilia due to congenital protein S deficiency ...

  8. Genetics Home Reference: corticosterone methyloxidase deficiency

    Science.gov (United States)

    ... levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also ... acid in the blood (metabolic acidosis). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency ...

  9. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    Directory of Open Access Journals (Sweden)

    Steven F Werder

    2010-04-01

    Full Text Available Steven F Werder1,21Kansas University School of Medicine – Wichita, Wichita, KS, USA; 2Community Health Center of Southeast Kansas, Pittsburg, KS, USAIntroduction: Although consensus guidelines recommend checking serum B12 in patients with dementia, clinicians are often faced with various questions: (1 Which patients should be tested? (2 What test should be ordered? (3 How are inferences made from such testing? (4 In addition to serum B12, should other tests be ordered? (5 Is B12 deficiency compatible with dementia of the Alzheimer’s type? (6 What is to be expected from treatment? (7 How is B12 deficiency treated?Methods: On January 31st, 2009, a Medline search was performed revealing 1,627 citations related to cobalamin deficiency, hyperhomocysteinemia, and dementia. After limiting the search terms, all abstracts and/or articles and other references were categorized into six major groups (general, biochemistry, manifestations, associations and risks, evaluation, and treatment and then reviewed in answering the above questions.Results: The six major groups above are described in detail. Seventy-five key studies, series, and clinical trials were identified. Evidence-based suggestions for patient management were developed.Discussion: Evidence is convincing that hyperhomocysteinemia, with or without hypovitaminosis B12, is a risk factor for dementia. In the absence of hyperhomocysteinemia, evidence is less convincing that hypovitaminosis B12 is a risk factor for dementia. B12 deficiency manifestations are variable and include abnormal psychiatric, neurological, gastrointestinal, and hematological findings. Radiological images of individuals with hyperhomocysteinemia frequently demonstrate leukoaraiosis. Assessing serum B12 and treatment of B12 deficiency is crucial for those cases in which pernicious anemia is suspected and may be useful for mild cognitive impairment and mild to moderate dementia. The serum B12 level is the standard initial test

  10. Mellemkaedet acyl-CoA dehydrogenase (MCAD)-mangel

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Andresen, B S;

    1992-01-01

    death or "near miss". Characterization of a prevalent disease-causing mutation (G985) in the MCAD gene has increased the diagnostic possibilities, since 75% of all patients with MCAD deficiency are homozygous for the mutation. Analysis for this mutation in genomic DNA from a bloodspot on a PKU...

  11. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    Science.gov (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  12. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  13. Cobalamin deficiency in children: A literature review

    OpenAIRE

    Moen, Synne Helland

    2013-01-01

    Objective: The aim of this review is to present cobalamin deficiency in children with a specific focus on infants. Background: Cobalamin deficiency is caused by inadequate intake, malabsorption or inborn errors of vitamin B12 metabolism. Cobalamin deficiency in infants is usually caused by deficiency in the mother. There is often a diagnostic delay among infants because the most frequent symptoms are unspecific, e.g., developmental delay, apathy, hypotonia, anorexia and failure to thrive. Chi...

  14. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  15. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency, and the G6PD Santa Maria and A+ (less severe deficiency (Class I, II and III, respectively affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.

  16. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  17. Rapid detection of medium chain acyl-CoA dehydrogenase gene mutations by non-radioactive, single strand conformation polymorphism minigels.

    Science.gov (United States)

    Iolascon, A; Parrella, T; Perrotta, S; Guardamagna, O; Coates, P M; Sartore, M; Surrey, S; Fortina, P

    1994-07-01

    Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a common inherited metabolic disorder affecting fatty acid beta oxidation. Identification of carriers is important since the disease can be fatal and is readily treatable once diagnosed. Twelve molecular defects have been identified in the MCAD gene; however, a single highly prevalent mutation, A985G, accounts for > 90% of mutant alleles in the white population. In order to facilitate the molecular diagnosis of MCAD deficiency, oligonucleotide primers were designed to amplify the exon regions encompassing the 12 mutations enzymatically, and PCR products were then screened with a single strand conformation polymorphism (SSCP) based method. Minigels were used allowing much faster run times, and silver staining was used after gel electrophoresis to eliminate the need for radioisotopic labelling strategies. Our non-radioactive, minigel SSCP approach showed that normals can be readily distinguished from heterozygotes and homozygotes for all three of the 12 known MCAD mutations which were detected in our sampling of 48 persons. In addition, each band pattern is characteristic for a specific mutation, including those mapping in the same PCR product like A985G and T1124C. When necessary, the molecular defect was confirmed using either restriction enzyme digestion of PCR products or by direct DNA sequence analysis or both. This rapid, non-radioactive approach can become routine for molecular diagnosis of MCAD deficiency and other genetic disorders.

  18. Iron-induced nickel deficiency in pecan

    Science.gov (United States)

    Economic loss due to nickel (Ni) deficiency can occur in horticultural and agronomic crops. This study assesses impact of excessive iron (Fe) on expression of Ni deficiency in pecan [Carya illinoinensis (Wangenh.) K. Koch]. Field and greenhouse experiments found Ni deficiency to be inducible by ei...

  19. Iron Deficiency in Autism and Asperger Syndrome.

    Science.gov (United States)

    Latif, A.; Heinz, P.; Cook, R.

    2002-01-01

    Retrospective analysis of the full blood count and, when available, serum ferritin measurements of 96 children (52 with autism and 44 with Asperger syndrome) found six autistic children had iron deficiency and 12 of the 23 autistic children with serum ferritin measures were iron deficient. Far fewer Asperger children were iron deficient. Results…

  20. The reaction of choline dehydrogenase with some electron acceptors.

    Science.gov (United States)

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  1. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau

    2016-01-01

    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  2. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst.

    Science.gov (United States)

    An, Hongjie; Jin, Bo; Dai, Sheng

    2015-01-01

    Immobilization of the enzymes on nano-structured materials is a promising approach to enhance enzyme stabilization, activation and reusability. This study aimed to develop polystyrene fiber-enzyme assembles to catalyze model formaldehyde to methanol dehydrogenation reaction, which is an essential step for bioconversion of CO2 to a renewable bioenergy. We fabricated and modified electrospun polystyrene fibers, which showed high capability to immobilize dehydrogenase for the fiber-enzyme assembles. Results from evaluation of biochemical activities of the fiber-enzyme assemble showed that nitriation with the nitric/sulfuric acid ratio (v/v, 10:1) and silanization treatment delivered desirable enzyme activity and long-term storage stability, showing great promising toward future large-scale applications.

  3. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  4. IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom,L.; Gan, L.

    2006-01-01

    Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.

  5. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    Science.gov (United States)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  6. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Directory of Open Access Journals (Sweden)

    Hirokazu Shiga

    2014-03-01

    Full Text Available The retention of the enzyme activity of alcohol dehydrogenase (ADH has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11 was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  7. Encapsulation of alcohol dehydrogenase in mannitol by spray drying.

    Science.gov (United States)

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-03-24

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  8. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup;

    2016-01-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...... oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH...

  9. Kinetics of myoglobin redox form stabilization by malate dehydrogenase.

    Science.gov (United States)

    Mohan, Anand; Muthukrishnan, S; Hunt, Melvin C; Barstow, Thomas J; Houser, Terry A

    2010-06-09

    This study reports the reduction of metmyoglobin (MMb) via oxidation of malate to oxaloacetate and the regeneration of reduced nicotinamide adenine dinucleotide (NADH) via malate dehydrogenase (MDH). Two experiments were conducted to evaluate a malate-MDH-NADH system as a possible mechanism for MMb reduction. In experiment 1, kinetics of MDH and MMb reduction were determined, and the results showed that increasing concentrations of oxidized nicotinamide adenine dinucleotide (NAD(+)) and l-malate also increased (p malate and NAD(+) added. Reduction of MMb in the muscle extracts via MDH was NAD(+), malate, and extract concentration dependent (p malate can replenish NADH via MDH activity in post-mortem muscle, ultimately resulting in a more functional meat color.

  10. In vitro interaction between psychotropic drugs and alcohol dehydrogenase activity.

    Science.gov (United States)

    Roig, M G; Bello, F; Burguillo, F J; Cachaza, J M; Kennedy, J F

    1991-03-01

    A series of CNS-stimulating and -depressant drugs have been studied for their in vitro interaction with horse liver alcohol dehydrogenase (ADH) activity. The depressant drugs studied included barbital, phenobarbital, thiopental, nitrazepam, chlorpromazine, sulpiride, clomethiazole, Li2CO3, diazepam, phenytoin, ethosuximide, morphine, and codeine. The stimulant drugs were theophylline, caffeine, amphetamine, imipramine, chlorimipramine, amitriptyline, and tranylcypromine. The results were as follows. First, ADH activity was inhibited by the action of chlorpromazine, tranylcypromine, imipramine, chlorimipramine, amitriptyline, sulpiride, amphetamine, codeine, ethosuximide, morphine, clomethiazole, nitrazepam, Li2CO3, theophylline, and phenobarbital, in descending order of inhibitory effect. Second, inhibition followed by activation of ADH activity was observed for imipramine and chlorimipramine. Third, activation of ADH activity was observed for phenytoin. Finally, the following drugs were not seen to exert any effect on ADH activity: barbital, thiopental, diazepam, and caffeine.

  11. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu

    2016-01-01

    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  12. Mechanistic enzymology of CO dehydrogenase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, S.W.

    1992-01-01

    The final steps in acetyl-CoA biosynthesis by anaerobic bacteria are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. An important achievement was to establish conditions under which acetyl-CoA synthesis by purified enzymes equals the in vivo rate of acetate synthesis. Under these optimized conditions we established that the rate limiting step in the synthesis of acetyl-CoA from methyl-H[sub 4]folate, CO and CoA is likely to be the methylation of CODH by the methylated corrinoid/iron-sulfur protein. We then focused on stopped flow studies of this rate limiting transmethylation reaction and established its mechanism. We have studied the carbonylation of CODH by infrared and resonance Raman spectroscopy and determined that the [Ni-Fe[sup 3-4]S[sub 4

  13. Crystallographic analysis of FAD-dependent glucose dehydrogenase.

    Science.gov (United States)

    Komori, Hirofumi; Inaka, Koji; Furubayashi, Naoki; Honda, Michinari; Higuchi, Yoshiki

    2015-08-01

    An FAD-dependent glucose dehydrogenase (GDH) from Aspergillus terreus was purified and crystallized at 293 K using the sitting-drop vapour-diffusion method. A data set was collected to a resolution of 1.6 Å from a single crystal at 100 K using a rotating-anode X-ray source. The crystal belonged to space group P21, with unit-cell parameters a = 56.56, b = 135.74, c = 74.13 Å, β = 90.37°. The asymmetric unit contained two molecules of GDH. The Matthews coefficient was calculated to be 2.2 Å(3) Da(-1) and the solvent content was estimated to be 44%.

  14. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Directory of Open Access Journals (Sweden)

    Singh Rajendra

    1991-01-01

    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  15. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  16. Iron deficiency anemia in pregnancy.

    Science.gov (United States)

    Di Renzo, Gian Carlo; Spano, Filippo; Giardina, Irene; Brillo, Eleonora; Clerici, Graziano; Roura, Luis Cabero

    2015-11-01

    Anemia is the most frequent derailment of physiology in the world throughout the life of a woman. It is a serious condition in countries that are industrialized and in countries with poor resources. The main purpose of this manuscript is to give the right concern of anemia in pregnancy. The most common causes of anemia are poor nutrition, iron deficiencies, micronutrients deficiencies including folic acid, vitamin A and vitamin B12, diseases like malaria, hookworm infestation and schistosomiasis, HIV infection and genetically inherited hemoglobinopathies such as thalassemia. Depending on the severity and duration of anemia and the stage of gestation, there could be different adverse effects including low birth weight and preterm delivery. Treatment of mild anemia prevents more severe forms of anemia, strictly associated with increased risk of fetal-maternal mortality and morbidity.

  17. Vitamin D deficiency in Europe

    DEFF Research Database (Denmark)

    Cashman, Kevin D.; Dowling, Kirsten G; Škrabáková, Zuzana

    2016-01-01

    BACKGROUND: Vitamin D deficiency has been described as being pandemic, but serum 25-hydroxyvitamin D [25(OH)D] distribution data for the European Union are of very variable quality. The NIH-led international Vitamin D Standardization Program (VDSP) has developed protocols for standardizing existing...... 25(OH)D values from national health/nutrition surveys. OBJECTIVE: This study applied VDSP protocols to serum 25(OH)D data from representative childhood/teenage and adult/older adult European populations, representing a sizable geographical footprint, to better quantify the prevalence of vitamin D...... sera. These data were combined with standardized serum 25(OH)D data from 4 previously standardized studies (for a total n = 55,844). Prevalence estimates of vitamin D deficiency [using various serum 25(OH)D thresholds] were generated on the basis of standardized 25(OH)D data. RESULTS: An overall pooled...

  18. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    : homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage......Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...

  19. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  20. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    Science.gov (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Å resolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs.

  1. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase.

    Science.gov (United States)

    Doyle, S A; Fung, S Y; Koshland, D E

    2000-11-21

    Despite the structural similarities between isocitrate and isopropylmalate, isocitrate dehydrogenase (IDH) exhibits a strong preference for its natural substrate. Using a combination of rational and random mutagenesis, we have engineered IDH to use isopropylmalate as a substrate. Rationally designed mutations were based on comparison of IDH to a similar enzyme, isopropylmalate dehydrogenase (IPMDH). A chimeric enzyme that replaced an active site loop-helix motif with IPMDH sequences exhibited no activity toward isopropylmalate, and site-directed mutants that replaced IDH residues with their IPMDH equivalents only showed small improvements in k(cat). Random mutants targeted the IDH active site at positions 113 (substituted with glutamate), 115, and 116 (both randomized) and were screened for activity toward isopropylmalate. Six mutants were identified that exhibited up to an 8-fold improvement in k(cat) and increased the apparent binding affinity by as much as a factor of 80. In addition to the S113E mutation, five other mutants contained substitutions at positions 115 and/or 116. Most small hydrophobic substitutions at position 116 improved activity, possibly by generating space to accommodate the isopropyl group of isopropylmalate; however, substitution with serine yielded the most improvement in k(cat). Only two substitutions were identified at position 115, which suggests a more specific role for the wild-type asparagine residue in the utilization of isopropylmalate. Since interactions between neighboring residues in this region greatly influenced the effects of each other in unexpected ways, structural solutions were best identified in combinations, as allowed by random mutagenesis.

  2. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  3. Molecular Genetics of Lactase Deficiencies

    OpenAIRE

    Kuokkanen, Mikko

    2006-01-01

    Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleot...

  4. Iron refractory iron deficiency anemia

    OpenAIRE

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in ad...

  5. Congenital deficiency of factor VII.

    Science.gov (United States)

    Sikka, M; Gomber, S; Madan, N; Rusia, U; Sharma, S

    1996-01-01

    A case of congenital factor VII deficiency in a five-year-old child is reported. The patient, born of a non-consanguineous marriage, presented with repeated bouts of epistaxis since childhood. The prothrombin time (PT) was markedly prolonged with a normal bleeding time (BT), partial thromboplastin time with Kaolin (PTTK) and platelet count. The patient has been on follow up for the last four years and is doing apparently well.

  6. Lactate dehydrogenase concentration in nasal wash fluid indicates severity of rhinovirus-induced wheezy bronchitis in preschool children.

    Science.gov (United States)

    Cangiano, Giulia; Proietti, Elena; Kronig, Marie Noelle; Kieninger, Elisabeth; Sadeghi, Christine D; Gorgievski, Meri; Barbani, Maria Teresa; Midulla, Fabio; Tapparel, Caroline; Kaiser, Laurent; Alves, Marco P; Regamey, Nicolas

    2014-12-01

    The clinical course of rhinovirus (RV)-associated wheezing illnesses is difficult to predict. We measured lactate dehydrogenase concentrations, RV load, antiviral and proinflammatory cytokines in nasal washes obtained from 126 preschool children with RV wheezy bronchitis. lactate dehydrogenase values were inversely associated with subsequent need for oxygen therapy. lactate dehydrogenase may be a useful biomarker predicting disease severity in RV wheezy bronchitis.

  7. Mitochondrial cytochrome c oxidase deficiency.

    Science.gov (United States)

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  8. [Iodine deficiency in cardiovascular diseases].

    Science.gov (United States)

    Molnár, I; Magyari, M; Stief, L

    1998-08-30

    The thyroid hormone deficiency on cardiovascular function can be characterized with decreased myocardial contractility and increased peripheral vascular resistance as well as with the changes in lipid metabolism. 42 patients with cardiovascular disease (mean age 65 +/- 13 yr, 16 males) were investigated if iodine insufficiency can play a role as a risk factor for the cardiovascular diseases. The patients were divided in 5 subgroups on the ground of the presence of hypertension, congestive heart failure, cardiomyopathy, coronary disfunction and arrhythmia. Urine iodine concentration (5.29 +/- 4.52 micrograms/dl) was detected with Sandell-Kolthoff colorimetric reaction. The most decreased urine iodine concentration was detected in the subgroups with arrhythmia and congestive heart failure (4.7 +/- 4.94 micrograms/dl and 4.9 +/- 4.81 micrograms/dl, respectively). An elevated TSH level was found by 3 patients (5.3 +/- 1.4 mlU/l). An elevation in lipid metabolism (cholesterol, triglyceride) associated with all subgroups without arrhythmia. In conclusion, the occurrence of iodine deficiency in cardiovascular disease is frequent. Iodine supplementation might prevent the worsing effect of iodine deficiency on cardiovascular disease.

  9. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  10. Polymorphisms of alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 and esophageal cancer risk in Southeast Chinese males

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Ding; Su-Ping Li; Hai-Xia Cao; Jian-Zhong Wu; Chang-Ming Gao; Ping Su; Yan-Ting Liu; Jian-Nong Zhou; Jun Chang; Gen-Hong Yao

    2009-01-01

    AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males. METHODS: Two hundred and twenty-one esophageal cancer patients and 191 healthy controls from Taixing city in Jiangsu Province were enrolled in this study. ADH2 and ALDH2 genotypes were examined by polymerase chain reaction and denaturing highperformance liquid chromatography. Unconditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence interval (CI). RESULTS: The ADH G allele carriers were more susceptible to esophageal cancer, but no association was found between ADH2 genotypes and risk of esophageal cancer when disregarding alcohol drinking status. Regardless of ADH2 genotype, ALDH2G/A or A/A carriers had significantly increased risk of developing esophageal cancer, with homozygous individuals showing higher esophageal cancer risk than those who were heterozygous. A significant interaction between ALDH2 and drinking was detected regarding esophageal cancer risk; the OR was 3.05 (95% CI: 1.49-6.25). Compared with non-drinkers carrying both ALDH2 G/G and ADH2 A/A, drinkers carrying both ALDH2 A allele and ADH2 G allele showed a significantly higher risk of developing esophageal cancer (OR = 8.36, 95% CI: 2.98-23.46).CONCLUSION: Both ADH2 G allele and ALDH2 A allele significantly increase the risk of esophageal cancer development in Southeast Chinese males. ALDH2 A allele significantly increases the risk of esophageal cancer development especially in alcohol drinkers. Alcohol drinkers carrying both ADH2 G allele and ALDH2 A allele have a higher risk of developing esophageal cancer.

  11. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  12. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae.

    Science.gov (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2015-04-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA.

  13. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  14. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency.

    Science.gov (United States)

    Desbats, Maria Andrea; Lunardi, Giada; Doimo, Mara; Trevisson, Eva; Salviati, Leonardo

    2015-01-01

    Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions.

  15. Glucose-6-phosphate dehydrogenase Guadalajara--a case of chronic non-spherocytic haemolytic anaemia responding to splenectomy and the role of splenectomy in this disorder.

    Science.gov (United States)

    Hamilton, J W; Jones, F G C; McMullin, Mary Frances

    2004-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme of the pentose phosphate shunt pathway a major function of which is to prevent cellular oxidative damage. Deficiency in red blood cells is associated with a number of varied clinical manifestations. Chronic non-spherocytic haemolytic anaemia is uncommon but is usually characterized by chronic haemolysis, often with severe anaemia. In the past splenectomy in this condition has been thought to be of questionable benefit. We report a case of G6PD Guadalajara where splenectomy produced transfusion independence and have reviewed the literature. Those cases with exon 10 mutations often have a severe clinical phenotype, which responds to splenectomy. This procedure should be considered in this condition.

  16. Deficiencies in the Management of Iron Deficiency Anemia During Childhood.

    Science.gov (United States)

    Powers, Jacquelyn M; Daniel, Catherine L; McCavit, Timothy L; Buchanan, George R

    2016-04-01

    Limited high-quality evidence supports the management of iron deficiency anemia (IDA). To assess our institutional performance in this area, we retrospectively reviewed IDA treatment practices in 195 consecutive children referred to our center from 2006 to mid-2010. The majority of children were ≤4 years old (64%) and had nutritional IDA (74%). In 11- to 18-year-old patients (31%), the primary etiology was menorrhagia (42%). Many were referred directly to the emergency department and/or prescribed iron doses outside the recommended range. Poor medication adherence and being lost-to-follow-up were common. Substantial improvements are required in the management of IDA.

  17. Primary Carnitine (OCTN2) Deficiency Without Neonatal Carnitine Deficiency

    OpenAIRE

    Boer, L.; Kluijtmans, L.A.J.; Morava, E.

    2012-01-01

    Although the diagnosis of a primary carnitine deficiency is usually based on a very low level of free and total carnitine (free carnitine: 1–5 μM, normal 20–55 μM) (Longo et al. 2006), we detected a patient via newborn screening with a total carnitine level 67 % of the normal value. At the age of 1 year, after interruption of carnitine supplementation for a 4-week period the carnitine profile was assessed and the free carnitine level had dropped to 10.4 μmol/l (normal: 20–55 μM) and total car...

  18. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation.

    Science.gov (United States)

    Miyashita, Yo; Good, Allen G

    2008-01-01

    Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.

  19. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy.

    Science.gov (United States)

    Rahman, Md Habibur; Jha, Mithilesh Kumar; Kim, Jong-Heon; Nam, Youngpyo; Lee, Maan Gee; Go, Younghoon; Harris, Robert A; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-03-11

    The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.

  20. Precautionary Measures for Successful Open Heart Surgery in G6PD Deficient Patient- A Case Report

    Science.gov (United States)

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is among the most common enzymatic disorders of red blood cells. Cardiac surgeries on this group of individuals are associated with an additional risk in terms of impaired oxygenation, prolonged ventilation and increased risk of haemolysis. These patients have a very low threshold for haemolysis due to oxidative stress. Many commonly used drugs also predispose the individual for haemolysis when they are subjected to surgery. Here we present a known case of G6PD deficient patient with symptoms of breathlessness for the last nine years who was taken for surgery with pre-planned precautionary measures to avoid unnecessary haemolysis. The echocardiography report revealed severe mixed mitral lesion and moderate tricuspid regurgitation. On general examination she had mild pallor and icterus. We planned for a thorough investigation to prepare her for mitral valve replacement and tricuspid annuloplasty. These groups of patients are at high risk of haemolysis during perioperative period and need prolonged mechanical ventilation and hospital stay due to impaired oxygen carrying capacity and oxidative stress due to deficient free radical scavenging system. The patient underwent mechanical mitral valve replacement and tricuspid annuloplasty under cardiopulmonary bypass with precautionary measures to prevent the risk of haemolysis and associated complications. She had an uneventful recovery. PMID:28208930